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ABSTRACT

As a representative latent variable model, the Variational Auto-Encoder (VAE) is
powerful in modeling high-dimensional signals like images and texts. However,
practical applications often require versatile data capabilities, such as conditional
generation/completion, inference with incomplete/marginal data, etc, which are
challenging to harvest from a conventional/joint VAE. To satisfy those require-
ments, we leverage the recently proposed big learning to upgrade the joint VAE
to its big-learning variant termed BigLearn-VAE, which delivers joint, marginal,
and conditional generation/completion, inference, and reconstruction capabilities,
simultaneously. In addition, we also reveal that the BigLearn-VAE can be con-
structed based on one foundation model, manifested as one universal model pos-
sessing plenty of versatile capabilities. Code will be released.

1 INTRODUCTION

The variational auto-encoder (VAE) Kingma & Welling (2014); Rezende et al. (2014) is a represen-
tative latent variable generative model that elegantly combines powerful deep neural networks (NN)
with principled variational inference. Thanks to its stable training and versatile modeling capability
brought by the latent code, the VAE and its many variants have found applications in a broad range
of contexts, such as unsupervised/semi-supervised learning Izmailov et al. (2020), pseudo replay
and data augmentation van de Ven & Tolias (2018); Norouzi et al. (2020), anomaly detection Park
et al. (2022), text, image, and video generation Bowman et al. (2015); Razavi et al. (2019); Yan et al.
(2021), audio and music synthesis Dhariwal et al. (2020); Kim et al. (2021), molecular processes
Lim et al. (2018); Gómez-Bombarelli et al. (2018), and healthcare Han et al. (2019).

Despite being widely utilized, the conventional jointly-trained VAEs often fail to satisfy diverse
conditional-sampling requirements, which are of high value and frequently arise from practical ap-
plications that are associated with missing data imputation, conditional data generation/completion,
in-paining, recommendation, inference/feature-extraction with incomplete data, etc. On the other
hand, to harvest those conditional sampling capabilities from a joint VAE via post-processing is
generally intractable Simkus & Gutmann (2023) and existing techniques resort to the computation-
ally expensive Gibbs/MCMC sampling Rezende et al. (2014); Mattei & Frellsen (2018); Simkus &
Gutmann (2023).

To endow VAEs with versatile conditional sampling capabilities, we take inspiration from the re-
cent ground-breakingly successful foundation models Bommasani et al. (2021); Yuan et al. (2022);
Ouyang et al. (2022); Ramesh et al. (2022); Saharia et al. (2022); Rombach et al. (2022), or, more
specifically, the big learning principle Cong & Zhao (2022) that contains most training objectives of
foundation models as special cases. The big learning proposes to exhaustively exploit the informa-
tion inherent in its large-scale training data, by simultaneously modeling many/all joint, conditional,
and marginal data distributions across potentially diverse domains Cong & Zhao (2022).

The key insight is that the data samples demonstrating versatile conditional sampling capabilities
(as well as joint and marginal sampling ones) are already present in the training data; accordingly,
one should straightforwardly leverage those samples to form the corresponding capabilities. Note
ideally, perfect joint training (i.e., learning only with the joint data sample) is expected to implicitly
deliver perfect conditional sampling capabilities, despite their extraction may be computationally
expensive. More importantly, that perfect joint training is likely intractable in practice. Throughout
the paper, all capabilities that can be demonstrated via manipulating the data constitute the data
capabilities.
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To explicitly endow VAEs with versatile data capabilities, we propose to leverage the big learn-
ing principle to upgrade the conventional jointly-trained VAE to its big-learning variant termed the
big-learning VAE (BigLearn-VAE), which delivers joint, marginal, and conditional generation, in-
ference, and reconstruction capabilities, simultaneously. In addition, based on general analyses on
VAE modeling, we also reveal that the BigLearn-VAE can be constructed based on one universal
foundation model, manifested as one model possessing plenty of versatile data capabilities.

Our contributions are summarized as follows.

• We propose the BigLearn-VAE, which upgrades the conventional jointly-trained VAE with
comparable/better performance and versatile data capabilities like conditional sampling.

• We present general analyses on VAE modeling, which motivate us to develop the BigLearn-
VAE based on one universal model; we empirically justify its effectiveness.

• We empirically demonstrate the big-learned data capabilities, particularly those associated
with incomplete data, including inference/feature-extraction with incomplete data and ar-
bitrary data-completion/in-painting.

2 PRELIMINARY

Below we briefly review the preliminary Variational Auto-Encoder (VAE) Kingma & Welling
(2014); Rezende et al. (2014) and the big learning principle Cong & Zhao (2022) that lays the
foundation of the presented techniques.

