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ABSTRACT

Deep learning based 3D shape generation methods generally utilize latent features
extracted from color images to encode the objects’ semantics and guide the shape
generation process. These color image semantics only implicitly encode 3D
information, potentially limiting the accuracy of the generated shapes. In this paper
we propose a multi-view mesh generation method which incorporates geometry
information in the color images explicitly by using the features from intermediate
2.5D depth representations of the input images and regularizing the 3D shapes
against these depth images. Our system first predicts a coarse 3D volume from the
color images by probabilistically merging voxel occupancy grids from individual
views. Depth images corresponding to the multi-view color images are predicted
which along with the rendered depth images of the coarse shape are used as a
contrastive input whose features guide the refinement of the coarse shape through a
series of graph convolution networks. Attention-based multi-view feature pooling
is proposed to fuse the contrastive depth features from different viewpoints which
are fed to the graph convolution networks.
We validate the proposed multi-view mesh generation method on ShapeNet, where
we obtain a significant improvement with 34% decrease in chamfer distance to
ground truth and 14% increase in the F1-score compared with the state-of-the-art
multi-view shape generation method.

1 INTRODUCTION

3D shape generation is a long-standing research problem in computer vision and computer graphics
with applications in autonomous driving, augmented reality, etc. Conventional approaches mainly
leverage multi-view geometry based on stereo correspondences between images but are restricted
by the coverage provided by the input views. With the availability of large-scale 3D shape datasets
and the success of deep learning in several computer vision tasks, 3D representations such as voxel
grid Choy et al. (2016); Tulsiani et al. (2017); Yan et al. (2016) and point cloud Yang et al. (2018);
Fan et al. (2017) have been explored for single-view 3D reconstruction. Among them, triangle mesh
representation has received the most attention as it has various desirable properties for a wide range
of applications and is capable of modeling detailed geometry without high memory requirement.
Single-view 3D reconstruction methods Wang et al. (2018); Huang et al. (2015); Kar et al. (2015);
Su et al. (2014) generate the 3D shape from merely a single color image but suffer from occlusion
and limited visibility which leads to low quality reconstructions in the unseen areas. Multi-view
methods Wen et al. (2019); Choy et al. (2016); Kar et al. (2017); Gwak et al. (2017) extend the
input to images from different viewpoints which provides more visual information and improves the
accuracy of the generated shapes. Recent work in multi-view mesh reconstruction Wen et al. (2019)
introduces a multi-view deformation network using perceptual feature from each color image for
refining the meshes generated by Pixel2Mesh Wang et al. (2018). Although promising results were
obtained, this method relies on perceptual features from color images which do not explicitly encode
the objects’ geometry and could restrict the accuracy of the 3D models.

In this work, we present a novel multi-view mesh generation method where we start by predicting
coarse volumetric occupancy grid representations for the color images of each input viewpoint
independently using a shared fully convolutional network which are merged into a single voxel grid in
a probabilistic fashion followed by cubify Gkioxari et al. (2019) operation to convert it to a triangle
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Figure 1: Architecture of the proposed method. The voxel grid prediction module predicts coarse
voxel grid representation which is further refined by a series of GCNs. The GCNs use contrastive
depth features from rendered depths of the current shape and the predicted depths from MVSNet.
Multi-view features are pooled using a multi-head attention mechanism.

mesh. We then use Graph Convolutional Network (GCN) Scarselli et al. (2008); Wang et al. (2018)
to fine-tune the cubified voxel grid in a coarse-to-fine manner. The GCN refines the coarse mesh by
using the feature vector of each graph node (mesh vertices) obtained by projecting the vertices on
the 2D contrastive depth features. The contrastive depth features are extracted from the rendered
depth maps of the current mesh and predicted depth maps from a multi-view stereo network. We also
propose an attention-based method to fuse feature from multiple views that can learn the importance
of different views for each of the mesh vertices. Constrains between the intermediate refined mesh
from GCN with predicted depth maps of different viewpoints further improve the final mesh quality.
By employing multi-view voxel grid generation and refining it using geometry information from both
the current mesh (through the rendered depth maps) and predicted depth maps, we are able to generate
high-quality meshes. We validate our method on the ShapeNet Chang et al. (2015) benchmark and
our method achieves the best performance among all previous multi-view and single-view mesh
generation methods.

