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ABSTRACT

Learning multiple tasks is challenging for soft robots. Differentiable physics en-
ables efficient gradient-based optimizations of neural network (NN) controllers for
soft robot learning. However, existing work typically delivers NN controllers with
limited capability and generalizability. We present a practical learning framework
that outputs unified NN controllers capable of multiple tasks with significantly im-
proved complexity and diversity. Our framework consists of a high-performance
differentiable deformable bodies simulator supporting the material point method
(MPM) and mass-spring systems, an automatic differentiation module that enables
gradient-based optimizations, and a practical training module for soft robots on
learning multiple locomotion tasks with a single NN controller. Using a unified
NN controller trained in our framework, we demonstrate that users can interac-
tively control soft robot locomotion and switch among multiple goals with speci-
fied velocity, height, and direction instructions. We evaluate our framework with
multiple robot designs and challenging locomotion tasks. Experiments show that
our learning framework, based on differentiable physics, delivers better results and
converges much faster, compared with reinforcement learning frameworks. In ad-
dition, we successfully employed our framework on learning manipulation tasks,
indicating the potential to extend our framework to tasks beyond locomotion.

1 INTRODUCTION

Agents

Tasks
Jumping (at controllable height)

 MLS-MPM  Mass Spring

Running (at controllable velocity)

Figure 1: Our learning system is robust and versatile, supporting various simulation methods,
robot designs, and locomotion tasks with continuously controllable target velocity and heights.

Differentiable physical simulators deliver accurate analytical gradients of physical simulations,
opening up a promising stage for efficient soft robots control task learning via gradient descent.
Existing research demonstrates that on simple tasks, learning systems via differentiable physics can
effectively leverage simulation gradient information and converge orders of magnitude faster (see,
e.g., de Avila Belbute-Peres et al. (2018); Hu et al. (2019)) than reinforcement learning.

However, the capability of existing differentiable physics based learning systems is relatively lim-
ited. Typically, optimized controllers can only achieve relatively simple single-goal tasks (e.g.,
moving in one specific direction, as in ChainQueen Hu et al. (2019)). Those learned controllers
often have difficulty generalizing the task to a perturbed version.

In this work, we propose a learning framework for complex locomotion skill learning via differen-
tiable physical simulation. The complexity of our tasks comes from two aspects: first, the degrees
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Figure 2: 3D robots collection. Our framework supports various robot designs both in 2D and 3D.

of freedom of our soft robots are significantly higher compared with the rigid-body ones; second,
the robots are expected to learn multiple skills at the same time. We systematically propose a suite
of enhancements (Fig. 4) over existing training approaches (such as Hu et al. (2020); Huang et al.
(2021)) to significantly improve the efficiency, robustness, and generalizability of learning systems
based on differentiable physics.

In addition, we investigated the contributions of each enhancements to training in detail by a series
of ablation studies. We also evaluated our framework through comparisons against Proximal Policy
Optimization (PPO) Schulman et al. (2017), a state-of-the-art reinforcement learning algorithm.
Results show that our system is simple yet effective and has a much-improved convergence rate
compared to PPO.

We demonstrate the versatility of our framework via various physical simulation environments
(mass-spring systems and the moving least squares material point method, MLS-MPM Hu et al.
(2018)), robot designs (structured and irregular, Fig. 2), locomotion tasks (moving, jumping, turn-
ing around, all at a controllable velocity). To the best of our knowledge, this is the first framework
which enables a single neural network can be trained via differentiable physics to achieve tasks of
such complexity (Fig. 1). Our robot is simultaneously trained with multiple tasks, the learned skills
can be continuously interpolated. For example, we can control both the velocity and height of an
agent while it runs. The trained agent can also be controlled in real-time, enabling direct applications
in soft robot control and rapid design. In addition, our framework is successfully applied to simple
manipulation tasks (shown in Figure 10), which indicate that our framework has the potential to
handle tasks beyond locomotion. The code and data of the framework will be open-source. We
summarize our key contributions as follows:

• A GPU-accelerated high-performance differentiable physical simulation environment for
deformable robot locomotion skills learning, which supports mass-spring systems and the
material point method as dynamic simulation backends.

• A differentiable physics-based learning framework for soft robots on multiple locomotion
tasks learning using a single NN controller. The trained controller can be used to control
soft robots interactively, achieving multiple locomotion tasks.

