
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DARWIN GÖDEL MACHINE: OPEN-ENDED EVOLUTION
OF SELF-IMPROVING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most of today’s AI systems are constrained by human-designed, fixed architectures
and cannot autonomously and continuously improve themselves. The scientific
method, on the other hand, is a cumulative and open-ended system, where each
innovation builds upon previous artifacts, enabling future discoveries. There is
growing hope that the current manual process of advancing AI could itself be
automated. If done safely, such automation would accelerate AI development and
allow us to reap its benefits much sooner. This prospect raises the question of
how AI systems can endlessly improve themselves while getting better at solving
relevant problems. Meta-learning can automate the discovery of novel algorithms,
but is limited by first-order improvements and the human design of a suitable search
space. The Gödel machine (Schmidhuber, 2007) proposed a theoretical alternative:
a self-improving AI that repeatedly modifies itself in a provably beneficial manner.
Unfortunately, proving that most changes are net beneficial is impossible in practice.
We introduce the Darwin Gödel Machine (DGM), a novel self-improving system
that iteratively modifies its own code (thereby also improving its ability to modify
its own codebase) and empirically validates each change using coding benchmarks.
Inspired by Darwinian evolution and open-endedness research, the DGM grows
an archive of generated coding agents. It samples agents from this archive, which
self-modify to create new, interesting versions of themselves. This open-ended
exploration forms a growing tree of diverse, high-quality agents and allows the
parallel exploration of many different paths through the search space. Empirically,
the DGM automatically improves its coding capabilities (e.g., better code editing
tools, long-context window management, peer-review mechanisms), increasing
performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to
30.7%. Furthermore, the DGM significantly outperforms baselines without self-
improvement or open-ended exploration. All experiments were done with safety
precautions (e.g., sandboxing, human oversight). Overall, the DGM represents a
significant step toward self-improving AI, capable of gathering its own stepping
stones along a path that unfolds into endless innovation.

1 INTRODUCTION

Scientific progress is cumulative and open-ended, with each breakthrough standing on the shoulders
of countless prior insights. In the same way, our most advanced AI systems are built upon a long
lineage of innovations. For instance, transformers (Vaswani et al., 2017), the backbone of current large
language models (LLMs) (Brown et al., 2020), did not emerge in isolation but were built upon years
of past innovations, such as recurrent neural networks (Linnainmaa, 1970; Amari, 1972; Hopfield,
1982; Rumelhart et al., 1985) and attention mechanisms (Schmidhuber & Huber, 1990; Bahdanau
et al., 2015; Kim et al., 2017; Parikh et al., 2016). However, most of today’s AI systems remain bound
by fixed, human-designed architectures that learn within predefined boundaries, without the capacity
to autonomously rewrite their own source code to self-improve. As a result, each advancement in AI
development still leans heavily on human interventions, tethering the pace of progress. This paper
investigates the intriguing possibility of safely automating the search for ever-better AI. One can
imagine an AI system that, like scientific discovery itself, becomes an engine of its own advancement:
building upon its past, recursively improving, and propelling itself toward more advanced capabilities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Archive

New
coding
agent

Coding
agent

Self-modify

child

Coding agent’s
own repo

+
Self-improve

instruction

Code Diff:
Feature to

improve itself

Coding
agentselect

Task repo
(e.g., GitHub repo)

+
Task instruction

(e.g., GitHub issue)

Code Diff:
Solve task

New
coding
agentEvaluate on

benchmark
add

parent

Figure 1: Darwin Gödel Machine. The DGM iteratively builds a growing archive of agents by
interleaving self-modification with downstream task evaluation. Agents in the archive are selected for
self-modification through open-ended exploration.

Schmidhuber (2007) presented a class of mathematically rigorous, self-referential, self-improving
problem solvers. It relies on formal proofs to justify code rewrites, ensuring that any self-modification
is provably beneficial. However, in practice and without restrictive assumptions about the system,
it is impossible to formally prove whether a modification to an AI system will be beneficial. For
example, while it may seem that an LLM-based coding agent would benefit from access to more
tools (e.g., code search, test runners), the actual impact depends heavily on the model’s training and
task context (e.g., a testing tool that is optimized for one setup may confuse the agent when working
with others). Instead of requiring formal proofs, we empirically validate self-modifications against a
benchmark, allowing the system to improve and explore based on observed results. This approach
mirrors biological evolution, where mutations and adaptations are not verified in advance but are
produced, trialed, and then selected via natural selection. We also take inspiration from Darwinian
evolution (Darwin, 2023) and investigate the effectiveness of maintaining a library of previously
discovered agents to serve as stepping stones for future generations.

