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Abstract

Aerial vision-and-language navigation (VLN)001
— requiring drones to interpret natural language002
instructions and navigate complex urban envi-003
ronments — emerges as a critical embodied004
AI challenge that bridges human-robot inter-005
action, 3D spatial reasoning, and real-world006
deployment. Although existing ground VLN007
agents achieved notable results in indoor and008
outdoor settings, they struggle in aerial VLN009
due to the absence of predefined navigation010
graphs and the exponentially expanding action011
space in long-horizon exploration. In this work,012
we propose CityNavAgent, a large language013
model (LLM)-empowered agent that signifi-014
cantly reduces the navigation complexity for015
urban aerial VLN. Specifically, we design a hi-016
erarchical semantic planning module (HSPM)017
that decomposes the long-horizon task into sub-018
goals with different semantic levels. The agent019
reaches the target progressively by achieving020
sub-goals with different capacities of the LLM.021
Additionally, a global memory module storing022
historical trajectories into a topological graph is023
developed to simplify navigation for visited tar-024
gets. Extensive benchmark experiments show025
that our method achieves state-of-the-art perfor-026
mance with significant improvement. Further027
experiments demonstrate the effectiveness of028
different modules of CityNavAgent for zero-029
shot VLN in continuous city environments.030

1 Introduction031

Visual-and-language navigation (VLN) is a funda-032

mental task where an agent is required to navigate033

to a specified landmark or location following lan-034

guage instructions (Anderson et al., 2018; Gu et al.,035

2022; Gao et al., 2024a). With the increasing preva-036

lence of unmanned aerial vehicles (UAVs), aerial037

VLN (Liu et al., 2023b) has gained significant at-038

tention. This task empowers UAVs to navigate039

complex, large-scale outdoor environments with040

language instructions, reducing the cost of human-041

Embodied 
Agent

Environment Open-vocabulary 
Perception Module

Hierarchical Semantic 
Planning Module 

Execution Module

Global Memory 
Module

Historical 
Trajectories

Historical 
Observations

Semantic & Spatial 
Information

Hierarchical 
Sub-goals

Update

Update

Obs. Act.

Retrieve

Figure 1: The overall workflow of CityNavAgent.

machine interaction and offering significant advan- 042

tages in applications like rescue, transportation, and 043

urban inspections. 044

Most existing methods primarily address indoor 045

VLN. One approach (Anderson et al., 2018; Ku- 046

rita and Cho, 2020; Chen et al., 2024; Gao et al., 047

2023; Huo et al., 2023; Chen et al., 2022) formu- 048

lates the task in a discrete setting, where agents 049

teleport between nodes in pre-defined topological 050

graphs without motion errors, limiting real-world 051

applicability. Other methods mitigate reliance on 052

pre-defined maps using end-to-end action predic- 053

tion (Krantz et al., 2020; Raychaudhuri et al., 2021; 054

Chen et al., 2021a) or waypoint prediction (Hong 055

et al., 2022; An et al., 2024; Wang et al., 2024). 056

But the former struggles with scene semantic vari- 057

ations, while the latter fails to adapt to large-scale 058

outdoor scenarios. Although some methods (Schu- 059

mann et al., 2024; Liu et al., 2024) extend VLN 060

to outdoor ground navigation, they still rely on 061

pre-defined scene graphs, which are unavailable in 062

aerial settings. STMR (Gao et al., 2024b) intro- 063

duced a zero-shot LLM-based framework for aerial 064

VLN by constructing an online 2D semantic map, 065

but its failure to incorporate height information 066

leads to high navigation errors. 067

In this work, we focus on aerial VLN that has 068

a more realistic and challenging setting compared 069

to the previous VLN tasks. In this task, the agent 070

is required to predict the next action or waypoint 071

to approach to the target iteratively in a continuous 072
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aerial space. The challenges are two-fold:073

