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ABSTRACT

Autoregressive pretraining has become the de facto paradigm for learning general-
purpose representations in large language models (LLMs). However, linear probe
performance across downstream perception tasks (e.g., classification, regression)
shows substantial variability, suggesting that features optimized for next-token
prediction do not consistently transfer well to downstream perception tasks. We
demonstrate that representations learned via autoregression capture features that
may lie outside the subspaces most informative for perception. To quantify the
(mis)alignment between autoregressive pretraining and downstream perception,
we introduce the Next Token Perception Score (NTPS), a score derived under a
linear setting that measures the overlap between autoregressive and perception
feature subspaces. This metric can be efficiently computed in closed form from

pretrained representations and labeled data, and is proven to both upper- and

lower-bound the excess loss. Empirically, we show that NTPS correlates strongly

with linear probe accuracy across 12 diverse NLP datasets and eight pretrained

models ranging from 270M to 8B parameters, confirming its utility as a measure

of alignment. Additionally, NTPS reliably predicts the additional accuracy gains

attained by LoRA finetuning thereby providing a lightweight prescreening tool for

LoRA adaptation. Our results offer both theoretical insights and practical tools for

analytically assessing LLM perception skills.

1 INTRODUCTION
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The success of GPT-1 (Radford et al} 2018) demonstrated the effectiveness of autoregressive pre-
training, training a model to predict the next token given preceding context, for learning transferable
language representations. This autoregressive training paradigm quickly became the standard for
building large language models (LLMs), leading to increasingly capable successors such as GPT-
2/3/4 (Radford et al., [2019; Mann et al., |2020; |Achiam et al.| [2023)) and LLaMA-1/2/3/4 (Touvron
et al.,|2023a3b; |Grattafiori et al., [2024; Singh, [2025). As model capabilities scaled, the expectation
evolved: rather than merely serving as a source of transferable features requiring task-specific fine-
tuning, a foundation model is now expected to perform well on downstream perception tasks (e.g.,
classification, regression) straight out of the box, without modifying its pretrained weights.
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Under this expectation, prompting has emerged as a popular strategy (Radford et al.|[2019), adapting
the model to downstream perception tasks solely by crafting input text. Meanwhile, linear probing
has gained traction as an alternative (Kumar et al., 2022; [L1u et al.,|2023)), leveraging frozen represen-
tations and training only a lightweight linear classifier on top, offering a more structured and efficient
approach to downstream adaptation. While prompting and linear probing may appear quite different
in practice, they are fundamentally two sides of the same coin. In prompting, natural language input
steers the model, and the model’s pretrained linear head for autoregression maps hidden states to
output token probabilities. In linear probing, by contrast, the model is frozen and an external linear
head is trained to interpret its hidden representations.

However, as we show in section[3] linear probing does not perform equally well across all downstream
perception tasks. In some cases, training a model from scratch on the downstream dataset yields
significantly better performance. This suggests that representations learned by current LLMs are
not universally effective: while some downstream tasks benefit greatly from pretraining and are
well-served by simple adaptation methods like linear probing, others are not. Motivated by this
observation, we pose the following question:

How can we quantify the alignment between autoregressive pretraining and downstream perception
tasks to explain the varying effectiveness of linear probing across different datasets?

In this paper, we take a first step towards understanding and assessing the alignment between
autoregressive pretraining and downstream perception tasks by:

» Systematically evaluating the benefits of autoregressive pretraining—by comparing
linear probe performance on six pretrained models against identical architectures trained
from scratch across 12 downstream perception datasets.

* Proposing the Next Token Perception Score (NTPS)—a metric that quantifies the align-
ment between autoregressive pretraining and downstream perception tasks by measuring the
overlap between their respective feature subspaces.

* Empirically validating the reliability of NTPS—by demonstrating that it correlates
strongly with linear probe accuracy across 12 diverse datasets and eight pretrained models.

* Guiding LoRA finetuning with NTPS—by demonstrating that NTPS reliably forecasts
the additional accuracy gains from LoRA finetuning, thereby providing a lightweight
prescreening tool.

The remainder of the paper is organized as follows. Section [2]reviews both empirical and theoretical
foundations for applying pretrained LLMs directly to downstream tasks. Section 3] presents evidence
that pretrained LLM representations are not universally effective when used directly through linear
probing and therefore we introduce our proposed NTPS metric to quantify such (mis)alignment.
Section 4] empirically demonstrates that NTPS correlates with linear probing performance across
12 downstream datasets and eight pretrained models and NTPS can serve as a good predictor of
performance gain from LoRA finetuning. Section [5]summarizes our findings.