We propose the Darwin Gödel Machine (DGM), a self-referential, self-improving system that
writes and modifies its own code to become a better coding agent. Each self-modification requires
the DGM to edit its own codebase. We use Python, which is Turing-complete, giving the DGM
the potential to build any computable machine. Our framework envisions agents that can rewrite
their own training scripts (including training a new foundation model (FM)). However, we do not
show that in this paper, as training FMs is computationally intensive and would introduce substantial
additional complexity, which we leave as future work. Instead, this paper focuses on improving the
design of coding agents with frozen pretrained FMs (e.g., tool use, workflows). The DGM alternates
between self-modification and evaluation phases. During the self-modification phase, selected coding
agents from the archive generate modified versions of themselves. During the evaluation phase,
each modified agent is tested on a coding benchmark, estimating the agent’s coding capabilities, and
then added to the archive. By improving its own capabilities through this loop, the DGM becomes
better at both solving coding tasks and making future self-improvements. A key assumption is
that an increase in performance on coding benchmarks indicates better coding capabilities, and
hence better ability to self-modify and self-improve. Furthermore, the DGM maintains an archive of
generated coding agents, initialized with only one agent, and continuously accumulates all generated
variants over time. To support continual self-improvement, the DGM draws inspiration from open-
endedness research (Wang et al., 2019; Fernando et al., 2024; Faldor et al., 2025), accumulating
diverse stepping stones (i.e., interesting yet suboptimal solutions or features that may enable future
breakthroughs). This open-ended exploration encourages the discovery of novel and potentially
useful self-modifications beyond immediate performance gains.

We present results on two coding benchmarks: SWE-bench (Jimenez et al., 2024) and Polyglot (Paul
Gauthier, 2024). The DGM automatically improves itself from 20.0% to 50.0% on SWE-bench,
and from 14.2% to 30.7% on Polyglot. We show that self-improvement enables continued progress,
as the DGM outperforms the baseline where the same base agent is repeatedly used to modify and
generate new agents without self-improvement. We also show that open-ended exploration and
keeping an archive of all previously generated agents lead to the discovery of better coding agents.
The DGM outperforms the baseline of not having open-ended exploration (i.e., a baseline without the
accumulation of an archive of interestingly different stepping stones), where the coding agent always
builds off the most recent version of itself. Overall, the DGM represents a step toward AI systems

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that can build upon their own prior innovations and improve recursively. We consider and discuss
safety aspects extensively, including sandboxing and traceability of self-modifications, to ensure
responsible experimentation (Section 5). By advancing the possibility of safe, self-referential, self-
improving models, the DGM moves us closer to AI that not only learns but evolves in an open-ended,
self-accelerating trajectory, much like science itself.

2 RELATED WORK

Open-Endedness. A grand challenge for driving unbounded innovation is designing open-ended AI
systems that continuously generate novel and learnable artifacts (Stanley et al., 2017). Hughes et al.
(2024) characterized open-endedness as a system’s capacity to generate sequences of artifacts that are
both novel and learnable from an observer’s perspective. A central difficulty lies in structuring and
exploring vast search spaces to consistently produce artifacts that are interesting to humans (Clune,
2019; Jiang et al., 2023). Early progress drew on quality-diversity algorithms, goal-directed ex-
ploration, intrinsic motivation, and learning-progress frameworks (Pugh et al., 2016; Ecoffet et al.,
2019; Lehman & Stanley, 2011; Oudeyer et al., 2007), while recent advances leverage large-scale
foundation models (FMs) as proxies for human interestingness and versatile engines for generating
and evaluating novel behaviors across diverse domains (Brown et al., 2020; Hu et al., 2025; Zhang
et al., 2024b). However, these approaches have yet to close the self-referential self-improvement
loop, meaning improvements on downstream tasks do not translate into enhanced capabilities for
self-modification or the acceleration of further innovations. We aim to mimic the acceleration of sci-
ence and technology, where new tools and discoveries catalyze the creation of even more discoveries.
How can we emulate nature’s arc of evolution, which bends not only toward complexity but also an
ever greater capacity to evolve (Dawkins, 2019; Gerhart & Kirschner, 2007; Hendrikse et al., 2007)?

Meta-Learning FM Agents. Many FM-based agents are handcrafted. Some building blocks include
prompt engineering (Chen et al., 2023; Schulhoff et al., 2024), chain-of-thought (Wei et al., 2022;
Yao et al., 2023; Hu & Clune, 2024; Guo et al., 2025; Lightman et al., 2023; Muennighoff et al., 2025;
Zelikman et al., 2024a), self-reflection (Shinn et al., 2023; Yao et al., 2023; Madaan et al., 2023),
multi-agent debate (Zhuge et al., 2023; Liang et al., 2023; Khan et al., 2024), memory (Liu et al., 2023;
Zhong et al., 2024; Modarressi et al., 2023), temperature sampling (Zhu et al., 2024), and retrieval
augmented generation (Lewis et al., 2020). The manual composition of these components limits
the system’s abilities to the ingenuity of its human designer. More recently, several meta-learning
approaches have emerged that leverage FM to automatically optimize prompts (Fernando et al., 2024;
, FAIR; Khattab et al., 2023; Cheng et al., 2024; Yuksekgonul et al., 2024; Yuan et al., 2024) and
design agentic modules (Zhang et al., 2024c; Zhou et al., 2024; Yin et al., 2024; Zhuge et al., 2024;
Rosser & Foerster, 2025; Zhang et al., 2025a; Ye et al., 2025; Gao et al., 2025; Nie et al., 2025;
Su et al., 2025; Zhang et al., 2025b; Niu et al., 2025). The Automated Design of Agentic Systems
(ADAS, Hu et al., 2025) iteratively generates downstream agents with a fixed meta-agent, evaluates
them against a target benchmark, and incorporates feedback to refine subsequent generations. In
contrast, the DGM is a single system that both solves downstream tasks (i.e., coding problems)
and refines its own implementation (i.e., its codebase), removing the need for a fixed, handcrafted
meta-agent and enabling self-referential improvements.

