
Under review as a conference paper at ICLR 2024

DEEP UNLEARNING: FAST AND EFFICIENT TRAINING-
FREE APPROACH TO CONTROLLED FORGETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine unlearning has emerged as a prominent and challenging area of interest,
driven in large part by the rising regulatory demands for industries to delete user
data upon request and the heightened awareness of privacy. Existing approaches
either retrain models from scratch or use several finetuning steps for every deletion
request, often constrained by computational resource limitations and restricted
access to the original training data. In this work, we introduce a novel class un-
learning algorithm designed to strategically eliminate an entire class or a group of
classes from the learned model. To that end, our algorithm first estimates the Re-
tain Space and the Forget Space, representing the feature or activation spaces for
samples from classes to be retained and unlearned, respectively. To obtain these
spaces, we propose a novel singular value decomposition-based technique that
requires layer wise collection of network activations from a few forward passes
through the network. We then compute the shared information between these
spaces and remove it from the forget space to isolate class-discriminatory feature
space for unlearning. Finally, we project the model weights in the orthogonal
direction of the class-discriminatory space to obtain the unlearned model. We
demonstrate our algorithm’s efficacy on ImageNet using a Vision Transformer
with only ∼ 1.5% drop in retain accuracy compared to the original model while
maintaining under 1% accuracy on the unlearned class samples. Further, our algo-
rithm consistently performs well when subject to Membership Inference Attacks
showing 7.8% improvement on average across a variety of image classification
datasets and network architectures, as compared to other baselines while being
∼ 6× more computationally efficient. Additionally, we investigate the impact of
unlearning on network decision boundaries and conduct saliency-based analysis to
illustrate that the post-unlearning model struggles to identify class-discriminatory
features from the forgotten classes.

1 INTRODUCTION

Machine learning has automated numerous applications in various domains, including image pro-
cessing, language processing, and many others, often surpassing human performance. Nevertheless,
the inherent strength of these algorithms, which lies in their extensive reliance on training data, para-
doxically presents potential limitations. The literature has shed light on how these models behave
as highly efficient data compressors (Tishby & Zaslavsky, 2015; Schelter, 2020), often exhibiting
tendencies toward the memorization of full or partial training samples (Arpit, 2017; Bai et al., 2021).
Such characteristics of these algorithms raise significant concerns about the privacy and safety of the
general population. This is particularly concerning given that the vast training data, typically col-
lected through various means like web scraping, crowdsourcing, user data collection through apps
and services, and more, is not immune to personal and sensitive information. The growing aware-
ness of these privacy concerns and the increasing need for safe deployment of these models have
ignited discussions within the community and, ultimately, led to some regulations on data privacy,
such as Voigt & Von dem Bussche (2017); Goldman (2020). These regulations allow the use of the
data with the mandate to delete personal information pertaining to a user if they choose to opt-out
from sharing their data. The mere deletion of data from archives is not sufficient due to the memo-
rization behavior of these models. This necessitates machine unlearning algorithms that can remove
the influence of requested data or unlearn those samples from the model. A naive approach, in-
volving the retraining of models from scratch, guarantees the absence of information from sensitive
samples but is often impractical, especially when dealing with compute intensive State-of-The-Art

1

Under review as a conference paper at ICLR 2024

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0
Fe

at
ur

e
2

(a) original model

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0

Fe
at

ur
e

2

(b) model forgetting Red
Class

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0

Fe
at

ur
e

2

(c) Retrained model

Figure 1: Illustration of the unlearning algorithm on a simple 4 class classification problem. Figure shows the
decision boundary for (a) original model, (b) our unlearnt model redistributing the space to nearby classes and
(c) Retrained model without red class.

(SoTA) models like ViT(Dosovitskiy et al., 2020). Further, efficient unlearning poses considerable
challenges, as the model parameters do not exhibit a straightforward connection to the training data
(Shwartz-Ziv & Tishby, 2017). Moreover, these unlearning algorithms may only have access to a
fraction of the original training data, further complicating the unlearning process.

Our work focuses on challenging scenarios of class unlearning and multi-class unlearning (task
unlearning) (Golatkar et al., 2020a; 2021). For a class unlearning setup, the primary goal of the un-
learning algorithm is to eliminate information associated with a target class from a pretrained model.
This target class is referred to as the forget class, while the other classes are called the retain classes.
The unlearning algorithm should produce parameters that are functionally indistinguishable to those
of a model trained without the target class. The key challenges in such unlearning is three folds (i)
pinpointing class-specific information within the model parameters, (ii) updating the weights in a
way that effectively removes target class information without compromising the model’s usability
on other classes and (iii) demonstrating scalability on large scale dataset with well trained models.
The current SoTA for class unlearning (Tarun et al., 2023) shows acceptable accuracy on the retained
classes compared to the original model, achieving minimal unlearning times. However, the authors
present their results on undertrained models having ∼ 10% lower accuracy for the original model on
the entire dataset. The memorization behavior of the model is generally exhibited during the later
training stages where the model overfits the training data (Feldman & Zhang, 2020) and it might not
be fair to evaluate unlearning when the model is not trained to convergence. Additionally, the results
of this work are presented only on small datasets like CIFAR10 and CIFAR100 (Krizhevsky et al.,
2009). The practical use of such algorithms may be limited by their performance when applied to
well-trained models on large-scale datasets. In this work, we ask the question “Can we unlearn class
(or multiple classes) from a well trained model given access to few samples from the training data
on a large dataset?”. Having a few samples is particularly interesting if the unlearning algorithms
have to efficiently scale to large datasets having many classes to ensure fast and resource efficient
unlearning algorithm.

We draw insights from work by Saha et al. (2021) in the domain of continual learning, where the
authors use the Singular Value Decomposition (SVD) technique to estimate the gradient space es-
sential for the previous task and restrict future updates in this space to maintain good performance
on previous learning tasks. This work demonstrates a few samples (about 125 samples per task) are
sufficient to obtain a good representation of the gradient space. Our work proposes to strategically
eliminate the class discriminatory information by updating the model weights to maximally sup-
press the activations of the samples belonging to unlearn class. We first estimate the Retain Space
and the Forget Space, representing the feature or activation spaces for samples from classes to be
retained and unlearned, respectively. We propose a novel singular value decomposition-based tech-
nique to obtain these spaces, which requires layer wise collection of network activations from a few
samples through the network. We then compute the shared information between these spaces and
remove it from the forget space to isolate class-discriminatory feature space for unlearning. Finally,
we project the model weights in the orthogonal direction of the class-discriminatory space to obtain
the unlearned model. We demonstrate our algorithm on a simple 4 way classification problem with
input containing 2 features as shown in Figure 1. The decision boundary learnt by the trained model
is shown in Figure 1(a) while the model unlearning the red class exhibits the decision boundary
depicted in Figure 1(b). The decision boundary for a retrained model is shown if Figure 1(c) This
illustration shows that the proposed algorithm redistributes the input space of the class to be unlearnt

2

Under review as a conference paper at ICLR 2024

to the closest classes. The experimental details of this demonstration are provided in Appendix A.1.
Our algorithm demonstrates SOTA performance in class unlearning setup with access to very few
samples from the training dataset (less than 4% for all our experiments). As our algorithm re-
lies on very few samples from the train dataset it efficiently scales to large datasets like ImageNet
(Deng et al., 2009), where we demonstrate the results using 1500 samples (0.00117% of the training
dataset).