2 BACKGROUND

Utilizing Pretrained LLM Hidden Representations for Downstream Tasks Pretrained large
language models can be leveraged for downstream tasks without any gradient-based finetuning via
two complementary strategies: prompt-based in-context learning and linear probing of fixed hidden
representations. In prompting, GPT-3 attains strong zero- and few-shot classification performance
across diverse NLP benchmarks using only natural language templates and without any weight updates
(Mann et al.} 2020). Likewise, when given only in-context examples, GPT-3 can perform both linear
and non-linear regression at levels comparable to Random Forests and Gradient Boosting (Vacareanu
et al.,|2024). In linear probing, early work reveals that deep linguistic structures are capturable by
training simple classifiers on fixed frozen representations (Tenney et al.| 2019; Jawahar et al., 2019).
Recent work show that LLM embeddings preserve Lipschitz continuity and can be utilized in high-
dimensional regression settings, outperforming conventional feature-engineering baselines (Tang
et al., [2024).
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Scaling laws for Predicting Downstream Performance in LLMs The downstream performance
of LLMs has garnered significant attention, with special focus on scaling laws. |Gadre et al.| (2024)
have found a power law between validation loss and model FLOPs, and also a power law between
language model perplexity and average performance across all datasets. [Isik et al.[(2025) have found
a log law in translation tasks between downstream translation performance and the number of tokens
in the pretrained task. |Chen et al.|(2024)) have proposed a two-stage approach to predict downstream
performance: first mapping computational resources to pretraining loss based on a power law, then
mapping pretraining loss to downstream task performance based on a linear mapping. Although these
formulas achieve reasonable forecasts, they still rely on finetuning smaller models for calibration and
offer limited mechanistic insight into why certain tasks benefit more from scale.

Metrics-Based Approaches for Predicting Transferability In parallel to scaling-law analyses,
several works have proposed metrics that directly estimate the transferability of pretrained representa-
tions without finetuning. Examples include LEEP (Nguyen et al., 2020), H-score (Bao et al.,2019),
and TransRate (Huang et al.l 2022), which quantify information content in fixed hidden embeddings
and correlate with downstream performance across benchmarks. While these approaches offer practi-
cal tools for model selection and evaluation, they remain descriptive rather than explanatory: they
assess transfer efficacy by probing frozen representations, but do not account for how autoregressive
pretraining shapes these representations in the first place.

Theoretical Foundations of Utilizing Pretrained LLM Hidden Representations Recent studies
in understanding pretraining objectives have revealed precise conditions under which different self-
supervised losses guarantee, or fail to guarantee, strong downstream performance. Balestriero &
LeCun| (2024) rigorously demonstrate that reconstruction-based training, such as autoencoders or
masked reconstruction, can produce features that capture all input variance yet remain uninformative
for discriminative perception, underscoring that low reconstruction error alone is insufficient for
transfer. Wu et al.[(2023)) identify two necessary conditions for autoregressive next-token models to
transfer effectively: the softmax head must break shift invariance, and downstream tasks must not
hinge on tokens with vanishingly small pretraining probabilities. [Liu et al.[|(2023)) show that among
models with identical pretraining loss, those converging to flatter minima generalize best, revealing
that the implicit bias of optimization plays a crucial role in shaping downstream performance.

3 NEXT TOKEN PERCEPTION SCORE (NTPS): AN ANALYTICAL ASSESSMENT
METRIC OF PRETRAINED LLMS PERCEPTION SKILLS

In this section, we first present empirical evidence in section [3.1] showing that while pretrained
LLM representations can enhance performance on certain downstream perception tasks, they may
underperform or provide no advantage on others compared to models trained from scratch. We then
demonstrate in a linear regime that such variability can be explained by the extent to which the
perception feature subspace aligns with the autoregression feature subspace, and introduce the Next
Token Perception Score (NTPS) to quantify this relationship in section[3.2] Finally, in section[3.3] we
show that NTPS serves as a valid and efficient proxy for downstream performance in practice.

3.1 ON THE NEED TO MONITOR LLM ALIGNMENT FOR PERCEPTION TASK

To demonstrate that LLM representations are not universally effective, we compare the linear probe
performance of pretrained models on downstream perception tasks with the performance of the same
architectures trained from scratch on the downstream datasets.

Here, we evaluate six models: Qwen2-0.5B/1.5B (Yang et al) 2024) and OpenELM-
270M/450M/1.1B/3B (Mehta et al., 2024). The evaluation spans 12 downstream datasets across a
variety of domains, including: Intent Classification (Bhuvaneshwaril, [2022)), Clickbait Title Classi-
fication (Chakraborty et al., 2016), SST-2 (Socher et al.| [2013)), Bias Identification (Patell [2023)),
Banking(Casanueva et al.,[2020), Emotion(Saravia et al.,[2018)), SMS Spam (Almeida et al.| 2011)),
Medical Question Pairs (McCreery et al.,|[2020), Rotten Tomatoes (Pang & Lee, [2005), Common-
senseQA (Talmor et al.l [2019), Climate Sentiment (Bingler et al.} [2023)), and IMDB (Maas et al.
2011)).
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Table 1: Comparison of linear probe performance of pretrained models versus full-training from
scratch across downstream datasets. Linear probing can outperform, match, or underperform
full-training from scratch, indicating that pretrained LLM representations are not universally
effective.

Qwen2 Qwen2  OpenELM OpenELM OpenELM OpenELM

0.5B 1.5B 270M 450M 1.1B 3B

Linear Full Linear Full Linear Full Linear Full Linear Full Linear Full
Intent 99.7 99.6 99.9 99.5 99.3 99.6 99.5 99.6 99.8 99.8 98.4 99.0
Clickbait Title 99.4 99.1 99.6 99.0 994 984 99.6 984 99.7 98.7 99.6 98.6
SST-2 854 804 882 821 87.6 80.3 87.7 82.5 89.3 92.0 89.9 78.7
Banking 88.1 854 894 824 89.8 863 90.5 84.8 91.3 83.3 82.0 82.3
Bias 955 949 964 94.6 96.5 947 964 944 96.8 955 954 948
Emotion 66.2 88.3 69.0 88.3 709 86.8 72.0 86.7 73.6 769 63.6 87.9
SMS Spam 99.3 98.7 99.3 98.9 99.0 98.8 99.2 987 99.2 989 98.4 99.0
Medical 36.4 51.5 289 51.3 33.8 51.5 306 51.5 275 51.5 36.7 51.5