Self-Improving AI. Early on, various researchers outlined theoretical and conceptual approaches to
self-improvement (Good, 1966; Schmidhuber, 1987; 2007). Some practical approaches to automated
self-improvement include systems defined by neural network weight parameterizations (Schmidhuber,
1993; Hall, 2007; Hobbhahn, 2025; Kirsch & Schmidhuber, 2022; Irie et al., 2022; 2025; Lu et al.,
2023; Havrilla et al., 2024b). Metz et al. (2021) developed a gradient-based optimizer that is self-
referentially meta-trained using a variant of population-based training (Jaderberg et al., 2017). Lange
et al. (2023) extended this approach to gradient-free learning. Silver et al. (2017) used self-play
to continuously evolve agents, achieving superhuman performance in challenging domains such
as chess and Go. More closely related to the DGM are recent approaches that leverage FM-based
agents for self-improvement (Yin et al., 2024; Robeyns et al., 2025; Hu et al., 2024; Zelikman
et al., 2024b; Huang et al., 2022; Singh et al., 2023). Zelikman et al. (2024b) use a meta-agent
to generate downstream agents, updating the meta-agent based on the meta-utility derived from
the generated solutions. Yin et al. (2024) use a single system to both solve downstream tasks and
recursively modify itself. However, the downstream tasks or the meta-utility do not always align
with the capabilities required for self-improvement. In the DGM, improvement in downstream tasks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

directly reflects an increase in self-improvement ability, enabling the potential for self-accelerating
progress. Most similar is concurrent work by Robeyns et al. (2025), which also has a single agent
recursively solving coding problems and modifying its own codebase. The main difference from
Robeyns et al. (2025) (and also Zelikman et al. (2024b); Yin et al. (2024)) is that the DGM has an
open-ended exploration loop, encouraging self-modifications beyond immediate performance gains
and thus avoiding stagnation in suboptimal states. Appendix B also discusses additional related work
on program synthesis and Darwinian evolution.

3 DARWIN GÖDEL MACHINE

A Gödel Machine is a theoretical idea of an AI that searches for ways that provably improve
itself (Schmidhuber, 2007). In this paper, we propose Darwin Gödel Machine (DGM), an attempt to
realize the long-held dream of creating a Gödel Machine. The DGM relaxes the Gödel Machine’s
impractical requirement of theoretically proving that a change will improve the system, instead
requiring empirical evidence from experiments to demonstrate that a proposed new version enhances
performance. Additionally, since the DGM relies on empirical evidence of improvement, it may
get stuck in a local optimum within the vast search space of possible systems (i.e., all computable
algorithms). To address this, the DGM maintains an archive of discovered solutions during the
search, facilitating open-ended exploration rather than relying on evolving a single solution. Since the
principles echo Darwinian evolution (Darwin, 2023) (Appendix B), where new innovations emerge
by selecting an entity from an archive of previously discovered solutions, modifying it, and keeping
it if it is interestingly new (Zhang et al., 2024b; Faldor et al., 2025; Stanley & Lehman, 2015), we
call our algorithm a Darwin Gödel Machine (Figure 1).

Self-referential Self-improvement of Coding Agents. The DGM is initialized with only one coding
agent, and its progression is evaluated on coding benchmarks. A coding agent is defined as a single
system, implemented with a code repository and powered by frozen pretrained foundation models
(FMs), capable of reading, writing, and executing code. Code, when expressed in a general-purpose
Turing-complete language (e.g., Python), is a powerful medium for building and improving intelligent
systems because it can represent any computable process. Recent works (Hu et al., 2025; Zhang et al.,
2024c) demonstrate that such agents can be improved through meta-learning of their designs (e.g.,
prompts, workflows, and tools), which are implemented in their code repository. Therefore, we define
self-improvement as a coding task that involves modifying the design of an agent’s own components
(i.e., its own code, which does not include the open-ended exploration process described in the next
paragraph). The key motivation is that the empirical evidence must reflect the system’s ability to both
self-improve and solve downstream tasks. By configuring the DGM as a coding agent and testing
its coding capabilities, the observed improvements demonstrate not only enhanced performance
in downstream tasks but also the capacity for further self-improvement, as self-improvement is
fundamentally a coding task that modifies the coding agent’s own code repository.