In summary, the contributions of this work are listed as follows,

• We propose a novel Singular Value decomposition based class unlearning algorithm which uses
very few samples from the training data and does not rely on gradient based optimization steps.
To the best of our knowledge, our work is the first to demonstrate class unlearning results on
ImageNet for SoTA transformer based models.

• We evaluate our algorithm on various datasets and with a variety of models and show our algorithm
consistently outperforms the State of the Art methods. Additionally, we provide evidence that our
model’s behavior aligns with that of a model trained without the forget class samples through
membership inference attacks, saliency-based feature analyses and confusion matrix analyses.

• We demonstrate the applicability of our algorithm to two practical scenarios in multi-class un-
learning: (i) One-shot Multi-Class unlearning (or task unlearning) through a single step of multi-
class unlearning and (ii) Sequential Multi-Class unlearning through multiple steps of single class
unlearning, demonstrating the capability of processing multiple unlearning requests over time.

2 RELATED WORKS

Unlearning: Many unlearning algorithms have been introduced in the literature, addressing various
unlearning scenarios, including item unlearning (Bourtoule et al., 2021), feature unlearning (War-
necke et al., 2021), class unlearning (Tarun et al., 2023), and task unlearning (Parisi et al., 2019).
Some of these solutions make simplifying assumptions on the learning algorithm. For instance, Gi-
nart et al. (2019) demonstrate unlearning within the context of k-mean clustering, Brophy & Lowd
(2021) present their algorithm for random forests, Mahadevan & Mathioudakis (2021) and Izzo
et al. (2021) propose an algorithm in the context of linear/logistic regression. Further, there have
been efforts in literature, to scale these algorithms for convolution layers Golatkar et al. (2020a;b).
Note, however, the algorithms have been only demonstrated on small scale problems. In contrast,
other works, such as Bourtoule et al. (2021), suggest altering the training process to enable efficient
unlearning. This approach requires saving multiple snapshots of the model from different stages
of training and involves retraining the model for a subset of the training data, effectively trading
off compute and memory for good accuracy on retain samples. Unlike these works our proposed
algorithm does not make any assumptions on the training process or the algorithm used for training
the original model.

Class Unlearning: The current State-of-the-Art (SoTA) for class unlearning is claimed by Tarun
et al. (2023). In their work, the authors propose a three stage unlearning process, where the first
stage learns a noise pattern that maximizes the loss for each of the classes to be unlearnt. The
Second stage (also called the impair stage) unlearns the class by mapping the noise to the forget
class. Finally, if the impair stage is seen to reduce the accuracy on the retained classes, the authors
propose to finetune the impaired model on the subset of training data in the repair stage (the third
stage). This work presents the results on small datasets with undertrained models and utilizes up to
20% of the training data for the unlearning process. Further, the work by Chundawat et al. (2023)
proposes two algorithms which assumes no access to the training samples. Additionally, authors
of Baumhauer et al. (2022) propose a linear filtration operator to shift the classification of samples
from unlearn class to other classes. These works lose considerable accuracy on the retain class
samples and have been demonstrated on small scale datasets like MNIST and CIFAR10. Our work
demonstrates results on SoTA Vision transformer models for the ImageNet dataset, showing the
effective scaling of our algorithm on large dataset with the model trained to convergence.

Other Related Algorithms : SVD is a well known technique used to constrain the learning in the
direction of previously learnt tasks in the continual learning setup Saha et al. (2021); Chen et al.
(2022); Saha & Roy (2023). These methods are sample efficient in estimating the gradient space
relevant to a task. Recent work by Li et al. (2023) proposes subspace based federated unlearning
using SVD. The authors perform gradient ascent in the orthogonal space of input gradient spaces
formed by other clients to eliminate the target client’s contribution in a federated learning setup.

3

Under review as a conference paper at ICLR 2024

Such ascent based unlearning is generally sensitive to hyperparameters and is susceptible to catas-
trophic forgetting on retain samples. As our proposed approach does not rely on such gradient based
training steps it is less sensitive to the hyperparameters. Moreover, the techniques could be used on
top of our method to further enhance the unlearning performance.

3 PRELIMINARIES

Class Unlearning: Let the training dataset be denoted by Dtrain = {(xi, yi)}Ntrain
i=1 consisting of

Ntrain training samples where xi represents the network input and yi is the corresponding label. The
test dataset be Dtest = {(xi, yi)}Ntest

i=1 containing Ntest samples. Consider a function y = f(xi, θ)
with the parameters θ that approximates the mapping of the inputs xi to their respective labels yi. In
the case of a well-trained deep learning model with parameters θ, there would be numerous samples
(xi, yi) ∈ Dtest for which the relationship yi = f(xi, θ) holds. For a class unlearning task aimed
at removing the target class t, the training dataset can be split into two partitions, namely the re-
tain dataset Dtrain r = {(xi, yi)}Ni=1;yi ̸=t and the forget dataset Dtrain f = {(xi, yi)}Ni=1;yi=t.
Similarly the test dataset can be split into these partitions as Dtest r = {(xi, yi)}Ni=1;yi ̸=t and
Dtest f = {(xi, yi)}Ni=1;yi=t. The objective of the class unlearning algorithm is to derive unlearnt
parameters θ∗f based on θ, a subset of the retain partition Dtrain sub r ⊂ Dtrain r, and a subset of the
forget partition Dtrain sub f ⊂ Dtrain f . The parameters θ∗f must be functionally indistinguishable
from a network with parameters θ∗, which is retrained from scratch on the samples of Dtrain r in the
output space. In other words, these parameters must satisfy f(xi, θ

∗) ≃ f(xi, θ
∗
f) for (xi, yi) ∈ Dtest

or Dtrain.

SVD: A rectangular matrix A ∈ Rd×n can be decomposed using SVD as A = UΣV T where
U ∈ Rd×d and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rd×n is a diagonal matrix containing
singular values Deisenroth et al. (2020). The columns of matrix U are the d dimensional orthogonal
vectors sorted by the amount of variance they explain for n samples (or the columns) in the matrix
A. These vectors are also called the basis vectors explaining the column space of A. For the ith

vector in U , ui, the amount of the variance explained is proportional to the square of the ith singular
value σ2

i . Hence the percentage variance explained by a basis vector ui is given by σ2
i /(

∑d
j=1(σ

2
j)).

4 METHODOLOGY

The pseudocode of our approach is presented in Algorithm 1. Given a forget class, our method aims
to suppress the class discriminatory activations from input activations (ai) of that class. When pro-
vided with a class-discriminatory projection matrix Pdis, removing the class discriminatory informa-
tion from inputs is equivalent to projecting the inputs onto the matrix I−Pdis. Consider a linear layer
ao = ai(θ

l)T , where θl are the weights of the linear layer and ao is the output activation. Post mul-
tiplying the weight with (I − Pdis)

T , is mathematically the same as removing class-discriminatory
information from ai. This mechanism allows us to update the model weights to destroy the class-
discriminatory activations given the matrix Pdis and is done by the update parameter() function
in line 15 of Algorithm 1. The rest of the section focuses on optimally computing this class-
discriminatory projection matrix. We start with identifying the critical activation space for retain
class samples and the forget class samples. These spaces are referred to as the Retain Space (Ur)
and the Forget Space (Uf) respectively and are computed using the SVD on the activations of the
corresponding samples. This corresponds to lines 3-7 of Algorithm 1 and the details are presented
in Subsection 4.1. In Subsection 4.2 we explain the details for computing Pdis and end this section
with and discussion on hyperparameter search in Subsection 4.3.