2.1 VARIATIONAL AUTO-ENCODERS

Unifying the power of deep neural networks (NN) and principled variational inference for latent vari-
able generative models, the Variational Auto-Encoder (VAE) Kingma & Welling (2014); Rezende
et al. (2014) learns a NN-parameterized generative model pθ(x, z) = pθ(x|z)pθ(z), with a latent
variable z, to model the generative process of the complete/joint data sample x from the underlying
data distribution q(x), by maximizing the joint evidence lower bound (JointELBO) Jordan et al.
(1999) of the intractable log-likelihood log pθ(x), i.e.,

JointELBO(θ,ϕ) = Eqϕ(z|x) log pθ(x|z)− βKL[qϕ(z|x)||pθ(z)] ≤ log pθ(x), (1)

where β = 1, qϕ(z|x) is a NN-parameterized variational inference arm that approximates the pos-
terior pθ(z|x), and KL represents the Kullback-Leibler (KL) divergence. Considering various prac-
tical applications Castrejon et al. (2019); Bae et al. (2022), β is frequently treated as an important
tunable hyperparameter, leading to the β-VAE Higgins et al. (2016); we also assume β being a
hyperparameter by default. Often the decoding pθ(x|z) = N (x|µθ(z), I) is modeled with a “de-
coder” NN µθ(z), the prior is specified as pθ(z) = N (z|0, I), and the encoding inference arm
qϕ(z|x) = N (z|µϕ(x),diag(σ

2
ϕ(x))) is constructed with an “encoder” NN that outputs both mean

µϕ(x) and standard deviation σϕ(x).

2.2 BIG LEARNING

Foundation models have brought many ground-breaking successes to diverse research fields Stick-
land & Murray (2019); Brown et al. (2020); He et al. (2021); Bommasani et al. (2021); Yuan et al.
(2022); Ramesh et al. (2022); OpenAI (2022); Ouyang et al. (2022); OpenAI (2023); Touvron et al.
(2023); Chowdhery et al. (2022), benefiting from both the valuable information within their large-
scale (pre-)training data and the exhaustive exploitation of that information via comprehensive di-
verse (pre-)training. Recently, Cong & Zhao (2022) summarizes most of the pretraining strategies
of foundation models from the generative perspective and condenses them into a unified big learning
principle, as defined below.
Definition 1 ((Uni-modal) big learning Cong & Zhao (2022)). Given data samples x ∈ RL×D

from the underlying data distribution q(x), with length L, dimension D, the length index set
L = {1, · · · , L}, and any two non-overlapping subsets S ⊂ L,T ⊆ L,T ̸= ∅, the (uni-modal)
big learning leverages a universal foundation model pθ(xT|xS),∀(S,T) to model many/all joint,
conditional, and marginal data distributions simultaneously, i.e.,

pθ(xT|xS)−→q(xT|xS),∀(S,T) ∈ Ω, (2)
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where the arrow indicates utilizing its left-hand side to model its right-hand side. The actual ob-
jective measuring the distance/divergence (or encouraging the matching) between both sides of the
arrow should be selected base on the application. Ω is a user-defined set that contains the (S,T)
pairs of interest. With different (S,T) pairs, q(xT|xS) may represent a joint/marginal/conditional
data distribution, whose samples are readily available from the training data.

The sample x ∈ RL×D may represent (i) a sentence with L words and a vocabulary of size D; each
row of x is then a D-dimensional one-hot vector, and (ii) an image that is patchified as L small
patches of dimension D.

The core idea of the big learning is to keep consistency with the ideal situation. By ignoring any
constraint temporarily, ideally there is an underlying analytical expression for joint q(x), from which
expressions for all conditional q(xT|xS) and marginal q(xT) can be derived. Next, assume one
has obtained a powerful model pθ∗(x) that perfectly matches q(x); then the derived conditional
pθ∗(xT|xS) and marginal pθ∗(xT), with the same set of parameters θ∗, perfectly matches q(xT|xS)
and q(xT), respectively. The big learning explicitly employs one universal set of parameters (or a
foundation model) and explicitly encourages those matchings simultaneously.

3 BIG LEARNING VARIATIONAL AUTO-ENCODERS

Below we follow the big learning principle in Definition 1 to upgrade the joint VAE with (1) into
the Big Learning VAE (BigLearn-VAE). We begin with a general analysis on the modeling of VAEs,
based on which we then present the upgraded BigLearn-VAE.

3.1 A GENERAL ANALYSIS ON THE MODELING OF VARIATIONAL AUTO-ENCODERS

Given a collection of data samples x from the underlying data distribution q(x), the ultimate goal
of the VAE is to learn a parameterized model pθ∗(x) =

∫
pθ∗(x, z)dz to perfectly match q(x), via

maximum log-likelihood learning, i.e.,
θ∗ = argmax

θ
Eq(x) log pθ(x) = argmin

θ
KL[q(x)||pθ(x)], (3)

where the objective is equivalent to (2) with S = ∅, T = L, and the arrow employing the KL
divergence.

Next, we elaborate on a detailed analysis within both x-space and (x, z)-space, respectively.