2 RELATED WORK

2.1 TRADITIONAL SHAPE GENERATION METHODS

3D model generation has traditionally been tackled using multi-view geometry principles. Among
them, structure-from-motion (SfM) Schonberger & Frahm (2016); Agarwal et al. (2011); Cui & Tan
(2015); Cui et al. (2017) and simultaneous localization and mapping (SLAM) Cadena et al. (2016);
Mur-Artal et al. (2015); Engel et al. (2014); Whelan et al. (2015) are popular techniques that perform
3D reconstruction and camera pose estimation at the same time. These methods extract local image
features, match them across images and use the matches to estimate camera poses and 3D geometry.
Closer to our problem setup, multi-view stereo methods infer 3D geometry from images with known
camera parameters. Volumetric methods Kar et al. (2017); Kutulakos & Seitz (2000); Seitz & Dyer
(1999) predict voxel grid representation of objects by estimating the relationship between each voxel
and object surfaces. Point cloud based methods Furukawa & Ponce (2009); Lhuillier & Quan (2005)
start with a sparse point cloud and gradually increase the density of points to obtain a final dense point
cloud of the object. Durou et al. (2008); Zhang et al. (1999); Favaro & Soatto (2005) reason about
shading, texture and defocus to reason about visible parts of the object and infer its 3D geometry.
While the results of these works are impressive in terms of quality and completeness of reconstruction,
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they still struggle with poorly textured and reflective surfaces and require carefully selected input
views.

2.2 DEEP SHAPE GENERATION METHODS

Deep learning based approaches can learn to infer 3D structure from training data and can be robust
against poorly textured and reflective surfaces as well as limited and arbitrarily selected input views.
These methods can be categorized into single view and multi-view methods. Huang et al. (2015);
Su et al. (2014) use shape component retrieval and deformation from a large dataset for single-view
3D shape generation. Kurenkov et al. (2018) extend this idea by introducing free-form deformation
networks on retrieved object templates from a database. Some work learn shape deformation from
ground truth foreground masks of 2D images Kar et al. (2015); Yan et al. (2016); Tulsiani et al.
(2017). Recurrent Neural Networks (RNN) based methods Choy et al. (2016); Kar et al. (2017);
Gwak et al. (2017) are another popular solution to solve this problem. Gwak et al. (2017); Lin et al.
(2019) introduce image silhouettes along with adversarial multi-view constraints and optimize object
mesh models using multi-view photometric constraints. Predicting mesh directly from color images
was proposed in Wang et al. (2018); Wickramasinghe et al. (2019); Pan et al. (2019); Wen et al.
(2019); Gkioxari et al. (2019); Tang et al. (2019). DR-KFS Jin et al. (2019) introduces a differentiable
visual similarity metric while SeqXY2SeqZ Han et al. (2020) represents 3D shapes using a set of 2D
voxel tubes for shape reconstruction. Front2Back Yao et al. (2020) generates 3D shapes by fusing
predicted depth and normal images and DV-Net Jia et al. (2020) predicts dense object point clouds
using dual-view RGB images with a gated control network to fuse point clouds from the two views.
FoldingNet Yang et al. (2018) learns to reconstruct arbitrary point clouds from a single 2D grid.
AtlasNet Groueix et al. (2018) use learned parametric representation while Mescheder et al. (2019);
Park et al. (2019); Liu et al. (2019b;a); Murez et al. (2020) employ implicit surface representation to
reconstruct 3D shapes.

2.3 DEPTH ESTIMATION

Compared to 3D shape generation, depth prediction is an easier problem formulation since it simplifies
the task to per-view depth map estimation. Traditional methods Campbell et al. (2008); Galliani et al.
(2015); Schönberger et al. (2016) use multi-view stereo principles for depth prediction. Deep learning
based multi-view stereo depth estimation was first introduced in Hartmann et al. (2017) where a
learned cost metric is used to estimate patch similarities. DeepMVS Huang et al. (2018) warps
multi-view images to 3D space and then applies deep networks for regularization and aggregation to
estimate depth images. Learned 3D cost volume based depth prediction was proposed in MVSNet Yao
et al. (2018) where a 3 dimensional cost volume is built using homographically warped 2D features
from multi-view images and 3D CNNs are used for cost regularization and depth regression. This
idea was further extended by Chen et al. (2019); Luo et al. (2019); Gu et al. (2019); Yao et al. (2019).