4.1 SPACE ESTIMATION

To estimate the Retain Space (Ur), we utilize a small subset of samples from the classes to be
retained, denoted as Xr = {xi}Kr

i=1, where Kr represents the number of retain samples. We accu-
mulate a representation matrix, Rl

r, in a list Rr = [Rl
r]

L
l=1 for both linear and convolutional layers,

where l is layer. In the case of linear layer, this matrix is given by Rl
r = [(transpose(ali))

Kr
i=1] which

is the transpose of the input activation matrix. A convolutional layer has to be represented as a
matrix multiplication to apply the proposed weight update rule. This is done using the unfold (Liu
et al., 2018) operation on input activations. For a convolutional layer with Ci input channels and
k as kernel size each sliding window has the size of Ci × k × k. If the output activation ao has
the resolution of ho × wo, where ho and wo is the height and width of the output activation, then

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Propose SVD based Training Free Algorithm for Controlled forgetting
Input: θ is the parameters of the original model; Xr and Xf is a set of few input samples xi in
the retain and forget partition of the train dataset respectively; Dtrain sub r and Dtrain sub f is the
subset of the retain and forget partition of the train dataset; and alpha r list and alpha f list are list
of hyperparameters αr and αf respectively.
1. procedure Unlearn(θ, Xr, Xf , Dtrain sub r, Dtrain sub f , alpha r list, alpha f list)
2. best score = get score(θ, Dtrain sub r, Dtrain sub f); θ∗f = θ
3. Rr = get representation(model, Xr) //Collect representations of linear
4. Rf = get representation(model, Xf) and convolution layers
5. for each linear and convolution layer l do
6. U l

r, Σl
r = SVD(Rl

r) //Retain Space for each layer
7. U l

f , Σl
f = SVD(Rl

f) //Forget Space for each layer
8. for each αr ∈ alpha r list do
9. for each αf ∈ alpha f list do
10. θf = copy(θ)
11. for each linear and convolution layer l do
12. Λl

r = scale importance(Σl
r, αr); Λl

f = scale importance(Σl
f , αf) //Eqn. 1

13. P l
r = U l

rΛ
l
rtranspose(U l

r); P l
f = U l

fΛ
l
f transpose(U l

f)
14. P l

dis = P l
f (I − P l

r) //class discriminatory projection matrix
15. θlf =update parameter(I − P l

dis, θl) //orthogonal parameter projection for lth layer
16. score = get score(θf , Dtrain sub r, Dtrain sub f)
17. if score > best score do
18. best score = score; θ∗f = θf
19. return θ∗f

there are howo patches of size Ci × k × k in the activation ai. The convolution kernel operates
on each of these patches in a sliding window fashion to get the values at the corresponding loca-
tions in the output map. The unfold operation flattens each of these howo patches to get a matrix
of size howo × Cikk. Now, if we reshape the weight as Cikk × Co where Co is the output chan-
nels, we see that the convolution operation becomes a matrix multiplication between the unfolded
matrix and the reshaped weights achieving the intended objective. Note that the unfold operation
generates howo samples for each input activation due to the weight sharing property of convolutions
and hence we subsample the patches using subsample() operation. The representation matrix for
the convolutional layer is given by Rl

r = [(transpose(subsample(unfold(ali))))
Kr
i=1]. This explains

the get representation() function used in lines 3 and 4 of the Algorithm 1 We perform the SVD on
these representation matrices for each layer as shown in line 6 of the Algorithm 1. SVD returns the
basis vectors U l

r that span the activation of the retain samples in Xr and the singular values Σl
r for

each layer l. The Retain Space Ur = [U l
r]

L
l=1 is the list of these basis vectors for all the layers. Our

approach makes a single pass over the samples in Xr to obtain the Retain Space. Forget Space (Uf)
is estimated similarly on the samples from the class to be unlearnt, denoted by Xf = {xi}

Kf

i=1 where
Kf represents the number of samples. We compute the discriminatory projection matrix Pdis in
the next Subsection by removing the features from the Forget Space that are shared with the Retain
Space. This corresponds to lines 12-14 in Algorithm 1. In the next Subsection, we discuss how we
isolate the class discriminatory Space.

4.2 CLASS-DISCRIMINATORY SPACE

Computing Pdis requires evaluating the retain projection matrix Pr and the forget projection matrix
Pf using the Retain Space and Forget Space. As the basis vectors in these Spaces are orthonormal
and do not capture any information about the amount of input explained by a basis vector. The
information of the significance of the basis vector is given by the corresponding singular value. We
propose to scale the basis vector in proportion to the amount of variance they explain in the input
space as presented below.

Importance-base Space Scaling (Λ): To capture the importance the ith basis vector in the matrix
U (or the ith column of U), we formulate an diagonal importance matrix Λ having the ith diagonal
component λi given by Equation 1. Here σi represents the the ith singular value in the matrix
Σ. The parameter α ∈ (0,∞) called the scaling coefficient is a hyperparameter that controls the
scaling of the basis vectors. When α is set to 1 the basis vectors are scaled by the amount of variance

5

Under review as a conference paper at ICLR 2024

they explain. As α increases the importance score for each basis vector increases and reaches 1 as
α → ∞. Similarly, decrease in α decreases the importance of the basis vector and goes to 0 as
α → 0. This operation is represented by scaled importance() function in line 12 of the Algorithm 1.
It is important to note that without the proposed scaling approach the matrices Pr and Pf become
identity in line 13 of Algorithm 1, as U is an orthonormal matrix. This inturn makes Pdis a zero
matrix, which means the weight update in line 15 of Algorithm 1 projects weight on identity matrix
mathematically restricting unlearning. Hence it is important to use scaling in Line 12 of Algorithm 1.

λi =
ασ2

i

(α− 1)σ2
i +

∑d
j=1 σ

2
j

, where d is the number of basis vectors. (1)

Class Discriminatory Projection Matrix(Pdis): Say we have Spaces U l
r and U l

f for a layer and the
scaling coefficients are set to a value of αr and αf . We can compute the importance scaling matrices
Λr and Λf as per Equation1. The retain projection matrix, which projects the input activations to
the retain space is given by P l

r = U l
rΛ

l
r(U

l
r)

T and the forget projection matrix given by P l
f =

U l
fΛ

l
f (U

l
f)

T , see line 13 in Algorithm 1. To obtain the unlearn class discriminatory projection
matrix, we remove the shared space given by P l

fP
l
r from the forget projection matrix to obtain

P l
dis = P l

f − P l
fP

l
r. Alternatively, this can also be written as P l

dis = P l
f (I − P l

r) which projects
the forget projection matrix on the orthogonal retain space. Intuitively, this projects the forget space
onto the space that does not contain any information about the retain space (or orthogonal retain
space), effectively removing the shared information from the forget projection matrix to obtain the
discriminatory projection space. The parameters of the convolutional layer needs to be reshaped to
Cikk × Co before being projected on (I − P l

dis). Our algorithm introduces two hyperparameters
namely αr and αf the scaling coefficients for the Retain Space and the Forget Space respectively.
The next Subsection 4.3 presents a discussion on these hyperparameters.

