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ABSTRACT

Machine learning technologies have been used in a wide range of practical ap-
plications. In them, it is preferable to guarantee that the input-output pairs of a
model satisfy the given requirements. The recently proposed concurrent verifier
(CV) is a module combined with machine learning models to guarantee that the
model’s input-output pairs satisfy the given requirements. The previous paper
provides a generalization analysis of learning with a CV to show how the model’s
learnability changes using a CV. Although the paper provides basic learnability
results, many CV properties remain unrevealed. Moreover, the previous work as-
sumed a CV always works correctly, and requirements are imposed on a single
input-output pair, which limits the situation where we can use a CV. We show the
learning algorithms that preserve convexity when using a CV. We also show con-
ditions that using a CV improves the generalization error bound. Moreover, we
analyze the learnability when a CV is incorrect, or requirements are imposed on
the combination of multiple input-output pairs.

1 INTRODUCTION

The recent progress of machine learning technologies enables them to be used in many practical
systems. However, when developing a system that uses a machine learning model, a model with
small prediction errors might be unsatisfactory since some errors cause severe problems (Amodei
et al., 2016) even if they occur with a low probability. Potential problems might surface when
we apply machine learning to such security-critical domains as finance, health, and transportation,
and we have to pay more on realizing safe systems (Braiek & Khomh, 2020; Xu & Saleh, 2021).
Similarly, the recent progress of large language models (Brown et al., 2020; Chowdhery et al., 2022)
has improved performance on many NLP tasks, although their undesirable outputs are considered
to be important problems (Gehman et al., 2020; Sheng et al., 2021). Therefore, ML models with
which we can guarantee that the input-output pairs of a machine learning model satisfy the given
requirements are highly demanding. We can avoid serious errors if we know that some label y
must not be assigned to input x having a specific property and use the knowledge as requirements.
Similarly, we can control the output of language models by representing the desired properties as
requirements and generating words while satisfying them (Qin et al., 2022; Zhang et al., 2023).
Unfortunately, since the models used in modern machine learning tasks tend to be complex, it is
unrealistic to train a model to guarantee that every possible input-output pair of a model satisfies
requirements. Moreover, some requirements would be unknown when we train a model, which
frequently happens when we use pre-trained models.

Learning with a concurrent verifier (CV) (Nishino et al., 2022) is a recently proposed framework
that attaches a verifier module to a machine learning model to check the model’s input-output pairs
and modifies its outputs to guarantee that its input-output pairs satisfy the given requirements. That
is, given machine learning model h : X → Y and requirements c : X × Y → {0, 1}, which is
represented as a mapping from an input-output pair to {0, 1}, a CV checks whether pair (x, h(x))
satisfies c(x, h(x)) = 1 every time we predict h(x) for input x ∈ X . If c(x, h(x)) = 1, then the
CV allows h(x) to be output. If c(x, h(x)) = 0, the CV modifies h(x) to another value, y′ ∈ Y ,
that satisfies c(x, y′) = 1. Figure 1 shows the overview of the framework of learning with a CV. A
CV can be combined with various machine learning models to guarantee that the input-output pairs
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of a model satisfy the requirements. Since many task-specific models with low prediction errors are
used in practice, adding a CV is reasonable if it does not sacrifice the model’s performance.

To analyze the effect of using a CV, a previous paper (Nishino et al., 2022) theoretically analyzed
how an upper bound of generalization error changes by adding a CV to a machine learning model.
It proved that if a machine learning model is probably approximately correct (PAC) learnable, then
using a CV not at the training phase but only at the inference phase guarantees that the model’s
generalization error is not worse than the other possible models. The paper also showed that the
generalization error can be worse than other possible models if not PAC learnable. The paper also
showed that if a CV is used in both the training and inference phase, the generalization error bounds
based on Rademacher complexity are not worse than the bounds of the original model for any com-
bination of requirement c and hypothesis class H. These theoretical results can give further insights
to existing works. For example, existing works (Leino et al., 2022; Qin et al., 2022) impose con-
straints on an ML model that can be seen as using a verifier in the inference phase but not in the
learning phase. The analyses of the paper show there is a potential to improve the generalization
error of the model if we know the requirements at a training phase.

Although the previous paper’s analyses revealed the basic properties of the problem setting of learn-
ing with a CV, it failed to identify many fundamental CV properties, especially efficiency and the
potential to improve the bounds. If using a CV makes the learning problem inefficient, then its
usefulness might be limited. Although requirements are not always used to improve prediction
accuracy, it is useful to know when we can improve generalization error bounds by using a CV
since using background knowledge Moreover, the previous paper restricts the form of requirements
c(x, y). First, it assumes that a verifier can correctly evaluate c(x, h(x)) for any pair (x, h(x)). This
assumption might not be appropriate since evaluating c(x, y) is a hard problem for some require-
ments. Second, it assumes the requirements are posed on a single input-output pair (x, y). However,
a machine learning model is sometimes needed to satisfy the requirements of multiple input-output
pairs, i.e., we want to deal with requirements of form c(x1, h(x1), . . . , xn, h(xn)), where (xi, h(xi))
is an input-output pair for model h. We show motivating examples for these types of requirements
in Sec.1.1.

This paper addresses the above problems to reveal the important properties of a CV. Our main find-
ings are as follows:
Preserving convexity: A CV preserves convexity on typical multi-class convex learning problems,
including logistic regression, multi-class SVM, and multi-class AdaBoost. We further generalize
the results to convex loss functions having a specific form (§5).
Bound improvements: We can reduce the Rademacher complexity by using a CV if the require-
ments uniquely determine possible labels for input x (§6).
Incorrect verifiers: We show that a generalization bound will not change if we use an incorrect CV
instead of a correct one. Moreover, we can give statistical assurance to an incorrect CV by accessing
annotated samples (§7).
Verifying requirements over multiple samples: If requirements are posed on multiple input-output
pairs, we can obtain the generalization bounds similar to those for the original CV. If a model is
PAC-learnable, we can obtain a bound even if we use a CV only at inference time. If we use a CV
both in the training and inference phases, we can obtain generalization error bounds based on the
Rademacher complexity of the original model (§8).