• x-space Assume infinite data samples, infinite model capacity of pθ(x), and infinite search-
ing capability of the optimizer; then, ideally, one can get the optimal pθ∗(x) = q(x),∀x.
As mentioned earlier, a perfect joint model pθ∗(x) implicitly delivers perfect conditional and
marginal matchings, i.e., pθ∗(xT|xS) = q(xT|xS) and pθ∗(xT) = q(xT), respectively. Even
though the analytical calculations of pθ∗(x) =

∫
pθ∗(x, z)dz, pθ∗(xT) =

∫
pθ∗(x)dxT∁ , and

pθ∗(xT|xS) = pθ∗(xT∪S)/pθ∗(xS) are generally intractable, they undoubtedly share the same
set of parameters θ∗ with the aforementioned ideal assumptions.
However, by considering practical constraints of finite data sample, model capacity, and searching
capability, it’s likely that one gets an sub-optimal pθ̂(x) ̸= q(x); accordingly, the post-calculated
pθ̂(xT), pθ̂(xT|xS), and their sampling capabilities are not reliable. Under such practical situ-
ations, one would prefer simultaneous joint, conditional, and marginal matchings with a shared
universal model, i.e., the big learning in Definition 1, which is expected to directly deliver trained
data capabilities like conditional sampling and, at the same time, to encourage searching for a
more reliable θ that is closer to θ∗ in the sense of diverse joint/conditional/marginal matchings.

• (x, z)-space Two different high-dimensional distributions, i.e., p1(x, z1) and p2(x, z2), can
share the same low-dimensional distribution p(x). That means the aforementioned optimal
pθ∗(x) = q(x) can be satisfied by many different high-dimensional models pθ∗

i
(x, zi), i =

1, 2, · · · . Therefore, it’s impossible to learn a disentangled z-space in an unsupervised manner
with only x-information Locatello et al. (2019). Introducing a suitable prior for the latent z-
space is important and many works have been proposed Tomczak & Welling (2018); Casale et al.
(2018); Davidson et al. (2018); Takahashi et al. (2019); Joo et al. (2020). How to specify a suit-
able z-prior is left as future research and here we focus on leveraging the big learning principle
to upgrade the VAE in the x-space.
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Based on the above analysis, we next elaborate on how to leverage the big learning principle in
Definition 1 to develop the upgraded BigLearn-VAE.

3.2 ON INTRODUCING BIG LEARNING IN THE x-SPACE

When given a complete/joint data sample x ∼ q(x), one simultaneously receives a conditional sam-
ple for each conditional distribution q(xT|xS),∀(S,T) and a marginal data sample for each marginal
distribution q(xT),∀T. However, a conventional/joint VAE only utilizes the joint data sample via
the joint learning in (1), resulting in the under-utilization of those numerous diverse conditional and
marginal data samples. Generally, we can not count on joint learning to automatically complete
conditional/marginal matchings for us, especially when the model capacity is limited.

Different from the conventional jointly-trained VAE, we propose to leverage the big learning princi-
ple Cong & Zhao (2022) to explicitly and exhaustively exploit the information in joint, conditional,
and marginal data samples, via simultaneous joint, conditional, and marginal matchings.

Below we first elaborate on the diverse matching tasks that constitute the big learning objective.
Then, we present the modified model architectures that are compliant to that objective. Finally,
combining the big learning objective and modified architectures, we deliver the proposed BigLearn-
VAE.

3.2.1 MATCHING TASKS THAT CONSTITUTE THE BIG LEARNING OBJECTIVE

The big learning objective consists of diverse joint, conditional, and marginal matching tasks.
Specifically,

• Joint matching of pθ(x)−→q(x). Same with the conventional VAE Kingma & Welling (2014);
Rezende et al. (2014); Higgins et al. (2016), the joint matching is conducted by maximizing the
JointELBO in (1).

• Marginal matching of pθ(xT)−→q(xT). Because of the integral w.r.t. z and xT∁ , it’s intractable
to calculate the marginal pθ(xT) =

∫∫
pθ(x, z)dzdxT∁ . Fortunately, the marginal generative

process is often readily available from the modeling of pθ(x, z).
For example, given the parameterized joint generative process pθ(x, z) = pθ(x|z)pθ(z) with
conditionally independent pθ(x|z) = N (x|µθ(z), I), the corresponding marginal genera-
tive process is analytically expressed as pθ(xT, z) = pθ(xT|z)pθ(z), where pθ(xT|z) =
N (xT|µθ(z)T, ITT) and ITS is the sub-matrix consisting of the T rows and S columns of I.
With the analytical pθ(xT, z) that is derived from the parameterized pθ(x, z), the marginal
matching of pθ(xT)−→q(xT) can be similarly performed by maximizing the marginal ELBO
(MarginELBO), which is defined as

MarginELBO(θ,M) = Eq(xT)

[
EqM(z|xT) log pθ(xT|z)− βKL[qM(z|xT)||pθ(z)]

]
, (4)

where qM(z|xT) is the marginal inference arm with its optimal being q∗M(z|xT) = pθ(z|xT).
Note intuitively, for different T, one should define different parameterized inference arms, which
is cumbersome. We will leverage our follow-up analysis to enable utilizing a universal foundation
model to simultaneously model all marginal inference arms.