• A systematic investigation of the key factors contributing to the differentiable physics based
learning framework. We believe our investigation can inspire further research to explore
the possibilities of differentiable physics for more complex robot learning tasks.

2 RELATED WORK

Differentiable simulation. Differentiable physical simulation is getting increasingly more atten-
tion in the learning community. Two families of methods exist: the first family uses neural networks
to approximate physical simulators Battaglia et al. (2016); Chang et al. (2016); Mrowca et al. (2018);
Li et al. (2018). Differentiating the approximating NNs then yields gradients of the (approximate)
physical simulation. The second family is more accurate and direct: many of these methods us-
ing differentiable programming (specifically, reverse-mode automatic differentiation) to implement
physical simulators Degrave et al. (2016); de Avila Belbute-Peres et al. (2018); Schenck & Fox
(2018); Heiden et al. (2019); Hu et al. (2019; 2020); Huang et al. (2021). Automatic differentiation
works well for explicit time integrators, but when it comes to implicit time integration, people often
adopt the adjoint methods Bern et al. (2019); Geilinger et al. (2020), LCP de Avila Belbute-Peres
et al. (2018) and QR decompositions Liang et al. (2019); Qiao et al. (2020). A smooth critic func-
tion is employed in Xu et al. (2021) to mitigate vanishing/exploding gradient issues; however, its
application is confined to a single task. In this work, we leverage DiffTaichi Hu et al. (2020), an
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Alpaca Monster HugeStool Stool

Figure 3: 2D robots collection. The name of the robot is shown under the schematic.

automatic differentiation system, to create high-performance parallel differentiable simulators and
the built-in NN controllers.

Locomotion skill learning. Producing physically plausible characters with various locomotion
skills is a challenging problem. One classic approach is to manually design locomotion controllers
subject to physics laws of motion in order to generate walking Ye & Liu (2010); Coros et al. (2010)
or bicycling Tan et al. (2014) characters. These physically-based controllers often rely on a complex
set of control parameters and are difficult to design and time-consuming to optimize. Another line of
research suggests using data to control characters kinematically. Given a set of data clips, controllers
can be made to select the best fit clip to properly react to certain situations Safonova & Hodgins
(2007); Lee et al. (2010); Liu et al. (2010). These kinematic models use the motion clips to build
a state machine and add transitions between similar frames in adjacent states. Although being able
to produce higher quality motions than most simulation-based methods, the kinematic methods lack
the ability to synthesize behaviors for unseen situations. With the recent advances in deep learning
techniques, attempts have been explored to incorporate reinforcement learning (RL) into locomotion
skill learning Peng et al. (2015); Liu & Hodgins (2017); Peng et al. (2018); Park et al. (2019). These
modern controllers gain their effectiveness either from tracking high-quality reference motion clips
or from cleverly designed rewards to imitate the reference. However, the exploration space for
RL is usually prohibitively large to achieve complicated target motions. Carefully designed early
termination strategies Ma et al. (2021); Won et al. (2020), better optimization methods Yang & Yin
(2021), and adversarial RL schemes Peng et al. (2021) enable these RL-based methods to achieve
richer behaviors. However, it is still time-consuming to get a well-trained RL model in complex tasks
such as soft robot control. Our method, on the other hand, leverages the differentiable simulation
framework and can achieve much better convergence behavior compared to RL-based methods.

3 DIFFERENTIABLE SIMULATION ENVIRONMENTS

3.1 SIMULATION CONFIGURATIONS

Our learning framework supports multiple types of differentiable physically-based deformable body
simulators. We use the mass-spring systems and the moving least squares material point method
(MLS-MPM) as our simulation environments. The design choices for each environment are shown
below:

Mass-spring systems We adopt the classic Hookean spring model to represent the elastic force
and use dashpot damping Baraff & Witkin (1998) as the damping force to simulate our mass-spring
system. We found that the drag damping model used by Hu et al. Hu et al. (2020) damps the gradient
of the NN controller as well while the dashpot damping model is able to generate vividly changing
gradients which makes our agent more flexible.