1.1 USE CASES OF CV

Nishino et al. (2022) shows some use cases of CV. We add a few more use cases, especially for the
new extensions introduced in this paper.
Safety-critical domains: To guarantee that input-output pairs of a model satisfy requirements is
important for safety-critical domains. For example, if we use a classification model for deciding
suitable therapy y for patient x, there are inadvisable choices for patients with specific properties,
so-called contraindications. Using a CV, we can guarantee that the model does not violate known
contraindications. Moreover, Leino et al. (2022) proposes an ML model for an airborne collision
avoidance system whose output satisfies safety constraints.
Incorrect verifiers: There are cases where we cannot access perfect verifiers. For example, if
we want to prohibit a text summarization model from generating a summary inconsistent with the
input, judging consistency is difficult (Kryscinski et al., 2020). Moreover, there are cases where the
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knowledge base is incomplete, or it might be computationally expensive to handle a complete set of
rules in a CV.
Requirements over multiple samples: We need requirements over multiple input-output pairs to
guarantee consistency among outputs. Suppose we want to assign jobs to n workers x1, . . . , xn

using model h that maps worker x to job y. Using a classification model that maps a worker to
a job, we can decide assignments independently as h(x1), . . . , h(xn). However, such assignments
might be unsatisfactory since some jobs will not be assigned to any worker. Requirement over
multiple samples can help this problem. Another typical example is requirements on robustness.
Given inputs x1, . . . , xn, and prediction over them h(x1) . . . , h(xn), we say h is robust with small
changes if h(xi) = h(xj) if xi and xj are close enough.

2 RELATED WORK

Machine learning models that can exploit constraints have been investigated in many research fields.
For example, Markov logic networks (Richardson & Domingos, 2006), Problogs (De Raedt et al.,
2007), and probabilistic circuit models (Kisa et al., 2014; Poon & Domingos, 2011) integrate statis-
tical models with symbolic logic formulations. Since these models can incorporate hard constraints
represented by symbolic logic, they can guarantee input-output pairs. More recent approaches can
be found in the survey paper on using logical constraints with deep neural networks (Giunchiglia
et al., 2022). For structured prediction, many approaches have been considered to control the lan-
guage generation process to satisfy soft and hard constraints (Qin et al., 2022; Zhang et al., 2023).
Previous research focused on their practical performance and gave little theoretical analysis of their
learnability when hard constraints are used.

The verification of machine learning models continues to gather attention. Attempts have verified
whether a machine learning model can provide specific desired properties (Bunel et al., 2018; Tjeng
et al., 2019; Katz et al., 2017; Singh et al., 2018). Exact verification methods use integer pro-
gramming (MIP) (Tjeng et al., 2019), constraint satisfaction (SAT) (Narodytska et al., 2020), and
a satisfiable module theory (SMT) solver (Katz et al., 2017) to assess the robustness of a neural
network model against input noise. These approaches aim to obtain models that fulfill the required
properties. However, verification methods cannot help modify the models if they do not satisfy such
requirements. If we want ML models to meet specific requirements, post-processing is needed as a
concurrent verification model.

Other lines of approaches combine an additional module with a ML model to realize “concurrent
verification”. Semantic probabilistic layer (SPL) (Ahmed et al., 2022) puts an additional layer imple-
mented using a probabilistic circuit to a neural network to guarantee that input-output pairs satisfy
requirements. Runtime shielding (Zhu et al., 2019) avoids unsafe explorations in reinforcement
learning by prohibiting unsafe actions. SC-Net (Leino et al., 2022) changes outputs of neural net-
works to satisfy ordering constraints. Although they are closely related to a CV, no generalization
analyses are given to these models. Since SPL and SC-Net can be seen as adding a verifier to the
existing model, theoretical results on CV can be applied to these models.

Various methods can give upper bounds on generalization errors, including VC-dimension (Vapnik
& Chervonenkis, 1971) and its extensions (Daniely et al., 2015; Natarajan, 1989), Rademacher
complexity (Bartlett & Mendelson, 2003; Koltchinskii & Panchenko, 2002), stability (Shalev-
Shwartz et al., 2010), PAC-Bayes (McAllester, 1998; Alquier, 2021), and information-theoretic
bounds (Zhang, 2006; Xu & Raginsky, 2017). Following (Nishino et al., 2022), we use Rademacher
complexity in the following analysis since it is among the most popular tools for giving theoretical
upper bounds on generalization error.

3 PRELIMINARIES

Let X denote the domain of the inputs, and let Y be the domain of the labels. Let H be a hypothesis
class, a set of measurable functions h : X → Y . Training sample S = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m is a finite sequence of size m drawn i.i.d. from a fixed but unknown probability distri-
bution D on X × Y . We represent set {1, . . . ,K} as [K]. In the following sections, we assume
Y = [K] unless otherwise stated. Given distribution D on X ×Y , L̂D(h) denotes the generalization
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error and LS(h) denotes the empirical error of h over S:

LD(h) := E
(x,y)∼D

[1h(x)̸=y] , L̂S(h) :=
1

m

m∑
i=1

1h(xi )̸=yi
, (1)

where 1ω is the indicator function of event ω. Let A be a learning algorithm that maps sample S to
hypothesis h ∈ H.

PAC learnability: We say hypothesis class H is agnostic PAC-learnable if there exists function
mH : (0, 1)2 → N and learning algorithm A with the following property: For every ϵ, δ ∈ (0, 1)
and distribution D over X ×Y , if S consists of m ≥ mH(ϵ, δ) i.i.d. examples generated by D, then
with at least probability 1− δ, the following holds:

LD(A(S)) ≤ min
h∈H

LD(h) + ϵ . (2)

Distribution D is realizable by hypothesis set H if h∗ ∈ H exists such that LD(h
∗) = 0. If D is

realizable by agnostic PAC-learnable hypothesis H, then H is PAC-learnable. If H is PAC-learnable,
then (2) becomes LD(A(S)) ≤ ϵ since minh∈H LD(h) = 0.