3 METHODOLOGY

Figure 1 shows the architecture of the proposed system which takes as input multi-view color images
of an object with known poses and outputs a triangle mesh representing the surface of the object.

3.1 MULTI-VIEW VOXEL GRID PREDICTION

Single-view Voxel Grid Prediction The single-view voxel branch consists of a ResNet feature
extractor and a fully convolutional voxel grid prediction network. It generates the coarse initial shape
of an object from one viewpoint as voxel occupancy grid using a color image. Here, we set the
resolution of the generated voxel occupancy grid as 32 × 32 × 32. The voxel prediction networks for
all viewpoints share the same weights.
Probabilistic Occupancy Grid Merging Voxel occupancy grid predicted from a single viewpoint
suffers from occlusion and limited visibility. In order to fuse voxel grids from different viewpoints,
we propose a probabilistic occupancy grid merging method which merges the voxel grids from each
input viewpoint probabilistically to obtain the final voxel grid output. This allows occluded regions
in one view to be estimated from other views where those regions are visible as well as increase the
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confidence of prediction in overlapping regions. Occupancy probability of each voxel is represented
by p(x) which is converted to log-odds (logit):

l(x) = log
p(x)

1− p(x)
(1)

Bayesian update on the probabilities reduce to simple summation of log likelihoods Konolige (1997).
Hence, the multi-view log-odds of a voxel is given by:

l(x) = l1(x) + l2(x) + ...+ ln(x) (2)

where li is the voxel’s log-odds in view i and n is the number of input views. The final voxel
probability x is obtained by applying the inverse function of Equation (1) which is a sigmoid function.

3.2 MESH REFINEMENT

The cubified mesh from the voxel branch only provides a coarse reconstruction of the object’s
surface. We apply graph convolutional networks which represent each mesh vertex as one graph node
and deforms them to more accurate positions.
GCN-based Mesh Deformation The features pooled from multi-view images along with 3D
coordinates of the vertices in world frame are used as features of the graph nodes. Series of Graph-
based Convolutional Network (GCN) blocks are applied to deform a mesh at the current stage to the
next stage, starting with the cubified voxel grids. A graph convolution deforms mesh vertices by
propagating features from neighboring vertices by applying f

′

i = ReLU(W0fi +
∑

j∈N (i)W1fj)

where N (i) is the set of neighboring vertices of the i-th vertex in the mesh, f{} represents the
feature vector of a vertex, and W0 and W1 are learnable parameters of the model. Each GCN
block utilizes several graph convolutions to transform the vertex features along with a final vertex
refinement operation where the features along with vertex coordinates are further transformed as
v

′

i = vi + tanh(Wvert[fi; vi]) where the matrix Wvert is another learnable parameter to obtain the
deformed mesh.
Contrastive Depth Feature Extraction Yao et al. (2020) demonstrate that using intermediate,
image-centric 2.5D representations instead of directly generating 3D shapes in global frame from
raw 2D images can improve 3D reconstruction quality. We therefore propose to formulate the
features for graph nodes using 2.5D depth maps as input additional inputs alongside the RGB features.
Specifically, we render the meshes at different GCN stages to depth image at all the input views
using Kato et al. (2018) and use them along with predicted depths for depth feature extraction. We call
this form of depth input contrastive depth as it contrasts the rendered depths of the current
mesh against the predicted depths and allows the network to reason about the deformation better than
when using predicted depth or color images alone. Given the 2D features, corresponding feature
vectors of individual vertices can be found by projecting the 3D vertex coordinates to the feature
planes using known camera parameters. We use VGG-16 Simonyan & Zisserman (2014) as our
contrastive depth feature extraction network.
Multi-View Depth Estimation We extend MVSNet Yao et al. (2018) and predict the depth maps of
all views since the original implementation predicts depth of only one reference view. This is achieved
by transforming the feature volumes to each view’s coordinate frame using homography warping and
applying identical cost volume regularization and depth regression on each view. Detailed network
architecture diagram of this module is provided in the appendix.
Attention-based Multi-View Feature Pooling In order to fuse multi-view contrastive depth fea-
tures, we formulate an attention module by adapting multi-head attention mechanism originally
designed for sequence to sequence machine translation using transformer (encoder-decoder) archi-
tecture Vaswani et al. (2017). In a transformer architecture the encoder hidden state is mapped to
lower dimension key-value pairs (K, V) while the decoder hidden state is mapped to a query vector
Q using independent fully connected layers. The encoder hidden state in our case is the multi-view
features while the decoder hidden state is the mean of the multi-view features. The attention weights
are computed using scaled-dot product:

Attention(Q,K,V) = softmax(
QKT

√
N

)V (3)
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Figure 2: Attention weights visualization. From left to right: input images from 3 viewpoints,
corresponding ground truth point clouds color-coded by their view order and the predicted mesh
vertices color-coded by the attention weights of the views. Only the view with maximum attention
weight is visualized for each predicted points for clarity.

where N is the number of input views.

