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Abstract

We consider learning the structures of Gaussian latent tree models with vector
observations when a subset of them are arbitrarily corrupted. First, we present
the sample complexities of Recursive Grouping (RG) and Chow-Liu Recursive
Grouping (CLRG) without the assumption that the effective depth is bounded in
the number of observed nodes, significantly generalizing the results in Choi et
al. (2011). We show that Chow-Liu initialization in CLRG greatly reduces the
sample complexity of RG from being exponential in the diameter of the tree to
only logarithmic in the diameter for the hidden Markov model (HMM). Second,
we robustify RG, CLRG, Neighbor Joining (NJ) and Spectral NJ (SNJ) by using
the truncated inner product. These robustified algorithms can tolerate a number
of corruptions up to the square root of the number of clean samples. Finally, we
derive the first known instance-dependent impossibility result for structure learning
of latent trees. The optimalities of the robust version of CLRG and NJ are verified
by comparing their sample complexities and the impossibility result.

1 Introduction

Latent graphical models provide a succinct representation of the dependencies among observed and
latent variables. Each node in the graphical model represents a random variable or a random vector,
and the dependencies among these variables are captured by the edges among nodes. Graphical
models are widely used in domains from biology [1], computer vision [2] and social networks [3].

This paper focuses on the structure learning problem of latent tree-structured Gaussian graphical
models (GGM) in which the node observations are random vectors and a subset of the observations
can be arbitrarily corrupted. This classical problem, in which the variables are clean scalar random
variables, has been studied extensively in the past decades. The first information distance-based
method, NJ, was proposed in [1] to learn the structure of phylogenetic trees. This method makes
use of additive information distances to deduce the existence of hidden nodes and introduce edges
between hidden and observed nodes. RG, proposed in [4], generalizes the information distance-based
methods to make it applicable for the latent graphical models with general structures. Different from
these information distance-based methods, quartet-based methods [5] utilize the relative geometry of
every four nodes to estimate the structure of the whole graph. Although experimental comparisons
of these algorithms were conducted in some works [4, 6, 7], since there is no instance-dependent
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impossibility result of the sample complexity of structure learning problem of latent tree graphical
models, no thorough theoretical comparisons have been made, and the optimal dependencies on the
diameter of graphs and the maximal distance between nodes ρmax have not been found.

The success of the previously-mentioned algorithms relies on the assumption that the observations
are i.i.d. samples from the generating distribution. The structure learning of latent graphical models
in presence of (random or adversarial) noise remains a relatively unexplored problem. The presence
of the noise in the samples violates the i.i.d. assumption. Consequently, classical algorithms may
suffer from severe performance degradation in the noisy setting. There are some works studying the
problem of structure learning of graphical models with noisy samples, where all the nodes in the
graphical models are observed and not hidden. Several assumptions on the additive noise are made in
these works, which limit the use of these proposed algorithms. For example, the covariance matrix
of the noise is specified in [8], and the independence and/or distribution of the noise is assumed in
[9–11, 7]. In contrast, we consider the structure learning of latent tree graphical models with arbitrary
corruptions, where assumptions on the distribution and independence of the noise across nodes are
not required [12]. Furthermore, the corruptions are allowed to be presented at any position in the
data matrix; they do not appear solely as outliers. In this work, we derive bounds on the maximum
number of corruptions that can be tolerated for a variety of algorithms, and yet structure learning can
succeed with high probability.

Firstly, we derive the sample complexities of RG and CLRG where each node represents a random
vector; this differs from previous works where each node is scalar random variable (e.g., [4, 13]).
We explore the dependence of the sample complexities on the parameters of the graph. Compared
with [4, Theorem 12], the derived sample complexities are applicable to a wider class of latent trees
and capture the dependencies on more parameters of the underlying graphical models, such as ρmax,
the maximum distance between any two nodes, and δmin, the minimum over all determinants of the
covariance matrices of the vector variables. Our sample complexity analysis clearly demonstrates and
precisely quantifies the effectiveness of the Chow-Liu [14] initialization step in CLRG; this has been
only verified experimentally [4]. For the particular case of the HMM, we show that the Chow-Liu
initialization step reduces the sample complexity of RG which isO

(
( 9

2 )Diam(T)
)

toO
(

log Diam(T)
)
,

where Diam(T) is the tree diameter.

