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ABSTRACT

Policy-gradient algorithms are effective reinforcement learning methods for solv-
ing control problems with continuous state and action spaces. To compute near-
optimal policies, it is essential in practice to include exploration terms in the learn-
ing objective. Although the effectiveness of these terms is usually justified by an
intrinsic need to explore environments, we propose a novel analysis and distin-
guish two different implications of these techniques. First, they make it possible
to smooth the learning objective and to eliminate local optima while preserving
the global maximum. Second, they modify the gradient estimates, increasing the
probability that the stochastic parameter update eventually provides an optimal
policy. In light of these effects, we discuss and illustrate empirically exploration
strategies based on entropy bonuses, highlighting their limitations and opening
avenues for future works in the design and analysis of such strategies.

1 INTRODUCTION

Many practical problems require making sequential decisions in environments, based on state obser-
vations, in order to minimize a cost or maximize a reward. Reinforcement learning is a framework
for solving such decision-making problems that has been successful on complex tasks, including
playing games (Mnih et al., 2015; Silver et al., 2017), controlling robots (Kalashnikov et al., 2018),
or interacting with electricity markets (Boukas et al., 2021).

Reinforcement learning can be divided into three families of algorithms, namely, model-based,
value-based, and policy-based methods. Each method exhibits different learning dynamics and
requirements for computing high-performing policies. On the one hand, the first two families of
algorithms are subject to the exploration-exploitation dilemma during the learning procedure. In
short, in order to learn statistical estimates of the environment or the value functions as fast as
possible, from which a good policy can be computed, it is necessary to take actions that increase
the quality of the estimates that are likely not optimal. This need for exploration to achieve high
performance is theoretically well understood and has been the subject of many works (Dann et al.,
2017; Azar et al., 2017; Neu & Pike-Burke, 2020). On the other hand, in policy-based methods, and
especially for policy-gradient algorithms (Duan et al., 2016; Andrychowicz et al., 2020), the main
theoretical requirement to converge towards globally (or even locally) optimal solutions is that poli-
cies remain sufficiently stochastic during the learning procedure (Bhandari & Russo, 2019; Bhatt
et al., 2019; Agarwal et al., 2020; Zhang et al., 2021a; Bedi et al., 2022). Interestingly, stochastic
policies have smoother returns (Ahmed et al., 2019; Bolland et al., 2023), but neither softmax nor
Gaussian policies guarantee enough stochasticity for ensuring (fast) convergence (Mei et al., 2020;
2021; Bedi et al., 2022). This requirement of stochasticity in policy gradient is often abusively called
exploration and often understood as the need to infinitely sample all states and actions.

Practitioners have tried to meet the theoretical requirement of sufficient randomness of policies in
policy gradient via reward-shaping strategies, whereby a learning objective that promotes or hinders
behaviors by providing reward bonuses for some states and actions is optimized as a surrogate to
the return of the policy. These bonuses typically promote actions that reduce the uncertainty of
the agent about its environment (Pathak et al., 2017; Burda et al., 2018; Zhang et al., 2021c), or
that maximize the entropy of states and/or actions (Bellemare et al., 2016; Lee et al., 2019; Guo
et al., 2021; Williams & Peng, 1991; Haarnoja et al., 2019). Optimizing a surrogate objective is
particularly effective for solving tasks with complex dynamics and reward functions, or with sparse
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rewards (Islam et al., 2019; Lee et al., 2019; Liu & Abbeel, 2021; Zhang et al., 2021b; Guo et al.,
2021).