Multiple attention heads are used which are concatenated and transformed to obtain the final output

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (4)

MultiHead(Q,K,V) = [head1; ...;headh]W
0 (5)

where multiple W are parameters to be learned, h is the number of attention heads and i ∈ [1, h].

We choose multi-head attention as our feature pooling method since it allows the model to attend
information from different representation subspaces of the features by training multiple attentions
in parallel. This method is also invariant to the order and number of input views. We visualize the
learned attention weights (average of each attention heads) in Figure 2 where we can observe that the
attention weights roughly takes into account the visibility/occlusion information from each view.

3.3 LOSS FUNCTIONS

Mesh losses The losses which are derived from Wang et al. (2018) to constrain the mesh predicted
by each GCN block (P) to resemble the ground truth (Q) include Chamfer distance Lchamfer(P,Q) =
|P|−1

∑
(p,q)∈ΛP,Q

||p− q||2 + |Q|−1
∑

(q,p)∈ΛQ,P
||q − p||2 and surface normal loss Lnormal(P,Q) =

−|P|−1
∑

(p,q)∈ΛP,Q
|up · uq| − |Q|−1

∑
(q,p)∈ΛQ,P

|uq · up| with additional regularization in the form
of edge length loss Ledge(V,E) = 1

|E|
∑

(v,v′)∈E ||v − v′||2 for visually appealing results.

Depth loss Our depth prediction network is supervised using adaptive reversed Huber loss
(also known as BerHu criterion) Lambert-Lacroix & Zwald (2016). Ldepth = |x|, if |x| ≤
c, otherwise x2+c2

2c where x is the depth error of a pixel and c is a constant set to 0.2. Note that
the original MVSNet uses L1-loss, but we used BerHu loss since it gave slightly higher accuracy.
Intuitively, this is because BerHu provides a good balance between L1 and L2 loss and has shown
similar improvement in Laina et al. (2016).
Contrastive depth loss BerHu loss is also applied between the rendered depth images at different
GCN stages and the predicted depth images. Lcontrastive = |x|, if |x| ≤ c, otherwise x2+c2

2c

Voxel loss Binary cross-entropy loss between the predicted voxel occupancy probabilities and
the ground truth occupancies is used as voxel loss to supervise the voxel predictions Lvoxel =

−
(
p(x)log

(
p(x)

)
+
(
1− p(x)

)
log
(
1− p(x)

))
Final loss We use the weighted sum of the individual losses discussed above as the final loss to train
our model in an end-to-end fashion. L = λchamferLchamfer+λnormalLnormal+λedgeLedge+λdepthLdepth+
λcontrastiveLcontrastive + λvoxelLvoxel , where L is the final loss term.
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Figure 3: Qualitative evaluation on ShapeNet dataset. From top to bottom: one of the input images,
ground truth mesh, multi-view extended Pixel2Mesh, Pixel2Mesh++, and ours. Our predictions are
closer to the actual shape, especially for the objects with more complex topologies.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Comparisons We evaluate the proposed method against various multi-view shape generation
methods. The state-of-the-art method is Pixel2Mesh++ Wen et al. (2019) (referred as P2M++). Wen
et al. (2019) also provide a baseline by directly extending Pixel2Mesh Wang et al. (2018) to operate
on multi-view images (referred as MVP2M) using their statistical feature pooling method to aggregate
features from multiple color images. Results from additional multi-view shape generation baselines
3D-R2N2 Choy et al. (2016) and LSM Kar et al. (2017) are also reported.
Dataset We evaluate our method against the state-of-the-art methods on the dataset from Choy et al.
(2016) which is a subset of ShapeNet Chang et al. (2015) and has been widely used by recent 3D shape
generation methods. It contains 50K 3D CAD models from 13 categories. Each model is rendered
with a transparent background from 24 randomly chosen camera viewpoints to obtain color images.
The corresponding camera intrinsics and extrinsics are provided in the dataset. Since the dataset does
not contain depth images, we render them using a custom depth renderer at the same viewpoints as
the color images and with the same camera intrinsics. We follow the training/testing/validation split
of Gkioxari et al. (2019).
Implementation For the depth prediction module, we follow the original MVSNet Yao et al. (2018)
implementation. The output depth dimensions reduces by a factor of 4 to 56×56 from the 224×224
input image. The number of depth hypotheses is chosen as 48 which offers a balance between
accuracy and running/training time efficiency. These depth hypotheses represent values from 0.1 m
to 1.3 m at an interval of 25 mm. These values were chosen based on the range of depths present in
the dataset.