• Conditional matching of pθ(xT|xS)−→q(xT|xS). Similar to joint and marginal matchings, we
again resort to the conditional variant to the vanilla ELBO, i.e., the conditional ELBO (Condi-
tionELBO), to perform the conditional matching task. Specifically,

ConditionELBO(θ, C) = Eq(xS∪T)

[EqC(z|xS∪T) log pθ(xT|z,xS)−
βKL[qC(z|xS∪T)||pθ(z|xS)]

]
, (5)

where qC(z|xS∪T) is the conditional inference arm with its optimal being q∗C(z|xS∪T) =
pθ(z|xS∪T). Same with the marginal inference arm, one intuitively should parameterize different
inference arms for different settings of (S,T); we will also address that issue with a universal
foundation model. But different from the marginal matching inheriting analytical pθ(xT, z) from
the parameterized pθ(x, z), both pθ(xT|z,xS) and pθ(z|xS) used in the conditional matching
are not readily available from the parameterized pθ(x, z), which brings significant challenges.
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(a) (Θ,Φ)-Modeling (b) Universal Ξ-Modeling

Figure 1: Transformer-based model architectures that are compliant to the big learning objective.

Table 1: Relationships between the proposed (Θ,Φ)-modeling and the vanilla (θ,ϕ)-modeling.
The relationships are based on ideal assumptions of an optimal z space, where q(x, z) describes the
true data generative process of q(x), and pθ∗(x, z) = q(x, z).

Model Intermediate Process Ultimate Goal
pΘ(xL|z,x∅) → pθ∗(x|z) → q(x|z)
pΘ(xT|z,xS) → pθ∗(xT|z,xS) → q(xT|z,xS)
pΦ(z|x∅) → pθ∗(z) → q(z)
pΦ(z|xL) → qM(z|x)→ pθ∗(z|x) → q(z|x)
pΦ(z|xT) → qM(z|xT)→ pθ∗(z|xT) → q(z|xT)
pΦ(z|xS∪T) → qC(z|xS∪T)→ pθ∗(z|xS∪T) → q(z|xS∪T)

3.2.2 MODEL ARCHITECTURES COMPLIANT TO THE BIG LEARNING OBJECTIVE

By summarizing the above analyses associated with joint, marginal, and conditional matchings, two
key modeling challenges remain unaddressed. That is,

1. How to derive both pθ(xT|z,xS) and pθ(z|xS) of the conditional matching from the pa-
rameterized model pθ(x, z) of the joint matching? Generally, this is intractable. However,
we notice that

• the marginal pθ(xT, z) is readily derived from the joint pθ(x, z) via index selection with
T; with specific T = L, the MarginELBO in (4) reduces to the JointELBO in (1);

• the ConditionELBO in (5) is clearly more general and it recovers the JointELBO and the
MarginELBO with settings of (S = ∅,T = L) and S = ∅, respectively.

Accordingly, we propose to directly parameterize the more general pΘ(xT|z,xS) and
pΦ(z|xS) instead, where pΘ(·)/pΦ(·) is constructed as a transformer-based foundation model
with parameters Θ/Φ (see Fig. 1a) and we use the newly introduced notations (Θ,Φ) to
indicate a different modeling from the conventional VAE modeling with (θ,ϕ). Therefore,
pΘ(x, z)/pΘ(xT, z) can be readily retrieved for joint/marginal matching.

2. How to concisely model the diverse inference arms qM(z|xT) and qC(z|xS∪T) w.r.t. dif-
ferent settings of (S,T)? We resort to the ideal situation for analysis. By considering that

• their optima being pθ(z|xT) and pθ(z|xS∪T), respectively,
• both optima have already been modeled in the parameterized pΦ(z|xS′),

we thus propose to directly leverage the parameterized pΦ(z|xT) and pΦ(z|xS∪T) to model
those diverse inference arms w.r.t. different settings of (S,T).

The relationships between the proposed (Θ,Φ)-modeling and the vanilla (θ,ϕ)-modeling, as well
as their ultimate goals, are summarized in Table 1, demonstrating the big picture of VAE modeling.

Based on the above analyses, one need two foundation models, i.e., a Θ-parameterized
pΘ(xT|z,xS) and a Φ-parameterized pΦ(z|xS), both of which are capable of handling vari-
dimensional input xS or output xT. To address that issue, we borrow ideas from existing foundation
models Stickland & Murray (2019); He et al. (2021) and propose to place a special mask token [M]
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Table 2: Example capabilities of the big-learned universal model pΞ(xT, zT |z¬T ,xS).
Formula Capability
pΞ(z|x), pΞ(x|z), pΞ(x|z)pΞ(z) joint decoding, encoding, and generation
pΞ(xT|z,xS) xS-conditioned decoding (or z-conditioned in-painting)
pΞ(z|xS) encoding/inference with incomplete data
pΞ(z|xS1∪S2) encoding with combined data batches of xS1 and xS2
pΞ(xT|z,xS)pΞ(z|xS) arbitrary in-painting/data-completion
pΞ(x̄T|z +∆z,xS), pΞ(xT|z,xS) xS-conditioned decoding sensitivity analysis w.r.t. ∆z
pΞ(z̄|xS +∆x), pΞ(z|xS) encoding sensitivity analysis w.r.t. ∆x

to each location in S∁ when inputting xS; the vari-dimensional output xT is addressed via index
selection.