4.3 HYPERPARAMETER SEARCH

Our algorithm searches for the optimal hyperparameter values for αr and αf within the predefined
lists provided as alpha r list and alpha f list, respectively. We observe this search is necessary for
our algorithm. One intuitive explanation for this is that the unlearning class may exhibit varying
degrees of confusion with the retain classes, making it easier to unlearn some classes compared to
others, hence requiring different scaling for the retain and forget spaces. We introduce a simple
scoring function get score() which assesses the quality of the unlearnt model for a given pair of αr

and αf . The get score() function returns penalized retain accuracy given by score = accr(1 −
accf/100), where accr and accf are the accuracy on the Dtrain sub r and Dtrain sub f respectively.
Our algorithm begins with the best unlearn model parameters θ∗f as the original model parameters
θ. Finally as seen in line 8 and 9 of the Algorithm 1 we do a grid search over all the possible
values of αr and αf provided in alpha r list and alpha f list to obtain the best unlearnt parameters
θ∗f . Note, we observe that increasing the value of αf decreases the retain accuracy accr and hence
we terminate the inner loop (line 9) to speed up the grid search and have not presented this in the
Algorithm 1 for simplicity.

Discussion: The speed and efficiency of our approach can be attributed to the design choices. Firstly
our method runs inference for very few samples to get the representations R. Further, the small sizes
of these representation matrices ensure that SVD is fast and computationally cheap. Additionally,
the SVD operation for each layer is independent and can be parallelized to further improve speeds.
Our approach only performs inference and does not rely on computationally intensive gradient based
optimization steps (which also require tuning the learning rates) and gets the unlearnt model in a sin-
gle step for each grid search (over αr and αf) leading to a fast and efficient approach. Additionally,
our method has fewer parameters as compared to the gradient based baselines which are sensitive to
the choices of optimizer, learning rate, batch size, learning rate scheduler, weight decay, etc. Fur-
ther, our algorithm can be readily extended to Transformer architectures by applying our algorithm
to all the linear layers in the architecture. Note, that we do not change the normalization layers
for any architecture as the fraction of total parameters for these layers is insignificant. Further, our
algorithm assumes a significant difference in the distribution of forget and retain samples for SVD
to find distinguishable spaces. This is true in class unlearning setup, where retain and forget samples
come from different non-overlapping classes. However, in the case of unlearning a random subset
of training data, this assumption would not hold and our method has limited performance in such a
scenario, requiring additional modification for effective unlearning.

6

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

Dataset and Models : We conduct the class unlearning experiments on CIFAR10, CIFAR100
(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) datasets. We use the modified versions
of ResNet18 (He et al., 2016) and VGG11 (Simonyan & Zisserman, 2014) with batch normalization
for the CIFAR10 and CIFAR100 datasets. These models are trained for 350 epochs using Stochastic
Gradient Descent (SGD) with the learning rate of 0.01. We use Nesterov (Sutskever et al., 2013)
accelerated momentum with a value of 0.9 and the weight decay is set to 5e-4. For the ImageNet
dataset, we use the pretrained VGG11 and base version of Vision Transformer with a patch size of
14 (Dosovitskiy et al., 2020) available in the torchvision library.

Comparisons: We benchmark our method against 5 unlearning approaches. Two of these ap-
proaches, Retraining (Chundawat et al., 2023) and NegGrad (Tarun et al., 2023) are commonly used
in literature. Retraining involves training the model from scratch using the retain partition of the
training set, Dtrain r, and serves as our gold-standard model. In the NegGrad approach, we finetune
the model for a few step using gradient ascent on the forget partition of the train set Dtrain f with
a gradient clipping threshold set at 0.25. This approach ensures good forgetting, however is seen to
reduce the model accuracy on the retain partition. We also compare our approach to a stronger ver-
sion of NegGrad called NegGrad+ proposed by Kurmanji et al. (2023). This algorithm does gradient
ascent on the forget samples and gradient descent on the retain samples for 500 steps. A detailed
explanation of NegGrad and NegGrad+ with psuedocodes is presented in Appendix A.2 and A.3
respectively. Finally, we compare our work with two SoTA algorithms (Tarun et al., 2023; Kurmanji
et al., 2023) to demonstrate the effectiveness of our approach. Discussion on hyperparameters is
presented in Appendix A.4.

Evaluation: Our experiments evaluate the accuracy on the unlearnt models with the accuracy on
retain samples ACCr and the accuracy on the forget samples ACCf . In addition, we implement
Membership Inference Attack (MIA) to distinguish between samples in Dtrain r and Dtest r. We
use the confidence scores for the target class and training a Support Vector Machine (SVM) (Hearst
et al., 1998) classifier. We report the average model predictions on Dtrain f as the MIA scores in
our evaluations. A high value of MIA score for a given sample indicates that it does not belong to
the training data. An unlearnt model is expected to match the MIA score of the Retrained model.
See Appendix A.10 for details on MIA experiment.

6 RESULTS

Table 1: Results for Single class Forgetting on CIFAR10 and CIFAR100 dataset. (We bold font the row having
highest value for ACCr(100−ACCf)MIA)

Method VGG11 BN ResNet18
ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

C
IF

A
R

10

Original 91.58± 0.52 91.58± 4.72 0.11± 0.08 94.89± 0.31 94.89± 2.75 0.03± 0.03
Retraining 92.58± 0.83 0 100± 0 94.81± 0.52 0 100± 0
NegGrad 81.46± 5.67 0.02± 0.04 0 69.89± 10.23 0 0
NegGrad+ 89.79± 1.49 0.13± 0.16 99.93± 0.15 87.38± 1.36 0.2± 0.33 0
Tarun et al. (2023) 89.21± 0.84 0 0 92.20± 0.72 10.89± 8.79 61.5± 25.86
Kurmanji et al. (2023) 46.18± 35.376 0 0 80.28± 7.31 6.4± 19.074 0
Ours 91.77 ± 0.69 0 98.28 ± 5.43 94.19 ± 0.50 0.03 ± 0.09 95.5 ± 14.23

C
IF

A
R

10
0

Original 69.22± 0.29 67± 15.23 0.2± 0.25 76.64± 0.13 74.3± 13.27 0.08± 0.1
Retraining 68.97± 0.40 0 100± 0 76.81± 0.50 0 100± 0
NegGrad 51.21± 6.37 0 0 60.32± 7.03 0 29.98± 48.27
NegGrad+ 58.66± 3.91 0 0 71.37± 2.78 0 100± 0
Tarun et al. (2023) 53.94± 1.22 0 0 63.387± 0.50 3.1± 5.65 0
Kurmanji et al. (2023) 67.073± 0.41 10.5± 18.32 84.3± 26.76 72.54± 0.43 10.2± 16.90 89.28± 17.18
Ours 65.94 ± 1.21 0.3 ± 0.48 99.92 ± 0.10 73.60 ± 1.41 0.3 ± 0.48 100 ± 0

Table 2: Results for Single class forgetting on ImageNet-1k dataset.