The hierarchical features obtained from "Contrastive Depth Features Extractor" are of total 4800
dimensions for each view. The aggregated multi-view features are compressed to 480 dimensional
after applying attentive feature pooling. 5 attention heads are used for merging multi-view features.
The loss function weights are set as λchamfer = 1, λnormal = 1.6 × 10−4, λdepth = 0.1, λcontrastive =
0.001 and λvoxel = 1. Two settings of λedge were used, λedge = 0 (referred as Best) which gives better
quantitative results and λedge = 0.2 (referred as Pretty) which gives better qualitative results.
Training and Runtime The network is optimized using Adam optimizer with a learning rate of
10−4. The training is done on 5 Nvidia RTX-2080 GPUs with effective batch size 5. The depth
prediction network (MVSNet) is trained independently for 30 epochs. Then the whole system is
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trained for another 40 epochs with the weights of the MVSNet frozen. Our system is implemented in
PyTorch deep learning framework and it takes around 60 hours for training.
Evaluation Metric Following Wang et al. (2018); Wen et al. (2019), we use F1-score as our evalu-
ation metric. The F1-score is the harmonic mean of precision and recall where the precision/recall
are calculated by finding the percentage of points in the predicted/ground truth that can find a nearest
neighbor from the other within a threshold. We provide evaluations with two threshold values: τ and
2τ where τ = 10−4 m2.

4.2 COMPARISON WITH PREVIOUS MULTI-VIEW SHAPE GENERATION METHODS

We quantitatively compare our method against previous works for multi-view shape generation
in Table 1 and show the effectiveness of our methods in improving the shape quality. Our method
outperforms the state-of-the-art method Pixel2Mesh++ Wen et al. (2019) with a decrease in chamfer
distance to ground truth by 34% and 15% increase in F1-score at threshold τ . Note that in Table 1 the
same model is trained for all the categories but accuracy on individual categories as well as average
over the categories are evaluated. We provide the chamfer distances in the appendix.

Category
F-score (τ ) ↑ F-score (2τ ) ↑

3D-R2N2 LSM MVP2M P2M++ Ours Ours 3D-R2N2 LSM MVP2M P2M++ Ours Ours
(pretty) (best) (pretty) (best)

Couch 45.47 43.02 53.17 57.56 71.63 73.63 59.97 55.49 73.24 75.33 85.28 88.24
Cabinet 54.08 50.80 56.85 65.72 75.91 76.39 64.42 60.72 76.58 81.57 87.61 88.84
Bench 44.56 49.33 60.37 66.24 81.11 83.76 62.47 65.92 75.69 79.67 90.56 92.57
Chair 37.62 48.55 54.19 62.05 77.63 78.69 54.26 64.95 72.36 77.68 88.24 90.02

Monitor 36.33 43.65 53.41 60.00 74.14 76.64 48.65 56.33 70.63 75.42 86.04 88.89
Firearm 55.72 56.14 79.67 80.74 92.92 94.32 76.79 73.89 89.08 89.29 96.81 97.67
Speaker 41.48 45.21 48.90 54.88 66.02 67.83 52.29 56.65 68.29 71.46 79.76 82.34
Lamp 32.25 45.58 50.82 62.56 72.47 75.93 49.38 64.76 65.72 74.00 82.00 85.33