The differences between theory and practical implementations of exploration has led to common
folklore seeking to explain the intuition behind and the efficiency of policy gradient methods. This
work is part of the research line that studies the maximization of practical surrogate learning objec-
tive functions from a mathematical optimization perspective. Close to our work, studies of the learn-
ing objective with entropy regularization (an exploration-based reward shaping technique where the
entropy of the policy is added in the learning objective) were conducted. It includes the study by
Ahmed et al. (2019) concluding that it helps to provide smooth learning objective functions. The
same exploration strategy was reinterpreted as a robust optimization method by Husain et al. (2021)
and equivalently as a two-player game by Brekelmans et al. (2022). Bolland et al. (2023) further-
more argued that optimizing an entropy regularized objective is equivalent to optimizing the return
of another policy with larger variance. Chung et al. (2021) also studied the effect on the learning
dynamics when including baselines in policy gradient, which is close to adding exploration terms
in the learning objective. These studies are specific to some exploration methods and the literature
lacks unified explanations and interpretations about exploration in policy gradient methods.

Before delving into our contributions, we recall that the convergence of stochastic ascent methods
is driven by the objective function and how the ascent directions are estimated. First, the objec-
tive function shall be (pseudo) concave to find its global maximum (Bottou, 1998). Second, the
convergence rate is influenced by the distribution of the stochastic ascent estimates (Chen & Luss,
2018; Ajalloeian & Stich, 2020). In this paper, we rigorously study policy-gradient methods with
exploration-based reward shaping through the lens of these two optimization theory aspects. More
precisely, we first discuss the effect of exploration on the learning objective and the relationship
between an optimal policy and a policy maximizing the learning objective. Second, we elaborate
on the distribution of the gradient estimates of the learning objective and its likelihood of providing
a direction in which the learning objective and the return increase. We furthermore illustrate how
some common exploration strategies help improve the performance of policy-gradient algorithms
with respect to these two aspects. In practice, finding good exploration strategies is known to be
problem specific and we thus introduce a general framework for the study and interpretation of ex-
ploration in policy gradient methods instead of trying to find the best exploration method for a given
task.

The paper is organized as follows. In Section 2 we provide the background about policy gradients
and about exploration. Section 3 focuses on the effect of exploration on the learning objective while
Section 4 is dedicated to the effect on the gradient estimates used in the policy-gradient algorithms.
Finally, conclusions and future works are discussed in Section 5.

2 BACKGROUND

In this section, we introduce the reinforcement learning problem in Markov decision processes and
discuss the policy-gradient optimization method with exploration.

2.1 MARKOV DECISION PROCESSES

We study problems in which an agent makes sequential decisions in a stochastic environment in
order to maximize an expected sum of rewards (Sutton & Barto, 2018). The environment is modeled
with an infinite-time Markov Decision Process (MDP) composed of a state space S, an action space
A, an initial state distribution with density p0, a transition distribution (modeling the dynamics) with
conditional density p, a bounded reward function ρ, and a discount factor γ ∈ [0, 1(. When an agent
interacts with the MDP, first, an initial state s0 ∼ p0(·) is sampled, then, the agent provides at each
time step t an action at ∈ A leading to a new state st+1 ∼ p(·|st, at). Such a sequence of states
and actions ht = (s0, a0, . . . , st−1, at−1, st) ∈ H is called a history and H is the set of all histories
of any arbitrary length. In addition, after an action at is executed, a reward rt = ρ(st, at) ∈ R is
observed.

A policy π ∈ Π = S → P(A) is a mapping from the state space S to the set of probability measures
on the action space P(A), where π(a|s) is the associated conditional probability density of action a
in state s. The function J : Π → R is defined as the function mapping any policy π to the expected

2



Under review as a conference paper at ICLR 2024

discounted sum of rewards gathered by an agent interacting in the MDP by sampling actions from
the policy π. We call return of the policy π the value provided by that function

J(π) =
1

1− γ
E

s∼dπ,γ(·)
a∼π(·|s)

[ρ(s, a)] , (1)

where dπ,γ(·) is the discounted state-visitation probability (Manne, 1960). In reinforcement learn-
ing, we seek to find an optimal policy π∗ maximizing the expected discounted sum of rewards J .