Method Total VGG11 BN ViT B 16
samples ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

Original - 68.61± 0.02 72.6± 25.92 22.72± 22.59 80.01± 0.037 80.6± 19.87 13.36± 12.94
NegGrad+ 32000 66.37± 1.27 8.8± 11.48 96.58± 4.40 73.76± 1.46 0 99.98± 0.05
Tarun et al. (2023) 9990 43.5618± 0.59 0 98.96± 3.26 56.00± 3.47 38.8± 34.074 66.67± 50
Kurmanji et al. (2023) 10000 67.29 ± 0.34 0 99.92 ± 0.15 79.23± 0.19 56± 21.56 45.47± 20.62
Ours 1499 66.41± 0.60 0.6± 1.35 99.33± 0.90 78.47 ± 0.84 0.2 ± 0.63 99.98 ± 0.05

Class Forgetting: We present the results for single class forgetting in Table 1 for the CIFAR10
and CIFAR100 dataset. The table presents results that include both the mean and standard devia-
tion across 10 different target unlearning classes. CIFAR10 dataset is accessed for unlearning on
each class and CIFAR100 is evaluated for every 10th starting from the first class. The Retraining

7

Under review as a conference paper at ICLR 2024

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p
tru

ck

Predicted Labels

air
pla

ne

au
tom

ob
ile

bir
d

cat

de
er

do
g

fro
g

ho
rse

shi
p

tru
ck

Tr
ue

 L
ab

le
s

944 4 14 6 3 0 1 3 20 5

8 960 0 1 0 0 1 0 4 26

20 0 886 21 22 18 18 10 4 1

8 2 31 823 19 80 20 8 3 6

6 1 17 25 920 10 12 8 0 1

6 0 17 92 21 850 5 7 2 0

3 1 17 22 7 2 944 0 2 2

8 0 4 16 15 15 1 939 0 2

18 3 2 6 1 1 1 1 958 9

11 40 1 4 0 1 1 0 8 934
0

200

400

600

800

(a) Original model

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p
tru

ck

Predicted Labels

air
pla

ne

au
tom

ob
ile

bir
d

cat

de
er

do
g

fro
g

ho
rse

shi
p

tru
ck

Tr
ue

 L
ab

le
s

952 5 10 0 1 0 1 3 24 4

9 965 0 0 0 0 0 0 4 22

26 0 912 0 18 12 20 5 4 3

93 20 157 0 107 262 133 48 114 66

10 1 33 0 928 7 9 10 1 1

17 4 42 0 30 837 21 32 7 10

8 1 21 0 5 3 950 3 5 4

11 0 5 0 18 6 2 952 0 6

19 3 1 0 1 1 1 2 965 7

12 42 1 0 0 0 0 0 14 931
0

200

400

600

800

(b) Unlearnt model

Figure 2: Confusion Matrix for the original VGG11 model and a model unlearning cat class using our algo-
rithm, showing redistribution of cat samples to other classes in proportion to the confusion in original model.

approach matches the accuracy of the original model on retain samples and has 0% accuracy on the
forget samples, which is the expected upper bound. The MIA accuracy for this model is 100%
which signifies that MIA model is certain that Dtrain f does not belong to the training data. The
NegGrad method shows good forgetting with low ACCf , however, performs poorly on ACCr and
MIA metrics. The NegGrad algorithm’s performance on retain samples is expected to be poor be-
cause it lacks information about the retain samples required to protect the relevant features. Further,
this explains why NegGrad+ which performs gradient descent on the retain samples along with Neg-
Grad can maintain impressive performance on retain accuracy with competitive forget accuracy. In
some of our experiments, we observe that the NegGrad+ approach outperforms the SoTA bench-
marks (Tarun et al., 2023) and (Kurmanji et al., 2023) which suggests the NegGrad+ approach is a
strong baseline for class unlearning. Our proposed training free algorithm achieves a better tradeoff
between the evaluation metrics when compared against all the baselines. Further, we observe the
MIA numbers for our method close to the retrained model and better than all the baselines for most
of our experiments. We demonstrate our algorithm easily scales to ImageNet without compromising
its effectiveness, as seen in Table 2. Due to the training complexity of the experiments, we were
not able to obtain retrained models for ImageNet. We observe that the results on CIFAR10 and
CIFAR100 datasets consistently show ACCf to be 0 and the MIA performance to be 100%. We,
therefore, interpret the model with high ACCr, MIA, and low ACCf as a better unlearnt model
for these experiments. We conduct unlearning experiments on the ImageNet dataset for every 100th
class starting from the first class, resulting in a total of 10 experiments. Our algorithm shows less
than 1.5% drop in ACCr as compared to the original model while maintaining less than 1% forget
accuracy for a well trained SoTA Transformed based model. The MIA scores for our model are
nearly 100% indicating that model the MIA model fails to recognize Dtrain f as part of training
data. We observe that (Kurmanji et al., 2023) outperforms our method for a VGG11 model trained
on ImageNet, however, requires access to 6× more samples and requires more compute than our
approach.

Confusion Matrix analysis: We plot the confusion matrix showing the distribution of true labels
and predicted labels for the original VGG11 model and VGG11 model unlearning cat class with our
algorithm for CIFAR10 in Figure 2. Interestingly, we observe that a significant portion of the cat
samples are redistributed across the animal categories. The majority of these samples are assigned
to the dog class, which exhibited the highest level of confusion with the cat class in the original

(a) Original (b) Retraining (c) Unlearnt
(Ours)

Figure 3: GradCAM-based heatmaps for (a) Original, (b) Retrained,
and (c) Unlearnt VGG11 model on the CIFAR10 with a cat as the
target class, demonstrating that the unlearned model does not highlight
any features specific to the cat.

1 2 3 4 5 6 7 8 9 10 11
Layer

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

No
rm

al
ize

d
W

ei
gh

t D
ist

an
ce

Figure 4: Layer-wise weight
change for VGG11 on cifar10
dataset.

8

Under review as a conference paper at ICLR 2024

Our

Neg
Grad

+
[Ta

run
]

[Ku
rm

an
ji]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

%
 o

f a
 R

et
ra

in

 E
po

ch
 (I

m
ag

eN
et

)
1.0x

6.6x 7.3x
8.8x

Figure 5: Compute com-
parison for single linear
layer of ViT.

VGG11_BN ResNet180

20

40

60

80

100

Re
ta

in
 A

cc
.

Original Model
1 class removal
5 class removal

(a) Retain Accuracy.
VGG11_BN ResNet180

20

40

60

80

100

Fo
rg

et
 A

cc
.

Original Model
1 class removal
5 class removal

(b) Forget Accuracy
VGG11_BN ResNet180

20
40
60
80

100
120
140

M
IA

 A
cc

ur
ac

y

Original Model
1 class removal
5 class removal

(c) MIA accuracy
Figure 6: Multi-Class Unlearning for CIFAR100 dataset.

model. This aligns with the illustration shown in Figure 1 where the forget space gets redistributed
to the classes in the proximity of the forget class. We present the confusion matrix of the retrained
VGG11 model without the cat class in Figure 7 in Appendix A.5. This matrix also shows a high
number of cat samples being assigned to the dog class.

Saliency-based analysis : We test this VGG11 model unlearning the cat class with GradCAM-
based feature analysis as presented in Figure 3, and we see that our model is unable to detect class
discriminatory information. This behavior is similar to the retrained VGG11 model shown in Fig-
ure 3(b).

Layer-wise analysis: We plot the change layer-wise weight difference between the parameters of
the unlearnt and the original model for VGG11 on the cifar10 dataset in Figure 4. We observe that
the weight change is larger for the later layers. This is expected as the later layers are expected to
learn complex class discriminatory information while the initial layers do learn edges and simple
textures (Olah et al., 2017). We present the retain and forget accuracy when our algorithm is applied
to the top layers in Appendix A.6.

Compute analysis: We analytically calculate the computational cost for different unlearning al-
gorithms for a Vision Transformer (ViT) model trained on ImageNet, as illustrated in Figure 5, see
Appendix A.7 for details. This figure shows the percentage of compute cost as compared to a single
epoch of retraining baseline on y axis. It’s important to note that we exclusively consider the com-
putation of the linear layer ignoring the compute costs for self attention and normalization layers.
This inherently works in favor of the gradient based approaches as our algorithm has significantly
low overhead for these layers as we only do forward pass on a few samples while representation
collection. Our approach demonstrates more than 6× compute reduction than any other baseline.