Material point methods We use MLS-MPM Hu et al. (2018) as our material point method simu-
lator. We further applied the affine particle-in-cell method Jiang et al. (2015) to reduce the artificial
damping. Due to the nature of MPM as a hybrid Lagrangian-Eulerian method, it always requires a
background grid during the simulation. Naive MPM implementations fix the position of the back-
ground grid, hence limit the moving range of the agent. We apply a dynamic background grid that
follows the agent all the time to overcome this problem.
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3.2 ROBOT STRUCTURE AND ACTUATION MODE

Our framework supports a variety of differently shaped agents as shown in Fig. 2 and 3. Our actua-
tion signal exerts forces along with the “muscle” directions of the simulated agents. This magnitude
of the is limited within the range [−1,+1], where its sign determines whether an agent wants to con-
tract (negative sign) or relax (positive sign) a muscle and its absolute value determines the magnitude
of the force.

In mass-spring systems, the muscle directions are represented by the spring directions, we change
the rest-length of springs to generate forces. Given a spring with two mass points x0 and x1 and rest-
length l0. The displacement (vector) d is defined by equation: d = (||x0−x1||−l0)

x0−x1

||x0−x1|| . Taking
an analogy to the muscle contraction model, we set the rest-length l0 to desired length according to
the actuation signal from the NN controller to control the displacement and the force thereby. The
actuation signal is used to scale the rest-length up to some limit (usually at 20%). In addition, only
activated springs, i.e. actuators (springs marked red or blue shown in Fig. 1), are able to generate
forces according to control signals.

In material point methods, the muscle directions are always along the vertical axis in material space.
In our implementation, we simply modify the Cauchy stress in the vertical direction of material
space to apply this force. Again, the force is scaled to a user-defined bound which can be adjusted
for different simulations.

4 LEARNING FRAMEWORK
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Figure 4: Framework overview. Simulation instances are batched and executed in parallel on
GPUs. The whole system is end-to-end differentiable, and we use gradient-based algorithms to op-
timize the neural network controller weights. Each time step involves evaluating a NN controller
inspired by SIREN Sitzmann et al. (2020), and a differentiable simulator time integration imple-
mented using DiffTaichi Hu et al. (2020). Simulation states are fed back to the initial state pool
to improve the richness of training sets and thereby the generalization ability of the resulted NN
controller. A tailored loss function (as shown in section 4.2) is designed for each task.

In this section, we describe our training framework based on differentiable physics (Fig. 4). In
summary, we develop a differentiable simulator with an embedded NN controller. In each time
step, the program performs an NN controller inference and a differentiable simulator time inte-
gration. After a few hundred time steps, the program back-propagates gradients end-to-end via
reverse-mode automatic differentiation, and updates the weights of the neural network using the
Adam optimizer Kingma & Ba (2014).

4.1 TASK REPRESENTATION

Given an agent A, its position and corresponding velocity are denoted as x = (x, y, z) and v =
(u, v, w). We presents three tasks (running, jumping and crawling) for 2D agents, two (running and
rotating) for 3D. In a whole simulation with total steps T , an agent is expected to achieve all goals in
a goal sequence G = {G1,G2...Gn|nP = T }, where P is the time period for an agent to achieve a
goal, n is the number of goals . For each goal G, there are multiple tasks in it. Each task is encoded
using a target value g, which instructs the controller to drive the agent. For example, G = {gv, gh}
represent performing running and jumping simultaneously, the target velocity and height are gv and
gh. The agent is expected to switch between multiple goals during one simulation.

4



Under review as a conference paper at ICLR 2024

Running The running task is defined as a velocity tracking problem. Given a time step t, the
center of mass c is used to represent the position of the agent, its velocity is defined as the averaged
velocity ṽ over a time period Pr, (Pr < P). Then the agent is expected to achieve a velocity ṽ close
to the target velocity gv .

ṽ(t) =
1

Pr
(c(t)− c(t− Pr)) (1)

Rotation In a 3D space, an agent is additionally expected to control its orientation on a plane, i.e.,
rotate. The rotation matrix R along X-Z plane is defined as

R =

[
cos(Prgω) 0 − sin(Prgω)

0 1 0
sin(Prgω) 0 cos(Prgω)

]
, (2)

where gω is the target angular velocity assembled in input features.