Population-based Open-ended Exploration. Starting from a single initial coding agent, the DGM
builds an archive of all discovered agents. In each iteration, the DGM selects parent agents to self-
modify and branch off to produce new agents. Parent selection is roughly proportional to each agent’s
performance score and inversely proportional to the number of its children with codebase-editing
functionality (Appendix C.2). This favors high-performing agents that have been underexplored
(i.e., have fewer existing children), thereby promoting both exploitation of strong performers and
exploration of promising but less-sampled lineages. All agents retain a non-zero selection probability,
ensuring that any path to improvement remains feasible given sufficient compute. Each selected
parent analyzes its own benchmark evaluation logs, proposes the next feature to implement, and
receives this proposal as a problem statement to execute (Appendix C.3). The parent then implements
the suggested feature into its own codebase, generating a new coding agent. Each newly generated
agent is quantitatively evaluated on a chosen coding benchmark to estimate its coding abilities. Only
agents that compile successfully and retain the ability to edit a given codebase are added to the
DGM archive, as only they can continue self-modification. All others are discarded. The cycle of
parent selection, self-modification, and evaluation continues, progressively growing the archive of
solutions. Importantly, we note that archived solutions can serve as stepping stones that result in
improvements much later than their original discovery, making our approach substantially different
from hill-climbing agentic design approaches (Robeyns et al., 2025). Currently, the open-ended
exploration process (i.e., archive maintenance, parent selection) is fixed and not modifiable by the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

DGM, which we leave as an avenue for future work. Appendix C.4 shows the pseudocode for the
DGM algorithm.

4 EXPERIMENTS

Section 4.1 describes the experimental setup, including the initial coding agent that initializes the
DGM. We conduct experiments on two coding benchmarks: SWE-bench (Jimenez et al., 2024) and
Polyglot (Paul Gauthier, 2024) (Section 4.2). For each benchmark, we compare the DGM against
two baselines: DGM without self-improving agents and DGM without open-ended exploration
(Section 4.3). Across all experiments, we find that the DGM outperforms both baselines, showing that
the self-improvement mechanism and open-ended exploration are essential for sustained performance
gains (Section 4.4). Furthermore, we show that the features discovered by the DGM transfer across
models, benchmarks, and tasks (Section 4.4).

4.1 EXPERIMENT SETUP

The DGM is initialized with a single coding agent. This base agent is built around a frozen FM and
augmented with tool use capabilities (Schick et al., 2023; Anthropic, 2024b). The FM autonomously
determines its action at each step, using whichever tool it deems appropriate. The base agent has
access to two tools: a Bash tool for executing bash commands, and an edit tool for viewing and
editing directories and entire files (Appendix C.1). The agent receives a single input prompt that
specifies the location of the target repository, the problem statement, and the repository’s testing
framework (Appendix C.1). The base agent is intentionally lightweight to provide a simple starting
point from which self-improvement can be clearly demonstrated. We run the DGM for 80 iterations
(generating one new agent per iteration), with two iterations running in parallel for SWE-bench
and four for Polyglot (Appendix C.2). During self-modifications, coding agents are powered by
Claude 3.5 Sonnet (New) (Anthropic, 2024a) in both SWE-bench and Polyglot experiments. During
benchmark evaluation, coding agents are powered by Claude 3.5 Sonnet (New) for SWE-bench and
o3-mini (OpenAI, 2025) for Polyglot (Appendix D.1).

4.2 BENCHMARKS

We evaluate the DGM on two popular benchmarks that assess different aspects of coding tasks
to validate the algorithm’s effectiveness across various use cases. Both SWE-bench and Polyglot
are benchmarks that evaluate how well AI agents solve coding tasks automatically. Given a code
repository and a task instruction, the agent is expected to make changes to the repository in order to
fulfill the task. Both SWE-bench and Polyglot are widely used benchmarks (Zhang et al., 2024d;a;
Xia et al., 2024; Cao et al., 2024; Google DeepMind, 2025; Gauthier, 2024) that require the AI agent
to navigate a code repository, understand the interplay between functions in different files, and spot
small errors in convoluted code. SWE-bench only has Python tasks, while Polyglot has tasks in
multiple programming languages. Another difference is that each SWE-bench task may require edits
to multiple files, whereas each Polyglot task primarily involves implementing a solution from scratch
in a single file (although the agent still needs to examine other files to understand what changes are
necessary), resulting in fewer file edits overall.

SWE-bench. To avoid wasting compute on unsolvable tasks, we use SWE-bench Verified (OpenAI,
2024), a human-filtered subset of SWE-bench (Jimenez et al., 2024) where all tasks are solvable.
Throughout this paper, the term SWE-bench refers by default to to the SWE-bench Verified subset.