Cellphone 58.09 60.11 66.07 74.36 85.57 86.45 69.66 71.39 82.31 86.16 93.40 94.28
Plane 47.81 55.60 75.16 76.79 89.23 92.13 70.49 76.39 86.38 86.62 94.65 96.57
Table 48.78 48.61 65.95 71.89 82.37 83.68 62.67 62.22 79.96 84.19 90.24 91.97
Car 59.86 51.91 67.27 68.45 77.01 80.43 78.31 68.20 84.64 85.19 88.99 92.33

Watercraft 40.72 47.96 61.85 62.99 75.52 80.48 63.59 66.95 77.49 77.32 86.77 90.35
Mean 46.37 49.73 61.05 66.48 78.58 80.80 62.53 64.91 77.10 80.30 88.49 90.72

Table 1: Qualitative comparison against state-of-the-art multi-view shape generation methods. We
report F-score on each semantic category along with the mean over all categories using two thresholds
τ and 2τ for nearest neighbor match where τ=10−4 m2.

We also provide visual results for qualitative assessment of the generated shapes by our Pretty model
in Figure 3 which shows that it is able to more accurately predict topologically diverse shapes.

4.3 ABLATION STUDIES

Contrastive Depth Feature Extraction We evaluate several methods for contrastive feature ex-
traction (Sub-section 3.2). These methods are 1) Input Concatenation: using the concatenated
rendered and predicted depth maps as input to the VGG feature extractor, 2) Input Difference: using
the difference of the two depth maps as input to VGG, 3) Feature Concatenation: concatenating
features from rendered and predicted depths extracted by shared VGG, 4) Feature Difference: using
difference of the features from the two depth maps extracted by shared VGG, and 5) Predicted depth
only: using the VGG features from the predicted depths only. 6) Rendered depth only: using the
VGG features from the rendered depths only. The quantitative results are summarized in Table 2 and
shows that Input Concatenation method produces better results than other formulations.
Accuracy with different settings Table 3 shows the contribution of different components towards
the final accuracy. Naively extending the single-view Mesh R-CNN Gkioxari et al. (2019) to multiple
views using statistical feature pooling Wen et al. (2019) for mesh refinement (row 1) gives an F1-score
of 72.74% for threshold τ which is 6.26% improvement over Pixel2Mesh++. We further extend
the above method with our probabilistic multi-view voxel grid prediction in row 2 and get a 4.23%
improvement.

In row 3 of Table 3 we use our contrastive depth features instead of RGB features for mesh refinement
and get 2.7% improvement. We then replace the statistical feature pooling with the proposed attention
method and get 0.19% improvement. The improvement is not significant on our final architecture
but we found the multi-head attention to perform better on more light-weight architectures. We also
evaluate the effect of using additional regularization from contrastive depth losses: rendered depth vs
predicted depth in the 5th rows of which improves the score by 0.98%. In row 6 we use ground truth
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F1-τ F1-2τ
(1) Input Concatenation 80.80 90.72
(2) Input Difference 80.41 90.54
(3) Feature Concatenation 80.45 90.54
(4) Feature Difference 80.30 90.40
(5) Predicted Depth only 79.40 89.95
(6) Rendered Depth only 78.20 88.90

Table 2: Comparisons of different contrastive depth formulations. In 1st and 2nd rows, concate-
nation and difference of the rendered and predicted depths are fed to VGG feature extractor while
in 3rd and 4th rows, concatenation and difference of the VGG features from the depths is used for
mesh refinement. 5 uses VGG features from predicted depths only while 6 uses VGG features from
rendered depths only.

instead of predicted depths on our final model which gives the upper bound on our mesh prediction
accuracy in relation to the depth prediction accuracy as 84.58%.

F1-τ F1-2τ
(1) Naive multi-view Mesh R-CNN 72.74 84.99
(2) + Multi-view voxel grid prediction 76.97 88.24
(3) + Contrastive depth input 79.63 90.10
(4) + Multi-head attention pooling 79.82 90.18
(5) + Contrastive depth loss (final model) 80.80 90.72
(6) Using GT depth (final model) 84.58 92.86

Table 3: Comparison of shape generation accuracy with different settings of additional con-
trastive depth losses, multi-view feature pooling. The Baseline framework uses multi-head attention
mechanism without any contrastive depth losses.

Number of View We test the performance of our framework with respect to the number of views.
Table 4 shows that the accuracy of our method increases as we increase the number of input views
for training. These experiments also validate that the attention-based feature pooling can efficiently
encode features from different views to take advantage of larger number of views.