Rotten Tomatoes 81.9 759 85.6 73.5 82.6 74.1 84.1 769 86.8 752 84.8 749
Commonsense  22.1 21.0 242 224 223 212 212 222 233 213 215 213
Climate 784 6377 813 67.8 803 69.1 79.1 719 81.6 69.1 794 7T1.2
IMDB 925 86.0 944 849 928 842 99.5 84.1 945 835 944 -

For full training, we use the same configuration as in|Balestriero & Huang|(2024) across all models
and datasets: Adafactor optimizer with a learning rate of 10~%, € values of 103" and 10~3, gradient
clipping threshold of 1.0, decay rate of 0.8, and weight decay of 10~°; 10, 000 training steps with a
cosine learning rate scheduler with a 5% warm-up phase. For linear probing: we use the following
configuration across all models and datasets: AdamW optimizer with a learning rate of 10~%; 50
epochs. For both cases, we extract the mean token representation from the final transformer block
and feed it into a linear classification head. Training losses for full training can be seen in fig.[ST]

As shown in table|lff| the effect of autoregressive pretraining with linear probing varies markedly
across datasets. On sentiment-analysis tasks including SST-2 (Socher et al., [2013), Rotten Tomatoes
(Pang & Leel [2005)), Climate (Bingler et al.l [2023) and IMDB (Maas et al., 2011}, linear probing
delivers gains of roughly 5-10%. For intent classification (Bhuvaneshwari, |2022), clickbait detection
(Chakraborty et al., 2016)), bias identification (Patel, [2023), SMS spam (Almeida et al.l [2011)
and CommonsenseQA (Talmor et al., 2019), the performance difference between linear probing
and training from scratch stays within about 1%. In the most extreme cases, emotion recognition
(Saravia et al.| 2018) and medical-text classification (McCreery et al., 2020), linear probing actually
underperforms training from scratch by a substantial margin.

This variability suggests that the representations learned via autoregressive pretraining do not uni-
formly align with downstream perception tasks. Therefore, we are going to quantify this alignment
(or lack thereof). As a starting point, we first build intuition and establish theoretical results in the
linear regime. As we will show in section[d] this seemingly simplified setting provides surprisingly
informative insights into more complex empirical scenarios.

Takeaway: Linear probing on pretrained LLM representations can outperform, match, or
underperform full-training from scratch.

3.2 QUANTIFYING ALIGNMENT IN THE LINEAR REGIME WITH NTPS

(d,0) , where d is the hidden dimension size of each

(e-1)

Consider a sentence, whose representationis X € R
token and / is the total number of tokens in this sentence. Consider two variants X7, X € Rax
from X, where ¢-th column of X is the representation of the first ¢ tokens of the sentence and ¢-th
column of X, is the representation of the ¢ + 1-th token of the sentence.

!The full training record for OpenELM 3B is unavailable due to insufficient GPU memory (A100), even
when using a batch size of 1.
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Autoregressive training aims to find a model’s parameter 6 to predict X, based on X;. Specifically,
the training objective is to minimize the following Cross-Entropy(CE) loss:

Lcp = —Ex [logpe(X2 | X1)], po(X2 | X1) o< go(fo(X1)). (H
In the linear setting, fj is a linear map V' € R%** and gy is another linear map W € R¥*¢, Besides,

we assume the i-th column of X; represents the sum of the first ¢ tokens in X and the ¢-th column of
X5 represents the ¢ + 1-th token in X.

Then the loss function £ is defined as:
2 2
L=Ex, x,||[W'V'X) - X, =Ex|[W'V'X L — X Ly .. )
Here Ly, Lo € REX(E-1) s for selecting the tokens in X, see sectionfor full definition.

Similarly, given another pair (U € R¥** 7 € R¥*¢). When we use the sum of all tokens in the
sentence to predict the label Y € R¢, our loss £* is defined below:

£ =Exy ||ZTUT X 11 = Y[}, 3)

Note that in both cases, instead of the CE loss, we assume a mean square error (MSE) loss. We now
state a key guarantee for our choice: as the MSE loss vanishes, so does the probability of decoding
error.

Lemma 1 (Equivalence between MSE and CE; proof in section[A.T] empirical validation in (Hui &
Belkin, 2020)). Ler X € R4*¢ be the token representations. Denote

h* = X Lo, h=W'VTXL,.
Assume the vocabulary embeddings {wi}z‘-/:1 C RY satisfy a positive margin
A = min{w,, h*) — {w;,h*) > 0, 4
iy 1) — ) @
IfL = E|h—h*||% — 0, then

Pr(arg max(w;, h) =y) — 1. 5)

Now we can solve the eq. (2) and eq. (3) under the following theorem.
Theorem 1 (proof in section[A.2). The loss functions L in eq. ) and L* in eq. (3) are minimized for

W= (V'E[X L, L{ X]V)"'"V'E[X L, L] X] (6)
Z = (UTE[X 1px11/ X|JU) WU TE[X 145,V 7] 0
U,V span the top k eigenvectors of the following generalized eigenvalue problems:
E[X L1Ly X |E[X LoL] XT|V =E[X L, L] X "]V Ay, ®)
E[X 1o Y TE[Y 115 X TJU = E[X 14 X | U Ap. 9)

From theorem ] it shows that U and V' capture distinct co-variability structures; hence, the autore-
gressively derived V' may not generalize well to downstream tasks that depend on U. To illustrate
this, we extract the first embedding layer activations from a pretrained models (OpenELM-450M) on
the Emotion(Saravia et al.,2018) dataset. We then solve the two generalized eigenvalue problems in
theorem|I]to obtain the projection matrices U and V/, each truncated to its top two eigenvectors.