Polyglot. Polyglot includes tasks in multiple programming languages (C++, Rust, Python, etc.) (Paul
Gauthier, 2024). Compared to SWE-bench, one of the most widely used coding benchmarks and
likely included in the training sets of FMs, Polyglot is more niche and less likely to be included
in FMs’ post-training data. Additionally, Polyglot is primarily used by its developer to evaluate
Aider (Gauthier, 2024). This provides an opportunity to compare automatically designed agents with
a representative coding agent in the community, which has been continuously developed and tested
against the Polyglot benchmark over a year by human developers. Finally, Polyglot enables testing of
the DGM’s ability to generalize across multiple programming languages beyond just Python. We
follow the Polyglot leaderboard setup (Paul Gauthier, 2024), with one key difference: the leaderboard

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

reports pass@2, where the agent can view feedback from ground-truth tests once, whereas we report
pass@1, where the agent never sees ground-truth test results.

Since it is expensive to evaluate on the full benchmarks (Appendix E.1), we use a staged evaluation
strategy to estimate the coding agent’s performance. In general, we evaluate the coding agent on
more tasks when we are more confident that it is a relatively strong performer. We first evaluate
each coding agent on a set of 10 tasks to verify basic codebase-editing functionality. Only agents
that retain the ability to edit code can solve downstream coding tasks or perform further self-
modifications. Agents that pass this initial stage are then evaluated on an expanded set of 50 tasks.
For SWE-bench, tasks are selected based on SWE-bench-verified-mini (Hobbhahn, 2025), which is
designed to be a representative sample of the full benchmark (Appendix E.2). For Polyglot, tasks
are chosen as a random subset of the full benchmark (Appendix E.3). Because the LLMs we use
are inherently stochastic, performance can be noisy. We use smaller subset evaluations to estimate
general effectiveness and identify top candidates. For SWE-bench, if a coding agent achieves over
40% success (a heuristic chosen based on the noise observed in preliminary runs) on the 60-task
subset and ranks among the top two performers in the archive, it is then evaluated on 200 tasks
(140 plus the previous 60) to more accurately assess its true coding capability (Appendix E.2). For
Polyglot, if a coding agent achieves over 40% success on the 10-task subset, it is evaluated on an
expanded 50-task subset (Appendix E.3).

4.3 BASELINES

To isolate and evaluate the contribution of the DGM’s core components, we compare the DGM against
two baselines: DGM without self-improving agents (DGM w/o self-improve) and DGM without
open-ended exploration (DGM w/o open-ended exploration). DGM w/o self-improve replicates the
approach of ADAS (Hu et al., 2025) in this setting, wherein the meta agent responsible for modifying
the coding agents remains fixed as the base agent throughout the experiment (Algorithm 2). This
baseline allows us to assess the role of iterative self-improvement in accelerating the evolution of
better coding agents. DGM w/o open-ended exploration eliminates the use of an archive and always
self-modifies the latest stored version of itself (Algorithm 3). If a coding agent self-modifies to the
point where it loses the basic functionality required to edit a codebase, it can no longer modify itself
or solve any coding task. Therefore, DGM w/o open-ended exploration retains the latest version
of itself that still maintains the basic functionality for codebase editing. This baseline allows us to
evaluate the impact of having an archive and the well-documented beneficial principles of open-ended
exploration (Clune, 2019; Stanley & Lehman, 2015; Zhang et al., 2024b; Fernando et al., 2024; Lee
et al., 2020; Samvelyan et al., 2024; Colas et al., 2022b) in guiding the agent’s evolution.

In addition to the learned baselines, we compare the DGM against handcrafted, open-source solutions.
For SWE-bench, we take the state-of-the-art (SoTA) open-source solution that has been checked
(i.e., the SWE-bench team was able to reproduce the results) (Appendix E.4). For Polyglot, we take
the representative agent (Aider) (Gauthier, 2024), which is open-sourced and designed to support
multiple programming languages and large codebase editing (Appendix E.5). For a fair comparison,
we measure the percentage of solved tasks on the same benchmark subsets used to evaluate the DGM
(Appendix E.2, Appendix E.3). These values are shown as dotted horizontal lines in Figure 2.

4.4 RESULTS

After 80 iterations of the DGM, the coding agent’s performance increases from 20.0% to 50.0% on
SWE-bench, and from 14.0% to 38.0% on Polyglot (Figure 2). Since the DGM is evaluated on only
50 tasks in the Polyglot experiment setup (Section 4.2), we additionally evaluate both the base agent
and the best DGM-discovered agent on the full Polyglot benchmark to more accurately estimate the
improvement. On the full Polyglot benchmark, the DGM improves the coding agent from 14.2% to
30.7%. This shows that the DGM can automatically self-improve to create a better coding agent.
Moreover, the performance of the best DGM-discovered agent is comparable to that of the checked,
open-source, human-designed SoTA on SWE-bench (Figure 2). On Polyglot, although the DGM
starts with a base agent whose performance is lower than that of Aider, it discovers an agent that far
surpasses Aider (Figure 2). The DGM-discovered agents are comparable to or outperform handcrafted
agents on both benchmarks. While the SoTA SWE-bench agent and Aider were painstakingly shaped

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80
Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SW
E-

be
nc

h
Sc

or
e

of
 B

es
t A

ge
nt

Checked Open-sourced SoTA
DGM w/o Open-ended exploration
DGM w/o Self-improve
DGM