• Complex scene understanding in urban envi-074

ronments Urban environments exhibit consid-075

erably higher object variety than indoor scenes,076

incorporating extensive infrastructural elements,077

architectural structures, and natural landscapes.078

Moreover, the semantic density in urban scenes079

is highly dynamic. When an agent operates near080

ground level, the scene exhibits high semantic081

density, whereas at higher altitudes the semantic082

becomes markedly sparse. These disparities in083

object variety and semantic density pose substan-084

tial challenges for cross-modal grounding and085

instruction-related object extraction.086

• Exponential complexity in long-horizon mo-087

tion planning. The VLN task can be considered088

as a Partially Observable Markov Decision Pro-089

cess, where the agent predicts the next action or090

waypoint based on its current state and the envi-091

ronmental context. However, for the aerial VLN,092

the long-horizon navigation requires the agent to093

predict longer action sequences. Even if the num-094

ber of available actions per step is limited, the095

total number of possible action sequences grows096

exponentially with the planning horizon. Specifi-097

cally, if there are m actions available at each step,098

the number of potential action sequences over n099

steps is approximately mn, which poses a great100

challenge to the agent’s action planning.101

In this work, we propose CityNavAgent, which102

consists of an open-vocabulary perception mod-103

ule and a hierarchical semantic planning module104

(HSPM) with a global memory module to ad-105

dress the above challenges. 1) To extract the com-106

plex and rich semantics in urban environments, the107

open-vocabulary perception module first utilizes an108

LLM to caption the scene and extract instruction-109

related objects through prompt engineering. It110

then integrates a vision foundation model for open-111

vocabulary image grounding. 2) To narrow down112

the possible action space during the motion plan-113

ning, we design HSPM, which decomposes the114

navigation task into landmark-level, object-level,115

and motion-level planning, with progressively de-116

creasing semantic abstraction. The planning fre-117

quency decreases from low to high levels. The118

landmark-level planning decomposes the naviga-119

tion task into a sequence of landmarks to be tra-120

versed. The object-level planning reasons about the121

objects in the scene that lead to these landmarks.122

The motion-level planning predicts the waypoint123

and action sequence to reach the semantic target124

from higher-level planners. Additionally, CityNav- 125

Agent incorporates a global memory module to 126

store effective waypoints and trajectories from his- 127

torical tasks, enhancing long-term navigation per- 128

formance. 129

To summarize, the main contributions of this 130

work are as follows: 131

• We focus on the urban aerial VLN task, which 132

is insufficiently explored yet valuable and highly 133

challenging, and introduce CityNavAgent—an 134

LLM-powered agent for zero-shot navigation. 135

• We propose an open-vocabulary perception mod- 136

ule that enables the agent to understand the ur- 137

ban scene and HSPM with global memory that 138

reduces the complexity of action planning to ad- 139

dress the key challenges. 140

• We conduct extensive experiments on two aerial 141

VLN benchmarks to demonstrate our proposed 142

method in terms of success rate and path follow- 143

ing. More ablation studies verify the efficacy of 144

our designed components. 145

2 Related Works 146

Vision-and-language Navigation (VLN) VLN is 147

first well defined by R2R (Anderson et al., 2018) 148

which is a navigation benchmark collected in a 149

photorealistic simulator (Chang et al., 2017) with 150

detailed language descriptions and visual observa- 151

tions. Based on R2R, tons of methods (Shridhar 152

et al., 2020; Gao et al., 2023; Huo et al., 2023; 153

Chen et al., 2021b; Kamath et al., 2023; Li and 154

Bansal, 2023; Li et al., 2023; Chen et al., 2022; 155

Guhur et al., 2021; Qi et al., 2021) are proposed 156

to enable the robots with embodied navigation ca- 157

pacity. Specifically, Kurita et al. (Kurita and Cho, 158

2020) proposed a novel generative approach that 159

predicts the instruction distribution conditioned on 160

the action set. However, R2R and its derivation (Ku 161

et al., 2020; Jain et al., 2019) are defined in limited 162

indoor scenes and discrete action spaces which the 163

agent moves within pre-defined topological graphs. 164

This setting yields its practical application in the 165

continuous real-world space. 166

Krantz et al. (Krantz et al., 2020) introduced 167

R2R-CE tasks by adapting R2R trajectories for 168

continuous environments. End-to-end methods 169

such as LSTM-based methods (Krantz et al., 2020; 170

Raychaudhuri et al., 2021; Liu et al., 2023b), 171

transformer-based methods (Irshad et al., 2022; 172

Chen et al., 2021a; Krantz et al., 2021), and re- 173

inforcement learning-based methods (Wang et al., 174

2018, 2020) have been explored to improve nav- 175
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igation policies. More recently, waypoint-based176

methods, such as (Hong et al., 2022; An et al.,177

2024; Wang et al., 2023a, 2024) have emerged by178

constructing online maps and waypoints to narrow179

down the agent’s possible locations during naviga-180

tion. Despite these advancements, end-to-end and181

waypoint prediction-based methods still face ob-182

stacles in adapting to open outdoor environments,183

primarily due to the differences in spatial structures184

and the semantic distribution of objects.185

In this work, we focus on outdoor aerial VLN186

(Liu et al., 2023b), a more challenging task with187

longer navigation paths, more diverse scene seman-188

tics, and more complex action spaces. More specif-189

ically, unlike ground-level outdoor VLN (Chen190

et al., 2019; Schumann and Riezler, 2020; Schu-191

mann et al., 2024) that operate within discrete ac-192

tion spaces, aerial VLN requires agents to navigate193

through continuous 3D spatial coordinates, which194

is a more realistic setting for real-world navigation.195

LLM for Embodied Navigation With the rise196

of LLMs (Touvron et al., 2023; Chiang et al.,197

2023; Achiam et al., 2023; Brown et al., 2020),198

many methods (Dorbala et al., 2022; Chen et al.,199

2023; Schumann et al., 2024; Shah et al., 2023)200

have leveraged their reasoning capabilities for zero-201

shot VLN. The main challenge for zero-shot LLM-202

based methods lies in constructing condensed and203

structured semantic maps of the environment, such204

as topological graphs, so that LLMs can reason205

over the semantic information and predict the next206

waypoint on these maps. Existing works either use207

pre-defined semantic maps (Achiam et al., 2023;208

Zhou et al., 2024; Chen et al., 2024) provided by209

simulators or predict semantic maps within indoor210

scenes (Wang et al., 2023a). However, indoor se-211

mantic map prediction methods face challenges212

related to scale and semantic shifts when applied to213

outdoor environments. STMR (Gao et al., 2024b)214

proposed an outdoor online 2D semantic map con-215

struction pipeline and achieved promising results216

on aerial VLN. But it fails to leverage the height217

information of the scene, which is also critical for218

navigation. In this work, we propose CityNav-219

Agent, which comprises a hierarchical semantic220

planner that predicts waypoints in outdoor environ-221

ments in a zero-shot manner, along with a global222

memory module that stores historical waypoints to223

enhance long-term navigation.224

3 Problem Formulation 225

Given a language instruction I and the agent’s ego- 226

centric observation O, the aerial VLN agent has 227

to determine a sequence of action to reach the tar- 228

get location pd in a continuous 3D space. At each 229

action step t, the agent follows a policy π taking 230

current observation ot and instruction I as input to 231

predict the next action at and move to location pt 232

by its kinematic model F , which is given by: 233

pt = F(pt−1, π(ot, I)), (1) 234

Given a sequence of action, the agent reaches a 235

final position, and the success probability Ps of 236

reaching the target pd is 237

Ps = P (||F(π(p0,O, I))− pd|| < ϵ), (2) 238

where || · || is the Euclidean distance and ϵ is the 239

threshold that indicates if the target is reached. 240

Thus, the goal of VLN is to find a policy π∗ that 241

maximizes the success rate, given by: 242

π∗ = argmaxπPs. (3) 243

4 CityNavAgent 244

In this section, we present the workflow of the pro- 245

posed CityNavAgent for zero-shot aerial VLN in 246

urban environments. As shown in Figure 1, City- 247

NavAgent framework comprises three key mod- 248

ules. 1) The open-vocabulary perception module 249

extracts structured semantic and spatial informa- 250

tion from its panoramic observation via a founda- 251

tion model. 2) The hierarchical semantic planning 252

module (HSPM) leverages LLM to decompose the 253

navigation task into hierarchical planning sub-tasks 254

to reduce the planning complexity and predict the 255

intermediate waypoint for the execution module. 256

3) The global memory module, represented as a 257

topological graph, stores valid waypoints extracted 258

from historical trajectories to further reduce the 259

action space of motion planning and enhance long- 260

range navigation stability. 261

4.1 Open-vocabulary Perception Module 262

To accurately understand complex semantics in the 263

urban environment, we leverage the powerful open- 264

vocabulary captioning and grounding model to ex- 265

tract scene semantic features. Besides, integrating 266

the scene semantics and depth information, we con- 267

struct a 3D semantic map for further planning. 268

Scene Semantic Perception Extracting urban 269

scene semantics requires robust open-vocabulary 270

object recognition. As shown in Figure 2, given a 271

set of panoramic images {ItRi
} at step t, we first 272
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Figure 2: CityNavAgent consists of three key modules. The open-vocabulary module extracts open-vocabulary
objects in the scenes and builds a semantic point cloud of the surroundings. The hierarchical semantic planning
module decomposes the original instruction into sub-goals with different semantic levels and predicts the agent’s
next action to achieve the high-level sub-goals. The global memory module stores historical trajectories to assist
motion planning toward visited targets.