Figure 1| visualizes two-dimensional projections of representative words under the perception (U T X)
and autoregressive (V| X)) mappings. In the left panel (U-space), points colored by emotion form two
nearly linearly separable clusters, positive versus negative, reflecting the label-conditioned objective.
The right panel shows that the same words in V' -space overlap heavily across emotion classes,
indicating that next-token prediction does not prioritize emotional polarity. Instead, the V-space
shows a clear grouping of adjectives vs. function words, suggesting that autoregressive training
emphasizes syntactic category. In short, U specializes in downstream, label-relevant semantics such
as sentiment, whereas V' encodes the syntactic information essential for language modeling.
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To obtain a continuous measure of overlap between the feature subspaces learned by U (perception)
and V (autoregressive), we introduce the following alignment score. Let P = V VT be the
orthogonal projector onto the column space of V', where VT is the Moore-Penrose pseudoinverse of

V. We then define )
P
NTPS(U,V) = ” U|2|F.

U1

Here, || P U||% is the total squared projection of U onto Vs subspace, and ||U||% is the total variance
in U. By construction, 0 < NTPS(U, V) < 1, achieving 1 if and only if the column spaces of U
and V coincide, and approaching 0 as they become orthogonal. Higher values thus indicate greater
alignment between the two objectives. The pseudocode for NTPS is provided in algorithm 1]

Theorem 2 (Excess regression loss bounded by NTPS; proof in section[A.3). Let U be the optimal
perceptual encoder obtained from the generalized eigenproblem. For any other encoder V, define the
orthogonal projector. Let AL := L5(V') — L5(U) be the excess regression loss of V.

Then there exist task-dependent positive constants C\pin, Crmax such that

Cuin(1 = NTPS(U,V)) < AL < Cmax(1 = NTPS(U,V)). (10)

This shows that the extra regression loss of the encoder V' trained with autoregression over U trained
with perception is tightly controlled by their subspace alignment: as NTPS(U, V') approaches 1
(perfect alignment), the excess loss vanishes, and as NTPS decreases, the loss grows linearly within
the constant bounds.

Takeaway: Our NTPS alignment score quantitatively captures how much of the perception-
trained subspace lies in the autoregressive subspace and is proved to bound the excess loss.

3.3 NTPS As A VALID AND EFFICIENT PROXY FOR DOWNSTREAM PERFORMANCE

Although NTPS is derived in the linear regime, the sentence representation X, when taken from
intermediate layers of a nonlinear model, already encodes rich nonlinearities. As a result, applying
NTPS to such representations preserves the theoretical validity established in the linear setting, while
also benefiting from the expressive power of nonlinear architectures in practice.

Moreover, the calculation of NTPS is highly efficient since no learning or backpropagation is involved.
Computing the expectation terms in the generalized eigenvalue problem of theorem [I]involves only
a forward pass, with time complexity O(n) (where n is the dataset size) and memory complexity
O(b) (where b is the batch size). Solving the generalized eigenvalue problem itself costs O(d?)
time and O(d?) memory, where d is the hidden dimension, both independent of dataset size and
training epochs. In contrast, directly assessing downstream performance, either via linear probing
or after finetuning with LoRA, scales with the number of training epochs. LoRA further requires
backpropagation through the full network, typically incurring more than twice the computational cost
of a forward pass (Wiedemann et al., | 2020). While linear probing can reduce compute by caching
frozen features, this comes at the cost of O(n) memory, with n >> b in most practical scenarios.

Takeaway: NTPS offers a valid and efficient alternative to costly probing or finetuning for
estimating downstream performance.

4 EMPIRICAL VALIDATION AND PRACTICAL UTILITY OF NTPS

In this section, we show that our NTPS, though derived under a linear model, captures meaningful
alignment in nonlinear large-scale LLMs. First, section4.T]demonstrates a monotonic relationship
between NTPS and downstream performance by showing Spearman correlations with both MSE loss
and classification accuracy across eight pretrained models and 12 downstream perception datasets.
Next and more importantly, in section[4.2] we demonstrate that NTPS itself can predict the magnitude
of accuracy gains from LoRA, making it a practical pre-screening metric for when finetuning will be
most effective.
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Figure 2: Correlation between NTPS and downstream MSE loss (rows 1 and 2), and between NTPS
and accuracy (rows 3 and 4), with dashed lines indicating linear regression fits. Higher NTPS values
correspond to lower MSE loss and higher accuracy in downstream tasks.

4.1 CORRELATION BETWEEN NTPS AND LINEAR PROBE PERFORMANCE

First, we demonstrate that NTPS correlates with the downstream performance of eight pretrained
models across 12 diverse datasets.

The experimental setup follows section 3.1} reusing the 12 datasets and the same set of models, but
with two additional pretrained models (Qwen2-7B (Yang et al.,|2024) and LLaMA3-8B (Grattafiori

et al.,[2024)).