With two flexible foundation models of pΘ(xT|z,xS) and pΦ(z|xS), we are ready to finalize the
BigLearn-VAE. Before that, we go one step further on designing the model architecture. Specifi-
cally, we observe in Table 1 that both pΘ(xT|z,xS) and pΦ(z|xS) have ultimate goals associated
with (different perspectives of) the unique pθ∗(x, z) = q(x, z); such consistency on their ultimate
goals is akin to what motivated the universal modeling of the big learning Cong & Zhao (2022).
Accordingly, we propose to further unify Θ and Φ by constructing a Ξ-parameterized universal
foundation model pΞ(xT, zT |z¬T ,xS), where the bool T = True/False indicates z is in the out-
put/input. With different settings for (S,T, T ), the universal model pΞ(xT, zT |z¬T ,xS) is capable
of modeling both the diverse encoding pΦ(z|xS) and the diverse decoding pΘ(xT|z,xS); see Fig.
1b for explicit demonstrations.

3.2.3 FINALIZING THE BIGLEARN-VAE

With two flexible foundation models of pΘ(xT|z,xS) and pΦ(z|xS) and the key idea of exhaustive
exploitation of the data information via the big learning, i.e., simultaneous joint, marginal, and
conditional matchings, we finalize the tailored big learning objective for the BigLearn-VAE with
two models as

BigLearnELBOT (Θ,Φ) = Eq(S,T)q(xS∪T)

[EpΦ(z|xS∪T) log pΘ(xT|z,xS)−
βKL[pΦ(z|xS∪T)||pΦ(z|xS)]

]
, (6)

where q(S,T) denotes the sampling process the (S,T) pair and it implicitly defines the weighting
among joint, marginal, and conditional matching tasks. With different settings for q(S,T), the
BigLearnELBO can recover the JointELBO in (1), the MarginELBO in (4), and the ConditionELBO
in (5).

Similarly, the tailored big learning objective for the BigLearn-VAE with one universal model
pΞ(xT, zT |z¬T ,xS) is defined as

BigLearnELBOU (Ξ) = Eq(S,T)q(xS∪T)

[EpΞ(z|xS∪T) log pΞ(xT|z,xS)−
βKL[pΞ(z|xS∪T)||pΞ(z|xS)]

]
, (7)

with which we harvest from one universal foundation model a BigLearn-VAE. After the big learning,
that universal model is expected to possess various data capabilities simultaneously, which is likely
valuable for versatile data analysis and manipulation. See Table 2 for example capabilities.

4 RELATED WORK

VAE Variants. Plenty of improved variants of the variational auto-encoder (VAE) have been de-
veloped since its proposal Kingma & Welling (2014); Rezende et al. (2014), with efforts made
towards (i) a better modeling of the x-manifold Dai & Wipf (2019a), (ii) a better z-prior Tomczak
& Welling (2018); Casale et al. (2018); Davidson et al. (2018); Takahashi et al. (2019); Joo et al.
(2020), (iii) a better balance between the reconstruction and KL terms Higgins et al. (2016); Chen
et al. (2018); Castrejon et al. (2019); Bae et al. (2022), (iv) a more powerful inference arm Rezende
& Mohamed (2015); Kingma et al. (2016), and (v) a better training objective Burda et al. (2015);
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(a) MNIST (b) FashionMNIST

Figure 2: BigLearn-VAE versus the conventional jointly-trained VAE. Note the test JointELBO
is selected as the evaluation metric. From Case1 to Case4, increasing number of trainable model
parameters are utilized.

Tolstikhin et al. (2017); Zhao et al. (2019); Hao & Shafto (2023); Estermann & Wattenhofer (2023).
Different from existing methods, the proposed BigLearn-VAE upgrade the conventional VAE from
a new big-learning dimension that is inspired by ground-breaking foundation models. Besides the
vanilla encoding-decoding architectures are also upgraded to enable carrying diverse data capabili-
ties.

Conditional Sampling With Jointly-Trained VAEs. Conditional sampling is a key challenge for
downstream applications of VAEs Rezende et al. (2014); Nguyen et al. (2017); Duan et al. (2019);
Harvey et al. (2021); Simkus & Gutmann (2023). To harvest the conditional-sampling capability
from a jointly-trained VAE, existing methods leverage post-processing techniques, such as Gibbs
sampling that reuses the encoder Rezende et al. (2014); Mattei & Frellsen (2018), Markov chain
Monte Carlo (MCMC) Wu et al. (2018), and variational inference Nguyen et al. (2017); Harvey
et al. (2021). However, the reliability of such post-processed conditional-sampling capability highly
depends on the performance of the original jointly-trained VAE; besides, pitfalls likely exist Simkus
& Gutmann (2023). By comparison, the presented BigLearn-VAE utilize the conditional sampling
(i.e., conditional matching) as one of its training tasks, leading to explicitly trained conditional-
sampling capability on diverse conditional data samples.