Rademacher complexity: Let ℓ : Y × Y → R be a loss function. Given loss function ℓ and
hypothesis class H, we define G := ℓ ◦ H :={(x, y) 7→ ℓ(h(x), y) : h ∈ H}. We use Rademacher
complexity to derive the generalization bounds.
Definition 3.1. (Empirical Rademacher complexity) Let G be a family of functions mapping from
X × Y to R, and let S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m be a sample of size m. Then the
empirical Rademacher complexity of G with respect to S is defined as

R̂S(G) :=E
σ

[
sup
g∈G

m∑
i=1

σig(xi, yi)

]
,

where σ = (σ1, . . . , σm) ∈ {±1}m are random variables distributed i.i.d. according to P[σi =
1] = P[σi = −1] = 1/2, which are called Rademacher variables. For any m ≥ 1, the Rademacher
complexity of G is defined as the expectation of the empirical Rademacher complexity over all the
samples of size m drawn based on D as Rm(G) :=ES∼Dm [R̂S(G)].

4 CONCURRENT VERIFIER

We review the definition of CV and the main results of Nishino et al. (2022). CV works with a
machine learning model corresponding to a measurable mapping h : X → Y . If x is given to the
model, which outputs h(x), then the CV checks whether the pair (x, h(x)) satisfies the requirements.
We assume that the requirements can be represented as requirement function c : (X ×Y) → {0, 1}.
If c(x, h(x)) = 1, then the pair satisfies the requirement; if c(x, h(x)) = 0, then it does not. For
simplicity, we assume that for every possible input x ∈ X , there exists y ∈ Y such that c(x, y) = 1.

After checking the input-output pair, a CV modifies output h(x) depending on the value of
c(x, h(x)). If c(x, h(x)) = 1, the CV outputs h(x) since it satisfies the requirements. If
c(x, h(x)) = 0, then it modifies h(x) to some y ∈ Y that satisfies c(x, y) = 1. If we use a CV
with a machine learning model that corresponds to h, then the combination of the model and the CV
can be seen as a function hc : X → Y:

hc(x) :=

{
h(x) if c(x, h(x)) = 1
yc if c(x, h(x)) = 0

, (3)

where yc ∈ Y satisfies c(x, yc) = 1 and is selected deterministically for every pair of h, x. When
Y = [K], an example of selecting minimum integer i ∈ [K] satisfying c(x, i) = 1 as yc is a
reasonable choice. When Y = [K] and h(x) is made by scoring functions h(x, y) : (X × Y) → R,
it is also reasonable to select y∗ such that y∗ = argmaxy∈Y,c(x,y)=1 h(x, y).

In the following analysis of the multi-class classification setting, we assume that every hypothesis is
defined based on scoring function h : X×Y → R, which defines mapping x 7→ argmaxy∈Y h(x, y).
Using a CV that corresponds to modifying scoring function h(x, y) to hc(x, y), which is defined as

hc(x, y) :=

{
h(x, y) if c(x, h(x)) = 1
C if c(x, h(x)) = 0

, (4)
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Figure 1: Overview of a machine learning model with a CV that checks whether input-output pairs
of a model satisfy requirements.

where C is a constant that satisfies C < infx,y h(x, y). Fig. 1 shows an overview of using a CV
with a machine learning model.

Learning a model corresponds to selecting hypothesis h from hypothesis class H. Therefore, learn-
ing a model with a CV corresponds to choosing a hypothesis from the modified hypothesis class:
Hc = {hc : h ∈ H}. Since every hypothesis in Hc satisfies the requirements, we can guarantee that
the model satisfies the condition if we select a hypothesis from Hc. In the following sections, we
analyze the learnability of Hc by comparing it with that of H.

Next, we review some CV properties. Nishino et al. (2022) analyzed generalization errors in two
different situations depending on when to use a CV. The first setting is the inference time verification
(ITV). Since we do not use a CV when we learn model ĥ ∈ H from training sample S, we add a
CV to ĥ to make a combined model ĥc to perform inference. This setting corresponds to a situation
where the requirements are unknown when we train the model. The second setting is learning time
verification (LTV), where we use a CV in both the learning and inference phases. In other words, we
select hypothesis ĥc ∈ Hc in the learning phase using a training sample and use ĥc in the inference
phase. ITV is a more flexible setting than LTV since we do not need to know the requirements in
the training phase for it. On the other hand, we expect to find a better hypothesis in the LTV setting
since we can consider the effect of the CV on selecting ĥc.

We get the following result for the ITV setting.
Theorem 4.1 (Theorem 5.1 of (Nishino et al., 2022)). If Y = [K], and hypothesis class H is
PAC-learnable with training sample S, then suppose that ĥ ∈ H is a hypothesis estimated from S

satisfying LD(ĥ) ≤ ϵ for parameter ϵ ∈ (0, 1). Then, for any requirement c, hypothesis ĥc obtained
by modifying ĥ with a CV satisfies

LD(ĥc) ≤ min
hc∈Hc

LD(hc) + ϵ .

This theorem shows that if H is PAC-learnable, using a CV only at the inference phase is sufficient
to obtain a model with a small generalization error among Hc. The previous paper also showed that
if H is not PAC-learnable, then LD(ĥc) can be much larger than the other hypothesis in Hc.

On the LTV setting, the following bound holds:
Theorem 4.2 (Theorem 6.1 of (Nishino et al., 2022)). Let H ⊆ RX×Y be a hypothesis class with
Y = [K], and let c be a requirement. Fix ρ > 0. Then for any δ > 0, with probability at least 1− δ,
the following bound holds for every hc ∈ Hc:

LD(hc) ≤ L̂S,ρ(hc) +
4K

ρ
Rm(Π1(H)) +

√
log 1

δ

2m
, (5)

where Π1(H) is defined as Π1(H) :={x 7→ h(x, y) : y ∈ Y, h ∈ H}.

LS,ρ(h) is an empirical margin loss defined as L̂S,ρ(h) :=
1
m

∑m
i=1 Φρ(ρh(xi, yi)), where ρh(x, y)

is the margin of function of h defined as ρh(x, y) :=h(x, y) − maxy′ ̸=y h(x, y
′), and Φρ(t) is the

margin loss defined as Φρ(t) :=min(1,max(0, 1 − t/ρ)). By comparing the above bound with the
standard Rademacher complexity-based bound for multi-class classification (e.g., Theorem 9.2 of
(Mohri et al., 2012)), we can see that the second and the third terms of the RHS of (5) equal to that
of the standard one. It means using a CV during a learning phase does not worsen the error bound
for any requirement c.
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5 PRESERVING CONVEXITY

We analyzed the effect of using a CV on efficiency in multi-class classification. Using a CV requires
additional computation in both the learning and inference phases. In the latter, we have to evaluate
c(x, y) for y ∈ [K] for given input x to compute the scoring function hc(x, y). Therefore, the
additional computation cost equals K evaluations of c(x, y). In the learning phase, we must evaluate
c(xi, y) for every xi ∈ S and y ∈ [K]. Moreover, modifying h(x, y) to hc(x, y) might change
the relationship between the objective function and the parameters, complicating the optimization
problem. In this section, we assume that the set of hypothesis H is represented as a real-valued
parameter vector w ∈ Rd. For many machine learning models, a learning problem can be formulated
as an optimization problem for finding w ∈ Θ ⊆ Rd that minimizes an objective function.