Multi Class Forgetting: The objective of Multiclass removal is to remove more than one class from
the trained model. In multi task learning a deep learning model is trained to do multiple tasks where
each of the tasks is a group of classes. The scenario of One-Shot Multi-Class where the unlearning
algorithm is expected to remove multiple classes in a single unlearning step has a practical use case
in such task unlearning. Our algorithm estimates the Retain Space Ur and the Forget Space Uf based
on the samples from Xr and Xf . It is straightforward to scale our approach to such a scenario by
simply changing the retain sample Xr and Xf to represent the samples from class to be retained and
forgotten respectively. We demonstrate multi class unlearning on removing 5 classes belonging to a
superclass on CIFAR100 dataset in Figure 6. We observe our method is able to retain good accuracy
on Retain samples and has above 95% MIA accuracy while maintaining a low accuracy on forget
set under this scenario. When compared with Tarun et al. (2023) under this unlearning setting (see
Table 6 in Appendix A.8) we see our method has significantly better performance. We also present
results of multiclass unlearning on CIFAR10 in Appendix A.8. Additionally, we present a sequential
version of multi class unlearning in Appendix A.9.

7 CONCLUSION

In this work, we introduce a novel class and multi-class unlearning algorithm based on Singular
Value Decomposition (SVD), which eliminates the need for gradient-based unlearning steps. We
demonstrate the efficacy of our approach over a variety of image classification datasets and network
architectures. Our algorithm consistently performs better than SoTA on several evaluation met-
rics while being much more computationally efficient. Furthermore, to the best of our knowledge,
our proposed class unlearning algorithm is the first to be demonstrated on large-scale datasets like
ImageNet with a SoTA transformer based model. Our analysis, conducted through saliency-based
explanations, does not reveal the class-discriminatory features, and the confusion matrix analysis
shows the redistribution of the unlearned samples based on their confusion with respective classes.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Devansh et. al. Arpit. A closer look at memorization in deep networks. In International conference
on machine learning, pp. 233–242. PMLR, 2017.

Ching-Yuan Bai, Hsuan-Tien Lin, Colin Raffel, and Wendy Chi-wen Kan. On training sample
memorization: Lessons from benchmarking generative modeling with a large-scale competition.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 2534–2542, 2021.

Thomas Baumhauer, Pascal Schöttle, and Matthias Zeppelzauer. Machine unlearning: Linear filtra-
tion for logit-based classifiers. Machine Learning, 111(9):3203–3226, 2022.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International Con-
ference on Machine Learning, pp. 1092–1104. PMLR, 2021.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. Class gradient projection for continual
learning. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 5575–
5583, 2022.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. IEEE Transactions on Information Forensics and Security, 2023.

Alan Kaylor Cline and Inderjit S Dhillon. Computation of the singular value decomposition. In
Handbook of linear algebra, pp. 45–1. Chapman and Hall/CRC, 2006.

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing
deep networks of information accessible from input-output observations. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIX 16, pp. 383–398. Springer, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 792–801, 2021.

Eric Goldman. An introduction to the california consumer privacy act (ccpa). Santa Clara Univ.
Legal Studies Research Paper, 2020.

10

Under review as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data dele-
tion from machine learning models. In International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
CIFAR, 2009.

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine un-
learning. arXiv preprint arXiv:2302.09880, 2023.

Guanghao Li, Li Shen, Yan Sun, Yue Hu, Han Hu, and Dacheng Tao. Subspace based federated
unlearning. arXiv preprint arXiv:2302.12448, 2023.

Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. Frequency-domain dynamic pruning
for convolutional neural networks. Advances in neural information processing systems, 31, 2018.

Ananth Mahadevan and Michael Mathioudakis. Certifiable machine unlearning for linear models.
arXiv preprint arXiv:2106.15093, 2021.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7,
2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. arXiv preprint
arXiv:2302.01386, 2023.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

Sebastian Schelter. Amnesia-a selection of machine learning models that can forget user data very
fast. suicide, 8364(44035):46992, 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1–5. IEEE, 2015.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DEMONSTRATION WITH TOY EXAMPLE

In Figure 1 we demonstrate our unlearning algorithm on a 4 way classification problem, where
the original model is trained to detect samples from 4 different 2-dimensional Gaussian’s centered
around (1,1), (-1,1), (-1, -1) and (1, -1) respectively with a standard of (0.5,0.5). The training dataset
has 10000 samples per class and the test dataset has 1000 samples per class. The test data is shown
with dark points in the decision boundaries in Figure 1. We use a simple 5-layer linear model with
ReLU activation functions. All the intermediate layers have 5 neurons and each layer excluding the
final layer is followed by BatchNorm. We train this network with stochastic gradient descent for 10
epochs with a learning rate of 0.1 and Nestrove momentum of 0.9. The decision boundary learnt by
the original model trained on complete data is shown in Figure 1(a) and the accuracy of this model
on test data is 95.60%. In Figure 1(b) we plot the decision boundary for the model obtained by
unlearning the class with mean (1,1) with our algorithm. This decision boundary is observed to be
close to the decision boundary of the model retrained without the data points from class with mean
(1,1) as shown in Figure 1(c). The accuracy of the unlearnt model is 97.43% and retrained model
is 97.33%. This illustration shows that the proposed algorithm redistributes the input space of the
class to be unlearnt to the closest classes.

A.2 NEGGRAD ALGORITHM

Pseudocode for NegGrad is presented in Algorithm 2. The algorithm initialized the unlearn param-
eters θ∗f to the original parameters θ and does 500 steps of gradient ascent on the forget subset of
the training data. After every 100 steps, we evaluate the model accuracy on Dtrain sub f and exit
ascent when accf becomes lower than 0.1. This restricts the gradient ascent from catastrophically
forgetting the samples in the retain partition.

Algorithm 2 NegGrad Algorithm
Input: θ is the parameters of the original model, L is the loss function, Dtrain sub f is the subset of
the forget partition of the train dataset; and η is the learning rate

1. procedure Unlearn(θ, L, Dtrain sub f , η)
2. θ∗f = θ
3. for step = 1,...., 500 do
4. input, target = get batch(Dtrain sub f)
5. g = get gradients(θ∗ff , L, input, target)
6. g = gradient clip(g,0.25)
7. θ∗f = θ∗f + ηg
8. if step multiple of 100 do
9. accf = get accuracy(θ, Dtrain sub f)
10. breakif accf < 0.1
11. return θ∗f

A.3 NEGGRAD+ ALGORITHM

NegGrad+ is a superior gradient ascent unlearning algorithm as compared to the NegGrad. Algo-
rithm 3 outlines the pseudocode for the NegGrad+ unlearning approach. The algorithm initializes
the unlearn parameters θ∗f to the original parameters θ and gets the model accuracy on the forget
partition accf . The gradients ga are computed on the forget partition if the accf is greater than 0.1
otherwise ga is set to 0. The gradient on the retain batch denoted by gd is computed at every step
and the unlearn parameters are updated in the descent direction for the retain samples and ascent
direction for the forget samples. The values of accf is updated after every 100 steps. This algorithm
mitigates the adverse effect of Naive descent on the retain accuracy. Once the model achieves the
forget accuracy less than 0.1 the algorithm tries to recover the retain accuracy by finetuning on the
retain samples.

12

Under review as a conference paper at ICLR 2024

Algorithm 3 NegGrad+ Algorithm
Input: θ is the parameters of the original model; L is the loss function; Dtrain sub f and
Dtrain sub f are the subset of the retain and forget partition of the train dataset respectively; and η
is the learning rate.