Secondly, we robustify RG, CLRG, NJ and SNJ by using the truncated inner product [15] to estimate
the information distances in the presence of arbitrary corruptions. We derive their sample complexities
and show that they can tolerate n1 = O

( √n2

logn2

)
corruptions, where n2 is the number of clean samples.

Finally, we derive the first known instance-dependent impossibility result for learning latent trees.
The dependencies on the number of observed nodes |Vobs| and the maximum distance ρmax are
delineated. The comparison of the sample complexities of the structure learning algorithms and the
impossibility result demonstrates the optimality of Robust Chow-Liu Recursive Grouping (RCLRG)
and Robust Neighbor Joining (RNJ) in Diam(T) for some archetypal latent tree structures.

Notation We use san-serif letters x, boldface letters x, and bold uppercase letters X to denote
variables, vectors and matrices, respectively. The notations [x]i, [X]ij , [X]:,j and diag(X) are
respectively the ith entry of vector x, the (i, j)th entry of X, the jth column of X, and the diagonal
entries of matrix X. The notation x(k) represents the kth sample of x. ‖x‖0 is the l0 norm of the
vector x, i.e., the number of non-zero terms in x. The set {1, . . . , n} is denoted as [n]. For a tree
T = (V, E), the internal (non-leaf) nodes, the maximal degree and the diameter of T are denoted as
Int(T), Deg(T), and Diam(T), respectively. We denote the closed neighborhood and the degree of
xi as nbd[xi;T] and deg(i), respectively. The length of the (unique) path connecting xi and xj is
denoted as dT(xi, xj).

2 Preliminaries and problem statement

A GGM [16, 17] is a multivariate Gaussian distribution that factorizes according to an undirected
graph G = (V, E). More precisely, a lsum-dimensional random vector x = [x>1 , . . . ,x

>
p ]>, where

xi ∈ Rli and lsum =
∑p
i=1 li, follows a Gaussian distribution N (0,Σ), and it is said to be Markov

on a graph G = (V, E) with vertex set V = {x1, . . . , xp} and edge set E ⊆
(V

2

)
and (xi, xj) ∈ E if
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and only if the (i, j)th block Θij of the precision Θ = Σ−1 is not the zero matrix 0. We focus on
tree-structured graphical models, which factorize according to acyclic and connected (tree) graphs.

A special class of graphical models is the set of latent graphical models G = (V, E). The vertex set V
is decomposed as V = Vhid ∪ Vobs. We only have access to n i.i.d. samples drawn from the observed
set of nodes Vobs. The two goals of any structure learning algorithm are to learn the identities of the
hidden nodes Vhid and how they are connected to the observed nodes.

2.1 System model for arbitrary corruptions

We consider tree-structured GGMs T = (V, E) with observed nodes Vobs = {x1, · · · , xo} and
hidden nodes Vhid = {xo+1, · · · , xo+h}, where V = Vhid ∪ Vobs and E ⊆

(V
2

)
. Each node xi

represents a random vector xi ∈ Rli . The concatenation of these random vectors is a multivariate
Gaussian random vector with zero mean and covariance matrix Σ with size lsum × lsum.

We have n i.i.d. samples X̃j = [x̃
(j)>
1 , · · · , x̃(j)>

o ]> ∈ Rlsum , j = 1, . . . , n drawn from the observed
nodes Vobs = {x1, · · · , xo}. However, the observed data matrix X̃n

1 = [X̃1, · · · , X̃n]> ∈ Rn×lsum
may contain some corrupted elements. We allow an level-(n1/2) arbitrary corruption in the data
matrix. This is made precise in the following definition.

Definition 1 (Level-m arbitrary corruption). For the data matrix X̃n
1 ∈ Rn×k formed by n clean

samples of k random variables (or a random vector of dimension k), an level-m arbitrary corruption
transforms X̃n

1 into Xn
1 ∈ Rn×k such that

‖[X̃n
1 ];,i − [Xn

1 ];,i‖0 ≤ m for all i = 1, . . . , k. (1)

Definition 1 implies that there are at most n1/2 corrupted terms in each column of Xn
1 ; the remaining

n− n1/2 samples in this column are clean. In particular, the corrupted samples in different columns
need not to be in the same rows. If the corruptions in different columns lie in the same rows, as
shown in (the left of) Fig. 3, all the samples in the corresponding rows are corrupted; these are called
outliers. Obviously, outliers form a special case of our corruption model. Since each variable has
at most n1/2 corrupted samples, the sample-wise inner product between two variables has at least
n2 = n− n1 clean samples. There is no constraint on the statistical dependence or patterns of the
corruptions. Unlike fixing the covariance matrix of the noise [8] or keeping the noise independent
[9], we allow arbitrary corruptions on the samples, which means that the noise can have unbounded
amplitude, can be dependent, and even can be generated from another graphical model (as we will
see in the experimental results in Section 3.6).