Jumping The jumping task is defined as reaching a given height gh in a time period P . Due to the
gravity, it is not possible for a running robot to stay away from the ground. Therefore, the jumping
height h̃h(t) of an agent is defined by the maximum vertical position of its lowest point in a certain
period P . To be more formally, given S a set of nodes (or points) that constitute the agent, h is a
function that can extract the vertical position given a node (or point), the jumping height over the
n-th period is defined as

h̃h(n) = max
t∈[0,P]

min
s∈S

h(s, t+ nP) (3)

where n is the index of the period in a whole simulation.

Crawling The crawling task is defined as lowering the highest point as much as possible. The
target of crawling gc is defined as an indicator function. The agent is controlled to crawl if gc = 1
otherwise if gc = 0. Since crawling is a status that needs to be maintained, the crawling height is
defined as the vertical position of its highest point at each time step.

h̃c(t) = max
s∈S

h(s, t) (4)

4.2 LOSS FUNCTIONS

Consider a locomotion task where an agent is instructed to move at a specified velocity, we think a
proper loss function should satisfy the following requirements:

1. Periodicity. The agent is expected to move periodically following a predefined cyclic
activation signal. Therefore, the loss function should encourage periodic motions.

2. Delayed evaluation. Due to inertia, it takes time for the agent to start running or adjust
running velocity. Therefore, an ideal loss function should take this delay into consideration.

3. Fluctuation tolerance. During a time period for an robot to achieve a goal, requiring the
center of mass to move at a constant velocity at each time step may induce highly fluctuated
losses. To avoid that, our loss function should be smooth during one period.

Task loss For each task, we defined a tailored loss shown in equation 5 according to the require-
ments above. The loss for running Lv is defined as the accumulation of the difference between the
target and the agent’s velocity from start to current time step. For jumping, we define a sparse loss
Lh, which only evaluate once for each period. The crawling loss Lc is defined as the accumulation
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of the crawling height if the loss is applicable.

L = λv

∑
n∈T

P∑
t=Pr

(ṽ(t)− gv(n))
2

︸ ︷︷ ︸
Lv

+

λh

∑
n∈T

(h̃h(n)− gh(n))
2

︸ ︷︷ ︸
Lh

+

λc

∑
n∈T

P∑
t=0

gc(n)h̃c(t+ nP)︸ ︷︷ ︸
Lc

(5)

For 3D cases, the additional rotation loss Lr is defined as the accumulation of centralized point-wise
distance, i.e., the relative distance to the center of mass, between current position and target rotated
position

Lr = λr

∑
n∈T

P∑
t=Pr

∑
s∈S

(x̄(t)−Rx̄(t− Pr))
2 (6)

where x̄(t) = s(t) − c(t) is the centralized point-wise distance. The λv, λh, λc, λr are weights for
losses of dfferent tasks. Our loss function accumulates the contributions of all steps in a “sliding
window”. This prevents the loss value being too small as well as the gradient vanishing problem.
An accumulated loss also helps alleviate the velocity loss fluctuation during training.

Regularization Since the agents may keep shaking when no target values are given, we introduce
an actuation loss as a regularization term. The intuition is to penalize comparatively large actuations
when small target value is given:

La =
∑
n∈T

∑
t∈[0,P]

(A(t)− µ||gv(n)||)2 (7)

where A(t) is the actuation output of NN, µ is a normalizer.

4.3 NETWORK ARCHITECTURE

We use two fully connected (FC) layers with sine activation function as the neural network. The
network input vector consists of three parts:

1. Periodic control signal of the same period with different phases, to encourage periodic
actuation. In this work, we use sin waves as the signal.

2. State feature vector is a representation of the current state of the agent. The positions and
velocities of all the vertices of the simulated object are used as the input feature. To ensure
the property translation-invariant and rotation-invariant, we use the the relative distance to
the center of mass to remove global translation and rotation information.

3. Targets that encode the task information such as running velocity, jumping height, and
orientation for 3D agents.

4.4 TRAINING

In the training process, a simulation with 1000 steps is performed during one training iteration. The
duration of the simulation is divided into several periods P as mentioned in the section 4.1. For
each P , a goal G contains several tasks is assigned. For example, G = {gv, gh} represents that
the agent is expected to perform both running and jumping in this period. The goal and its target
values are generated randomly in a uniform distribution. They are kept fixed inside one period P ,
but varied between different periods. The network is trained with a batch size of 32. We train
our models on NVidia RTX2060 GPU, the maximum training iteration is set to 10000, while the it
usually converges in less than 5000 iterations within half an hour.
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5 EXPERIMENTS AND ANALYSIS