Downstream performance is measured in two complementary ways. First, we train a linear layer on
each downstream dataset using ordinary least-sqaure (OLS) regression with close-form solution since
our theoretical derivation in theorem|[T]is based on MSE loss (as shown in eq. (2) and eq. (3)). And
we use the final MSE loss as the downstream performance metric. Second, we train a linear layer on
each downstream dataset using logistic regression with saga optimizer under a CE loss since it better
reflects practical usage. And we use the final accuracy as the downstream performance metric.
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Figure 3: Correlation between NTPS vs. accuracy gain (LoRA finetuning accuracy-linear probing
accuracy) and linear probing accuracy vs. accuracy gain, with dashed lines indicating linear regression
fits. NTPS is a better predictor of accuracy gain than linear probing accuracy with higher
NTPS values correspond to lower accuracy gains after LoRA finetuning in downstream tasks.

For each model across all datasets, we compute NTPS over all layers (from the word-embedding
layer through the penultimate layer) and every k proportion value from 0.05 to 0.95 in increments of
0.05. We then assess the monotonic relationship between NTPS and downstream performance using
Spearman’s r € [—1, 1]. where = 1 denotes perfectly concordant orderings.

To summarize each model succinctly, we report for each model the NTPS value corresponding to the
configuration that yields the strongest Spearman’s r. Besides, all results are obtained on training set
to minimize confounding factors such as distribution shifts between train and test splits, which may
obscure the true relationship between NTPS and downstream performance.

The results, shown in fig. |2 reveal a clear trend: higher NTPS values are associated with lower
MSE losses and higher accuracies in downstream tasks. This strong correspondence indicates that
NTPS, despite its derivation under simplified linear assumptions, serves as an effective proxy for task
alignment even in highly nonlinear models. It provides insight into when autoregressive training is
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beneficial for downstream tasks and can serve as a practical metric for anticipating the effectiveness
of linear probing on pretrained models.

Takeaway: NTPS shows a clear monotonic relationship with downstream linear probe perfor-
mance in LLMs—higher NTPS predicts better performance.

4.2 PREDICTING LORA FINETUNING GAIN WITH NTPS

Now, we are going to show that our NTPS can also serve for practical usage, particularly for predicting
the LoRA finetuning gain. (See section[A.6|for corroborating evidence that LoRA increases alignment:
across eight models and 12 datasets, NTPS increases in 71/96 runs after LoRA).

To evaluate whether NTPS can forecast the benefit of parameter-efficient finetuning, we measure the
“ACC gain” as the difference between accuracy after LoORA adaptation and the baseline linear-probe
accuracy (both on the test split). We reuse the same eight pretrained models (Qwen2-0.5B/1.5B/7B,
OpenELM-270M/450M/1.1B/3B, and LLaMA3-8B) and the 12 downstream classification tasks
described in section Again we (1) compute NTPS over all layers and ks exactly as before, (2)
train a linear probe under CE to get baseline accuracy (AdamW optimizer, learning rate of 10~%; 50
epochs), and (3) apply LoRA (rank 32, o = 32, 5000 steps, Adafactor, 5% warm-up) and record the
adapted accuracy. Finally, we correlate NTPS with the observed LoRA gains using Spearman’s 7.

As plotted in fig. [3] there is a clear monotonic relationship: models with lower NTPS enjoy larger
accuracy gains from LoRA, whereas higher NTPS exhibit only modest improvements. Across
the eight models, Spearman’s r ranges from 0.40 up to 0.90 (higher absolute  indicates stronger
predictivity), confirming that NTPS is a reliable indicator of how much headroom remains for
downstream adaptation. In comparison, linear probing accuracy only shows modest predictive power
for accuracy gains from LoRA (Spearman’s r ranges from 0.30 up to 0.60), limiting its practical
usage for LoRA finetuning prediction.

In practical terms, if a pretrained model yields a low NTPS on the target task, one can anticipate
a sizable boost from LoRA; conversely, if a model yields a high NTPS, it is unlikely to benefit
substantially from further finetuning. This makes NTPS a lightweight pre-screening tool to decide
when parameter-efficient finetuning is most worthwhile.

Takeaway: NTPS inversely predicts the accuracy gains from LoRA finetuning: tasks with low
initial alignment see the largest boosts.

5 CONCLUSION

In conclusion, in this paper we have introduced NTPS, a simple yet powerful metric for measuring
the alignment between the feature subspaces learned by autoregressive pretraining and those required
for downstream perception tasks. In a linear setting, we proved that NTPS both upper- and lower-
bounds the excess regression loss of an autoregressive encoder relative to an ideal perceptual encoder.
Empirically, we demonstrate that NTPS, computed in closed form from pretrained representations
and labeled data, correlates strongly with classification accuracy across 12 diverse NLP datasets and
eight pretrained models ranging from 270 M to 8 B parameters. In addition, we examine a potential
application of NTPS, predicting the accuracy gain after LORA finetuning.