2.2 POLICY-GRADIENT ALGORITHMS

Policy-gradient algorithms (locally) optimize a parameterized policy πθ to find the optimal parame-
ter θ∗ for which the return of the policy J(πθ∗) is maximized. Naively optimizing the parameterized
policy by solely maximizing its return may provide sub-optimal results. This problem is mitigated
in practice by implementing exploration strategies. These techniques consist in optimizing a surro-
gate learning objective L that intrinsically encourages certain behaviors. In this work, we consider
reward-shaping strategies where the expected discounted sum of rewards is extended by K addi-
tional reward terms ρinti , called intrinsic motivation terms, and optimize the learning objective

L(θ) =
1

1− γ
E

s∼dπθ,γ(·)
a∼πθ(·|s)

[
ρ(s, a) +

K−1∑
i=0

λiρ
int
i (s, a)

]
= J(πθ) + J int(πθ) , (2)

where λi are non-negative weights for each intrinsic reward and where J int(πθ) is the intrinsic
return of the policy. The parameter maximizing the learning objective is denoted by θ†, which we
distinguish from the optimal policy parameter θ∗. Most of the intrinsic motivation terms can be
classified in the two following groups.

Uncertainty-based motivations. It is common to provide bonuses for performing actions that re-
duce the uncertainty of the agent about its environment (Pathak et al., 2017; Burda et al., 2018;
Zhang et al., 2021c). The intrinsic motivation terms are then proportional to the prediction errors of
a model of the MDP dynamics. The latter model is usually learned.

Entropy-based motivations. It is also common to provide bonuses for visiting states and/or playing
actions that are less likely in histories (Bellemare et al., 2016; Lee et al., 2019; Guo et al., 2021). In
this work, we focus on two of these bonuses

ρs(s, a) = − log dπθ,γ(ϕ(s)) (3)
ρa(s, a) = − log πθ(a|s) , (4)

where ϕ(s) is a feature built from the state s. The corresponding intrinsic returns are maximized for
policies that visit uniformly every feature, and for policies with uniformly distributed actions in each
state, respectively. Note that these rewards require to estimate the distribution over the states and/or
actions. Furthermore, they implicitly depend on the policy parameter θ. The second technique is
usually referred to as entropy regularization (Williams & Peng, 1991; Haarnoja et al., 2019).

In this work, we consider on-policy policy-gradient algorithms, which were among others reviewed
by Duan et al. (2016) and Andrychowicz et al. (2020). These algorithms optimize differentiable pa-
rameterized policies with gradient-based local optimization. They iteratively approximate an ascent
direction d̂ relying on histories sampled from the policy in the MDP and update the parameters in the
ascent direction, or in a combination of the previous ascent directions (Hinton et al., 2012; Kingma
& Ba, 2014). For the sake of simplicity and without loss of generality, we consider that the ascent
direction d̂ is composed of the sum of an estimate of the gradient of the return ĝ ≈ ∇θJ(πθ) and
an estimate of the gradient of the intrinsic return î ≈ ∇θJ

int(πθ). In practice, the first is usually
unbiased while the second is computed neglecting some partial derivatives of θ and is thus biased,
typically neglecting the influence of the policy on the intrinsic reward.

3 STUDY OF THE LEARNING OBJECTIVE

In this section, we study the influence of the exploration terms on the learning objective defined in
equation (2). We define two criteria under which the learning objective can be globally optimized

3



Under review as a conference paper at ICLR 2024

by ascent methods, and such that the solution is close to an optimal policy. We then graphically
illustrate how exploration modifies the learning objective to remove local extrema.

3.1 POLICY-GRADIENT LEARNING OBJECTIVE

Policy-gradient algorithms using exploration maximize the learning objective function L, as defined
in equation (2). We introduce two criteria related to this learning objective for studying the perfor-
mance of the policy-gradient algorithm. First, we say that a learning objective L is ϵ-coherent when
its global maximum is in an ϵ-neighborhood of the return of an optimal policy. Second, we call
learning objectives that have a unique maximum and no other stationary point pseudoconcave1.

Coherence criterion. A learning objective L is ϵ-coherent if and only if

J(πθ∗)− J(πθ†) ≤ ϵ , (5)

where θ∗ ∈ argmaxθJ(πθ) and where θ† ∈ argmaxθL(θ).