0 10 20 30 40 50 60 70 80
Iterations

0.15

0.20

0.25

0.30

0.35

Po
ly

gl
ot

 S
co

re
 o

f B
es

t A
ge

nt

Representative Agent Baseline (Aider)

Figure 2: Self-improvement and open-ended exploration enable the DGM to continue making
progress and improve its performance. The DGM automatically discovers increasingly better
coding agents and performs better on both (Left) SWE-bench and (Right) Polyglot. It outperforms
baselines that lack either self-improvement or open-ended exploration, showing that both components
are essential for continual self-improvement. These scores are obtained from evaluating on the
benchmark subsets detailed in Section 4.2.

SWE-bench
Score

DGM Archive Tree

10 tasks (no basic functionality)

60 tasks

200 tasks (score ≥ 0.4 and
top two of archive then)

Final best agent

Non-empty patch
validation and retry

More granular file
viewing via lines

More granular file
editing via string

replacement

Auto-summarize
on context limit

Multiple patch
generations and

ranking

History-aware
patch generations

and ranking

DGM Progress

Figure 3: The DGM automatically self-improves to become a better coding agent. (Left) Archive
of coding agents generated during the DGM run on SWE-bench. Each node represents a coding
agent, with node 0 corresponding to the base agent. Node color indicates performance on SWE-bench
(percentage of solved tasks), while border color reflects the number of tasks for which the agent
was evaluated. Edges show which agents self-modified to produce the offsprings. Many paths to
innovation traverse lower-performing nodes, and key innovations (like node 24) lead to an explosion
of innovations built on top of them. Both properties underscore the benefits of open-ended search.
(Right) Progress plot of the DGM on SWE-bench. The light blue line shows the average score of all
agents possessing basic codebase-editing functionality. The blue line tracks the best score achieved by
any agent in the archive at each iteration. The dark line shows the lineage of the final best-discovered
agent and its precursor nodes, which includes two performance dips. This illustrates the benefits of
open-ended search, which explores a diverse set of interesting stepping stones instead of focusing
only on branching off the best solution found so far.

by human efforts, the DGM hints at a future in which such ingenuity is automated, evolving through
self-referential cycles of continuous self-improvements.

The DGM automatically improves both the tools and the workflow of how FMs are utilized (Figure 3).
For example, the DGM enhanced the edit tool to allow more granular file viewing (by lines) and
more precise file editing (by string replacement), instead of always viewing or replacing the entire
file. Workflow improvements include making multiple attempts to solve a task and using another FM
to evaluate and select the best solution. Other workflow improvements include considering previous

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

attempts when generating subsequent ones. Appendix F.1 and Appendix F.2 show all modifications
leading up to the final best-discovered agents on SWE-bench and Polyglot respectively.

Because open-ended exploration allows branching from any agent in the archive with non-zero
probability, the DGM can get out of deceptive dips or peaks in performance. For example, at
iterations 4 and 56 of the experiment on SWE-bench, although the agent’s score temporarily fell
below that of its parent, the DGM was still able to explore innovations along that path and create a
new agent that outperformed all of its predecessors (Figure 3). Furthermore, open-ended exploration
allows different implementations of the same target functionality to be attempted. For example, while
the goal is to provide finer-grained editing tools, the specific implementation of this feature can vary
greatly and hence lead to very different performance (Appendix G). The DGM can explore multiple
implementations to find the most suitable one and avoid getting trapped in a suboptimal one.

The DGM outperforms the baselines of DGM w/o self-improve and DGM w/o open-ended exploration
on both benchmarks (Figure 2). Without updating the meta agent that modifies coding agents, DGM
w/o self-improve improves the agents in early iterations, but its gains taper off quickly (Appendix A.1).
In DGM w/o open-ended exploration, only the most recent agent is retained, so a poorly performing
self-modification makes subsequent improvements harder to achieve (Appendix A.1).

o3-mini Claude 3.5 Sonnet Claude 3.7 Sonnet
0

10

20

30

40

50

60

Su
cc

es
s R

at
e

on
 S

W
E-

be
nc

h
(%

)

23.0% 20.0% 19.0%

33.0%

50.0%

59.0%
Model Transfer on SWE-bench

SWE-bench Polyglot
0

10

20

30

40

50

60

Su
cc

es
s R

at
e

(%
)

20.0%
14.2%

24.5%
28.9%

50.0%

30.7%

Zero-shot Transfer Between Benchmarks

python task non-python task
0
5

10
15
20
25
30
35
40

Su
cc

es
s R

at
e

on
 P

ol
yg

lo
t (

%
)

8.8%

15.2%
11.8%

17.3%17.6%

33.0%

20.6%

30.8%

Task Transfer on Polyglot

Base agent
Best agent searched with Claude 3.5 Sonnet
Best agent transfer to other FMs

Base agent
Best agent searched on SWE-bench
Best agent searched on Polyglot

Base agent
Aider
DGM search on all language
DGM search only on python

Figure 4: Transfer between Models, Benchmarks, and Tasks. The superior performance of
DGM-discovered agents can be transferred across (Left) different models, (Middle) benchmarks, and
(Right) different programming language tasks in Polyglot, such as from Python tasks to C++ tasks.