Our work still has several limitations that can be addressed in future research. First, NTPS is derived
under a simplified linear setting. While sentence representations extracted from intermediate layers
of nonlinear models allow our method to capture certain nonlinear effects, the theoretical formulation
underlying theorem | remains linear. Extending the framework with kernel methods (e.g., the neural
tangent kernel) could yield a fully nonlinear version and provide more precise characterizations.
Second, we have not yet explored how to select optimal configurations for computing NTPS in
each model beforehand. For example, the choice of k£ may depend on the model’s compression rate.
Developing a more principled configuration strategy could improve efficiency and eliminate the need
to exhaustively search over all possible settings.
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6 REPRODUCIBILITY STATEMENT

We provide complete proofs for all lemmas and theorems (lemma |1| and theorems 1| and [2) in
sections [A. T to[A.3] The code for reproducing all experiments is included in the supplementary
material.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Lemma 1 (Equivalence between MSE and CE; proof in section[A.T] empirical validation in (Hui &
Belkin, 2020)). Let X € R4*¢ pe the token representations. Denote

h*=XLy, h=W'V'XL.
Assume the vocabulary embeddings {w;}}_, C R satisfy a positive margin
A = min(wy, h*) — (w;,h*) > 0, )
J#y

IfL = E|h—h*||% — 0, then

Pr(argmax(wi,ﬁ) = y) — 1. 5)
Proof. For any j # y, write
<wy,fz> — <wj,iL> = (wy, h*> — <w]-,h*> + <wy — wj, h— h*>.
By definition the first term is at least A, and by Cauchy—Schwarz
[(wy —wj, h=h")] < Jlwy —wyllz [h = h*l2 < M| b,

where
M = max [[w; — wjll2.
i#]

Hence R R R
(wy, h) — (wj, h) = A —M|h—h*[.

In particular, whenever || — h*||o < A/M we have (w,, h) > (w;, h) for all j # y, so the arg-max
picks the correct token y. Since E||h — h*||3 — 0 implies || — h*||2 — 0 in probability, the
probability of decoding error goes to zero. O

A.2 PROOF OF THEOREM 1
Theorem 1 (proof in section[A.2). The loss functions L in eq. ) and L* in eq. (3) are minimized for
W= (V'EX L,L{ X]V)"'V'E[X L, L, X] (6)
Z = (UTE[X 1px1ljsy X|JU) WU TE[X 151V ] (7

U,V span the top k eigenvectors of the following generalized eigenvalue problems:

E[X L1Ly X |E[X LoL] XT|V =E[X L, L] X "]V Ay, ®)
E[X 11 YTE[Y 11, X T|U =E[X 155 X "] U Ayp. 9)

Proof. Consider a sentence, whose token representation is X & R0 where d is the hidden
dimension size of each token and /£ is the total number of tokens in this sentence. Consider two
variants X1, Xo € R4 (=1 from X . For X1, the i-th column represents the sum of the first 7 tokens
in X. For Xs, the i-th column represents the (i + 1)-th token in X so the whole matrix denotes the
sequence of tokens from position 2 through ¢ in X.

Given a linear model to predict the n-th token given the sum of the previous n — 1 tokens that contains
a linear mapping V' € R%** and a linear mapping W € R**?. And set the loss L as:

L=Ex, x,[W'V'X] - Xs|7], (11)
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Denote A = VT X; € REX(=1) then:

L=Ex, x,[|[W"A - Xo|7]
=Ex, x,[Tr(WTA - X2)T(WTA - X5))] (12)
=Ex, x,[Tr(ATWW T A) — 2Tr(X,; W' A) + Tr(X, Xo)]

Taking the derivative of £ w.r.t. W.
oL  OEx, x,[Tr(ATWWTA) —2Tr(X, WTA) + Tr(X, Xs)]

ow aw
_ 9Bx, o [Tr(ATWWTA)] | 9Ex, x,[Tr(X] WTA)]
oW oW
_ OEx, x,[Tr(WTAATW)] 5 Ex: X, [Tr(WTAX,) )] (13)
ow ow

=2Fyx, x,[AATW — AX] ]
=2Ex, x,[V' X1 X, VW - VT X, X, |
=2Ex, x,[V' X1 (X] VW — X, )]

To minimize £, we set eq. (13) = 0:
2Ex, x, [V X1(X] VW - X, )] =0

(14)
Ex, x,[V X1 X[ VW] = Ex, x,[V ' X1X, |

Assume that VT X has rank k, then VT X X{'V is invertible, and we can express W from eq. (14)
as below:
W= EXI;X2 [(VTXlXITV)_l]EXth [VTXIXQT]

15
W= (V'EX, X, V) 'VTE[X, X, ] (15)

By plugging in W back to £, we have:
L=E[Tr(XTVVTEX, X V) 'VTEX, X, |E X XT|V(VTE[X, XT V) 'VT X))

—2E[Tr(X) B[ Xo X [V(VTEX, X V) "'V X3)] + E[Tr (X, X))

=Tr(EX]VVTEX, X, V)" WTE[X, X, [E[X X{/VVTE[ X, X V) "'V X))
— 2T (B[X,) BXo X [V(VTEX X V)TV X)) + Tr(E[X) X2))

=TrEVIX XTV(VTEX, X V)" WTEX1 X, [E[ X XTTV(VIE[X, XT]V) 1)
— 2T (BERXX] [V(VTEX X V)TV X X)) + Tr(E[X; X))

= Tr((VTEX X V) (VTEX X V) T VT EXG XY JELXGXT [V(VTEXG X V) 7Y
—2Tr(B[Xo X [V(VTE[X, X V) "'WTE[X, X, |) + Tr(E[X, X2])

= TrEX X V(VTEX X[ V) 'VTE[X, X, )
—2Tr(E[XX] [V(VTEX X V) VTEX XS ]) + Tr(E[X] X))

= Tr(E[X; Xo]) — Tr(E[Xo X[ V(VTE[X: X V)" 'VTE[X1 X, ])
(16)