Foundation Models & Big Learning. AI is undergoing a paradigm shift with the rise of foundation
models Bommasani et al. (2021); Yuan et al. (2022), such as the popular BERT (Stickland & Murray,
2019), GPTs (Brown et al., 2020; Ouyang et al., 2022; OpenAI, 2022; 2023), the MAE (He et al.,
2021), DALL-Es (Ramesh et al., 2021; 2022), etc. Foundation models are well known to succeed
from its large-scale pretraining on broad data at scale; however, less attention has been paid to the
underlying principle of its pretraining objectives (Bommasani et al., 2021; Yuan et al., 2022), except
for the big learning Cong & Zhao (2022). Different from the main research stream of foundation
models that pursues massive data and huge models, we focus on utilizing their underlying learning
principle, i.e., the big learning, to upgrade traditional machine learning paradigm of VAEs.

5 EXPERIMENTS

To demonstrate the effectiveness of the presented BigLearn-VAE, we first quantitatively compare
it with the conventional jointly-trained VAE; then, we qualitatively illustrate the big-learned data
capabilities; and finally, we reveal that the BigLearn-VAE encoder can serve as a reliable feature
extractor for down-streaming incomplete-data classifications.

5.1 BIGLEARN-VAE VERSUS JOINTLY-TRAINED VAE

We quantitatively compare the presented BigLearn-VAE with the conventional jointly-trained VAE,
utilizing the test JointELBO that favors the jointly-trained VAE as the evaluation metric. Note this
is a challenging and even unfair setup for the BigLearn-VAE, because the big-learning objective
consists of plenty of training tasks and the joint matching is merely one of them.
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(a) MNIST, Inference (b) MNIST, In-painting (c) Fashion, Inference (d) Fashion, In-painting

(e) CelebA, Inference (f) CelebA, In-painting

Figure 3: Demonstration of the big-learned capabilities of inference with incomplete data (a, c,
e) and arbitrary in-painting (b, d, f). For inference with incomplete data, the inferred latent code
ẑ ∼ pΞ(z|xS) and its representativeness is shown via the reconstruction x̂ ∼ pΞ(x|ẑ). xS is shown
in the first row with the S-ratio decreasing from 1 to 0.1 (from the left to the right). Arbitrary in-
painting in (b, d, f) is implemented with x̂T ∼ pΞ(xT|ẑ,xS), ẑ ∼ pΞ(z|xS). More demonstrations
are given in Appendix C.

Experiments are conducted on the benchmark MNIST and FashionMNIST datasets. Three VAEs
are compared, i.e., the conventional VAE jointly trained with (1) (marked as VAE), the BigLearn-
VAE with the (Θ,Φ)-modeling and the objective in (6) (BigLearnVAET ), and the BigLearn-VAE
with the universal Ξ-modeling and the objective in (7) (BigLearnVAEU ). Four different model
settings are considered, where the number of trainable parameters are 1.2103M (marked as Case1),
4.733M (Case2), 4.78M (Case3), and 23.0081M (Case4), respectively. For BigLearnVAEU with a
universal model, we deepen the network architecture to keep the same trainable parameters for fair
comparisons. See Appendix A for the detailed model architectures and other experimental settings.

Fig. 2 demonstrates the experimental results. It’s clear that, (i) when compared with VAE, both
BigLearnVAET and BigLearnVAEU delivers overall comparable or better test JointELBO, justifying
the effectiveness of the big learning; (ii) BigLearnVAEU consistently outperforms BigLearnVAET

as expected, which highlights the benefit of the universal Ξ-modeling (that is akin to the big learning
principle); and (iii) as the model size increases, both BigLearn-VAEs demonstrate overall increasing
improvements over the jointly-trained VAE; this is expected because a larger model capacity will
better conform to the massive training nature of the big learning and diverse joint, marginal, and
conditional matchings may work better in encouraging model parameters to concentrate on the data
essence.

5.2 DEMONSTRATION OF THE BIG-LEARNED DATA CAPABILITIES

Below we qualitatively demonstrate the big-learned data capabilities, with a main focus on those
associated with incomplete data. Specifically, we test the big-learned capabilities associated with
(i) inference with incomplete data and (ii) arbitrary in-painting/data-completion.
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(a) MNIST (b) FashionMNIST

Figure 4: Big-learned latent codes are robust to down-streaming incomplete-data classifications.

Fig. 3 demonstrate the corresponding results; those on MNIST and FashionMNIST are from the
Case4 BigLearnVAEU models, while those on CelebA are from a larger BigLearnVAEU model (see
Appendix B for details).