If Θ is a convex set and the objective function is convex regarding w, then the optimization problem
is convex. A convex optimization problem is an important class of such tasks since finding optimal
solutions is easy. For some machine learning models, including logistic regression, support vec-
tor machines (SVMs), and AdaBoost, their learning problems correspond to convex optimization
problems. We show that using a CV on these models does not damage the convexity of learning
problems.

Multi-class Logistic Regression Multi-class logistic regression is a probabilistic model that de-
fines conditional distribution P[y = k | x] = exp (ak)/

∑K
j=1 exp (aj), where ak = wT

kϕ(x) and
we assume (w1, . . . ,wK) ∈ RK×d and ϕ is a feature mapping ϕ : X → Rd. The cross-entropy er-
ror of the logistic regression model is a convex function of parameters (w1, . . . ,wK) (e.g., (Bishop,
2006)).

As stated in the previous section, using a CV for a multi-class classification problem corresponds
to modifying scoring functions h(x, y) to hc(x, y). Since multi-class logistic regression models
make decisions based on score function h(x, k) = ak, the modified model defines the conditional
distribution

P[y = k | x] = exp (bk)∑K
j=1 exp (bj)

, (6)

by substituting h(x, k) with hc(x, k) = bk, where bk = ak if c(x, k) = 1, otherwise bk = C <
infx,wk

wT
kϕ(x). We show the cross-entropy loss of the above modified logistic regression model

is convex.

Theorem 5.1. The optimization problem of minimizing the cross-entropy loss of the multi-class
logistic regression model combined with a CV with regard to (w1, . . . ,wK) ∈ RK×d is a convex
optimization problem.

We give the proof in Appendix A. The proof shows the semi-definiteness of the hessian. Intuitively,
using a CV corresponds to deleting class labels with c(x, k) = 0 since h(x, k) is a small constant.
It makes the original problem K ′-class classification problem where K ′ < K. Since the learning
problem of logistic regression is convex for any K ≥ 1, a CV preserves convexity.

Multi-class SVM Multi-class SVM (Crammer & Singer, 2000; 2002) is an extension of SVM for
multi-class classification. Similar to logistic regression, a multi-class SVM learns a decision func-
tion that is linear with parameters W = (w1, . . . ,wK) and has form x 7→ argmaxk∈K wT

kϕ(x).
Estimating parameters W is represented as the following optimization problem:

min
W,ξ

1

2

K∑
k=1

∥wk∥2 +B

m∑
i=1

ξi

subject to: ∀i ∈ [m],∀k ∈ [K]− {yi}, ξi ≥ 0 ,wT
yi
ϕ(xi) ≥ wT

kϕ(xi) + 1− ξi .

Since the objective is convex with W and ξ and the constraints are affine, the above problem is
a convex optimization problem. Since the constraints are affine and differentiable, there exists an
equivalent dual problem which is also a convex optimization problem. We usually solve it to learn
the parameters.
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Applying a CV to a multi-class SVM corresponds to changing the decision function to x 7→
argmaxk∈[K] hc(x, k), where hc(x, k) = wT

kϕ(x) if c(x, k) = 1; otherwise, hc(x, k) is a small
constant. Using a CV corresponds to changing the first constraint of the optimization problem. We
can remove the constraint for c(xi, l) = 0 since inequality is always satisfied for such cases. Note
that we assume c(xi, yi) = 1 for all i ∈ [m] since the model will always fail to classify the sample
with c(xi, yi) = 0, and removing such samples will not affect the learning procedure.

This modified optimization problem is a convex optimization problem since the objective is convex
with respect to W and ξ, and the constraints are affine. Moreover, since the problem satisfies
weak Slater’s condition (Mohri et al., 2012), a strong duality holds, and the corresponding dual
optimization problem is also convex.

Multi-class AdaBoost AdaBoost.MR (Schapire & Singer, 1999; 2000) is a multi-class extension
of AdaBoost (Freund & Schapire, 1997). Let Hb = {h1, . . . , hn} be a family of base hypothesis
mapping X × Y to {−1,+1}. The learning problem of AdaBoost.MR solves the minimization
problem of objective function F defined for samples S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)M

and ᾱ = (ᾱ1, . . . , ᾱn) ∈ Rn, n ≥ 1, by

F (ᾱ) =

m∑
i=1

∑
k ̸=yi

e−
∑n

j=1 ᾱj(hj(xi,yi)−hj(xi,k)) .

F is convex since it is a sum of convex functions, each obtained by the composition of the exponen-
tial function with an affine function of ᾱ. F is also differentiable since the exponential function is
differentiable.

AdaBoost.MR defines the scoring function h(x, k) as
∑n

j=1 ᾱjhj(x, k). Adding a CV to Ad-
aBoost.MR corresponds to substituting h(x, y) with hc(x, y), which preserves the convexity of F
since it is still a sum of the compositions of exponential functions and an affine function of ᾱ.
Similarly, F remains differentiable when using a CV.

The above observation on AdaBoost.MR leads us to a more general case by using standard com-
position rules of convex functions (Boyd & Vandenberghe, 2004). Let hk = h(x, k). If we fix x,
then hk can be seen as a mapping from w to R. Let g : RK → R. If the loss for pair (x, y) is
defined as a composition of the form g(h1, . . . , hk), we can say the loss is convex if (i) g is con-
vex and non-decreasing in each argument, and hk is convex, or (ii) g is convex and non-increasing
in each argument, and hk is concave. If the loss of a model satisfies either of the above condi-
tions, then using a CV preserves convexity since using a CV corresponds to substituting some hk

with c(x, k) = 0 to a constant value, and such substitution does not break the above conditions on
function compositions.