Denote Ry; = E[X X/ |, Ri2 = E[X; X, |, Rea = E[X2 X ], minimizing £ is solving the follow-
ing maximization problem:

mvaxTr(VTRmRIQV(VTRHV)—l) (17)
which is equivalent to the following maximization problem:

~ max_ Tr(V'RiaR},V) (18)
V:VTR11V:I
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And we can observe that the constraint is satisfied when:
V=V(VTR, V) ? (19)

Thus, V and V share the same column space. And the subspace can be found via the optimization
problem in eq. (I8)), which yields to the generalized eigenvalue problem [Ghojogh et al|(2019):

R1sRLV = R VA (20)

Since eq. (18] is a maximization problem, V contains the eigenvectors of (Ri2 R}y, R11) that cor-
respond to the top k largest eigenvalues. And so V' spans the same column space as these eigenvectors.

From our definition we have X; = XL, Xy = X Lo with L1, Ly € R“41) defined as:

L = {Q’gl} , @1

Ly= [ 121] , (22)

where Q;_; € R=1%!=1 is a unit upper triangular matrix (i.e. all entries on or above the diagonal
are 1 and O below the diagonal).

Denote
.
De REXE — LlLlT — |:QZ—IOQ21 8:| (23)
SeR™ =1Ly = {8 Qg—l} (24)

Then we can rewrite the generalized eigenvalue problem in eq. (20) as:

EXSXT|JE[XSTX TV =E[XDX VA (25)
Now let’s consider a regression task with the label of the sentence X denoted as Y € R€.

Given a linear model to predict the label based on the sum of all tokens in the sentence that contains
a linear mapping U € R%** and Z € R¥*¢, And set the learning objective as mean squared error
(MSE) loss L* as defined below:

L =E|ZTUTX 1y - Y], (26)

where 1,1 € Rt is for summing the tokens in X .

Similarly, with the optimal Z, we will have the optimal U sharing the same column space as U that
contains the eigenvectors corresponding to the largest k eigenvalues of the following generalized
eigenvalue problem:

E[X 101 Y TJE[Y (X1ox1) )T = E[(X 121 ) (X 1ox1) |UA, (27)
which simplifies to:

E[X1p Y TJE[Y 115X U = E[X 150X T|UA, (28)
O
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A.3 PROOF OF THEOREM 2

Theorem 2 (Excess regression loss bounded by NTPS; proof in section[A3). Let U be the optimal
perceptual encoder obtained from the generalized eigenproblem. For any other encoder V', define the
orthogonal projector. Let AL := L*(V) — L*(U) be the excess regression loss of V.

Then there exist task-dependent positive constants C\pi,, Crnax such that

Cumin (1 =NTPS(U,V)) < AL < Cmax(1 — NTPS(U,V)). (10)

Proof. Denote N := E[X 154X "], M :=E[X15YT].
LV)=TEYY']) —To(V MMV (VINV)™). (29)
LU)=TEYY']) —To(U ' MMTU(U'NU)™). (30)

Recall that the columns of U solve the generalized eigenvalue problem, and U is N—orthonormal
(UTNU = I)

MM'TU = NUA, A = diag(Aq1, ..o Ag), Aip > > Agge > 0. (31)
the minimal regression loss is
k
L) =Te@EYYT]) => As. (32)

i=1

Premultiplying eq. by N~'/2 and defining the whitened basis U* := N'/2U gives the ordinary
symmetric eigenproblem. (U and U* share the same subspace)

N-Y2MMTN-Y2U* = U*A. (33)

Introduce the whitened encoder V* := N1/2V (VT NV)~1/2
TWV): =TV MMV (VINV)™)
— TI"(V*T N71/2MMTN71/2 V*)

k
= > AullVr i3,
i=1

k
— Z A“ U;(TV*V*TU;‘, (34)
i=1

k
_ ZA“ u;er/QTv*V*TNl/Qui’
i=1
k
=> Aiu NV(VINV)' VT N u

i=1

Ay (1— ||V*Tuf||§)

>

&

i
-

s
I
-

Ay (1 —w T VvVl ul) (35)

-

©
I
-

Ai(1—uf NV(VINV)LVT N ).

-

©
I
-
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Note that )
|PU|%

1Ul1%
(U PTPU)
Ul
Tr(UTPU)
U1
Zle u] Pu;
U1
S WV (VTY) TV Ty
1U11%

NTPS =

For each i, set
ri=1—u] NV(VINV)"'VT Nu,.

Writing w = Va and minimizing
(u; — Va) "N(u; — Va) =u] Nu; —2a' V' Nu; +a' V' NVa
over a yields a* = (VT NV)~'V T Nu,, so

ri =u; Nu; —u; NV(VINV) VT Nu; = milr(lv)(ui —w) " N(u; —w).
weco

Since 2" Nz > Apin (N)|2]|2,

T Z >\min(N) werztilr(lV) ||u’t - UJHZ,

= Amnin (V) [[|us|* = u V(VTV) TV Tay,].
Thus
AL > Ain(N) Y il lJws|* = o] VVTV) TV Tagg],
> Ao (V) Ania|U[3.(1 — NTPS),
Similarly, 2T Nz < Apax (N)||2]|? gives
7 < Amax (N [Juil|? = w] VVTV)TV Ty,

and hence
AL < )\max(N)AmaX”UH%'(l - NTPS)