use an open-vocabulary image captioner CAP(·)273

empowered by GPT-4V (Achiam et al., 2023) to274

generate object captions cti for the image ItRi
. Then,275

we leverage a visual detector VD(·) named Ground-276

ingDINO (Liu et al., 2023a), to generate the bound-277

ing boxes obbti for captioned objects by278

obbi = VD(cti, I
t
Ri
), cti = CAP(ItRi

). (4)279

Finally, the bounding boxes are tokenized by a280

visual tokenizer VT(·), which is then fed into a281

segmentation model SEG(·) (Kirillov et al., 2023)282

to generate fine-grained semantic masks ItSi
for283

objects as follows:284

ItSi
= SEG(VT(obbi), ItRi

). (5)285

Scene Spatial Perception Considering that ego-286

centric views suffer from perspective overlap (An287

et al., 2023) and fail to capture 3D spatial rela-288

tionships (Gao et al., 2024b), we construct a 3D289

point map by projecting segmentation masks of290

observations into metric 3D space. Leveraging the291

RGB-D sensor’s depth map ItDi
and agent’s pose292

(R, T ), a geometric projector (GP) transforms each293

segmented pixel pik = (u, v) ∈ ItSi
labeled with294

caption ctik into a 3D point Pik via:295

Pik = R · ID(u, v) ·K−1 · p+ T, (6)296

where K is the intrinsic matrix of the camera, while297

R ∈ SO(3) and T ∈ R3 represent the agent’s in-298

stantaneous orientation and position in world co-299

ordinates. Mapping the object caption from 2D300

masks to 3D point cloud, a local semantic point301

cloud {(Pik, c
t
ik)|i = 1, . . . , n, k = 1, . . . ,m} is302

constructed, where n is the number of panoramic303

images and m is the number of pixels.304

4.2 Hierarchical Semantic Planning Module 305

4.2.1 Landmark-level Planning 306

Since aerial VLN tasks typically involve long- 307

range decision-making (Liu et al., 2023b; Chen 308

et al., 2019), directly assigning the entire naviga- 309

tion task to the agent can hinder accurate alignment 310

with the instructions and task progress tracking. A 311

more effective approach is to decompose the task 312

into a sequence of manageable sub-goals. By ad- 313

dressing these sub-goals step by step, the agent 314

can progressively reach the final destination. To 315

achieve this, we propose a landmark-level plan- 316

ner driven by LLM (Achiam et al., 2023) to parse 317

free-form instructions T and extract a sequence of 318

landmark phases L along the path through prompt 319

engineering. These landmarks act as sub-goals for 320

the agent. We present a simple prompt as follows 321

(more details in Appendix A): 322

You need to extract a landmark sequence
from the given instruction. The sequence
order should be consistent with their appear-
ance order on the path.

323

4.2.2 Object-level Planning 324

After landmark-level planning and obtaining a se- 325

quence of sub-goals, the object-level planner OP(·) 326

employs the LLM to further decompose these sub- 327

goals into more achievable steps for the agent. The 328

key idea is to leverage the commonsense knowl- 329

edge of the LLM to reason for the visible object 330

region most pertinent to the invisible sub-goal in 331

the current panorama. This region is referred to as 332

the object region of interest (OROI) in this paper. 333
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For example, if the agent only sees the buildings334

and a road in the current view while its sub-goal335

is the traffic light, by commonsense reasoning, the336

next OROI it should go is the road. We design a337

prompt that comprises the original navigation in-338

struction T , scene object captions ct, and current339

sub-goals Li for OP(·) to reason for OROI ctOROI ,340

which is given by:341

ctOROI = OP(T, Li, c
t), (7)342

Its template is (more details in Appendix A):343

The navigation instruction is: .... Your next
navigation subgoal is: ... Objects or areas
you observed: ...

Based on the instruction, next sub-
goal, and observation, list 3 objects most
pertinent to the subgoal or you will probably
go next from your [Observed Objects].
Output should be in descending order of
probability.