To evaluate the generality of the improvements from the DGM, we tested the base agent (Section 4.1)
and the best agent discovered during the DGM run (Figure 2) with different FMs than those used
during optimization. For SWE-bench, where the DGM was run using Claude 3.5 Sonnet (New),
we replaced the FM with Claude 3.7 Sonnet (Anthropic, 2025) or o3-mini, and evaluated on 200
tasks (Figure 4, Left). With o3-mini, the base agent achieved 23.0% and the DGM-discovered agent
33.0%. With Claude 3.7 Sonnet, the base agent achieved 19.0% and the DGM-discovered agent
59.5%. These results suggest that the DGM yields improvements that generalize across FMs, rather
than being tightly coupled to the specific FM used during its run (Figure 4). Model transfer results on
Polyglot are presented in Appendix A.2.

Furthermore, we investigate the transferability of the DGM-discovered agent across different bench-
marks and programming languages. First, we evaluate the best DGM-discovered agent from one
benchmark (e.g., SWE-bench) on a completely held-out benchmark (e.g., Polyglot), and vice versa
(Figure 4, Middle). The best agent evolved on SWE-bench achieves 28.9% on Polyglot, compared
to the initial agent’s baseline of 14.2%. Conversely, the best agent evolved on Polyglot achieves
24.5% on SWE-bench, outperforming the original baseline of 20.0%. Since each agent was optimized
without ever accessing the alternate benchmark, these evaluations represent truly held-out tests. The
consistent performance gains across benchmarks support our claim that DGM’s improvements reflect
general skill acquisition rather than overfitting or exploitation of benchmark-specific artifacts. Second,
we experiment with a version of the DGM trained exclusively on Python tasks from Polyglot and then
transfer the discovered agent to tasks in other languages. Focusing primarily on Python tasks slightly
improves performance on Python tasks but reduces performance on non-Python tasks compared to
the DGM trained on all languages (Figure 4, Right). However, after being transferred from Python to
other unseen languages during the search, the agent still achieves performance comparable to that
of the DGM trained on all languages and substantially outperforms both the base agent and Aider.
These results demonstrate the robustness of the discovered improvements, showing that they do not
overfit to a specific programming language. We also present additional results in Appendix A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 SAFETY DISCUSSION

Systems capable of self-improvement, such as the DGM, represent a step toward more autonomous
AI development, aligning with long-standing goals in the field of making capable AI that can benefit
humanity (Schmidhuber, 1987; Clune, 2019; Markoff, 2016; Lehman, 2023). However, this capability
introduces unique safety considerations stemming from the system’s ability to autonomously modify
its own code. Modifications optimized solely for benchmark performance might inadvertently
introduce vulnerabilities or behaviors misaligned with human intentions, even if they improve the
target metric (Bostrom, 2020). In particular, if evaluation benchmarks do not fully capture all desired
agent properties (e.g., safety and robustness), the self-improvement loop could amplify misalignment
over successive generations. Iterative self-modification could also lead to increasingly complex and
uninterpretable internal logic, hindering human understanding, oversight, and control (Sheth et al.,
2025; Anwar et al., 2024; Greenblatt et al., 2024; Ganguli et al., 2022).

Recognizing these challenges, the current implementation and experimental setup of the DGM
incorporates several safeguards. All agent execution and self-modification processes are conducted
within isolated sandboxed environments, limiting their ability to affect the host system, and thereby
mitigating the risk of unintended actions. Each execution within the sandbox is subjected to a strict
time limit, reducing the risk of resource exhaustion or unbounded behavior. The self-improvement
process is currently confined to the well-defined domain of enhancing performance on specific coding
benchmarks by modifying the agent’s own Python codebase, thus limiting the scope of potential
modifications. Additionally, we actively monitor agent performance and code changes, with the
DGM archive providing a traceable lineage of modifications for review. At this stage, we have found
no evidence of harmful or malicious behavior in the generated agents, and the self-modifications have
been primarily focused on improving coding capabilities.

Conversely, a significant potential benefit of the self-improvement paradigm is that it could, in princi-
ple, be directed toward enhancing safety and interpretability themselves. We conduct a preliminary
investigation into how the DGM can be deployed in AI safety settings to develop countermeasures for
FM hallucination (Appendix H). Just as the DGM learns to improve its coding capabilities, it could
potentially discover and integrate better internal safeguards or modify itself for greater transparency
(e.g., incorporating principles akin to Constitutional AI (Bai et al., 2022)), if such properties were
included in its evaluation criteria (Rosser & Foerster, 2025). This suggests a promising, albeit
challenging, pathway in which self-improvement becomes a tool for building more trustworthy AI
systems. Additional research could also explore weaving Constitutional AI in from the start, though
the challenge would be incentivizing the system to retain these directives (an option worth exploring
is to create an unmodifiable part of the system to be able to evaluate at halt the rest).