From Figs. 3a, 3c, and 3e, it’s clear that the inferred latent codes ẑ ∼ pΞ(z|xS) are quite robust
towards data incompleteness, as they stably generate the correct/similar digits/products/faces even
when extracted with a S-ratio of 0.2/0.1/0.2. Note when the S-ratio equals 0.1, the input xS in
the MNIST experiment may not have digit information. Figs. 3b, 3d, and 3f show the results
for arbitrary in-painting, i.e., x̂T ∼ pΞ(xT|ẑ,xS), ẑ ∼ pΞ(z|xS); it’s clear that the BigLearn-
VAE delivers overall realistic in-paintings, highlighting again the effectiveness of the big learning.
By parallel comparing the inference results with those from in-paintings, we observe that (i) the
extracted latent code ẑ plays a dominated role in mastering the primary information associated with
digit/product classes or the overall photo scene, whereas (ii) the input xS of x̂T ∼ pΞ(xT|ẑ,xS)
brings to the decoded images the detailed information, such as the facial details that reflects the
identity.

5.3 BIG-LEARNED LATENT CODES ARE ROBUST TO INCOMPLETE-DATA CLASSIFICATIONS

Noticing the dominated role played by the latent code ẑ in Fig. 3, we conduct additional experiments
to test whether the big-learned latent codes are robust to incomplete-data classifications.

Specifically, we randomly mask the MNIST and FashionMNIST datasets with different S-ratios
to mimic incomplete-data classification scenarios with various degrees of data incompleteness. We
then utilize the big-learned pΞ(z|xS) as a pretrained feature extractor that is amenable to incomplete
data. Finally, we follow He et al. (2021) to employ linear probing on top of the extracted codes
and use the linear-probing accuracy to evaluate the robustness of the big-learned latent codes w.r.t.
incomplete-data classifications.

The experimental results are summarized in Fig. 4, where it’s clear that BigLearn-VAEs delivers
robust latent-codes/features for down-streaming incomplete-data classifications. It’s worth high-
lighting that, even with severe data incompleteness with merely 10% observed patches (i.e., S-ratio
being 0.1), the big-learned feature extractor pΞ(z|xS) delivers ≥ 60% linear-probing accuracy.

6 CONCLUSIONS

We leverage the big learning principle Cong & Zhao (2022) to upgrade the conventional jointly-
trained VAE into the BigLearn-VAE, which delivers versatile and valuable data capabilities (like
conditional sampling) with one universal foundation model and with comparable/better joint per-
formance. Experimental results demonstrate its effectiveness. Further research might extend the
big-learning principle to the (x, z)-space or conduct diverse data analysis based on the BigLearn-
VAE.
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Appendix of Big Learning Variational Auto-Encoders

Anonymous Authors

A EXPERIMENTAL SETTINGS ON MNIST AND FASHIONMNIST

Table 3: Model settings on the MNIST and FashionMNIST datasets. The transformer/ViT archi-
tecture is employed for all the listed experiments. Regarding the “# Layer” column, x-y indicates
utilizing a x-layer encoder and y-layer decoder; for BigLearnVAEU with a universal foundation
model, “# Layer” indicates the number of its transformer layers.

Case Method # Layer z-Dimension Embedding Dimension # Trainable Parameters

Case1
VAE 4-4 32 128 1.2103M
BigLearnVAET 4-4 32 128 1.2103M
BigLearnVAEU 8 32 128 1.2103M

Case2
VAE 4-4 32 256 4.733M
BigLearnVAET 4-4 32 256 4.733M
BigLearnVAEU 8 32 256 4.733M

Case3
VAE 4-4 64 256 4.78M
BigLearnVAET 4-4 64 256 4.78M
BigLearnVAEU 8 64 256 4.78M

Case4
VAE 6-4 128 512 23.0081M
BigLearnVAET 6-4 128 512 23.0081M
BigLearnVAEU 10 128 512 23.0081M

Table 3 summarizes the detailed model settings on the MNIST and FashionMNIST datasets. All
the input images are resized to 32 × 32. The patch size is set as 4, leading to dimension D = 48
and length L = 64. β = 0.01 by default. The AdamW Loshchilov & Hutter (2017) optimizer with
β1 = 0, β2 = 0.999, and ϵ = 1 × 10−8 is used as the default optimizer. The learning rate is set as
1× 10−4 for Case1, Case2, and Case3 and 2× 10−5 for Case4.

B IMPLEMENTATION DETAILS ON CELEBA

Table 4: Model settings on the CelebA dataset. A convolutional neural network with residual is used
to construct the PatchAE in Stage1. A base transformer/ViT is employed in Stage2 to construct the
universal foundation model of the BigLearn-VAE.

# Layer z-Dimension Embedding Dimension # Trainable Parameters
PatchAE
(Stage1) - 512 - 2.3193M

BigLearn-VAE
(Stage2) 12 128 768 89.9421M

Table 3 summarizes the model settings on the CelebA dataset. All the input images are resized
to 128 × 128. The patch size is set as 16, leading to dimension D = 768 and length L = 64.
β = 0.001 by default. The AdamW optimizer with β1 = 0.9, β2 = 0.95, and ϵ = 1× 10−5 is used.
The learning rate is set as 1× 10−4 and a cosine decay learning rate scheduler is adopted.