Pseudoconcavity criterion. A learning objective L is pseudoconcave if and only if

∃! θ† : ∇L(θ†) = 0 ∧ L(θ†) = max
θ

L(θ) . (6)

If the pseudoconcavity criterion is respected, there is a single optimum, and it is thus possible to
globally optimize the learning objective function by (stochastic) gradient ascent (Bottou, 2010). If
the learning objective is furthermore ϵ-coherent, the latter solution is also a near-optimal policy,
where ϵ is the bound on the suboptimality of its return.

3.2 ILLUSTRATION OF THE EFFECT OF EXPLORATION ON THE LEARNING OBJECTIVE

Exploration is of paramount importance when complex dynamics and reward functions are involved,
where many locally optimal policies may exist (Lee et al., 2019; Liu & Abbeel, 2021; Zhang et al.,
2021b). In the following, we first define an environment and a policy parameterization introduced
by Bolland et al. (2023) that will serve as an example where it is possible to graphically illustrate the
effect of exploration on the optimization process. For the sake of the analysis, we then represent the
learning objectives associated with different exploration strategies, and depict their global and local
optima. Learning objectives with a single global optimum respect the pseudoconcavity criterion. In
addition, we represent the neighborhood Ω of the optimal policy parameters, such that any learning
objective with its global maximum within this region is coherent for a given ϵ. In light of the
coherence and the pseudoconcavity criteria, we finally elaborate on the policy parameter computed
by stochastic gradient ascent algorithms.

We consider the environment illustrated in Figure 1a where a car moves in a valley. We denote by
x and v the position and speed of the car, both forming its state s = (x, v). The valley contains
two separate low points, positioned in xinitial = −3 and xtarget = 3, separated by a peak. The
car starts at rest v0 = 0 at the highest low point x0 = xinitial and receives rewards proportional
to the depth of the valley at its current position. The reward function is provided in Figure 1b. We
consider a policy πK,σ(a|s) = N (a|µK(s), σ), namely a normally disturbed proportional controller
with µK(s) = K × (x − xtarget), parameterized by the vector θ = (K,σ). Figure 1c illustrates
the contour map of the return of the policy as a function of the parameters K and σ. The optimal
parameters are represented by a black dot and correspond to a policy that drives the car so as to pass
the peak and reach the lowest valley floor in xtarget. The green area represents the set of parameters
Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ} for ϵ = 1, and is used in the following discussion.

Figure 2 illustrates learning objectives combining the intrinsic rewards defined in equations (3) and
(4) for different values of the weights λ1 and λ2. Here, the feature from equations (3) is composed
of the position ϕ(s) = x. First, we observe that for weights approaching zero, the parameter θ†
maximizing the learning objective, represented by a black dot, corresponds to a policy with a high
return. More precisely, it is in the green set Ω such that ϵ-coherence is guaranteed for a small value
of ϵ = 1. Larger weights require larger values of ϵ for guaranteeing the ϵ-coherence criterion.
Nevertheless, when increasing the weights, we also observe that the learning objective eventually
becomes pseudoconcave. There appears to be a trade-off between the two criteria. In Figure 2b,

1For the sake of simplicity, our definition slightly differs from that of Mangasarian (1975)
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Figure 1: Illustration of the hill environment in Figure 1a and its reward function in Figure 1b. In
Figure 1c, the return of the policy πK,σ with the global and local maximum represented in black and
grey, together with their respective return values.

we observe that in this environment, it is possible to find a learning objective that respects the
pseudoconcavity criterion and the ϵ-coherence criterion for ϵ = 1. Indeed, there is a single global
maximum in Figure 2b represented by a black dot that is furthermore part of the set Ω.