Table 5 shows the results when using different number of views during testing on our model trained
with 3 views which indicates that increasing the number of views during testing does not improve the
accuracy while decreasing the number of views can cause a significant drop in accuracy.

Metric 2 3 4 5 6
F1-τ 73.60 80.80 82.61 83.76 84.25
F1-2τ 85.80 90.72 91.78 92.73 93.14

Table 4: Accuracy w.r.t the number of views
during training. The evaluation was performed
on the same number of views as training.

Metric 2 3 4 5 6
F1-τ 72.46 80.80 80.98 80.94 80.85
F1-2τ 84.49 90.72 91.03 91.16 91.20

Table 5: Accuracy w.r.t the number of views
during testing. The same model trained with 3
views was used in all of the cases.

5 CONCLUSION

We propose a neural network based solution to predict 3D triangle mesh models of objects from
images taken from multiple views. First, we propose a multi-view voxel grid prediction module which
probabilistically merges voxel grids predicted from individual input views. We then cubify the merged
voxel grid to triangle mesh and apply graph convolutional networks for further refining the mesh.
The features for the mesh vertices are extracted from contrastive depth input consisting of rendered
depths at each refinement stage along with the predicted depths. The proposed mesh reconstruction
method outperforms existing methods with a large margin and is capable of reconstructing objects
with more complex topologies.
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A APPENDIX

NETWORK ARCHITECTURE
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Figure 4: Depth prediction network (MVSNet) architecture

Our depth prediction module is based on MVSNet Yao et al. (2018) which constructs a regularized
3D cost volumes to estimate the depth map of the reference view. Here, we extent MVSNet to predict
the depth maps of all views instead of only the reference view. This is achieved by transforming
the feature volumes to each view’s coordinate frame using homography warping and applying
identical cost volume regularization and depth regression on each view. This allows the reuse of
pre-regularization feature volumes for efficient multi-view depth prediction invariant to the order of
input images. Figure 4 shows the architecture of the our depth estimation module.
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PROBABILISTIC OCCUPANCY GRID MERGING

We use single-view voxel prediction network from Gkioxari et al. (2019) to predict predicts voxel
grids for each of the input images in their respective local coordinate frames. The occupancy
grids are transformed to global frame (which is set to the coordinate frame of the first image) by
finding the equivalent global grid values in the local grids after applying bilinear interpolation on the
closest matches. The voxel grids in global coordinates are then probabilistically merged according
to Sub-section 3.1 of the main submission.

EXPERIMENTS

We quantitatively compare our method against previous works for multi-view shape generation
in Table 6 and show effectiveness of our proposed shape generation methods in improving shape
quality. Our method outperforms the state-of-the-art method Pixel2Mesh++ Wen et al. (2019) with
decrease in chamfer distance to ground truth by 34%, which shows the effectiveness of our proposed
method. Note that in Table 6 same model is trained for all the categories but accuracy on individual
categories as well as average over all the categories are evaluated.

Category Chamfer Distance (CD) ↓
3D-R2N2 LSM MVP2M P2M++ Ours

Couch 0.806 0.730 0.534 0.439 0.220
Cabinet 0.613 0.634 0.488 0.337 0.230
Bench 1.362 0.572 0.591 0.549 0.159
Chair 1.534 0.495 0.583 0.461 0.201

Monitor 1.465 0.592 0.658 0.566 0.217
Firearm 0.432 0.385 0.305 0.305 0.123
Speaker 1.443 0.767 0.745 0.635 0.402
Lamp 6.780 1.768 0.980 1.135 0.755

Cellphone 1.161 0.362 0.445 0.325 0.138
Plane 0.854 0.496 0.403 0.422 0.084
Table 1.243 0.994 0.511 0.388 0.181
Car 0.358 0.326 0.321 0.249 0.165

Watercraft 0.869 0.509 0.463 0.508 0.175
Mean 1.455 0.664 0.541 0.486 0.211

Table 6: Qualitative comparison against state-of-the-art multi-view shape generation methods.
Following Wen et al. (2019), we report Chamfer Distance in m2 × 1000 from ground truth for
different methods. Note that same model is trained for all the categories but accuracy on individual
categories as well as average over all the categories are evaluated.

ABLATION STUDIES

Coarse Shape Generation We conduct comparisons on voxel grid predicted from our proposed
probabilistically merged voxel grids against single view method Gkioxari et al. (2019). As is shown
in Table 7, the accuracy of the initial shape generated from probabilistically merged voxel grid is
higher than that from individual views.