Fig. 5 demonstrates the big picture of training a BigLearn-VAE on the CelebA dataset. We follow
Dai & Wipf (2019b) to employ a two-stage training strategy, as detailed below.

• In Stage1, we train a patch-level auto-encoder (Patch-AE) to embed the CelebA manifold
into a low-dimensional transformed space, where the goal is to bypass the manifold model-
ing challenge and, at the same time, to figure out a transformed space where the transformed
data are easy to model for Stage2,
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• Based on the Patch-AE that is frozen from Stage1, we then conduct the BigLearn-VAE in
Stage2 to perform big learning in the transformed space. Note the pipeline consisting of
a patch-level AE and a follow-up BigLearn-VAE will not prevent collecting versatile data
capabilities like conditional sampling.

Figure 5: The big picture of training a BigLearn-VAE on the CelebA.

C MORE DEMONSTRATIONS
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(a) MNIST, Inference (b) MNIST, In-painting

Figure 6: Demonstration of the big-learned capabilities of inference with incomplete data (a) and
arbitrary in-painting (b) on MNIST.
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(a) FashionMNIST, Inference (b) FashionMNIST, In-painting

Figure 7: Demonstration of the big-learned capabilities of inference with incomplete data (a) and
arbitrary in-painting (b) on FashionMNIST.
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(a) CelebA, Inference (b) CelebA, In-painting

Figure 8: Demonstration of the big-learned capabilities of inference with incomplete data (a) and
arbitrary in-painting (b) on CelebA.
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Figure 9: Linear interpolations on the latent codes from the BigLearn-VAE trained on the CelebA
dataset.
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(a) (b)

Figure 10: Test the big-learned data capability of encoding/inference with combined data batches of
xS1 and xS2 , i.e., ẑ ∼ pΞ(z|xS1∪S2). The representativeness of the latent code ẑ is illustrated via
decoding, i.e., x̂T ∼ pΞ(xT|ẑ,xS).

Figure 11: Test the big-learned data capability of xS-conditioned decoding sensitivity analysis w.r.t.
∆z, i.e., pΞ(x̄T|z + ∆z,xS), pΞ(xT|z,xS). ∆z = 5 by default. It seems that z23 (i.e., the 23-th
element of z), z25, z73, and z106 control eye make-up, lipstick, hair color, and hair style respec-
tively. More interestingly, that control is consistent w.r.t. different degrees of data incompleteness,
highlighting the robustness of the big-learned latent codes.
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Figure 12: Test the big-learned data capability of encoding sensitivity analysis w.r.t. ∆x, i.e.,
pΞ(z̄|xS + ∆x), pΞ(z|xS). Both z̄ and z are illustrated via decoding, i.e., x̄T ∼ pΞ(xT|z̄,xS)
and xT ∼ pΞ(xT|z,xS), respectively.
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D ALGORITHM FLOW

Algorithm 1 Big Learning Variational Auto-Encoders
Input: Training data X, # of steps S.
Output: Predicted image patches xT.

1: Φ← Initialize parameters
2: Random minibatch x of real data
3: for step∈ {1 . . . S} do
4: S-ratio ∼ Beta(α1, β1) and T-ratio ∼ Beta(α2, β2)
5: uniformly sample an index subset S and T
6: Encode: z ∼ pΦ (z | xS∪T)
7: Decode: xT ∼ pΦ (xT | z,xS)
8: Compute BigLearnELBO as defined in manuscript
9: Update Φ

10: end for

E TRAINING TIME

Figure 13: Under the same settings, the Loss and Cumulative Time per Epoch of jointly-trained
VAE and BigLearnVAE.

F EXAMPLES OF MODEL CAPABILITIES

Fig.14 showcases the diverse capabilities of BigLearnVAE, including Sample/Generation, Inference,
Reconstruction, In-painting and Conditional Sample/Generation. Specifically, Sample/Generation
involves sampling from the prior to obtain the latent variable z, followed by generating images
through the decoder p(x|z). Inference refers to the model’s need to deduce missing image ar-
eas based on available image regions, where the encoder obtains the latent variable z through
p(z|xpart), and then the missing image areas are inferred through the decoder p(xmiss|z). Re-
construction operates similarly to traditional VAE, where the encoder acquires the latent variable z
through p(z|xcomplete), and then reconstructs images through the decoder p(xrec|z). In-painting,
similar to Inference, generates predicted image areas based on existing image regions, but differs
in that the decoding stage can be conditioned on xs, which is p(xmiss|z,xs). Conditional Sam-
ple/Generation differs from Sample/Generation in that the encoding stage can incorporate partial
information to guide the direction of generation, as shown in Fig.14e, where given partial stroke
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information, BigLearnVAE can generate digit images that meet the conditions and possess a certain
degree of diversity.

(a) Sample/Generation (b) Inference

(c) Reconstruction (d) In-painting

(e) Conditional Sample/Generation

Figure 14: The various model capabilities of BigLearnVAE, illustrated using the MNIST dataset as
an example.
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