Shaping the reward function with an exploration strategy based on the state-visitation entropy ap-
pears to be a good solution for optimizing the policy. However, a notable drawback is that the
reward depends on the policy and its (gradient) computation requires to estimate a complex proba-
bility measure. In this example, the intrinsic reward function itself was estimated by Monte-Carlo
sampling for every parameter, which would not scale for complex problems and requires approxima-
tions and costly evaluation strategies (Islam et al., 2019). In Appendix A, we present an alternative
problem-dependent intrinsic reward, independent of the policy parameters and thus simple to com-
pute efficiently, that still respects the pseudoconcavity and ϵ-coherence criteria.
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Figure 2: Contour map of (scaled) learning objective functions for different values of λ1 and λ2.
The darker the map, the larger the learning objective value. The green area represents the set
Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ = 1}, such that when the parameter maximizing the learning
objective is part of Ω, then the learning objective function is ϵ-coherent with ϵ = 1. The black dot
is the parameter θ† globally maximizing the learning objective and the grey dot is the local (non-
global) maximum of the learning objective if it exists. Both are labeled with the return values of the
corresponding policies.
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The observations suggest that well-chosen exploration strategies can lead to learning objective func-
tions that satisfy the two criteria defined in the previous section, thereby guaranteeing that policies
suboptimal by at most ϵ can be computed by local optimization. When designing exploration strate-
gies, it is essential to keep in mind that we modify the learning objective for the algorithms to
converge to optimal policy parameters, which can be achieved when both criteria are respected.
While strategies such as enforcing entropy can be effective in some environments, they are only
heuristic strategies and not to be relied upon exclusively. Furthermore, as illustrated, both criteria
may be subject to a trade-off. In more complex environments, an efficient exploration strategy may
require to balance both criteria, for example through a schedule on the learning objective weights.

4 STUDY OF THE ASCENT DIRECTION DISTRIBUTION

Optimizing pseudoconcave functions with stochastic ascent methods are guaranteed to converge
(at a certain rate) under assumptions on the distribution of the gradient estimates at hand (Bottou,
2010; Chen & Luss, 2018; Ajalloeian & Stich, 2020). In this section, we study the influence of the
exploration terms on this distribution in the context of policy gradients. More precisely, we study
the probability of improving the learning objective, which, intuitively, shall be sufficiently large for
the algorithm to be efficient. We formalize this intuition and illustrate how exploration strategies
can increase this probability, leading to more efficient policy-gradient methods.

4.1 POLICY-GRADIENT ESTIMATED ASCENT DIRECTION

In general, gradient ascent algorithms update parameters in a direction d̂ in order to locally improve
an objective function f . The quality of these algorithms can therefore be studied (for a small step
size α → 0) through the random variable representing the quantity by which the objective increases

X = f(θ + αd̂)− f(θ) = α ⟨d̂,∇θf(θ)⟩ , (7)

where ⟨·, ·⟩ is the Euclidean scalar product. This variable depends on the random event d̂ estimated
by Monte-Carlo simulations in practice. In order to study the convergence of gradient ascent al-
gorithms, the expectation of X is usually bounded by expressions involving the parameters of the
algorithms. Doing so when gradients are biased is an active research field, where most results do not
fit to our study. We therefore instead elaborate directly on the distributions P(∥X∥) that quantifies
the magnitude of the variation of the objective function f , and P(X > 0) that quantifies when the
ascent step improves this objective. In practice, the expectation of the random variable X is positive
and the estimate d̂ is scaled and clipped by many algorithms, such that the sign of X is arguably of
more importance than its norm. In the following, we study P(X > 0) and assume it to be sufficient
to measure the efficiency of optimization algorithms. In other words, we assume that all ascent steps
lead to a constant variation of the objective, such that the rate of policy improvement is proportional
to P(X > 0).

In the case of a policy gradient, we first assume that the return is pseudoconcave and that learning
objectives respect the two previous criteria, and introduce two new criteria for the study of the
policy improvement probability. The latter are independent (but not mutually exclusive) from those
of Section 3. First, we say that an exploration strategy is efficient if following the ascent direction
d̂ ≈ ∇θL(θ) has a higher probability of increasing the return of the policy than following the
direction ĝ ≈ ∇θJ(πθ) for almost every θ. Second, an exploration strategy is δ-attractive if and
only if, there exists a neighborhood of θ† containing the parameter θint maximizing the intrinsic
return J int, where the probability of increasing the return by following d̂ is almost everywhere at
least equal to δ. Note that each probability measure and random variable is a function of θ, which
we do not explicitly write for the sake of keeping notations simple.