344

We select the OROI with the highest possibility345

given by LLM to the next landmark as the next346

waypoint for the agent.347

4.2.3 Motion-level Planning348

Motion-level planning is responsible for translat-349

ing the output of high-level planning modules into350

reachable waypoints and executable actions for351

the agent. Given a reasoned ctOROI , the motion-352

level planner first determines corresponding points353

{(Pk, c
t
k)|ctk == ctOROI} from the semantic point354

cloud in §4.1 and compute the next waypoint by355

averaging the coordinates of selected points. Then,356

the planner decomposes the path to the waypoint357

into a sequence of executable actions for the agent.358

If the agent has reached a location close to the359

memory graph, the motion planner will directly360

use the memory graph to predict the agent’s future361

actions, which is introduced in the next section.362

4.3 Global Memory Module363

Since the agent sometimes revisits the target or364

landmarks, we designed a global memory module365

with a memory graph that stores historical trajec-366

tories, which helps to reduce the action space in367

motion planning and improves navigation robust-368

ness.369

Memory Graph Construction Each historical370

trajectory Hi can be represented as a topologi-371

cal graph Gi(Ni, Ei) whose nodes Ni encapsulate372

both the coordinates of the traversed waypoints 373

and their panoramic observations, and edges Ei are 374

weighted by the distance between adjacent way- 375

points. The memory graph M is constructed by 376

merging all the historical trajectory graphs, given 377

by: 378

M = G(N,E),

N = N1 ∪ · · · ∪Nd,

E = E1 ∪ · · · ∪ Ed,

(8) 379

where d is the number of historical trajectories. 380

Memory Graph Update The memory graph is up- 381

dated progressively by merging newly generated 382

historical trajectory graph Ghist. The merging pro- 383

cess is similar to Equation 8 merging the nodes and 384

edges of two graphs. In addition, it will generate 385

new edges if M and Ghist are connective. We cal- 386

culate the distance between every pair of nodes in 387

the two graphs. If the distance between any pair of 388

nodes is less than a threshold H=15m, it is inferred 389

that these nodes are adjacent and a new edge is 390

added to the merged graph. Note that the mem- 391

ory graph only merges trajectories that successfully 392

navigate to the target, ensuring the validity of the 393

waypoints in the memory graph 394

Memory Graph Search for Motion-level Plan- 395

ning When the agent reaches a waypoint in the 396

memory graph, the agent directly leverages the 397

graph to determine a path and action sequence to 398

fulfill the remaining sub-goals from the landmark- 399

level planner. Given a sequence of remaining sub- 400

goals L(r) = {l1, . . . , lr} represented by land- 401

mark phases, our target is to find a path V ∗ = 402

{v1, . . . , vd} ⊆ N with the highest possibility of 403

traversing Lr in order. Note that each node Ni in 404

the graph contains visual observation ovi of the sur- 405

roundings. Therefore, the possibility of traversing 406

landmark lj by a node Ni can be formulated as 407

P (lj |oi). And the objective function can be formu- 408

lated as: 409

V ∗ = max
V

r∏
k=1,1≤m1<···<mr≤d

P (lk|ovmk
). (9) 410

We leverage the graph search algorithm in LM-Nav 411

(Shah et al., 2023) to solve this problem, which is 412

more detailed in Alg. 1 in Appendix A.2.1. Once 413

V ∗ is obtained, the agent decomposes it into an 414

executable action sequence to reach the target. 415

To conclude, with the two specially designed per- 416

ception and planning modules, along with the mem- 417

ory module, the aforementioned key challenges of 418

the aerial VLN are addressed one by one. 419
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Table 1: Overall performance comparisons on AirVLN-S.

Method
Validataion Seen Validation Unseen

SR↑ SPL↑ OSR↑ SDTW↑ NE↓ SR↑ SPL↑ OSR↑ SDTW↑ NE↓

RS 0.0 0.0 0.0 0.0 109.6 0.0 0.0 0.0 0.0 149.7
AC 0.9 - 5.7 0.3 213.8 0.2 - 1.1 0.3 237.6
LingUNet 0.6 - 6.9 0.2 383.8 0.4 - 3.6 0.9 368.4
Seq2seq 4.8 - 19.8 1.6 146.0 2.3 - 11.7 0.7 218.9
CMA 3.0 - 23.2 0.6 121.0 3.2 - 16.0 1.1 172.1
NavGPT 0.0 0.0 0.0 0.0 163.5 0.0 0.0 0.0 0.0 82.1
MapGPT 2.1 1.5 4.7 0.8 124.9 0.0 0.0 0.0 0.0 107.0
VELMA 0.0 0.0 0.0 0.0 150.5 0.0 0.0 0.0 0.0 117.4
LM-Nav 12.5 9.4 28.5 4.6 81.1 10.4 9.3 33.9 4.7 60.3
STMR 12.6 - 31.6 - 96.3 10.8 - 23.0 - 119.5
CityNavAgent 13.9 10.2 30.2 5.1 80.8 11.7 9.9 35.2 5.0 60.2

5 Experiments420
5.1 Experimental Setup421

Datasets We evaluate CityNavAgent on a novel422

aerial VLN benchmark named AirVLN-S provided423

by Liu et al.(Liu et al., 2023b). The benchmark is424

collected in Unreal Engine 4 to mimic real-world425

urban environments. It contains 25 different city-426

level scenes including downtown cities, factories,427

parks, and villages, with more than 870 different428

kinds of urban objects. It also consists of 3,916429

flying paths collected by experienced UAV pilots.430

While AirVLN provides a valuable benchmark,431

it suffers from ambiguous landmark references in432

its relatively coarse-grained instructions. This lack433

of explicit spatial grounding (e.g., "going straight434

to the buildings") makes it challenging to systemat-435

ically assess the agent’s performance at following436

each part of the instruction. To address this limi-437

tation, we follow the similar idea of (Hong et al.,438

2020) to enrich the original instruction with sub-439

instructions and their corresponding paths. We440

collect 101 fine-grained instruction-path pairs in441

10 scenes from AirVLN to construct an instruction-442

enriched aerial VLN benchmark, named AirVLN-443

Enriched. The details are in Appendix A.5.444

Metrics Following the same metrics used in445

AirVLN, we report and compare Success Rate (SR),446

Oracle Success Rate (OSR), Navigation Error (NE),447

SR weighted by Normalized Dynamic Warping448

(SDTD) and SR weighted by Path Length (SPL) of449

tested methods. The task is successfully completed450

if NE is within 20 meters.451

Implmentation Details We take the training sam-452

ples as the historical tasks and initialize the mem-453

ory graph by their trajectories. The memory graph454

remains accessible to the agent throughout the eval-455

uation. In each test case, the agent is spawned at 456

a random location in the scene. It first follows the 457

instruction to explore the environment, and upon 458

reaching the memory graph, it leverages the graph 459

to complete the rest of the navigation path. It has 460

six low-level actions: Forward, Turn Left, Turn 461

Right, Ascend, Descend, Stop. The number of total 462

action steps is counted based on low-level actions. 463

If the agent requires n low-level actions to reach 464

the next waypoint, the action count increases by 465

n. The agent stops when it either triggers the stop 466

action or exceeds the maximum action steps. 467

Baselines We choose three mainstream types of 468

continuous VLN baselines. 469

• Statistical-based Methods. We use random sam- 470

ple (RS) that agents uniformly select an action 471

from the action space at each step and action 472

sample (AC) that agents sample actions accord- 473

ing to the action distribution of the dataset as our 474

baselines. 475

• Learning-based Methods. We choose classic 476

learning-based methdods Seq2Seq (Anderson 477

et al., 2018), CMA (Krantz et al., 2020), and 478

LingUNet (Misra et al., 2018) as our baselines. 479

• Zero-shot LLM-based methods. We use SOTA 480

outdoor VLN methods VELMA (Schumann 481

et al., 2024), LM-Nav (Shah et al., 2023), and 482

STMR (Gao et al., 2024b) as baselines. To val- 483

idate the effectiveness of indoor VLN methods, 484

we also evaluate SOTA indoor VLN methods: 485

NavGPT (Zhou et al., 2024) and MapGPT (Chen 486

et al., 2024). 487

5.2 Overall Performance 488

In Table 1 and Table 2, we report the overall per- 489

formance of CityNavAgent and baselines on the 490
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Table 2: Overall performance comparisons AirVLN-E.