6 IMPROVING GENERALIZATION BOUNDS

Theorem 4.2 shows that using a CV in the LTV setting does not increase the bound on generalization
error. This result is positive since we can use any requirements without heeding the increase of
the generalization error. On the other hand, it remains unclear whether using a CV improves the
generalization error bound. Whether we can improve the bound depends on the type of requirements.
Therefore, we consider a bound that depends on requirement functions c and D.

We say requirement function c uniquely determines label of x to ŷ if c(x, y) = 0 for all y ̸= ŷ and
c(x, ŷ) = 1. We assume that score function hc(x, ŷ) = M for all hc ∈ Hc if c uniquely determines
the label of x, where M is a constant satisfying C ≪ M . This assumption is safe since it does not
change the predictions made by each hypothesis hc ∈ Hc. Let DX be the marginal distribution over
X , and C0 ⊆ X be the set of x where c uniquely determines labels of x. Let p0 = Ex∼DX [1x∈C0

],
i.e., the probability that x ∈ C0 is generated from DX . Since p0 is the probability that the CV
uniquely determines the label of input x, we can bound the Rademacher complexity of Hc by using
p0. Let D0 and D1 be the conditional distribution of x conditioned on the event x ∈ C0 and x ̸∈ C0,
respectively. Then, DX can be written as DX = p0D0 + (1 − p0)D1. Using p0, we can obtain the
following bound of the Rademacher complexity.
Theorem 6.1. Let H ⊆ RX×Y be a hypothesis class with Y = [K], and let c be a requirement. Sup-
pose that every pair (x, y) ∈ X ×Y is generated by sample distribution D and p0 = Ex∼DX [1x∈C0

].
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Fix ρ > 0. Then for any δ > 0 and m > 0 with probability at least 1− δ, the following bound holds
for every hc ∈ Hc:

LD(hc) ≤ L̂S,ρ(hc) +
4K

ρ

m−1∑
k=0

B[k;m, p0]
m− k

m
RD1

m−k(Π1(H)) +

√
log 1

δ

2m
, (7)

where RD1

m−k(Π1(H)) is the Rademacher complexity of Π1(H) computed on distribution D1, and
B[k;m, p0] represents the Binomial distribution B[k;m, p0] :=

(
m
k

)
pk0(1− p0)

m−k.

We show the full proof in Appendix B. The proof uses the fact that all hc(x, y) have the same value
for x ∈ C0 to show that the empirical Rademacher complexity of samples generated from D0 is zero.
Compared with Theorem 4.2, the theorem shows that the Rademacher complexity of the modified
hypothesis can be bounded by the weighted sum of the Rademacher complexities of H defined with
sample size k = 1, . . . ,m and distribution D1. This inequality will not directly improve the bound
since the Rademacher complexity depends on D1, which differs from the original DX . However,
since there are known upper bounds on the Rademacher complexity that do not depend on the form
of data distribution, combining these distribution agnostic bounds will result in improved upper
bounds. For some models, Rm(Π1(H)) has an upper bound O(1/

√
m), which does not depend

on D (Mohri et al., 2012). If we can write Rm(Π1(H)) ≤ D/
√
m with constant D, then we can

show that the second term of the RHS of (7) is strictly smaller than 4KD/ρ
√
m, an upper bound of

4K
ρ Rm(Π1(H)), if p0 > 0. We can have tighter bounds if requirement c determines more labels on

elements x ∼ DX . Note that p0 is unclear in a practical setting since D is unknown. However, we
can estimate p0 from samples drawn from DX by evaluating whether x ∈ C0 or not.

7 INCORRECT VERIFIER

Nishino et al. (2022) assumes we can always access the true requirement function c. This assumption
is reasonable for many requirements. For example, if y requires a sentence containing specific words
or phrases, then the requirement evaluation is trivial. On the other hand, as shown in the use cases
of Sec. 1.1, judging whether the input-output pair satisfies a requirement is sometimes complicated.
Let c be a true requirement function that we cannot directly access or whose accessing is highly
expensive; instead, we access incorrect function c′ : (X ×Y) → {0, 1}. Thus, we consider a setting
where a CV uses c′ instead of c. We can analyze the effect of using c′ from two different aspects.
The first is its effect on the generalization error on hypothesis set H. Since the effect of using a
CV on the generalization error only reflects how we modify each hypothesis with a CV, whether
requirement functions c′ are correct does not affect the generalization ability. Therefore, we can
apply generalization bounds for a correct c to cases where c′ might be incorrect.

The second aspect concerns what kind of guarantees we can provide for the hypotheses modified
with c′. We must measure the deviation between c and c′ to evaluate this case. Since the deviation
between them depends on data generation distribution D and selected hypothesis H, we resort to a
task-specific approach, a straightforward approach that assesses the deviation using true c to annotate
the outputs of hc. We first learn hypothesis ĥc ∈ Hc that minimizes the training error, dip into N

samples from DX , and use ĥc to predict its labels. Next, we access c to annotate pairs (x, ĥc(x)) to
evaluate the probability that ĥc satisfies the requirement. Since whether the obtained results satisfy
the requirement follows a Binomial distribution, we can obtain an upper bound of the error ratio of
c′ by applying a standard technique to derive tail bounds of Binomial distributions.

8 VERIFYING REQUIREMENTS OVER MULTIPLE SAMPLES

Our analysis so far assumes that a requirement on a model is always imposed independently on a
single input-output pair (x, y) ∈ X × Y . However, as we mentioned in the introduction, we want
to deal with requirements that deal with multiple pairs. Let H be the set of hypothesis h : X → Y ,
where Y = [K]. Let hn : Xn → Yn be the hypothesis h extended for applications to multiple
inputs, i.e., hn(x) = (h(x1), . . . , h(xn)) ∈ Yn. Let c : (X × Y)n → {0, 1} be the requirement
function over n pairs. Using a CV corresponds to modifying hypothesis hn to hn

c , where hn
c (x)

equals hn(x) if c(x, hn(x)) = 1; otherwise it returns y′ ∈ Yn satisfying c(x,y′) = 1. Below, we
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use different rules for selecting y′. The first rule selects y′ that satisfies c(x,y′) = 1 and minimizes
the Hamming distance from hn(x). The second rule assumes that h decides y based on a scoring
function, and we select y′ satisfying c(x,y′) = 1 and having the maximum score. Let L(hn(x),y)
be the sum of 0-1 loss defined as L(hn(x),y) := 1

n

∑n
i=1 1h(xi )̸=yi

. If no requirement is given, the
loss coincides with the average of 0-1 losses for i.i.d samples.