Efficiency criterion. An exploration strategy is efficient if and only if

∀∞θ : P(D > 0) > P(G > 0) , (8)

where D = ⟨d̂,∇θJ(πθ)⟩ and G = ⟨ĝ,∇θJ(πθ)⟩.
Attraction criterion. An exploration strategy is δ-attractive if and only if

∃B(θ†) : θint ∈ B(θ†) ∧ ∀∞θ ∈ B(θ†) : P(D > 0) ≥ δ , (9)

6



Under review as a conference paper at ICLR 2024

where θint = argmaxθJ
int(πθ), B(θ†) is a ball centered in θ†, and D = ⟨d̂,∇θJ(πθ)⟩.

First, the efficiency criterion quantifies if the exploration terms are collaborative with the original
objective of maximizing the return. If this criterion is respected, estimating the gradient of the
learning objective d̂ rather than the return ĝ will ensure a more likely policy improvement, which
is desirable for efficient policy optimization. Second, the rationale behind the attraction criteria is
that in many exploration strategies, the intrinsic reward is dense, and it is then presumably easy to
optimize the intrinsic return in the sense that P( ⟨̂i,∇θJ

int(πθ)⟩ > 0). It implies that it is easy to
locally improve the learning objective by (solely) increasing the value of the intrinsic motivation
terms. It furthermore implies that policy-gradient algorithms may be subject to converging towards
θint rather than θ† when P( ⟨d̂,∇θJ(πθ)⟩ > 0) is small. If the criterion is respected for large δ, the
latter is less likely to happen as policy gradients will eventually tend to improve the return of the
policy if it approaches θint and enters the ball B(θ†); eventually converging towards θ†.

4.2 ILLUSTRATION OF THE EFFECT OF EXPLORATION ON THE ESTIMATED ASCENT
DIRECTION

Exploration is usually promoted and tested for problems where the reward function is sparse, typ-
ically in maze-environments (Islam et al., 2019; Liu & Abbeel, 2021; Guo et al., 2021). In this
section, we first introduce a new maze-environment with sparse rewards where we illustrate the in-
fluence of exploration on the gradient estimates of the learning objective. To this end, we present
two learning objective functions and report the likelihood that the gradient estimates improve the
return as a function of the policy parameters. Based on these likelihood values, we elaborate on
the influence of exploration on the performance of policy-gradient algorithms in the light of the
efficiency and attraction criteria.

Let us consider a maze-environment consisting of a horizontal corridor composed of S ∈ N tiles.
The state of the environment is the index of the tile s ∈ {1, . . . , S}, and the actions consists in
going left a = −1 or right a = +1. When an action is taken, the agent stays idle with probability
p = 0.7, and moves with probability 1 − p = 0.3 in the direction indicated by the action, then
s′ = min(S,max(1, s + a)). The agent starts in state s = 1 and the target state s = S = 15 is
absorbing. Zero rewards are observed except when the agent reaches the target state where a reward
r = 1 is observed. A discount factor of γ = 0.99 is considered. Finally, we study the policy going
with probability θ to the right and probability 1− θ to the left, and ∀s with density

πθ(a|s) =
{

θ if a = 1
1− θ if a = −1 .