Methods SR↑ SPL↑ NE↓

RS 0.0 0.0 129.6
AC 0.0 0.0 290.4
Seq2seq 0.0 0.0 398.5
CMA 0.0 0.0 278.3
NavGPT 0.0 0.0 127.2
MapGPT 3.3 1.5 133.7
VELMA 0.0 0.0 138.0
LM-Nav 23.6 19.2 119.4
CityNavAgent 28.3 23.5 95.1

two aerial VLN benchmark. From these results, we491

have the following observations:492

• CityNavAgent significantly outperforms pre-493

vious SOTAs. 1) Statistical-based methods have494

the worst performance indicating aerial VLN re-495

quires stronger planning capacity rather than ran-496

dom guess. 2) Learning-based methods that pre-497

dict agent’s action directly also have relatively498

poor performance with SR less than 5%, which499

can be explained by the complex action space for500

long-range navigations. 3) Indoor LLM-based501

methods suffer significantly performance drop502

while outdoor LLM-based methods have better503

performance. 4) Compared to these baselines,504

CityNavAgent outperforms the best of them by505

1.3%, 0.8%, 0.5%, and 16.1% in SR, SPL, SDTW506

and NE for validation seen dataset and by 0.9%,507

0.6%, 1.3%, and 0.2% in SR, SPL, SDTW and508

NE for validation unseen dataset. It demonstrates509

that the semantic hierarchical planning and mem-510

ory graph-based motion planning improve the511

agent’s long-range navigation capacity.512

• CityNavAgent has better instruction-following513

performance. We can observe that our pro-514

posed CityNavAgent achieves the highest SPL515

and STDW, which outperforms the best of base-516

lines by 0.8% and 0.5%, respectively. We explain517

the cause of this result as: 1) the HSPM decom-518

poses the original long-distance navigation task519

into shorter sub-navigation tasks, reducing the520

planning difficulty. 2) memory graph-based mo-521

tion planning further guides the agent to traverse522

the decomposed landmark sequence.523

• Enriched Instructions Promote Navigation524

Performance. The performance of MapGPT,525

LM-Nav, and CityNavAgent on AirVLN-E is526

better than on AirVLN-S. The highest improve-527

ments in SR and SPL are 14.4% and 13.3%, re-528

Table 3: Effectiveness of different modules in CityNav-
Agent. MG and SM represent the memory graph and
semantic map, respectively.

Modules SR↑ SPL↑ NE↓
w/o MG 11.7 9.1 206.1
w/o SM 23.6 19.2 119.4
w/ GPT-3.5 23.3 16.1 98.9
w/ GPT-4V (ours) 28.3 23.5 95.1

Table 4: Comparison of waypoint predictor under dif-
ferent scenarios.

Inputs |△| drel ↓ dC ↓ dH ↓

Outdoor
RGBD 1.66 0.88 6.46 5.16
RGB 1.59 0.88 6.40 5.15
Depth 1.60 0.88 6.48 5.26

Indoor
RGBD 1.40 - 1.05 2.01
RGB 1.38 - 1.08 2.03
Depth 1.39 - 1.04 2.01

spectively, indicating that the enriched instruc- 529

tions provide clearer landmarks, helping the 530

agent follow the path to the target more effec- 531

tively. 532

5.3 Ablation Study 533

Effect of semantic map-based exploration. To 534

evaluate the effectiveness of semantic map-based 535

waypoint prediction, we substitute this module with 536

a random walk strategy. As shown in Table 3, the 537

agent without the semantic map (second row) suf- 538

fers a 4.7% and 4.3% drop in SR and SPL, and 539

a 25.6% increase on NE with CityNavAgent (last 540

row). This result reveals that the semantic map ex- 541

tracts structured environmental information, facili- 542

tating the LLM in commonsense reasoning so that 543

the agent navigates to the region or objects that are 544

more relevant to the navigation task. Consequently, 545

the accuracy and efficiency of the navigation is 546

improved. 547

Effect of memory graph-based exploitation. 548

In this case, we omit the global memory module 549

during the navigation and replace the graph search 550

algorithm with the random walk strategy. Presented 551

in the first row in Table 3, the lack of memory graph 552

results in a 16.6%, 14.4% decrease in SR, SPL, 553

and a 116.7% increase in NE over CityNavAgent. 554

Moreover, the memory graph has a more noticeable 555

impact on the agent’s navigation performance com- 556

pared with the semantic map. This indicates that 557

the memory graph effectively prevents the agent 558

from falling into dead ends or engaging in blind ex- 559

ploration in long-distance outdoor navigation sce- 560
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(a) (b) 

Figure 3: The qualitative result of CWP. From left to
right are the top-down view and the front-facing view.
Red and black circles denote predicted waypoints and
reference waypoints on real trajectories.