As with a setting with single input-output pairs, we consider the ITV and LTV settings. First, we
can obtain a generalization error bound in the ITV setting if H is PAC-learnable.

Theorem 8.1. Suppose that H is realizable and PAC-learnable. If ĥ ∈ H satisfies LD(h) ≤ ϵ, then
for any requirement c on n tuples, we have the following bound:

E
(x,y)∼Dn

[L(ĥn
c (x),y)] ≤ min

hc∈Hc

E
(x,y)∼Dn

[L(hn
c (x),y)] + nϵ . (8)

We show the full proof in Appendix C. The proof derives the bound by comparing the generalization
error of ĥn

c with the best hypothesis fn
c , and shows the difference between them can be bounded by

nϵ if we use the above rule for selecting y′ based on the minimum Hamming distance.

We extend the Rademacher complexity-based bound on the LTV settings to the multiple sam-
ples setting. In the following, we assume that hypothesis h is a mapping defined by scor-
ing function h(x, y), and hn(x) = argmaxy h

n(x,y), where we define the score function as
hn(x,y) := 1

n

∑n
i=1 h(xi, yi). In this setting, using a CV corresponds to modifying score function

hn(x,y) to hn
c (x,y) defined as

hn
c (x,y) :=

{
hn(x,y) if c(x,y) = 1
C if c(x,y) = 0

, (9)

where C < infx,y h
n(x,y). Let ρhn(x,y) be a margin function defined as

ρhn(x,y) :=hn(x,y)−max
y′≠y

hn(x,y′) .

We have the following generalization bound based on Rademacher complexity. Here, we define a
single example as a tuple of n pairs (x, y) ∈ X × Y sampled from Dn. Let S be a set of M such
samples.
Theorem 8.2. Let H ⊆ RX×Y be a hypothesis class with Y = [K], S =
((x11, y11), . . . ((x1n, y1n)), . . . , ((xm1, ym1), . . . , (xmn, ymn)), and let c be a requirement. Fix
ρ > 0. Then for any δ > 0, with probability at least 1 − δ, the following bound holds for all
hc ∈ Hc:

E
(x,y)∼Dn

[L(ĥn
c (x),y)] ≤ LS,ρ(h

n
c ) +

4K
√
2n

ρ
Rmn(Π1(H)) +

√
log 1

δ

2m
. (10)

We give the proof in Appendix D. The core of the proof is giving a bound to the Rademacher
complexity of the modified hypothesis by the Rademacher complexity of H. We use an extension
of Taragrand’s lemma introduced by Cortes et al. (2016) to derive the bound. Comparing the above
bound with the bound for a single input-output case (Theorem 4.2), we see that the second term of
the RHS changes from 4K

ρ Rm(Π1(H)) to 4K
√
2n

ρ Rmn(Π1(H)). Since many upper bounds of the
Rademacher complexity scales in O(1/

√
m), the order of these bounds would be compatible. Since

we use m×n pairs in the case of multiple pairs, we need n times more data to obtain the compatible
bound in this case. The last term of RHS is the same as the single input-output pair case. But we
must note that we use n times more samples since we use n-tuples for training.

9 CONCLUSION

This paper analyzed the fundamental properties of learning with a concurrent verifier. Combined
with the theoretical results of the previous paper, we can provide a comprehensive understanding of
learning with a CV. A recent survey paper (Giunchiglia et al., 2022) on deep neural networks with
constraints envisions that giving certification will become essential for machine learning applica-
tions. Since adding a verifier to an ML model is a simple solution, our theoretical analyses would
contribute to this line of work.
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REPRODUCIBILITY STATEMENTS

We give complete proofs for all the theoretical claims of the paper in the appendix.
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A PROOF OF THEOREM 5.1

Proof. Since using a CV does not change the domain of feasible values of w1, . . . ,wK , we
show that the cross-entropy loss function remains a convex function. Let ti ∈ {0, 1}K be a
one-hot vector representing the label of the i-th training sample. Given training sample S =
((x1, y1), . . . , (xm, ym)), the cross-entropy loss E(w1, . . . ,wK) is defined as

E(w1, . . . ,wK) :=−
m∑
i=1

K∑
j=1

tij lnP[y = j | xi] .

The derivative of E with respect to wj is

∂E(W)

∂wj
=

m∑
i=1

K∑
k=1

∂E

∂yik

∂yik
∂bij

∂bij
∂aij

∂aij
∂wj

= −
m∑
i=1

K∑
k=1

tik
yik

yik(δkj − yij)cijϕi

=

m∑
i=1

(yij − tij)cijϕi ,

where yik is P[y = k | xi], ϕi = ϕ(xi) and δjk = 1 if j = k, otherwise δjk = 0. cik = ∂bik/∂aik,
and cik = 1 if c(xi, k) = 1, otherwise cik = 0. The hessian H is an Kd × Kd matrix whose
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(k, j)-th submatrix of size d× d is

∂2E

∂wk∂wj
=

m∑
i=1

∂yik
∂wj

cikϕi

=

m∑
i=1

∂yik
∂bij

∂bij
∂aij

∂aij
∂wj

cikϕi

=

m∑
i=1

yik(δkj − yij)cikcijϕiϕ
T
i .

We prove the convexity by showing that uTHu ≥ 0 for any u ∈ RKd.

uTHu =

m∑
i=1

∑
j,k

αijyik(δkj − yj)cijcikαik

=

m∑
i=1

∑
k

yikc
2
ikα

2
ik −

(∑
k

yikcikαik

)2

, (11)

where αik =
∑d

j=1 ukjϕij . By using the fact
∑

k yik = 1 and f(x) = x2 is a convex function, we
can apply Jensen’s inequality to get the following inequality for all i ∈ [m]:∑

k

yikc
2
ikα

2
ik =

∑
k

yikf(cikαik) ≥ f

(∑
k

yikcikαik

)
=

(∑
k

yikcikαik

)2

.