(10)

The return J(πθ) is represented in black in Figure 3a as a function of θ along with two intrinsic
returns, Ja(πθ) in orange and Jd(πθ) in green. The intrinsic reward ρa(s, a) = − log πθ(a|s) from
equation (4) is used for computing Ja(πθ), and the intrinsic reward ρd(s, a) = (a − 1)/2 is used
instead for Jd(πθ). The latter is a dense hand-crafted reward function penalizing actions taken from
a suboptimal policy. In Figure 3b, we illustrate the return of the policy without exploration J(πθ),
along with two learning objective functions, La(θ) and Ld(θ), using as exploration strategies the
intrinsic returns Ja(πθ) and Jd(πθ). We observe that the return is a pseudoconcave function with
respect to θ and the optimal parameter is θ∗ = 1. In addition, the two learning objectives respect
the ϵ-coherence for ϵ = 0, implying that θ∗ = θ†, and respect the pseudoconcavity criteria. It is
important to note with regard to the discussion from Section 3, there is no interest in optimizing the
learning objectives rather than directly optimizing the return, as the latter is already pseudoconcave.
In the following we illustrate how choosing a correct exploration strategy still deeply influences the
policy-gradient algorithms when it comes to building gradient estimates.

Let us compute the estimate ĝ and d̂ relying on REINFORCE (Williams, 1992) by sampling 8
histories of length T = 100. We represent in Figure 4 the probabilities P(D > 0) for both learning
objectives and P(G > 0). First, as can be seen for the learning objective La(θ), the probability of
increasing the return by following the direction d̂ is higher than the one of following ĝ for small
values of the parameter θ. In this region of the parameter space, the efficiency criterion is respected.
For the second learning objective Ld(θ) this criterion holds for any parameter. Second, concerning
the attraction criterion, we represent at the top of Figure 4 the intervals Ba = [θint,a, θ†,a] and
Bd = [θint,d, θ†,d]. They correspond to the smallest balls containing the maximizers of the learning
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Figure 3: Figure 3a represents the return of the policy along with two intrinsic return functions. In
Figure 3b the return is also represented together with two learning objective functions, corresponding
to the two intrinsic returns.

objective and of the intrinsic return. In addition, the minima of P(D > 0) over these intervals are
also reported and denoted δa and δd, for both learning objective respectively. By definition of the
attraction criterion, it is thus respected for any values of δ at most equal to δa and δd, for La(θ) and
Ld(θ), respectively. All these observations can eventually be explained as the computation of ĝ is
always zero when the target is not reached, which is highly likely for policies with small values of
θ. Adding the exploration terms here leads to policy-gradient algorithms that compute more easily
an optimal policy while naive optimization without exploration would fail or be sample inefficient.
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Figure 4: Illustration of the probability (estimated by Monte-Carlo) to improve the return by fol-
lowing the stochastic gradient estimates of J(πθ), La(θ), and Ld(θ). At the top of the figure, the
intervals Ba = [θint,a, θ†,a] and Bd = [θint,d, θ†,d] are represented. These intervals represent the
smallest balls containing the parameters maximizing the learning objective and the intrinsic return,
for both exploration strategies. Dotted lines represent the smallest probability over each interval to
improve the return by following d̂.

We have empirically shown that exploration in policy gradients does not only remove local extrema
from the objective function, but also increases the probability that stochastic ascent steps improve
the objective function. Under the previous assumptions, this probability measures the efficiency of
algorithms. Furthermore, among different learning objectives respecting the coherence and pseudo-
concavity criteria, it is best to choose one that has a high probability of being increased by stochastic
gradient ascent. In Figure 4, the learning objective in green is better than the one in orange according
to both criteria. Indeed, it is efficient over a larger set of policy parameters, and is δ-attractive for
a larger value of δ. In the experiments, we used the naive REINFORCE estimates, yet the consid-
erations generalize to any reinforcement learning technique where exploration can help to compute
good estimates of the learning objective. Typically, estimating a critic by stochastic gradient ascent
suffers from this problem as it is also built from an estimate computed from sampled rewards.