narios, thereby ensuring the stability of navigation561

performance.562

Effect of different LLMs. We also evaluate563

the effectiveness of different LLMs for common-564

sense reasoning in object-level planning (§4.2). Al-565

though CityNavAgent with GPT-3.5 demonstrates566

a competitive performance, replacing GPT-3.5 with567

GPT-4V which has enhanced reasoning capability568

results in further performance improvement, e.g.,569

5.0% and 7.4% increases in SR and SPL, respec-570

tively. We attribute this improvement to the fact571

that GPT-4V has a lower hallucination rate and572

stronger reasoning ability. Thus, it generates more573

contextually appropriate responses based on the se-574

mantic map and navigation instruction to facilitate575

the agent in exploring areas most relevant to the576

target.577

5.4 Effectiveness of Indoor Waypoint578

Prediction579

To evaluate the effectiveness of the waypoint pre-580

diction method CWP (Hong et al., 2022) in pre-581

vious continuous VLN methods (An et al., 2024;582

Koh et al., 2021; Wang et al., 2023a,b; Krantz and583

Lee, 2022; Wang et al., 2024), we compare the pre-584

dicted waypoint with target waypoints in outdoor585

environments. We apply waypoint metrics (Hong586

et al., 2022) to assess the quality of predicted way-587

points. |△| measures the difference in the number588

of target waypoints and predicted waypoints. drel589

measures the ratio of average waypoint distance.590

dC and dH are the Chamfer distance and the Haus-591

dorff distance, respectively. As depicted in Table592

4, CWP achieves the best performance in indoor593

environments with 1.04 dC and 2.01 dH while in594

outdoor environments with 6.4 dC and 5.15 dH .595

This result indicates that although the predicted596

indoor waypoints by CWP are close to the indoor597

target waypoints, predicted outdoor waypoints are598

far from outdoor target waypoints, which is illus-599

trated intuitively in Figure 3(a). We attribute this600

Figure 4: The qualitative result of failure cases. The
green captions and bounding boxes are the referred
landmarks in instructions. The red bounding boxes are
the misreferred landmarks due to three failure reasons.

to the scale difference between indoor and outdoor 601

environments. Besides, the dimensional difference 602

is another negative factor for CWP. Depicted in Fig- 603

ure 3(b), CWP only predicts waypoints in 2D space 604

and cannot be applied to open urban environments. 605

5.5 Case Analysis 606

In this section, we analyze the failure cases across 607

different datasets and categorize them into three 608

types: 1) Instruction Ambiguity: The navigation 609

instruction lacks clear landmarks, or there are many 610

similar landmarks within the same scene, making it 611

difficult for the agent to accurately refer to the land- 612

mark mentioned in the instruction. 2) Perception 613

Failure: Despite the strong object recognition and 614

detection capabilities of our open-vocabulary per- 615

ception module, outdoor scenes still present many 616

edge cases, leading to incorrect identification of 617

landmarks referenced in the instruction. 3) Rea- 618

soning Module: During the hierarchical planning 619

process, the object-level planner may encounter rea- 620

soning errors when attempting to infer the location 621

of OROI. This can happen when there is insuffi- 622

cient semantic connection between the objects in 623

the scene and the referenced landmarks, resulting 624

in incorrect OROI reasoning. The visualization re- 625

sults of these failure cases are shown in Figure 4. 626

More qualitative results are in Appendix A.6.3. 627

6 Conclusion 628

In this paper, we approach the problem of zero- 629

shot vision-language navigation by proposing an 630

embodied aerial agent, CityNavAgent, which lever- 631

ages the pre-trained knowledge in large foundation 632

models and historical experience to deal with long- 633

term navigation in urban spaces. The experimental 634

results illustrate the efficacy and robustness of our 635

method from different perspectives. 636
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Limitations637

One limitation of our work is that the whole system638

has not been deployed on a real drone. Though639

our methods achieve promising results in simulated640

outdoor environments, low-level motion control641

problems such as self-pose estimation, control la-642

tency, and control errors are not considered in our643

work. The second is that the agent lacks a back-644

tracking mechanism. CityNavAgent so far only645

relies on the sub-goal decomposition to track the646

navigation path.647
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Dhruv Shah, Błażej Osiński, Sergey Levine, et al. 2023.881
Lm-nav: Robotic navigation with large pre-trained882
models of language, vision, and action. In Confer-883
ence on robot learning, pages 492–504. PMLR.884

Mohit Shridhar, Jesse Thomason, Daniel Gordon,885
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke886
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-887
mark for interpreting grounded instructions for ev-888
eryday tasks. In Proceedings of the IEEE/CVF con-889
ference on computer vision and pattern recognition,890
pages 10740–10749.891

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier892
Martinet, Marie-Anne Lachaux, Timothée Lacroix,893
Baptiste Rozière, Naman Goyal, Eric Hambro,894
Faisal Azhar, et al. 2023. Llama: Open and effi-895
cient foundation language models. arXiv preprint896
arXiv:2302.13971.897

Hanqing Wang, Wei Liang, Luc Van Gool, and Wen-898
guan Wang. 2023a. Dreamwalker: Mental planning899
for continuous vision-language navigation. In Pro-900
ceedings of the IEEE/CVF International Conference901
on Computer Vision, pages 10873–10883.902

Hu Wang, Qi Wu, and Chunhua Shen. 2020. Soft expert903
reward learning for vision-and-language navigation.904
In Computer Vision–ECCV 2020: 16th European905
Conference, Glasgow, UK, August 23–28, 2020, Pro-906
ceedings, Part IX 16, pages 126–141. Springer.907

Xin Wang, Wenhan Xiong, Hongmin Wang, and908
William Yang Wang. 2018. Look before you leap:909
Bridging model-free and model-based reinforcement910
learning for planned-ahead vision-and-language nav-911
igation. In Proceedings of the European Conference912
on Computer Vision (ECCV), pages 37–53.913

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu,914
Junjie Hu, Ming Jiang, and Shuqiang Jiang. 2024.915

Lookahead exploration with neural radiance repre- 916
sentation for continuous vision-language navigation. 917
In Proceedings of the IEEE/CVF Conference on Com- 918
puter Vision and Pattern Recognition, pages 13753– 919
13762. 920

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and 921
Shuqiang Jiang. 2023b. Gridmm: Grid memory map 922
for vision-and-language navigation. In Proceedings 923
of the IEEE/CVF International Conference on Com- 924
puter Vision, pages 15625–15636. 925

Gengze Zhou, Yicong Hong, and Qi Wu. 2024. Navgpt: 926
Explicit reasoning in vision-and-language naviga- 927
tion with large language models. In Proceedings 928
of the AAAI Conference on Artificial Intelligence, 929
volume 38, pages 7641–7649. 930

A Appendix 931

A.1 Prompt Engineering 932

In this part, we discuss the prompt used in this 933

work. <> denotes the content needs to be filled in 934

the prompting process. 935

LLM Prompt for High-level Planner The com- 936

plete prompt is: 937

Task Planning Prompt

You are a navigation aircraft, and now
you need to navigate to a specified loca-
tion according to a natural language in-
struction. You need to extract a land-
mark sequence from the instruction. The
sequence order should be consistent with
their appearance on the path. Your out-
put should be in JSON format and must
contain two fields: "Landmark sequence"
and "Thought." "Landmark sequence" is
your thinking result comprised of landmark
phrases in the instruction. "Thought" is your
thinking process. The instruction is < "First,
you need to find a stop sign. Then take left
and right and continue until you reach a
square with a tree. Continue first straight,
then right, until you find a white truck. The
final destination is a white building." >

938

The example output is: 939
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"Landmark sequence": [
"stop sign",
"square with a tree",
"white truck",
"white building",
]
"Thought": "The instruction outlines a se-
ries of landmarks that need to be followed
in order. The first landmark is a ’stop sign,’
which I need to locate first. After finding the
stop sign, I will navigate to a ’square with
a tree’ by taking left and right turns. Then,
I will continue straight and turn right until
I encounter a ’white truck.’ Finally, my des-
tination is a ’white building.’ I have listed
these landmarks in the order they appear in
the navigation process."