2.2 Structural and distributional assumptions

To construct the correct latent tree from samples of observed nodes, it is imperative to constrain
the class of latent trees to guarantee that the information from the distribution of observed nodes
p(x1, . . . ,xo) is sufficient to construct the tree. The distribution p(x1, . . . ,xo+h) of the observed
and hidden nodes is said to have a redundant hidden node xj if the distribution of the observed nodes
p(x1, . . . ,xo) remains the same after we marginalize over xj . To ensure that a latent tree can be
constructed with no ambiguity, we need to guarantee that the true distribution does not have any
redundant hidden node(s), which is achieved by following two conditions [18]: (C1) Each hidden
node has at least three neighbors; the set of such latent trees is denoted as T≥3; (C2) Any two variables
connected by an edge are neither perfectly dependent nor independent.
Assumption 1. The dimensions of all the random vectors are all equal to lmax.

In fact, we only require the random vectors of the internal (non-leaf) nodes to have the same length.
However, for ease of notation, we assume that the dimensions of all the random vectors are lmax.
Assumption 2. For every xi, xj ∈ V , the covariance matrix Σij = E

[
xix
>
j

]
has full rank, and the

smallest singular value of Σij is lower bounded by γmin, i.e.,

σlmax(Σij) ≥ γmin for all xi, xj ∈ V, (2)

where σi(Σ) is the ith largest singular value of Σ.

This assumption is a strengthening of Condition (C2) when each node represents a random vector.

3



Assumption 3. The determinant of the covariance matrix of any node Σii = E
[
xix
>
i

]
is lower

bounded by δmin, and the diagonal terms of the covariance matrix are upper bounded by σ2
max, i.e.,

min
xi∈V

det(Σii) ≥ δmin and max
xi∈V

diag
(
Σii

)
≤ σ2

max. (3)

Assumption 3 is natural; otherwise, Σii may be arbitrarily close to a singular matrix.
Assumption 4. The degree of each node is upper bounded by dmax, i.e., Deg(T) ≤ dmax.

2.3 Information distance

We define the information distance for Gaussian random vectors and prove that it is additive for trees.
Definition 2. The information distance between nodes xi and xj is

d(xi, xj) = − log

∏lmax

k=1 σk
(
Σij

)√
det
(
Σii

)
det
(
Σjj

) . (4)

Condition (C2) can be equivalently restated as constraints on the information distance.
Assumption 5. There exist two constants 0 < ρmin ≤ ρmax <∞ such that.

ρmin ≤ d(xi, xj) ≤ ρmax for all xi, xj ∈ V. (5)

Assumptions 2 and 5 both describe the properties of the correlation between random vectors from
different perspectives. In fact, we can relate the constraints in these two assumptions as follows:

γmine
ρmax/lmax ≥ δ1/lmax

min . (6)
Proposition 1. If Assumptions 1 and 2 hold, d(·, ·) defined in Definition 2 is additive on the tree-
structured GGM T = (V, E). In other words, d(xi, xk) = d(xi, xj) + d(xj , xk) holds for any two
nodes xi, xk ∈ V and any node xj on the path connecting xi and xk in T.

This additivity property is used extensively in the following algorithms. It was first stated and proved
in Huang et al. [19]. We provide an alternative proof in Appendix G.

3 Robustifying latent tree structure learning algorithms

3.1 Robust estimation of information distances

Before delving into the details of robustifying latent tree structure learning algorithms, we first
introduce the truncated inner product [15], which estimates the correlation against arbitrary corruption
effectively and serves as a basis for the robust latent tree structure learning algorithms. Given
a,b ∈ Rn and an integer n1, we compute qi = aibi for i = 1, 2, . . . , n and sort {|qi|}. Let Υ be the
index set of the n− n1 smallest |qi|’s. The truncated inner product is 〈a,b〉n1 =

∑
i∈Υ qi. Note that

the implementation of the truncated inner product requires the knowledge of corruption level n1.