Accuracy at Different GCN Stages We analyze the accuracy of meshes at different GCN stages
in Table 8. The results validate that our method produces the meshes in a coarse-to-fine manner and
multiple GCN refinements improve the mesh quality.

Resolution of Depth Prediction We conduct experiments using different numbers of depth hy-
potheses in our depth prediction network (Sub-section A), producing depth values at different
resolutions. A higher number of depth hypothesis means finer resolution of the predicted depths.
The quantitative results with different hypothesis numbers are summarized in Table 9. We set depth
hypothesis as 48 for our final architecture which is equivalent to the resolution of 25 mm. We observe
that the mesh accuracy remain relatively unchanged if we predict depths at finer resolutions.
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Metric Single-view Multi-view
F1-τ 25.19 31.27

F1-2τ 36.75 44.46

Table 7: Accuracy of predicted voxel grids from
single-view prediction compared against the pro-
posed probabilistically merged multi-view voxel
grids. The voxel branch was trained separately
without the mesh refinement and evaluation was
performed on the cubified voxel grids. We use
three views for probabilistic grid merging.

Metric Cubified Stage-1 Stage-2 Stage-3
F1-τ 31.48 76.78 79.88 80.80

F1-2τ 44.40 88.32 90.19 90.72

Table 8: Accuracy of the refined meshes at dif-
ferent GCN stages. 1, 2 and 3 indicate the per-
formance at the corresponding graph convolution
blocks while Cubified is for the cubified voxel grids
used as input for the first GCN block. All the
stages, including the voxel prediction, were trained
jointly and hence the accuracy of voxel predictions
varies from that in Table 7.

Metric 24 48 72 96
F1-τ 80.29 80.80 80.69 80.34
F1-2τ 90.43 90.72 90.74 90.47

Table 9: Accuracy w.r.t the number of depth hypothesis. A higher number of depth hypothesis
increases the resolution of predicted depth values at the expense of higher memory requirement.
The range of depths for all the models are same and based on the minimum/maximum depth in the
ShapeNet Chang et al. (2015) dataset.

Generalization Capability We conduct experiments to evaluate the generalization capability of
our system across the semantic categories. We train our model with only 12 out of the 13 categories
and test on the category that was left out. Table 10 shows that the accuracy generally does not
decrease significantly when compared with the model that was trained on all 13 categories when
using 2τ threshold for the F-score.

Category F-score (τ ) ↑ F-score (2τ ) ↑
Excluding Including Excluding Including

Couch 63.29 73.63 80.79 88.24
Cabinet 68.26 76.39 83.10 88.84
Bench 76.08 83.76 87.42 92.57
Chair 60.60 78.69 75.93 90.02

Monitor 67.26 76.64 81.57 88.89
Firearm 78.59 94.32 86.28 97.67
Speaker 62.39 67.83 77.77 82.34
Lamp 63.50 75.93 74.66 85.33

Cellphone 67.24 86.45 80.54 94.28
Plane 57.48 92.13 67.27 96.57
Table 76.41 83.68 86.86 91.97
Car 59.08 80.43 75.58 92.33

Watercraft 64.97 80.48 78.95 90.35

Table 10: Accuracy when a category is excluded during training and evaluation is performed on
the category to verify how well training on other categories generalizes to the excluded category.

B APPENDIX

BEST VS PRETTY MODELS

We provide qualitative comparison between the our models trained with best and pretty configurations
in Figure 5. The best configuration refers to our model trained without edge regularization while
pretty refers to the model trained with the regularization (Sub-section 4.1). We observe that without
the regularization we get higher score on our evaluation metrics but get degenerate meshes with
self-intersections and irregularly sized faces.
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Figure 5: Qualitative evaluation: best vs pretty wireframe models. The best models while being
preferred by the evaluation metrics lead to degenerate meshes, with irregularly sized faces and
self-intersections

FAILURE CASES

Some failure cases of our model (with pretty setting) are shown in Figure 6. We notice that the rough
topology of the mesh is recovered while we failed to reconstruct the fine topology. We can regard the
recovery from wrong initial topology as a promising future work.

Figure 6: Failure Cases. Our system can struggle to roughly reconstruct shapes with very complex
topology while some fine topology of the mesh is missing.
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