Thus we can see uTHu ≥ 0.

B PROOF OF THEOREM 6.1

Proof. The proof first follows the proof for Theorem 9.2 of Mohri et al. (2012). We first define
hypothesis class H0 :={(x, y) 7→ ρθ,hc

(x, y) : hc ∈ Hc} , where ρθ,h :=miny′(h(x, y)−h(x, y′)+
θ1y′=y). We fix θ = 2ρ. Following the proof for Theorem 9.2 of Mohri et al. (2012), we have the
following bound for any h ∈ Hc and δ > 0 with probability at least 1− δ:

LD(hc) ≤ L̂S,ρ(hc) +
2

ρ
Rm(H0) +

√
log 1

δ

2m
. (12)

In the following, we show that Rm(H0) ≤ 2K
∑m−1

k=0 B[k;m, p0]
m−k
m RD1

m−k(Π1(H)).

Rm(H0) can be upper-bounded as follows:

Rm(H0) =
1

m
E
S,σ

[
sup

hc∈Hc

m∑
i=1

σi(hc(xi, yi)−max
y

(hc(xi, y)− 2ρ1y=yi
))

]

≤ 1

m
E
S,σ

[
sup

hc∈Hc

m∑
i=1

σihc(xi, yi)

]
+

1

m
E
S,σ

[
sup

hc∈Hc

m∑
i=1

σi max
y

(hc(xi, y)− 2ρ1y=yi)

]
.

(13)

Now, we bound the first term above. Suppose training sample S is divided into S0 and S1, where S0

is a set of samples x ∈ C0, and S1 is a set of samples x ̸∈ C0, respectively. Let |S0| = k < m. Since
the empirical Rademacher complexity is invariant of the order of xi, we suppose that x1, . . . , xk ∈
S0 and xk+1, . . . , xm ∈ S1. Then, empirical Rademacher complexity corresponding to the first term
of (13) can be bounded as

1

m
E
σ

[
sup

hc∈Hc

m∑
i=1

σihc(xi, yi)

]
=

1

m
E
σ

[
sup

hc∈Hc

k∑
i=1

σihc(xi, yi) +

m∑
i=k+1

σihc(xi, yi)

]

≤ 1

m
E
σ

[
sup

hc∈Hc

k∑
i=1

σihc(xi, yi)

]
+

1

m
E
σ

[
sup

hc∈Hc

m∑
i=k+1

σihc(xi, yi)

]
,

14
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where we use the sub-additivity of sup. From the assumption that c uniquely determines labels for
xi ∈ S0, the first term above equals to zero since hc(xi, yi) takes the same value for all hc ∈ Hc,
and the empirical Rademacher complexity of the singleton hypothesis is zero. Following the proof
of Theorem 6.1 of Nishino et al. (2022), we have that the second term above is bounded as

1

m
E
σ

[
sup

hc∈Hc

m∑
i=k+1

σihc(xi, yi)

]
≤ m− k

m
KRS1(Π1(H)) . (14)

Similarly, we bound the empirical Rademacher complexity corresponding to the second term of (13)
as:

1

m
E
σ

[
sup

hc∈Hc

m∑
i=1

σi max
y

(hc(xi, y)− 2ρ1y=yi)

]
≤ 1

m
E
S,σ

[
sup

hc∈Hc

k∑
i=1

σi max
y

(hc(xi, y)− 2ρ1y=yi)

]

+
1

m
E
σ

[
sup

hc∈Hc

m∑
i=k+1

σi max
y

(hc(xi, y)− 2ρ1y=yi
)

]
.

The first term of the RHS of the above equals zero since all hcinHc takes the same value for xi ∈ C0.
Following the proof of Theorem 6.1 of Nishino et al. (2022), the second term above is bounded as

1

m
E
σ

[
sup

hc∈Hc

m∑
i=k+1

σi max
y

(hc(xi, y)− 2ρ1y=yi)

]
≤ m− k

m
KRS1(Π1(H)) . (15)

Combining (14) and (15), we have the following bound for the empirical Rademacher complexity
R(S0,S1)(H0):

R(S0,S1)(H0) ≤
m− k

m
2KRS1

(Π1(H)) .

Next, we derive a bound of Rm(H0). Since the Rademacher complexity Rm(H0) is the expectation
of empirical Rademacher complexity, we have:

Rm(H0) = E
S=(x1,...,xm)∼Dm

X

[RS(H0)]

=

m∑
k=0

B[k;m, p0] E
(S0,S1)∼Dk

0×Dm−k
1

[R(S0,S1)(H0)]

≤
m∑

k=0

B[k;m, p0]
m− k

m
2KRm−k(Π1(H)) ,

which completes the proof.

C PROOF OF THEOREM 8.1

Proof. Since H is realizable, there exists f ∈ H such that LD(f) = 0. From the defi-
nition, f also satisfies E(x,y)n∼Dn [L(fn(x),y)] = 0. Similarly, E(x,y)n∼Dn [L(ĥn(x),y)] ≤
1/n

∑n
i=1 E (x, y) ∼ D[1h(xi )̸=yi

] ≤ ϵ from the definition of L. Let fn
c be the mapping that

satisfies requirements and achieves the minimum error. We prove the theorem by bounding
E(x,y)n∼Dn [L(hn

c (x),y) − L(fn
c (x),y)]. When pair (x,y) satisfies L(ĥn(x),y) = 0, then

L(hn
c (x),y) − L(fn

c (x),y) = 0 since the minimum hamming distance correction rule can se-
lect y′ with minimum errors for both ĥn

c and fn
c if c(x,y) = 0. If L(ĥn(x),y) > 0, then

L(ĥn(x),y) − L(fn
c (x),y) can be at most n times larger than L(hn

c (x),y) − L(fn
c (x),y) since

the modified predictions can be incorrect for all yi. Therefore, for any (x, y)n ∼ Dn the following
holds almost surely

L(hn
c (x),y)− L(fn

c (x),y) ≤ n(L(hn(x),y)− L(fn(x),y)) .
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By taking expectation on (x, y) ∼ Dn for the both sides, we have

E
(x,y)∼Dn

[L(hn
c (x),y)] ≤ E

(x,y)n∼Dn
[L(fn

c (x),y)] + n E
(x,y)n∼Dn

[L(ĥn(x),y)]

≤ min
hc∈Hc

E
(x,y)n∼Dn

[L(hn
c (x),y)] + nϵ .