Combining,

>\mln(N)AmlnHU||%‘ (1 - NTPS) S AE S )\max(N)AmaxHU”QF (1 — NTPS)
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A.4 PSEUDOCODE FOR NTPS

Algorithm 1 Computation of NTPS

Require: Dataset D = {(z;,y;)}},, pretrained transformer f, tokenizer 7, hidden dimension d,
subspace dimension k, target layer [

Ensure: NTPS at layer [ using top-k subspace

1: Initialize: meanXXe R4*4 meanxve R¥*¢, covoe RI*4 covle R4xd

2: for each sample (z,y) € D do

3:  Tokenize x with 7 to obtain input IDs and attention mask

4:  Run forward pass of f to obtain token-level hidden states X' € R**? at layer
5. Construct L; € R~V (upper-triangular), Ly € R**(=1) (lower-shifted identity)
6.
7
8
9

One-hot encode label y — Y € R¢
Compute mean token representation: X' = 7 Zle Xl eR?
meanxx += L X!(X)T
: meanXY 4= %XIYT
100 cov0 += (XY L L] X!
11:  covl += 2(X")TL,L] X!
12: end for
13: Compute top generalized eigenspace U from (meanXY meanXy ', meanXx)
14: Compute top generalized eigenspace V from (covl covl ', cov0)
15: Extract top-k directions: Uy, < first k columns of U, V}, < first k columns of V'
16: Compute projection: Py, < Vi (Vi)™
17: Compute NTPS: NTPS < || PUk||%/ || Uk ||%
18: return NTPS

A.5 TRAINING LOSS

> == SMS Spam Banking
SST-2 IMDB
4 Rotten Tomatoes Emotion
- Bias Commonsen

® 3 Medical == Climate
9 == Clickbait Title Intent
£
C 2 -
[

1 -

0 -

1 1 1
4000 6000 10000

Training Steps

Figure S1: Cross entropy loss across training steps across datasets average across models. The
majority converges around 7K-8K steps, and therefore 10K steps provide sufficient budget to
converge.

A.6 LORA FINETUNING ENHANCES NTPS

As a side note, we provide an interpretation of why LoRA is effective for adapting pretrained LLMs
to downstream tasks, through the lens of NTPS.
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Table 2: Relative improvement (%) of NTPS after LoRA finetuning across models and downstream
datasets. NTPS is universally increased after LoRA finetuning, suggesting that LoRA finetuning
enhances the overlap between feature subspaces of autoregressive training and downstream
perception tasks. For small models, NTPS slightly decreases probably because these models sacrifice
the next-token prediction for higher downstream performance due to their limited capability.

Qwen2 Qwen2 Qwen2 OpenELM OpenELM OpenELM OpenELM LlaMA-3

Dataset

0.5B 1.5B 7B 270M 450M 1.1B 3B 8B
Intent 1.9 1.6 53.2 -1.1 -1.0 0.9 88.5 77.8
Clickbait Title 1.7 1.9 70.1 -0.6 -0.3 -0.5 74.8 74.3
SST-2 1.4 43 1059 -0.8 -0.7 2.1 100.0 102.5
Banking 2.3 0.9 67.8 -0.8 -0.6 0.7 79.5 87.1
Bias 3.1 3.6 78.3 -14 -14 -04 73.3 81.3
Emotion 2.3 29 109.0 -1.5 2.3 0.5 83.4 80.0
SMS Spam 0.7 -0.1 124.1 -1.4 -0.7 0.1 78.2 79.0
Medical 2.2 23 1205 -0.8 -0.2 0.7 228.7 92.9
Rotten Tomatoes 0.8 02 105.6 -1.6 -0.4 0.1 88.6 84.3
Commonsense 1.1 0.7 108.8 1.1 0.6 1.0 91.6 95.0
Climate 1.5 1.8 -14.5 -04 -1.8 1.2 76.7 99.9
IMDB 0.4 -0.5 135.1 0.9 1.5 1.0 109.1 89.4

Specifically, we compute NTPS for the same eight models and 12 datasets used in section 4.1} using
the exact same configuration for NTPS computation, but after applying LoRA. We adopt a consistent
finetuning setup across all experiments: LoRA is applied to all QKV projection layers with rank 32,
a = 32, no bias, and a dropout rate of 0.05. For each input, we extract the mean token representation
from the final transformer block and pass it into a linear classification head. We use the Adafactor
optimizer with a learning rate of 10~%, € values of 1073% and 103, gradient clipping threshold of
1.0, decay rate of 0.8, and weight decay of 10~°. Training is conducted for 5000 steps with a cosine
learning rate scheduler and a 5% warm-up phase.

As shown in table 2] NTPS increases in 7/ out of 96 runs after applying LoRA. This provides
empirical support for our interpretation: LoRA may improve downstream task performance by
adjusting the representations to better align the feature subspaces used for autoregressive pretraining
and those required for downstream tasks, especially in large models. Interestingly, we do see that
NTPS slightly decreases in small models like OpenELM-270M and OpenELM-450M, this is probably
because these model sacrifice the next-token prediction capability in exchange for higher downstream
performance due to its limited capability.

A.7 LLM USAGE DISCLOSURE

Large Language Models (LLMs) were used to assist with improving the clarity and readability of
the manuscript. Specifically, LLM-based tools were employed for light language polishing, such as
refining grammar and enhancing phrasing, without altering the underlying content or meaning. The
core ideas, analysis, and writing were developed by the authors.
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