940

The Prompt for Low-level Planner The com-941

plete prompt for the LLM commonsense reasoning942

in the low-level planner is:943

Commonsense Reasoning Prompt

Based on the instruction, next navigation
subgoal, and observation, list 3 objects
you will probably go next from your
OBSERVED OBJECTS in descending order
of probability. You are a drone and your
task is navigating to the described target
location!

Navigation instruction: Start from the
’open’ logo, fly forward and pass the yellow
’restaurant’ logo in the front road. Then fly
forward to the left, pass the circle grassland,
and turn right. Finally, stop in front of the
glass door with the trash bin and bench.

Your next navigation subgoal: yellow
’restaurant’ logo

Objects or areas you observed: build-
ing with stairs, road, street lamp, street
lamp, ’open’ logo, building with stairs

Based on the instruction, next navigation
subgoal, and observation, list 3 objects you
will probably go next from your OBSERVED
OBJECTS in descending order of probabil-
ity.

944

A.2 Global Memory Module 945

A.2.1 Memory Graph Search Algorithm 946

The graph search problem is formulated as given 947

a memory graph G(N,E) and a sequence of land- 948

mark phrases L = (ℓ1, ℓ2, . . . , ℓn) extracted from 949

the language instructions, the goal is to determine 950

a sequence of waypoints W = (w0, w1, . . . , wm) 951

that maximizes P (rL = 1|W,L), where rL = 1 952

indicates that the sequence of the landmarks is tra- 953

versed successfully. A scoring function Q(i, wk) is 954

defined to represent the max probability of a path 955

ending in wk that visited the landmarks (ℓ1, . . . , ℓi) 956

and P (rL = 1|W,L) = Q(n,W ). Then, a graph 957

search method integrated with the Dijkstra algo- 958

rithm (Dijkstra, 2022) is designed for calculating 959

W ∗. 960

Algorithm 1 Graph Search (Shah et al., 2023)

1: Input: Landmarks (ℓ1, ℓ2, . . . , ℓn).
2: Input: Graph G(N,E).
3: Input: Starting node S.
4: ∀i = 0, . . . , n, ∀w ∈ N,Q[i, w]← −∞
5: Q[0, S]← 0
6: DIJKSTRA_ALGORITHM(G,Q[0, ∗])
7:

8: for i ∈ 1, 2, . . . , n do
9: ∀w ∈ W,Q[i, w] ← Q[i − 1, w] +

LLM(w, ℓi)
10: DIJKSTRA_ALGORITHM(G,Q[i, ∗])
11: end for
12: destination← argmax(Q[n, ∗])
13: return BACKTRACK(destination,Q[n, ∗])

A.2.2 Visualization of Memory Graph 961

The memory graph in different scenes is shown in 962

Figure 6. 963

A.3 Point Clould Construction 964

As shown in Fig.2, with the camera intrinsic matrix 965

K and agent’s pose (p, α), pixels po of the depth 966

image of observation view can be projected to a 967

3D point cloud in the world coordinate system as 968

Pα′
w = Rα′ · Z · K−1 · po + p, where Rα′ is the 969

rotation matrix of observation view and Z denotes 970

depth values of pixels. The final point cloudMs 971

is given by Ms = Pα−90◦
w ⊙ Pα−45◦

w ⊙ Pα
w ⊙ 972

Pα+45◦
w ⊙ Pα+90◦

w . Note that RGB-D images in 973

each observation view are well-aligned, meaning 974

that the extracted semantic masks of RGB images 975

have their counterparts in depth images as well 976
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Figure 5: The illustration of the memory module. The agent stores its visual observation in the current trajectory
graph. Once it reaches the node in the historical trajectory graph, the agent fuses these two graphs and searches
for a path with the highest probability to the target. The probability is measured by a similarity score between the
landmark phase in the instruction and visual observation stored in the node.

Figure 6: The memory graphs in different scenes. Each node in graphs stores the node’s location and the agent’s observation.
The long distance between different historical trajectories results in the disconnection of memory graphs. Blue dot lines and
red dot lines are ground truth and planned trajectories, respectively. The planned trajectories in the first row fail to follow the
ground-truth trajectories while the last row have better instruction following the performance.

as in the point cloud. To this end, a local map977

containing both semantic and spatial information978

is constructed.979

A.4 Details on Perception Module980

For all experiments, we employ GPT-4V (Achiam981

et al., 2023) for object reasoning and landmark982

phase extraction. During the image grounding,983

a target is considered successfully detected if984

the bounding box’s confidence score exceeds the985

threshold θ = 0.4. The agent is equipped with an986

aligned RGB-D camera with 512x512 resolution987

and 90◦ field of view (FOV), capturing panoramic988

observations by rotating itself. The panoramic view989

directions are set at p− 90◦, p− 45◦, p◦, p+ 45◦,990

and p + 90◦ where p represents the agent’s head-991

ing direction. The agent’s low-level action space992

is ("move forward", "turn left", "turn right", "go993

up", "go down", and "stop"). The moving step is 994

5 meters and each rotation turns the agent by 15◦. 995

The agent will receive its GPS location at each step. 996

A.5 Fine-grained AirVLN Dataset 997

We follow the similar idea of (Hong et al., 2020) to 998

provide detailed descriptions of visual landmarks 999

along the path and the agent’s actions, making in- 1000

structions more specific. Fig. 7 illustrated the sam- 1001

ple of a fine-grained sample. The following are the 1002

comparison between a fine-grained instruction and 1003

an original AirVLN instruction: 1004
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Instruction: “Start from the road blocks, turn right at the crossroad with traffic light ahead, turn left when you reach 

the bridge with red stop sign, fly across the bridge, and stop at the white house ahead.”