To estimate the information distance defined in Definition 2, we implement the truncated inner
product to estimate each term of Σij , i.e., [Σ̂ij ]st = 1

n−n1
〈[Xn

1 ]:,(i−1)lmax+s, [X
n
1 ]:,(j−1)lmax+t〉n1

.
Then the information distance is computed based on this estimate of Σij as

d̂(xi, xj) = − log

lmax∏
k=1

σk
(
Σ̂ij

)
+

1

2
log det

(
Σ̂ii

)
+

1

2
log det

(
Σ̂jj

)
. (7)

The truncated inner product guarantees that Σ̂ij converges in probability to Σij , which further
ensures the convergence of the singular values and the determinant of Σij to their nominal values.
Proposition 2. If Assumptions 1 and 2 hold, the estimate of the information distance between xi and
xj based on the truncated inner product d̂(xi, xj) satisfies

P
(∣∣d̂(xi, xj)− d(xi, xj)

∣∣ > 2l2max

γmin
(t1 + t2)

)
≤ 2l2maxe

− 3n2
16κn1

t1 + l2maxe
−cn2

κ2
t22 , (8)

where t2 < κ = max{σ2
max, ρmin}, and c is an absolute constant.

The first and second parts of (8) originate from the corrupted and clean samples respectively.

4



3.2 Robust Recursive Grouping algorithm

The RG algorithm was proposed in [4] to learn latent tree models with additive information distances.
We extend the RG to be applicable to GGMs with vector observations and robustify it to learn
the tree structure against arbitrary corruptions. We call this robustified algorithm Robust Recursive
Grouping (RRG). RRG makes use of the additivity of information distance to identify the relationship
between nodes. For any three nodes xi, xj and xk, the difference between the information distances
d(xi, xk) and d(xj , xk) is denoted as Φijk = d(xi, xk)− d(xj , xk).
Lemma 3. [4] For information distances d(xi, xj) for all nodes xi, xj ∈ V in a tree T ∈ T≥3, Φijk
has following two properties: (1) Φijk = d(xi, xj) for all xk ∈ V\{xi, xj} if and only if xi is a leaf
node and xj is the parent of xj and (2) −d(xi, xj) < Φijk′ = Φijk < d(xi, xj) for all xk, xk′ ∈
V\{xi, xj} if and only if xi and xj are leaves and share the same parent.

RRG initializes the active set Γ1 to be the set of all observed nodes. In the ith iteration, as shown
in Algorithm 1, RRG adopts Lemma 3 to identify relationships among nodes in active set Γi, and
it removes the nodes identified as siblings and children from Γi and adds newly introduced hidden
nodes to form the active set Γi+1 in the (i+ 1)st iteration. The procedure of estimating the distances
between the newly-introduced hidden node xnew and other nodes is as follows. For the node xi which
is the child of xnew, i.e., xi ∈ C(xnew), the information distance is estimated as

d̂(xi, xnew) =
1

2
(
|C(xnew)| − 1

)( ∑
j∈C(xnew)

d̂(xi, xj) +
1

|Kij |
∑
k∈Kij

Φ̂ijk

)
, (9)

where Kij =
{
xk ∈ V\{xi, xj} : max

{
d̂(xi, xk), d̂(xj , xk)

}
< τ

}
for some threshold τ > 0. For

xi /∈ C(xnew), the distance is estimated as

d̂(xi, xnew) =


∑
xk∈C(xnew)

d̂(xk,xi)−d̂(xk,xnew)
|C(xnew)| . if xi ∈ Vobs∑

(xk,xj)∈C(xnew)×C(i)
d̂(xk,xj)−d̂(xk,xnew)−d̂(xj ,yi)

|C(xnew)||C(i)| otherwise
. (10)

Figure 1: An illustration of the active
set. The shaded nodes are the observed
nodes and the rest are hidden nodes.

The set Kij is designed to ensure that the nodes involved in
the calculation of information distances are not too far, since
estimating long distances accurately requires a large number of
samples. The maximal cardinality ofKij over all nodes xi, xj ∈
V can be found, and we denote this as Nτ , i.e., |Kij | ≤ Nτ .