1. procedure Unlearn(θ, L, Dtrain sub r, Dtrain sub f , η)
2. accf = get accuracy(θ, Dtrain sub f); θ∗f = θ
3. for step = 1,...., 500 do
4. if accf > 0.1 do
5. input, target = get batch(Dtrain sub f)
6. ga = get gradients(θ∗ff , L, input, target)
7. ga = gradient clip(ga,0.25)
8. else
9. ga = 0
10. input, target = get batch(Dtrain sub r)
11. gd = get gradients(θ∗ff , L, input, target)
12. θ∗f = θ∗f + ηga - ηgd
13. if step multiple of 100 do
14. accf = get accuracy(θ, Dtrain sub f)
15. return θ∗f

A.4 HYPERPARAMETER DISCUSSION

Our approach introduces four key hyperparameters: the list of αr values (alpha r list), the list of
αf values (alpha f list), and the number of samples used to estimate the Retain Space and Forget
Space. The values for these hyperparameters are dependent on the dataset and are presented in
Table 3 of Appendix A.4. The NegGrad and NegGrad+ require tuning of the learning rate η for
atleast 1 unlearning class and a list of the learning rates is presented in Table 4 in Appendix A.4. We
tune this hyperparameter for unlearning the first class on each model-dataset pair. Once determined,
these hyperparameters remain fixed for unlearning all other classes. The SoTA (Tarun et al., 2023)
baseline introduces 2 learning rates for the impair and the repair stages represented by ηimpair and
ηrepair. Similar to the other baselines these hyperparameters are only tuned on one class for each
model-dataset pair. For (Kurmanji et al., 2023) we use all the suggested hyperparameters given in
the work for Large scale experiments on CIFAR10 for class unlearning-type (Table 3) and tune the
batch sizes (forget-set bs and retain-set bs) as given in Table 5 The Retraining method does not add
any additional hyperparameters and is trained with the same hyperparameters as the original model.

Table 3: Hyperparameters for our approach with single class unlearning or sequential multi-class unlearning.

Dataset alpha r list alpha f list samples/class samples/class class
in Xr in Xf

CIFAR10 [10, 30, 100, 300, 100] [3] 100 900
CIFAR100 [100, 300, 1000] [3, 10, 30, 100] 10 990
ImageNet [30, 100, 300, 1000, 3000] [3, 10, 30, 100, 300] 1 500

Table 4: Hyperparameter tuning space for NegGrad, NegGrad+ and (Tarun et al., 2023) benchmarks.

Method η or ηrepair or ηimpair

NegGrad [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]
NegGrad+ [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]
Tarun et al. (2023) [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]

Table 5: Hyperparameters for our approach with single class unlearning or sequential multi-class unlearning.

Dataset forget-set batch size retain-set batch size
CIFAR10 and CIFAR100 [32, 64, 128, 256, 512] [32, 64, 128, 256, 512]
ImageNet [32, 64, 128, 256] [32, 64, 128, 256]

13

Under review as a conference paper at ICLR 2024

A.5 CONFUSION MATRIX FOR RETRAINED MODEL

Figure 7 shows the confusion matrix for the VGG11 model retrained without cat class.

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p
tru

ck

Predicted Labels

air
pla

ne

au
tom

ob
ile

bir
d

cat

de
er

do
g

fro
g

ho
rse

shi
p

tru
ck

Tr
ue

 L
ab

le
s

933 3 12 0 4 4 6 3 24 11

4 956 0 0 1 1 2 0 7 29

20 0 891 0 32 29 14 9 2 3

36 4 80 0 97 573 127 35 23 25

1 1 23 0 931 15 12 13 3 1

11 1 12 0 23 926 8 13 0 6

3 1 20 0 9 13 950 1 0 3

3 0 9 0 20 15 1 942 1 9

20 3 1 0 1 2 1 4 956 12

7 26 1 0 0 3 1 2 7 953
0

200

400

600

800

Figure 7: Confusion Matrix retrained VGG11 model without the cat class sample on VGG11 model with
batchnorm.

A.6 EFFECT OF APPLYING OUR ALGORITHM TO DIFFERENT LAYERS

Figure 8 shows the results for the unlearning model obtained when our algorithm is applied only
to the top layers starting from nth layer to the end of the network for CIFAR10 dataset on VGG11
model. The x-axis represents the number of initial layers n we do not apply unlearning algorithm in
the plot. When the value of n = 0 our algorithm is applied to the entire model for all the other values
of n on x-axis of Figure 8 represents a case where we do not change the initial layers 0−n(including
n) in unlearning. We observe that the effect of removing the projections is minimal on the Retain
accuracy. The forget accuracy keeps increasing as we sequentially remove the projections starting
from the initial layers. This is the expected trend as the class discriminatory information is expected
to be concentrated towards the later layers.

A.7 COMPUTE ANALYSIS FOR SINGLE LAYER OF VIT ON IMAGENET DATASET.

A.7.1 LINEAR LAYER COMPUTE EQUATIONS

Here we analyze the compute required for a linear layer. Say we have a linear layer of size fin×fout,
where fin is the input features and fout is the output features. Let the retain set have nr samples.
The input activation for this layer will hence be of size nr × fin. Below we analyze the compute
required by various algorithms in this setting. We substitute all the parameters in the equation to
obtain the compute in terms of fin and fout.

Retraining: The compute required for this method will be nrfinfout for forward pass and
2nrfinfout for backward resulting in total compute given by Equation 2. For the ImageNet ex-
periments, nr is approximately 128000. Note this is the compute for the single epoch.

CLinear
retrain(fin, fout) = 3nrfinfout = 3840000finfout (2)

NegGrad/NegGrad+: The NegGrad and NegGrad+ algorithm make sng ascent/descent steps with
a batchsize of bng . The compute for this would be given by Equation 3. For ImageNet runs on Vit
sng = 500 and bng = 64.

CLinear
neggrad(fin, fout) = 3sngbngfinfout = 96000finfout (3)

14

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0

20

40

60

80

100

Ac
cu

ra
cy Retain

Forget

Figure 8: Quality of unlearnt model for the unlearning applied to
the initial layers for CIFAR10 dataset on VGG11 network.

0 2 4 6 8
of Classes Unlearnt

90
92
94
96
98

100

Re
ta

in
 S

et
 A

cc
.

VGG11_BN
ResNet18

Figure 9: Sequential class removal on CIFAR10
dataset.

(Tarun et al., 2023): For this baseline the authors generate the noise distribution for each forget
class. This is done through gradient ascent on the model for snoise steps starting with a random
noise with a batch size of bnoise. In the impair step, the algorithm performs gradient descent on
nimpair samples and nTarun r retain samples to remove the forget samples for simpair steps. In
the repair steps the model does gradient descent on nTarun r samples to gain performance on retain
samples for srepair steps. The compute equation is given by Equation 4 The parameters values are
snoise = 40, bnoise = 256, nimpair = 5120, simpair = 1, nTarun r = 9990, srepair = 1.

CLinear
Tarun(fin, fout) =3(snoisebnoise︸ ︷︷ ︸

Noise Generation

+ simpair(nimpair + nTarun r)︸ ︷︷ ︸
Impair Steps

+ srepairnTarun r︸ ︷︷ ︸
Repair Steps

)finfout

= 106020finfout
(4)

(Kurmanji et al., 2023): The author perform smax number of maximization steps on nscrub f

samples and smin number of maximization steps on nscrub r. Further, this work uses distillation
loss which requires additional forward passes for every step of minimization and maximization.
This is given by Equation 5. The values of hyperparameters are smax = 2, nscrub f = 1000, smin =
3, nscrub r = 10000. Note the scaling factor of 4 in the equation accounts for the forward pass in
the distillation step.