In this section, we evaluate our framework and learning algorithm from various aspects.
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Figure 5: Summary of the ablation study (left). Here we show the summary of ablation study
on robot Alpaca.The abbreviations under training setting represent name of components to remove.
To be more specific, OP: Optimizer, AF: Activation Function, BS: Batch Size, PS: Periodic Signal,
SV: State Vector, TV: Targets, LD: Loss Design. Difftaichi is an implementation of Hu et al. (2020),
enhanced with our loss design. It can be observed that the Full method achieves the best performance
on Task loss among all models. Each iteration indicates one training iteration, which is composed
of 1000 steps of physical simulation and one step of update on weights of the controller. The result
show that the Full method achieves the best performance. Ablation study of batch size (middle).
Ablation study of activation function (right). For more results of ablation studies on other robots,
please check the appendix.

5.1 FRICTION MODEL

In real world, robots running is driven by static friction between ”feet” and ground. We train robots
with different contact models in our experiments. With either zero friction or a fully sticky surface,
where only velocity in normal direction is kept and all other components are projected to zero after
contact, the robot tends to stuck shown in the middle of Fig.6. To overcome this issue, we adopt
the classic slip with friction model from physical simulation which involves both kinetic and static
friction. The friction force of the two contact modes are determined by the pressure force applied
on the contact surface and a given friction coefficient.

Figure 6: Left: Training loss for zero friction, slip and sticky contact models. The 0.4 is the value of
the friction coefficient. Middle: Robot suffers from sticky surface and cannot move further. Right:
Robot moves smoothly towards right. Please see the supplemental video for a visual comparison
between slip and sticky friction models.

5.2 DIFFERENTIABLE PHYSICS GRADIENT ANALYSIS

One concern in differentiable physics based learning is the that the gradient may explode during
the back-propagation through long simulation steps. Here we visualize the distribution of gradients
norm of a whole training process in Fig. 7. It can be observed that most values of the gradients
are distributed inside the interval [-10, 10] in log scale, which indicates that our learning approach
provides stable gradients during training.
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Figure 7: Gradient Analysis. The plots show the gradient distribution of different robot. The x-axis
represent the sum of gradients norm. The values are drawn in log scale for a clear visualization. We
record the sum of gradients norm of 10000 iterations for a whole training process. For each robot,
the experiments are performed at least three times, i.e., there are at least 30000 gradient samples for
one robot.

5.3 LEARNING TECHNIQUES

we systematically investigate the key factors of the learning techniques that contribute to the train-
ing, evaluate our framework through ablation studies. All experiments in the ablation studies are
performed at least three times. The results of ablation studies are summarized in Fig. 5. In valida-
tion, we test all the trained robots on a fixed set of tasks, whose target values are uniformly sampled
by interpolating between the lower and upper bound of all targets appeared in training.

Batching We adopt batching into differentiable physics and perform a series of experiments as
shown in the middle of Fig. 5 to verify its effectiveness, with batch size 1, 8, 32, and 64. It shows
that a batch size of 32 gives the best trade-off between performance improvement and computation
cost.

Loss design We compare our tailored loss function with a naive loss function. The naive loss
function defines the velocity as the position difference of the center of mass between consecutive
time steps, i.e., requiring the robot to move at a constant velocity at each time step. The experiments
show that the robot under the naive loss design can not be properly trained to run, i.e., there are
almost no progress in running loss dropping.

Activation function To validate the effectiveness of our sin activation function, we replaced it for
hidden layer with various popular activation functions tanh, relu, gelu and sigmoid. The results
in the right of Fig.5 show that using sin as activation functions gives the best performance among
all three losses. For more results of activation functions ablation studies, please check the table 6 in
appendix.

5.4 BENCHMARK AGAINST REINFORCEMENT LEARNING
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Figure 8: Comparison on different robots. Both our method and PPO run on GPUs. The solid and
dashed lines show the validation loss of our method and PPO, respectively. The robot design is also
shown in the figure. Springs marked in red are actuators.

We implement the standard proximal policy optimization (PPO) benchmark in multiple goals set-
tings as shown in Fig. 8. The PPO robot can make progress in single goal learning and learn certain
locomotion patterns to move toward the goal. Yet as the task gets complicated, PPO often gets
trapped in the local minima. We try our best to fine-tune the PPO hyper-parameters, but still find it
tends to overfit to one goal but fails to find a balance between different goals. It can be observed in
Fig. 8 where the robots trained by PPO can learn to jump but struggle to run.