The observed nodes are placed in the 0th layer. The hidden
nodes introduced in ith iteration are placed in ith layer. The
nodes in the ith layer are in the active set Γi+1 in the (i+ 1)st

iteration, but nodes in Γi+1 can be nodes created in the jth

iteration, where j < i. For example, in Fig. 1, nodes x12,
x14 and x15 are created in the 1st iteration, and they are in
Γ2. Nodes x1, x2 and x5 are also in Γ2, which are observed
nodes. Eqns. (9) and (10) imply that the estimation error in the
0th layer will propagate to the nodes in higher layers, and it
is necessary to derive concentration results for the information
distance related to the nodes in higher layers. To avoid repeating
complicated expressions in the various concentration bounds to follow, we define the function

f(x) , 2l2maxe
− 3n2

32λκn1
x + l2maxe

−c n2
4λ2κ2

x2

=: ae−wx + be−ux
2

,

where λ = 2l2maxe
ρmax/lmax/δ

1/lmax

min , w = 3n2

32λκn1
, u = c n2

4λ2κ2 , a = 2l2max and b = l2max. To assess
the proximity of the estimates d̂(xi, xnew) in (9) and (10) to their nominal versions, we define

h(l)(x) , slf(mlx) = sl
(
ae−wm

lx + be−um
2lx2)

for all l ∈ N ∪ {0}. (11)

where s = d2
max + 2d3

max(1 + 2Nτ ) and m = 2/9. The following proposition yields recursive
estimates for the errors of the distances at various layers of the learned latent tree.
Proposition 4. With Assumptions 1–5, if we implement the truncated inner product to estimate the
information distance among observed nodes and adopt (9) and (10) to estimate the information
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distances related to newly introduced hidden nodes, then the information distance related to the
hidden nodes xnew created in the lth layer d̂(xi, xnew) satisfies

P
(∣∣d̂(xi, xnew)− d(xi, xnew)

∣∣ > ε
)
< h(l)(ε) for all xi ∈ Γl+1 and l ∈ N ∪ {0}. (12)

We note that Proposition 4 demonstrates that the coefficient of exponential terms in (12) grow
exponentially with increasing layers (i.e., ml and m2l in (11)), which requires a commensurately
large number of samples to control the tail probabilities.
Theorem 1. Under Assumptions 1–5, RRG learns the correct latent tree with probability 1− η if

n2 = Ω̃
( l4maxe

2ρmax/lmaxκ2

δ
2/lmax

min ρ2
min

(9

2

)2LR
log
|Vobs|3

η

)
and n1 = O

( √n2

log n2

)
, (13)

where LR is the number of iterations of RRG needed to construct the tree.

Theorem 1 indicates that the number of clean samples n2 required by RRG to learn the correct
structure grows exponentially with the number of iterations LR. Specifically, for the full m-tree
illustrated in Fig. 5, n2 is exponential in the depth of the tree with high probability for structure
learning to succeed. The sample complexity of RRG depends on e2ρmax/lmax , and the exponential
relationship with ρmax will be shown to be unavoidable in view of our impossibility result in
Theorem 5. Huang et al. [19, Lemma 7.2 ] also derived a sample complexity result for learning latent
trees but the algorithm is based on [5] instead of RG. RRG is able to tolerate n1 = O(

√
n2/ log n2)

corruptions. This tolerance level originates from the properties of the truncated inner product; similar
tolerances will also be seen for the sample complexities of subsequent algorithms. We expect this is
also the case for [19], which is based on [5], though we have not shown this formally. In addition, the
sample complexity is applicable to a wide class of graphical models that satisfies the Assumptions 1
to 5, while the sample complexity result [4, Theorem 11], which hides the dependencies on the
parameters, only holds for a limited class of graphical models whose effective depths (the maximal
length of paths between hidden nodes and their closest observed nodes) are bounded in |Vobs|.

3.3 Robust Neighbor Joining and Spectral Neighbor Joining algorithms

The NJ algorithm [1] also makes use of additive distances to identify the existence of hidden nodes.
To robustify the NJ algorithm, we adopt robust estimates of information distances as the additive
distances in the so-called RNJ algorithm. We first recap a result by Atteson [20].
Proposition 5. If all the nodes have exactly two children, NJ will output the correct latent tree if

max
xi,xj∈Vobs

∣∣d̂(xi, xj)− d(xi, xj)
∣∣ ≤ ρmin/2. (14)

Unlike RG, NJ does not identify the parent relationship among nodes, so it is only applicable to
binary trees in which each node has at most two children.
Theorem 2. If Assumptions 1–5 hold and all the nodes have exactly two children, RNJ constructs
the correct latent tree with probability at least 1− η if

n2 = Ω
( l4maxe

2ρmax/lmaxκ2

δ
2/lmax

min ρ2
min

log
|Vobs|2

η

)
and n1 = O

( √n2

log n2

)
. (15)

Theorem 2 indicates that the sample complexity of RNJ grows as log |Vobs|, which is much better
than RRG. Similarly to RRG, the sample complexity has an exponential dependence on ρmax.