CLinear
scrub(fin, fout) =4(smaxnscrub f︸ ︷︷ ︸

Maximization Step

+ sminnscrub r︸ ︷︷ ︸
Minimization Step

)finfout

= 128000finfout

(5)

15

Under review as a conference paper at ICLR 2024

VGG11_BN ResNet1890
92
94
96
98

100
102

Re
ta

in
 A

cc
.

Original Model
1 class removal
2 class removal
5 class removal

(a) Retain Accuracy.

VGG11_BN ResNet180.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Fo
rg

et
 A

cc
.

1 class removal
2 class removal
5 class removal

(b) Forget Accuracy
Figure 10: One-Shot Multi-Class Unlearning for CIFAR10
dataset.

Table 6: Results for Multi class Forgetting on CIFAR100 dataset.

Method VGG11 BN ResNet18
ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

NegGrad+ 57.75± 1.40 0.2± 0.2 0 70.55± 1.045 0.7± 0.12 99.86± 0.11
Tarun et al. (2023) 54.31± 1.09 0 0 64.16± 1.18 1.34± 2.33 60.2± 52.14
Ours 65.94± 1.89 4.6± 1.44 94.8± 2.2 69.74± 3.12 2.33± 1.61 95.7± 2.67

Ours: We have access to nour r and nour f retain and forget samples in our algorithm and for
ImageNet these are 999 and 500 respectively. Our approach can be broken into 4 compute steps,
namely representation collection, SVD, Space Estimation, and weight projection. Representation
collection requires forward pass on a few samples and can be compute cost can be computed as
mentioned before. For a matrix of size m× n SVD has a compute of mn2 Cline & Dhillon (2006)
where m > n. Space Estimation and weight projection steps involve matrix multiplication. For a
matrix A of size m×n and matrix B of size n×p the compute costs of matrix multiplication A×B
is mnp.

CLinear
our (fin, fout) = (nour r + nour f)finfout︸ ︷︷ ︸

Representation Matrix

+(nour r + nour f)f
2
in︸ ︷︷ ︸

SVD

+ 2f3
in︸︷︷︸

Pdis Computation

+ f2
infout︸ ︷︷ ︸

Weight Projection

= 1499finfout + 1499f2
in + 2f3

in + f2
infout

(6)

A.7.2 COMPUTE FOR A LAYER OF VIT

A layer of ViTBase has 4 layers of size 768, namely Key weights, Query weights, value weights, and
output weights in the Attention layer. The MLP layer consists of a layer of size 768 × 3072 and
3072 × 768. The total compute for a layer of Vit would be given by Equation 7. Note this ignores
the compute of the attention and normalization layers. Adding compute for the attention mechanism
would only benefit our method as we only compute this for representation collection, whereas the
baseline methods would have this computation at every forward and backward pass. These equations
are used to obtain the numbers for each of the methods in Figure 5.

CViT Layer = 4CLinear(768, 768) + CLinear(768, 3072) + CLinear(3072, 768) (7)

A.8 MULTI CLASS UNLEARNING

We run experiments for this scenario on the CIFAR10 dataset with VGG11 and ResNet18 models.
Figure 10 presents the mean and standard deviations for retain accuracy and the forget accuracy for
5 runs on each configuration. The set of classes to be removed is randomly selected for each of these
5 runs. These results show our algorithm scales to this scenario without losing efficacy. Additionally
we present the comparisons with baselines on the CIFAR100 dataset for unlearning a superclass in
Table 6.

16

Under review as a conference paper at ICLR 2024

Table 7: Location of Projection. Experiments on CIFAR10 dataset similar to Table 1

Method VGG11 BN ResNet18
accr accf accr accf

Original 91.58 94.89
input activation suppression (main paper) 91.77± 0.69 0 94.19± 0.50 0.03± 0.09
output activation suppression 90.73± 1.28 0.15± 0.38 91.44± 1.22 1.05± 1.13
both 91.51± 0.68 0 93.96± 0.60 0.21± 0.45

A.9 SEQUENTIAL MUTICLASS REMOVAL

This scenario demonstrates the practical use case of our algorithm where different unlearning re-
quests come at different instances of time. In our experiments, we sequentially unlearn classes 0 to
8 in order from the CIFAR10 dataset on VGG11 and ResNet 18 model. The retain accuracy of the
unlearnt model is plotted in Figure 9. The forget accuracy for all the classes in the unlearning steps
was zero. We observe an increasing trend in the retain accuracy for both the VGG11 and ResNet18
models which is expected as the number of classes reduces or the classification task simplifies.

A.10 MIA ATTACK DETAILS

The goal of the MIA experiment was to demonstrate how the unlearnt models behave as compared
to the Retrained model and the original model. Below we mention the details of MIA experiments.

Training - We train a Support Vector Machine (SVM) classifier as a MIA model to distinguish
between Dtrain r(as class 1 or member class) and Dtest r(as class 0 or non member class).

Testing - We show this SVM model Dtrain f to check if the MIA model classifies it as a member or
non member. When the MIA model classifies it class 0 (Non Member) then the MIA model believes
that the samples from Dtrain f do not belong to the Train set. This is what is meant by having a
high accuracy on Dtrain f .

Interpretations of MIA scores- We use the training and testing procedures mentioned above for all
the models. Below we present interpretation for different models

• Original model - We see that the original model has a low MIA score (nearly 0) which
means the SVM model classifies Dtrain f as member samples. This is expected as Dtrain f

belonged to the training samples.
• Retrained model - We see that the Retrained model has a high MIA score (100%) which

means the SVM model classifies Dtrain f as non members. This is expected as Dtrain f

does not belong to the training samples.
• Unlearnt model - By these experiments of MIA we wanted to see how MIA scores of

unlearnt models perform. We observe the model unlearnt with our algorithm consistently
performs close to the retrained model as compared to other baselines.

A.11 VARIANTS OF OUR ALGORITHM

This section presents two variants of the algorithm depending on the location of the activation sup-
pression. Consider the linear layer ao = ai×θT , where ao and ai are the input activation and output
activations of a linear layer. The algorithm presented in the main paper focuses on activations before
the linear layer, i.e. the input activations ai. We could also suppress the output activations. This
activation suppression meant projecting the parameters on the orthogonal discriminatory projection
space (I − Pdis), which is post multiplying the parameters θ with (I − Pdis)

T . Now if we were
to suppress the output activations ao it would be the same as pre-multiplying the parameters θ with
(I−Pdis)

T . (Note, for suppressing ao the output activations are used to compute Pdis). This variant
of our approach is capable of removing the information in the bias and normalization parameters of
the network. The other variant suppresses both the input and output activations using their respec-
tive projection matrices. The results for these variants are presented in Table 7. We observe that the
performance of these two variants is lower than the algorithm in the main paper and hence do not
analyze it further.

17

	Introduction
	Related Works
	Preliminaries
	Methodology
	Space Estimation
	Class-Discriminatory Space
	Hyperparameter search

	Experiments
	Results
	Conclusion
	Appendix
	Demonstration with Toy Example
	NegGrad Algorithm
	NegGrad+ Algorithm
	Hyperparameter Discussion
	Confusion matrix for retrained model
	Effect of applying our algorithm to different layers
	Compute Analysis for Single Layer of ViT on ImageNet dataset.
	Linear Layer Compute Equations
	Compute for a layer of ViT

	Multi class Unlearning
	Sequential muticlass Removal
	MIA Attack Details
	Variants of Our algorithm