8



Under review as a conference paper at ICLR 2024

Figure 9: Top: the trajectory of a walking quadruped robot under user control. Bottom: Our system
allows the user to control the robot’s motion interactively in real-time. Please see the supplemental
video for results in detail.

5.5 INTERACTIVE REAL-TIME CONTROL

Smoothly switching between different tasks is a key advantage of our approach. In interactive
settings, the target values are provided by the user inputs, users can smoothly control the robot’s
motion in real-time via input devices such as a keyboard as shown in Fig. 9. Please refer to our
supplemental video for more details.

5.6 EXTENSIBILITY OF THE FRAMEWORK

Our framework is not limited to locomotion tasks learning. Here we provide two simple manipula-
tion learning tasks trained on our framework. In these tasks, the robot is expected to manipulate an
object (marked in purple) to hit a target point (marked in green). We designed two scenarios based
on MPM: Juggle and Dribbble and Shot shown in Fig.10.

Juggle In this scenario, the target point appears in the sky above the the robot. The robot is
expected to ’juggle’ the object to the target point.

Dribble and Shot In this scenario, the target point keeps moving toward right. The robot is
expected to carry the object and shot it to the target point.

The experiments indicate that our framework has the extensibility to tasks beyond locomotion.

Target Point

Object

Target Point

Object

Time

Figure 10: Manipulation tasks showcase. The upper plot shows the snapshots of scenario ’Juggle’
and the lower one shows that of the ’Dribble and Shot’. The visual results are also shown in the
supplemental video.

6 DISCUSSION

In this paper, we have presented a differentiable physics based learning framework which enables
users to flexibly design soft robots and to teach them multiple locomotion skills. It consists of a
high-performance differentiable deformable bodies simulator, an automatic diffrentiation module
and a tailored learning algorithm for soft robot on multiple-task locomotion skills learning with sin-
gle controller. The algorithm shows advantages in both training performance comparing to PPO.
and convergence efficiency on multiple-task The key factors of learning techniques contributing to
the training are systematically investigated. The trained robots can be manipulated to smoothly
switch locomotion tasks such as running, jumping, and crawling with different speeds and orienta-
tions, interactively in real-time. In addition, we successfully applied the proposed method to simple
manipulation tasks, which indicates the framework has the extensibility to tasks beyond locomotion.

There are also some limitations. Difficulty of the learning tasks depends on robot design and physical
parameters. The training performance may be degraded with improper robot designs. For instance,
in our stool case where unnecessary actuators on its body are allowed, it is more difficult to achieve
good results. Offloading the physical parameter tuning and robot designing to an automatic pipeline
will be an interesting future research direction.
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A APPENDIX

A.1 REINFORCEMENT LEARNING SETTING

Environment. We use the open-source implementation of PPO (Kostrikov (2018)) in our environ-
ments. Part of important hyper-parameters are listed in the table 1.

Table 1: PPO hyper-parameters

Parameter Values

learning rate 2.5e− 4
entropy coef 0.01
value loss coef 0.5
number of processes 8
number of simulation steps. 1000

Reward Design. We design a reward function for PPO based on our loss functions. Recall the
velocity part of equation 5. We define the total velocity reward as:

Rv = λv

∑
n∈T

∑
t∈[Pr,P]

gv(n)
2 − (ṽ(t)− gv(n))

2 (8)

If we directly split the reward into each time steps by t, the rewards of first Pr time steps would be
zero and it is too difficult for PPO to learn the policy. Therefore, we modified the reward function to
tackle this issue. By equation 1, we have

Rv = λv

∑
n∈T

∑
t∈[Pr,P]

gv(n)
2 −

[
1

Pr
(c(t)− c(t− Pr))− gv(n)

]2
(9)

=
λv

P2
r

∑
n∈T

∑
t∈[Pr,P]

[Prgv(n)]
2 − [c(t)− (c(t− Pr) + Prgv(n))]

2
. (10)

We can define a function fn(t
′, t) = [Prgv(n)]

2 − [c(t′)− (c(t− Pr) + Prgv(n))]
2 and substitute

it back to equation 10. The reward can be re-written as

Rv =
λv

P2
r

∑
n∈T

∑
t∈[Pr,P]

fn(t, t) (11)