In recent years, several variants of NJ algorithm have been proposed. The additivity of information
distances results in certain properties of the rank of the matrix R ∈ R|Vobs|×|Vobs|, where R(i, j) =
exp(−d(xi, xj)) for all xi, xj ∈ Vobs. Jaffe et al. [6] proposed SNJ which utilizes the rank of R to
deduce the sibling relationships among nodes. We robustify the SNJ algorithm by implementing the
robust estimation of information distances, as shown in Algorithm 2.

Although SNJ was designed for discrete random variables, the additivity of the information distance
proved in Proposition 1 guarantees the consistency of Robust Spectral NJ (RSNJ) for GGMs with
vector variables. A sufficient condition for RSNJ to learn the correct tree can be generalized from [6].
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Proposition 6. If Assumptions 1–5 hold and all the nodes have exactly two children, a sufficient
condition for RSNJ to recover the correct tree from R̂ is

‖R̂−R‖2 ≤ g(|Vobs|, ρmin, ρmax), (16)

where

g(x, ρmin, ρmax) =

{
1
2 (2e−ρmax)log2(x/2)e−ρmax(1− e−2ρmin), e−2ρmax ≤ 0.5
e−3ρmax(1− e−2ρmin), e−2ρmax > 0.5

.

Similar with RNJ, RSNJ also does not identify the parent relationship between nodes, so it only
applies to binary trees. To state the next result succinctly, we assume that ρmax ≥ 1

2 log 2; this is the
regime of interest because we consider large trees which implies that ρmax is typically large.

Theorem 3. If Assumptions 1–5 hold, ρmax ≥ 1
2 log 2, and all the nodes have exactly two children,

RSNJ reconstructs the correct latent tree with probability at least 1− η if

n2 = Ω
( l4maxe

2ρmax(1/lmax+log2(|Vobs|/2)+1)κ2

δ
2/lmax

min e2ρmin

log
|Vobs|2

η

)
and n1 = O

( √n2

log n2

)
. (17)

Theorem 3 indicates that the sample complexity of RSNJ grows as poly(|Vobs|). Specifically, in the
binary tree case, the sample complexity grows exponentially with the depth of the tree. Also, the de-
pendence of sample complexity on ρmax is exponential, i.e., O

(
e2(1/lmax+log2(|Vobs|/2)+1)ρmax

)
, but

the coefficient of ρmax is larger than those of RRG and RNJ, which are O
(
e2ρmax/lmax

)
. Compared

to the sample complexity of SNJ in [6], the sample complexity of RSNJ has the same dependence on
the number of observed nodes |Vobs|, which means that the robustification of SNJ using the truncated
inner product is able to tolerate O

( √n2

logn2

)
corruptions.

3.4 Robust Chow-Liu Recursive Grouping

In this section, we show that the exponential dependence on LR in Theorem 1 can be provably
mitigated with an accurate initialization of the structure. Different from RRG, RCLRG takes Chow-
Liu algorithm as the initialization stage, as shown in Algorithm 3. The Chow-Liu algorithm [14]
learns the maximum likelihood estimate of the tree structure by finding the maximum weight spanning
tree of the graph whose edge weights are the mutual information quantities between these variables.
In the estimation of the hidden tree structure, instead of taking the mutual information as the weights,
we find the minimum spanning tree (MST) of the graph whose weights are information distances, i.e.,

MST(Vobs; D) := arg min
T∈TVobs

∑
(xi,xj)∈T

d(xi, xj), (18)

where TVobs
is the set of all the trees with node set Vobs. To describe the process of finding the MST,

we recall the definition of the surrogate node from [4].

Definition 3. Given the latent tree T = (V, E) and any node xi ∈ V , the surrogate node [4] of xi is
Sg(xi;T,Vobs) = arg minxj∈Vobs

d(xi, xj).

We introduce a new notion of distance that quantifies the sample complexity of RCLRG.