The problem discussed in this section strongly relates to a notion of overfitting or generalization in
reinforcement learning. In situations where we sample with low probability some state and action
pairs, the policy may be optimal over the set of pairs already sampled, the gradient estimates will
then be zero with high probability, and the gradient updates will not lead to policy improvements.
In the previous example, gradient estimates computed from policies with a small parameter value θ
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wrongly indicate that a stationary point has been reached as they equal zero with high probability.
We quantify this effect with a novel definition of local optimality. We define as locally optimal
policies over a space with probability ∆ the policies that maximize the reward on expectation over
a set of states and actions observed in a history with probability at least ∆. Formally, a policy π is
locally optimal over a space with probability ∆ if and only if

∃ E ∈
{
X
∣∣∣ ∫

X
dπ,γ(s)π(a|s) dads ≥ ∆

}
: π ∈ argmax

π′

∫
E
dπ

′,γ(s)π′(a|s)ρ(a, s) dads . (11)

In the typical case of environments with sparse rewards, many policies observe with high probabil-
ity state and action pairs with zero rewards and are thus locally optimal for large probabilities ∆.
Typically, in the previous example, the joint set {1, . . . , S− 2}×{−1, 1} is a set of state and action
pairs E that respects the definition equation (11) for policies when θ is small for large values ∆.
Exploration mitigates the convergence of policy-gradient algorithms towards these locally optimal
policies. Note that assuming a non-zero reward is uniformly distributed over the state and action
space, exploration policies with uniform probabilities over visited states and actions are the best
prior choice for sampling non-zero rewards with high probability. It can thus also be considered as
the best choice of exploration to reduce the probability that the stochastic gradient ascent steps do
not increase the objective value. Generally, such policy initialization priors may be learned from the
framework developed by Lee et al. (2019).

5 CONCLUSION

In conclusion, this research takes a step towards dispelling misunderstandings about exploration
through the study of its effects on the performance of policy-gradient algorithms. More particularly,
we distinguished two effects exploration has on the optimization. First, it modifies the learning
objective in order to remove local extrema. Second, it modifies the gradient estimates and increases
the likelihood that the update steps lead to improved returns. These two phenomena were studied
through four criteria that we introduced and illustrated.

These ideas apply to other direct policy optimization algorithms. Indeed, the four criteria do not
assume any structure on the learning objective and can thus be straightforwardly applied to any ob-
jective function optimized by a direct policy search algorithm. In particular, for off-policy policy
gradient, we may simply consider that the off-policy objective is itself a surrogate or that the gra-
dients of the return are biased estimates based on past histories. Ideas introduced in this work also
apply to other reinforcement learning techniques. Typically, for value-based RL with sparse-reward
environments, convergence towards a value function outputting zero is expected with high probabil-
ity. This is mostly due to the low probability of sampling non-zero rewards by Monte-Carlo. The
discussions from Section 4 then apply, and a similar analysis can be performed.

Our framework opens the door for further theoretical analysis, and the potential development of
new criteria. We believe that deriving practical conditions about the exploration strategies, and the
scheduling of the intrinsic return, for guaranteeing fast convergence, should be the focus of attention.
It could be achieved by bounding the policy improvement on expectation, which is nevertheless
usually a hard task without strong assumptions. We furthermore believe that we provide a new lens
on exploration necessary for interpreting standard exploration strategies, in the sense of designing
surrogate learning objective, and developing new ones.
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A ALTERNATIVE EXPLORATION STRATEGY

In this section, we provide additional remarks about exploration and provide an exploration strategy
that guarantees coherence and pseudoconcavity of the learning objective from the environment in
Section 3.

A notable drawback in the example about the environment from Section 3 is that the reward function
depends on the policy parameters and its computation requires to estimate a complex probability
measure. In Figure 5a, we illustrate an intrinsic reward bonus making the sum of rewards in equation
(2) concave. The corresponding learning objective has a unique maximum, which is part of the set
Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ} with ϵ = 1. It can be seen in Figure 5b where the global
maximum in black is within the set Ω in green. Both, the ϵ-coherence and the pseudoconcavity
criteria are thus respected for ϵ = 1. Here, the reward ρint is a simple function independent of
the policy πθ. Finding such an intrinsic reward may be complex for other environments but the
example underlines that exploration and reward shaping are mostly equivalent and that designing
reward functions that are concave may help converging towards optimal policies.
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Figure 5: In Figure 5a, an alternative intrinsic reward function ensuring that the sum of rewards is a
concave function. In Figure 5b, the contour function of the learning objective.
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