Refer to that for any t ∈ P , we have fn(t− Pr, t) = 0, which means

Rv =
λv

P2
r

∑
n∈T

∑
t∈[Pr,P]

∑
∆t∈[0,Pr)

fn(t−∆t, t)− fn(t−∆t− 1, t) (12)

Let t′ = t−∆t

Rv =
λv

P2
r

∑
n∈T

∑
t′∈[0,P]

min(t′,Pr)∑
∆t=0

fn(t
′, t′ +∆t)− fn(t

′ − 1, t′ +∆t) (13)

=
λv

P2
r

∑
n∈T

∑
t′∈[0,P]

min(t′,Pr)∑
∆t=0

− [c(t′)− (c(t′ +∆t− Pr) + Prgv(n))]
2
+

[c(t′ − 1)− (c(t′ +∆t− Pr) + Prgv(n))]
2 (14)
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So we can split the whole reward into each time step t as:

Rv(t) =

min(t,Pr)∑
∆t=0

[c(t− 1)− (c(t+∆t− Pr) + Prgv(n))]
2 −

[c(t)− (c(t+∆t− Pr) + Prgv(n))]
2 (15)

Recall that the goal of a jumping task is to reach a specified height goal gh, the intuition for jumping
reward is to encourage the agent to improve its maximum height until reaching the height.

Rh(t) = λh

∑
n∈T

(min
s∈S

h(s, t+ nP)− gh(n))
2 − (h̃h(n)− gh(n))

2 (16)

where the mins∈S h(s, t+nP) is the agent height at current time step as mentioned in 4.1 and h̃h(n)
is the max height record during one task period.

A.2 NETWORK ARCHITECTURE

Figure 11: Network architecture.

Our network architecture is shown in Fig. 11. It is a two layers fully connected network with a 64
channels hidden layer. The number of input and output channels varies according to different agent
designs.

A.3 DETAILED RESULTS ON FURTHER EXPERIMENTS

Here we show more detailed results on further experiments, including ablation studies on different
agents, validation loss on different tasks for agents and more network weights visualization results.
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Figure 12: Input features ablation study. Full-PS, Full-SV and Full-TG indicate the models trained
without Periodic Signal, State Vector or Targets respectively.
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Name Training Setting Norm. Valid. Loss (Alpaca)

OP AF BS PS SV TG LD Run. Jump. Task

Full Adam sin 32 ✓ ✓ ✓ ✓ 0.58±0.01 0.79±0.01 0.74±0.01

Difftaichi* SGD tanh 1 ✓ ✓ ✓ ✓ 0.98±0.00 0.95±0.01 0.96±0.01
Full-BS Adam sin 1 ✓ ✓ ✓ ✓ 0.82±0.02 0.85±0.01 0.84±0.02
Full-OP SGD sin 32 ✓ ✓ ✓ ✓ 0.97±0.01 0.98±0.01 0.98±0.01
Full-AF Adam tanh 32 ✓ ✓ ✓ ✓ 0.67±0.02 0.81±0.01 0.77±0.02
Full-PS Adam sin 32 ✗ ✓ ✓ ✓ 0.97±0.00 0.99±0.00 0.99±0.00
Full-SV Adam sin 32 ✓ ✗ ✓ ✓ 0.54±0.01 0.84±0.01 0.77±0.01
Full-TG Adam sin 32 ✓ ✓ ✗ ✓ 0.99±0.00 0.95±0.00 0.97±0.00
Full-LD Adam sin 32 ✓ ✓ ✓ ✗ 0.99±0.01 0.74±0.01 0.82±0.01

Table 2: Ablation summary on agent Alpaca. In this table, we show the Task, Run and Jump val-
idation loss of proposed method and its ablated versions. Full represents the proposed method. The
abbreviations under training setting represent name of components to remove. To be more specific,
OP: Optimizer, AF: Activation Function, BS: Batch Size, PS: Periodic Signal, SV: State Vector, TV:
Targets, LD: Loss Design. *Difftaichi is an implementation of Hu et al. (2020), enhanced with our
loss design. It can be observed that the Full method achieves the best performance on Task loss
among all models.

Table 3: Ablation Summary on Monster.