Definition 4. Given the latent tree T = (V, E) and any node xi ∈ V , the contrastive distance of xi
with respect to Vobs is defined as

dct(xi;T,Vobs) = min
xj∈Vobs\{Sg(xi;T,Vobs)}

d(xi, xj)− min
xj∈Vobs

d(xi, xj). (19)

Definitions 3 and 4 imply that the surrogate node Sg(xi;T,Vobs) of any observed node xi is itself
xi, and its contrastive distance is the information distance between the closest observed node and
itself. It is shown that the Chow-Liu tree MST(Vobs; D) is equal to the tree where all the hidden
nodes are contracted to their surrogate nodes [4], so it will be difficult to identify the surrogate node
of some node if its contrastive distance is small. Under this scenario, more accurate estimates of the
information distances are required to construct the correct Chow-Liu tree MST(Vobs; D).
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Proposition 7. The Chow-Liu tree MST(Vobs; D̂) is constructed correctly if∣∣d̂(xi, xj)− d(xi, xj)
∣∣ < ∆MST/2 for all xi, xj ∈ Vobs, (20)

where ∆MST := minxj∈Int(T) dct(xj ;T,Vobs).

Hence, the contrastive distance describes the difficulty of learning the correct Chow-Liu tree.

Theorem 4. With Assumptions 1–5, RCLRG constructs the correct latent tree with probability at
least 1− η if

n2 =Ω̃

(
max

{ 1

ρ2
min

(9

2

)2LC
,

1

∆2
MST

} l4maxe
2ρmax/lmaxκ2

δ
2/lmax

min

log
|Vobs|3

η

)
and n1 =O

( √n2

log n2

)
, (21)

where LC is the maximum number of iterations of RRG (over each internal node of the constructed
Chow-Liu tree) in RCLRG needed to construct the tree.

If we implement RCLRG with true information distances, LC ≤ d 1
2Deg(MST(Vobs; D̂)) − 1e.

Theorem 4 indicates that the sample complexity of RCLRG grows exponentially in LC � LR.
Compared with [4, Theorem 12], the sample complexity of RCLRG in Theorem 4 is applicable to a
wide class of graphical models that satisfy Assumptions 1 to 5, while the [4, Theorem 12] requires the
assumption that the effective depths of latent trees are bounded in |Vobs|, which is rather restrictive.

3.5 Comparison of robust latent tree learning algorithms

Since the sample complexities of RRG, RCLRG, RSNJ and RNJ depend on different parameters and
different structures of the underlying graphs, it is instructive to compare the sample complexities of
these algorithms on some representative tree structures. These trees are illustrated in Fig. 5. RSNJ
and RNJ are not able to identify the parent relationship among nodes, so they are only applicable to
trees whose maximal degrees are no larger that 3, including the double-binary tree and the HMM.
In particular, RNJ and RSNJ are not applicable to the full m-tree (for m ≥ 3) and the double star.
Derivations and more detailed discussions of the sample complexities are deferred to Appendix K.

Tree

n2 Algorithm
RRG RCLRG RSNJ RNJ

Double-binary tree O
(
ψ( 9

2 )Diam(T)) O
(
ψ( 9

2 )
1
2
Diam(T)) O

(
e2tρmaxDiam(T)

)
O
(
ψDiam(T)

)
HMM O

(
ψ( 9

2 )Diam(T)) O
(
ψ log Diam(T)

)
O
(
e2tρmax log Diam(T) O

(
ψ log Diam(T)

)
Fullm-tree O

(
ψ( 9

2 )Diam(T)) O
(
ψDiam(T)

)
N.A. N.A.

Double star O(ψ log dmax) O
(
ψ log dmax

)
N.A. N.A.

Table 1: The sample complexities of RRG, RCLRG, RSNJ and RNJ on the double-binary tree, the
HMM, the full m-tree and the double star. We set ψ := e2ρmax/lmax and t = O(l−1

max + log |Vobs|).

3.6 Experimental results

We present simulation results to demonstrate the efficacy of the robustified algorithms. Samples are
generated from a HMM with lmax = 3 and Diam(T) = 80. The Robinson-Foulds distance [21]
between the true and estimated trees is adopted to measure the performances of the algorithms. For
the implementations of CLRG and RG, we use the code from [4]. Other settings and more extensive
experiments are given in Appendix L.

We consider three corruption patterns here. (i) Uniform corruptions are independent additive noises
in [−2A, 2A]; (ii) Constant magnitude corruptions are also independent additive noises but taking
values in {−A,+A} with probability 0.5. These two types of noises are distributed randomly in Xn

1 ;
(iii) HMM corruptions are generated by a HMM which has the same structure as the original HMM
but has different parameters. They replace the entries in Xn

1 with samples generated by the variables
in the same positions. In our simulations, A is set to 60, and the number of corruptions n1 is 100.
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Figure 2: Robinson-Foulds distances of robustified and original algorithms averaged over 100 trials

Fig. 2 (error bars are in Appendix L.1) demonstrates the superiority of RCLRG in learning HMMs
compared to other algorithms. The robustified algorithms also result in smaller estimation errors
(Robinson-Foulds distances) compared to their unrobustified counterparts in presence of corruptions.