D PROOF OF THEOREM 8.2

To prove the above theorem, we use the following extension of the contraction lemma proved by
Cortes et al. (2016).

Lemma D.1 (Cortes et al. (2016)). Let H be a hypothesis set of functions mapping X to Rc. Assume
that for all i = 1, . . . ,m, Ψi : Rc → R is µi-Lipschitz for Rd equipped with the 2-norm. That is:

|Ψi(x
′)−Ψi(x)| ≤ µi∥x′ − x∥2 ,

for all (x,x′) ∈ (Rc)2. Then, for any sample S of m points x1, . . . , xm ∈ X , the following
inequality holds

1

m
E
σ

[
sup
h∈H

m∑
i=1

σiΦi(h(xi))

]
≤

√
2

m
E
ϵ

sup
h∈H

m∑
i=1

c∑
j=1

ϵijµi(hj(xi))

 , (16)

where ϵ = (ϵij)i,j and ϵijs are independent Rademacher variables uniformly distributed over {±1}.

Proof. We first define hypothesis classes H0 and H1 as follows:

H0 = {(x,y) 7→ ρhn
c
(x,y) : hn

c ∈ Hn
c }

H1 = {Φρ ◦ ĥ : ĥ ∈ H0} .

By applying a technique to derive the error bound based on the Rademacher complexity (e.g., Mohri
et al. (2012)) based on the McDiarmid’s inequality, we have the following:

E
(x,y)∼Dn

[Φρ(ρhn
c
(x,y)] ≤ 1

m

m∑
i=1

Φρ(ρhn
c
(xi,ym)) + 2Rm(H1) +

√
log 1

δ

2m

Since E(x,y)∼Dn [L(hn
c (x),y)] ≤ E(x,y)∼Dn [1hn

c (x)̸=y] = E(x,y)∼Dn [1ρhn
c
(x,y)≤0] ≤

E(x,y)∼Dn [Φρ(ρhn
c
(x,y))], we have that the RHS of the equation is an upper bound of the gen-

eralization error. Since the margin function is 1/ρ Lipshitz, we have Rm(H1) ≤ 1
ρRm(H0) from

the Talagrand’s contraction lemma. Next we upper-bound Rm(H0) as follows:

Rm(H0) =
1

m
E
S,σ

[
sup

hn
c ∈Hn

c

m∑
i=1

σi(h
n
c (xi,yi)−max

y ̸=yi

(hn
c (xi,y)))

]

≤ 1

m
E
S,σ

[
sup

hn
c ∈Hn

c

m∑
i=1

σih
n
c (xi,yi)

]
+

1

m
E
S,σ

[
sup

hn
c ∈Hn

c

m∑
i=1

σi max
y ̸=yi

hn
c (xi,y)

]
.
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Now we bound the second term above. We fist show the Lipschitzness of h 7→ maxy′ ̸=y h
n
c (x,y

′).
Observe that the following chain of inequalities holds for any h, h̃ ∈ H

|max
y′ ̸=y

hn
c (x,y

′)−max
y′ ̸=y

h̃n
c (x,y

′)|

≤ max
y′ ̸=y

|hn
c (x,y

′)− h̃n
c (x,y

′)|

≤ max
y

|hn
c (x,y)− h̃n

c (x,y)|

≤ max
y

|hn(x,y)− h̃n(x,y)|

=
1

n
max
y

|
n∑

i=1

(h(xi, yi)− h̃(xi, yi))|

≤ 1

n

n∑
i=1

max
yi

|h(xi, yi)− h̃(xi, yi)|

≤
√
n

n

√√√√ n∑
i=1

[
max
yi

|h(xi, yi)− h̃(xi, yi)|
]2

=
1√
n

√√√√ n∑
i=1

max
yi

|h(xi, yi)− h̃(xi, yi)|2

≤ 1√
n

√√√√ n∑
i=1

∑
k∈[K]

|h(xi, k)− h̃(xi, k)|2 ,

where we use |hn
c (x,y) − h̃n

c (x,y)| ≤ |hn(x,y) − h̃n(x,y)| for any y at line 4. Therefore, by
applying lemma D.1, we obtain

1

m
E
S,σ

[
sup

hn
c ∈Hn

c

m∑
i=1

σi max
y ̸=yi

hn
c (xi,y)

]

≤
√
2

m
E
S,ϵ

sup
h∈H

1√
n

m∑
i=1

n∑
j=1

K∑
k=1

ϵijkh(xij , k)


≤

√
2

m
E
S,ϵ

sup
h∈H

1√
n

m∑
i=1

n∑
j=1

K∑
k=1

ϵijkh(xij , k)


≤

√
2

m
√
n

E
S,ϵ

∑
k

sup
h∈H

∑
i

∑
j

ϵijkh(xij , k)


≤

√
2

m
√
n

∑
k∈[K]

E
S,ϵ

sup
h∈H

∑
i

∑
j

ϵijkh(xij , k)


≤
∑

k∈[K]

√
2nRmn(Π1(H)) ≤ K

√
2nRmn(Π1(H)) ,
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where we use the sub-additivity of sup at line 4. We also use the fact that (xi1, . . . , xin) are i.i.d. at
the last line. We next bound the first term. We have the following Lipschitzness.∣∣∣hc(xi,yi)− h̃c(xi,yi)

∣∣∣
≤ max

y

∣∣∣hc(xi,y)− h̃c(xi,y)
∣∣∣

≤ 1

n

√
n

√√√√ n∑
j=1

∑
k∈[K]

|h(xij , k)− h̃(xij , k)|2 .

Hence we have

1

m
E
σ

[
sup
h∈Hc

m∑
i=1

hc(xi,yi)

]

≤
√
2

m
√
n
E
ϵ

∑
k

sup
h∈H

∑
i

∑
j

ϵijkh(xij , k)


≤
∑
k

√
2nRnm(Π1(H)) ≤ K

√
2nRnm(Π1(H)) .

Hence we can prove Rm(H1) ≤ 2K
√
2n

ρ Rnm(Π1(H)).
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