Name Training Setting Norm. Valid. Loss (Monster)

OP AF BS PS SV TG LD Run. Jump. Task

Full Adam sin 32 ✓ ✓ ✓ ✓ 0.46±0.01 0.77±0.00 0.71±0.01

Full-OP SGD sin 32 ✓ ✓ ✓ ✓ 0.99±0.01 0.99±0.00 0.99±0.01
Full-AF Adam tanh 32 ✓ ✓ ✓ ✓ 0.65±0.01 0.84±0.02 0.79±0.02
Full-PS Adam sin 32 ✗ ✓ ✓ ✓ 0.93±0.00 0.99±0.00 0.98±0.00
Full-SV Adam sin 32 ✓ ✗ ✓ ✓ 0.51±0.01 0.86±0.01 0.78±0.01
Full-TG Adam sin 32 ✓ ✓ ✗ ✓ 0.99±0.00 0.97±0.01 0.98±0.01
Full-LD Adam sin 32 ✓ ✓ ✓ ✗ 0.99±0.00 - 0.90±0.06

Table 4: Ablation Summary on HugeStool.

Name Training Setting Norm. Valid. Loss (HugeStool)

OP AF BS PS SV TG LD Run. Jump. Task

Full Adam sin 32 ✓ ✓ ✓ ✓ 0.40±0.01 0.58±0.01 0.53±0.01

Full-OP SGD sin 32 ✓ ✓ ✓ ✓ 0.97±0.01 0.96±0.01 0.96±0.01
Full-AF Adam tanh 32 ✓ ✓ ✓ ✓ 0.49±0.01 0.59±0.01 0.56±0.01
Full-PS Adam sin 32 ✗ ✓ ✓ ✓ 0.99±0.00 0.99±0.00 0.99±0.00
Full-SV Adam sin 32 ✓ ✗ ✓ ✓ 0.40±0.01 0.62±0.01 0.57±0.00
Full-TG Adam sin 32 ✓ ✓ ✗ ✓ 0.99±0.00 0.90±0.00 0.93±0.00
Full-LD Adam sin 32 ✓ ✓ ✓ ✗ 0.99±0.01 - 0.70±0.01
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Figure 13: Validation loss on different agents and targets. The plot shows the validation loss
on different targets combinations for agents. The target velocity ranges from -0.08 to 0.08 and the
target heights are 0.1, 0.15 and 0.20. Each subplot shows the task, running and jumping loss for one
agent given a pair of specified target velocity and height.
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Figure 14: Summary of the ablation study for agents. The subplots show the normalized valida-
tion loss for task (weighted summation of different losses), running and jumping from top to bottom
row. The subplots in different columns show the results of different agents.

Table 5: Ablation Summary on Stool.

Name Training Setting Norm. Valid. Loss (Stool)

OP AF BS PS SV TG LD Run. Jump. Task

Full Adam sin 32 ✓ ✓ ✓ ✓ 0.50±0.01 0.58±0.04 0.56±0.03

Full-OP SGD sin 32 ✓ ✓ ✓ ✓ 0.78±0.02 0.76±0.02 0.76±0.02
Full-AF Adam tanh 32 ✓ ✓ ✓ ✓ 0.60±0.01 0.63±0.03 0.62±0.04
Full-PS Adam sin 32 ✗ ✓ ✓ ✓ 0.98±0.01 0.96±0.00 0.96±0.02
Full-SV Adam sin 32 ✓ ✗ ✓ ✓ 0.50±0.03 0.64±0.05 0.61±0.06
Full-TG Adam sin 32 ✓ ✓ ✗ ✓ 0.98±0.00 0.87±0.01 0.89±0.01
Full-LD Adam sin 32 ✓ ✓ ✓ ✗ 0.99±0.01 - 0.83±0.05

Ouput
Hidden sin tanh relu gelu sigmoid

sin 0.745 0.771 0.765 0.803 0.810
tanh 0.753 0.805 0.783 0.799 0.849
relu 0.780 0.770 0.806 0.775 0.889
gelu 0.767 0.780 0.773 0.795 0.829

sigmoid 0.754 0.767 0.800 0.799 0.860

Table 6: Full ablation studies for activation functions. The values in the table represent the
normalized validation loss for Task. For each setting, the experiments are repeated for multiple
times. It can be observed that the model using sin for both hidden and output layer achieves the best
results.
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