4 Impossibility result

Definition 5. Given a triple (|Vobs|, ρmax, lmax), the set T (|Vobs|, ρmax, lmax) consists of all multi-
variate Gaussian distributions N (0,Σ) such that: (1) The underlying graph T = (V, E) is a tree
T ∈ T≥3, and the size of the set of observed nodes is |Vobs|. (2) The distribution N (0,Σ) satisfies
Assumptions 1 and 5 with parameters lmax and ρmax.

For the given class of graphical models T (|Vobs|, ρmax, lmax), nature chooses some parameter θ = Σ
and generates n i.i.d. samples Xn

1 from Pθ. The goal of the statistician is to use the observations Xn
1

to learn the underlying graph T, which entails the design of a decoder φ : Rn×|Vobs|lmax → T|Vobs|,
where T|Vobs| is the set of latent trees whose size of the observed node set is |Vobs|.
Theorem 5. Consider the class of graphical models T (|Vobs|, ρmax, lmax), where |Vobs| ≥ 3. If
there exists a graph decoder learns from n i.i.d. samples such that

max
θ(T)∈T (|Vobs|,ρmax,lmax)

Pθ(T)(φ(Xn
1 ) 6= T) < δ, (22)

then (as ρmax →∞ and |Vobs| → ∞),

n = max
{

Ω
(
(1− δ)e

ρmax
blog3 |Vobs|clmax log |Vobs|

)
,Ω
(
(1− δ)e

2ρmax
3lmax

)}
. (23)

Theorem 5 implies that the optimal sample complexity grows as Ω(log |Vobs|) as |Vobs| grows. To
prove this theorem, we construct several classes of Gaussian latent trees parametrized as linear
dynamical systems (see Appendix M) and apply the ubiquitous Fano technique to derive the desired
impossibility result. Table 1 indicates that the sample complexity of RCLRG when the underlying
latent tree is a full m-tree (for m ≥ 3) or a HMM is optimal in the dependence on |Vobs|. The sample
complexity of RNJ is also optimal in |Vobs| for double binary trees and HMMs. In contrast, the
derived sample complexities of RRG and RSNJ are suboptimal in relation to Theorem 5. However,
one caveat of our analyses of the latent tree learning algorithms in Section 3 is that we are not
claiming that they are the best possible for the given algorithm; there may be room for improvement.

When the maximum information distance ρmax grows, Theorem 5 indicates that the optimal sample
complexity grows as Ω(e

2ρmax
3lmax ). Table 1 shows the sample complexities of RRG, RCLRG and RNJ

grow as O(e2 ρmax
lmax ), which has the alike dependence as the impossibility result. However, the sample

complexity of RSNJ grows as O
(
e2tρmax

)
, which is larger (looser) than that prescribed by Theorem 5.

5 Conclusions and future works

In this paper, we first derived the more refined sample complexities of RG and CLRG. The effective-
ness of CLRG was observed to be due to the reduction in the effective length that the error propagates,
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i.e., from LR to LC � LR. Second, to combat potential adversarial corruptions in the data matrix, we
robustified RG, CLRG, NJ and SNJ by adopting the truncated inner product technique. The derived
sample complexity results showed that all the common latent tree learning algorithms can tolerate
level-O

( √n2

logn2

)
arbitrary corruptions. The varying efficacies of these robustified algorithms were

then corroborated through extensive simulations with different types of corruptions and on different
graphs. Finally, we derived the first known instance-dependent impossibility result for learning latent
trees. The optimalities of RCLRG and RNJ in their dependencies on |Vobs| were also discussed in
the context of various latent tree structures.

There are several promising avenues for future research. First, the design and analysis of the
initialization process of CLRG can be further improved. The correctness of CLRG relies only on the
fact that if a hidden node is contracted to an observed node, then all the hidden nodes on the path
between the hidden node and the observed nodes are contracted to the same observed node. One can
conceive of a more general initialization algorithm other than that using the MST of the weighted
graph with weights being the information distances. Second, the analysis of RG can be tightened
with more sophisticated concentration bounds. In particular, the exponential behavior of the sample
complexity of RG can also refined by performing a more careful analysis of the error propagation
through the learned tree.
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