turn right at the crossroad with traffic light turn left, bridge with red stop sign

fly across the bridge fly across the bridge stop at the white house

Instruction: "Start from the white statue, pass the yellow drink billboard, then turn left and fly forward, turn right at 

the dark building in front, then fly forward and stop at the coke bottle cap sign."

start from the white statue fly pass from the yellow drink billboard turn left

fly forward, turn left at the dark building stop at the coke bottle cap sign

Instruction: "Starting at the blue and red oil barrels near the white building, turn right into the small alley. Turn 

right after exiting the alley, pass the 'restaurant' logo, fly forward to the right and pass the obelisk. Then continue 

forward and finally stop at 3 ATMs in the corner."

turn right into the small alley turn right after exiting the alley

pass the ‘restaurant’ logo fly forward to the right pass the ‘restaurant’ logo stop at 3 ATMs in the corner

Figure 7: The fine-grained AirVLN instruction and trajectory. The instructions and trajectories are well-aligned.
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Instruction in AirVLN: "turning left and
going straight to the buildings and slight
right turn. coming near the lake and turning
right and going up to the building. coming
down to the building and again going up and
going straight. going top of the building and
turning left and coming down to the building.
roaming around a tower and searching each
floor of apartment."
Fine-grained instruction:Start from the blue
billboard with ’leartes bank’, fly forward,
pass the ’GAS’ sign, and turn left. Continue
flying forward, passing the yellow billboard
and the ’Americar’ billboard ahead. Con-
tinue flying forward and left until you reach
the blue billboard with ’leartes bank’ and
stop."

1005

Dataset statistics The fine-grained samples are1006

collected in 10 scenes from AirVLN. In each scene,1007

10 samples are collected. We further divide the fine-1008

grained samples into three difficulty levels based1009

on their trajectory length: easy tasks traverse two1010

landmarks, normal tasks pass through three to four1011

landmarks, and hard tasks involve navigating past1012

five or more landmarks. The ratio of these three1013

types of tasks is 1:3:1. The detailed statics are1014

shown in Tab. 6.1015

A.6 More Experiment Results1016

A.6.1 Result on AirVLN-E of different1017

difficulties1018

A.6.2 More Results of Reasoning Process1019

We illustrate the qualitative navigation process of1020

CityNavAgent to further illustrate how the com-1021

monsense reasoning and memory graph work. As1022

depicted in Figure 8, the agent is spawned at a ran-1023

dom location with a navigation instruction. The1024

agent has to explore the ordered landmarks in the1025

instruction based on its visual observation. Thanks1026

to its reasoning capabilities, the agent infers ob-1027

jects in its FOV that are semantically related to1028

landmarks, even when those landmarks are not vi-1029

sually observed. In the given example, the agent1030

tries to find the obelisk in the park which is cur-1031

rently invisible. Hinted by the instruction that the1032

obelisk is in the park, CityNavAgent reasons that1033

the trees probably appear in the park and decides1034

to explore the areas near the trees while LM-Nav is1035

gradually lost due to its lack of exploration ability1036

(first three columns of Figure 8). Once the agent1037

reaches a place visited before, CityNavAgent lever- 1038

ages the memory graph to search for a path to the 1039

target while VELMA only relies on LLM for action 1040

planning and is trapped in an unfamiliar place (see 1041

the last columns of Figure 8). 1042

A.6.3 Failure Case Distribution 1043
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Table 5: Overall performance comparisons AirVLN-E.

Method
Easy Normal Hard Mean

SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓

RS 0.0 0.0 85.6 0.0 0.0 127.9 0.0 0.0 164.9 0.0 0.0 129.6
AC 0.0 0.0 242.2 0.0 0.0 315.6 0.0 0.0 263.2 0.0 0.0 290.4
Seq2seq 0.0 0.0 201.1 0.0 0.0 359.4 0.0 0.0 713.3 0.0 0.0 398.5
CMA 0.0 0.0 152.1 0.0 0.0 317.6 0.0 0.0 286.8 0.0 0.0 278.3
NavGPT 0.0 0.0 79.8 0.0 0.0 126.1 0.0 0.0 177.6 0.0 0.0 127.2
MapGPT 0.0 0.0 97.5 5.6 2.9 135.2 0.0 0.0 165.5 3.3 1.5 133.7
VELMA 0.0 0.0 76.5 0.0 0.0 141.7 0.0 0.0 192.4 0.0 0.0 138.0
LM-Nav 15.4 13.7 123.1 22.2 18.1 124.3 33.3 28.1 114.2 23.6 19.2 119.4
CityNavAgent 25.0 21.3 74.7 27.8 23.3 93.4 33.3 26.3 121.5 28.3 23.5 95.1
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Instruction:“Flying over the telephone 

booth, then passing the obelisk in the 

center of the park, and finally stopping at 

the 'interwold bank' ATM.”in the front.”

Scene perception: telephone booth 
is found, find next landmark--obelisk

Scene perception: Obelisk not found, 
trees are found.

Commonsense Reasoning: Obelisk is 
in the park, park has trees

Action:  go to the trees

Scene perception: Obelisk is found

Memory: memory graph reached. 
Search the rest landmark – 'interwold 

bank' ATM in memory graph

Scene perception: 'interwold bank' 

ATM is found

Action:  follow the path in memory 
and stop.
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Figure 8: Qualitative result of the navigation process. The first three rows are the first-person view of VELMA, LM-Nav and
CityNavAgent during the navigation. The last row is the reasoning process of CityNavAgent. Orange and blue represents the
navigable landmarks in the instruction and common objects that semantically relevant to the landmarks, respectively.

Table 6: Comparision of fine-grained dataset with AirVLN.

Dataset Routes Vocab Instr. Len. # of Landmark Traj. Len. Traj. Len. (easy) Traj. Len. (normal) Traj. Len. (Hard)
AirVLN 3,916 2.8k 82 - 321.3 - - -
Refined 101 0.4k 39 4.1 156.1 104.3 147.9 235.8
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Table 7: The distribution of failure cases.

Datasets Instruction Ambiguity Perception Failure Reasoning Failure
AirVLN-S 45.4 34.1 20.5
AirVLN-E 5.8 76.8 17.4
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