The DGM demonstrates the potential of self-improving AI while still operating within safe research
boundaries due to the current limitations of frontier FMs and effective mitigations like sandboxing.
Appendix I presents additional discussion on broader safety uncertainties. We include this safety
discussion proactively to raise awareness about the emerging prospect of self-improving AI systems
and their associated safety implications, particularly as these systems inevitably become more
capable (Yudkowsky et al., 2008; Bostrom, 2002; Ecoffet et al., 2020; Bengio et al., 2024; Clune,
2019). Accordingly, we advocate for continued investigation into the safe and beneficial evolution of
AI-Generating Algorithms (Clune, 2019) and self-improving systems.

6 CONCLUSION AND LIMITATIONS

We introduce the Darwin Gödel Machine (DGM), the first self-improving system powered by FMs
with open-ended exploration, where progress on its evaluation benchmarks can directly translate
into better self-improvement capabilities. We demonstrate the automatic discovery of better tools
and FM systems, resulting in better performance on two benchmarks: SWE-bench and Polyglot.
Through self-improvement and open-ended exploration, the DGM shows a continuous increase in
performance, bringing us one step closer to self-accelerating, self-improving AI systems.

We demonstrate that the DGM can autonomously achieve performance on par with openly available
solutions. However, it still falls short of closed-source SoTA SWE-bench solutions. An open question
is whether running the DGM for longer would continue to yield performance gains and eventually
surpass closed-source solutions. These closed-source solutions often rely on elaborately handcrafted

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

techniques developed by teams of highly skilled experts. Since FMs have yet to match the capabilities
of such experts (e.g., in reasoning), the DGM currently requires extensive compute to discover
improvements. A single run of the DGM on SWE-bench, as presented in Section 4, takes about 2
weeks and incurs significant API costs (Appendix E.1). We hypothesize that further progress will
require more efficient use of computational resources and the development of better reasoning skills.

Since this version of the DGM is mainly powered by FMs, it is inherently limited by the capabilities
of the underlying FM. Hence, an exciting future direction is to extend self-modification beyond just
prompts or FM workflows, to include more computationally intensive methods, such as rewriting
its own training script to update the FM itself. While this version of the DGM focuses on coding,
AI systems are increasingly applied across a wide range of domains (e.g., computer vision, creative
writing). Another promising extension is to develop self-improving AI systems capable of enhancing
themselves beyond just the coding domain. A key assumption in this work is that coding benchmarks
are a good reflection of the agent’s ability to self-improve, since the self-modification task requires
the agent to modify its own codebase. However, one could envision an alternative approach that
co-evolves the target task distribution (Faldor et al., 2025; Wang et al., 2023c), thereby removing
the constraint of self-improvement being tied to a single objective, as in true open-ended processes.
Appendix J presents additional potential directions for future work. As we continue to explore this
powerful technology, we must also keep safety front and center, as discussed in Section 5.

In conclusion, the DGM represents a significant step toward the automation of AI development
through self-improving systems capable of editing their own codebase. While current limitations in
compute and reasoning constrain its full potential, continued advances in FMs and infrastructure may
unlock more powerful and general-purpose self-improvements. Provided that the safety concerns
are carefully navigated (Section 5), the future of self-improving AI systems and AI-Generating
Algorithms (Clune, 2019) holds immense promise to open-endedly evolve AI, continually rewriting
or retraining itself in pursuit of greater capabilities aligned with human values.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics. This work studies self-improving AI systems
in the limited context of code-editing agents evaluated on standard programming benchmarks. No
human subjects were involved and no personally identifiable information (PII) was collected or
processed; IRB approval was therefore not required.

Safety and misuse. Self-modifying systems can pose safety risks if allowed to act without constraints
or if optimizations inadvertently introduce unsafe behaviors. To mitigate this, all agents in our
experiments ran inside isolated sandboxes with strict resource and time limits; agents had limited
network access and no ability to modify the host environment. The self-improvement scope was
restricted to the agent’s own Python codebase and evaluation harnesses. We maintained a complete,
auditable lineage (archive) of code changes and evaluations, enabling rollback and post-hoc analysis.
We did not deploy discovered agents in real development environments. Our release plan (code,
prompts, and evaluation artifacts) will exclude any components that grant elevated system access and
will include default sandboxing, guardrails, and clear documentation of intended use.

Dual-use, downstream impact, and limitations. Stronger autonomous coding agents could be
dual-use (e.g., aiding software maintenance, but also potentially facilitating creation of harmful code
if misapplied). We believe the research benefits (e.g., advancing methods for controlled, auditable
self-improvement and demonstrating practical safeguards) outweigh the risks. Nevertheless, we
explicitly discourage security-sensitive or unsandboxed deployment and provide concrete safety
recommendations (Section 5). Our empirical focus on benchmark optimization may not capture
all desirable properties (robustness, interpretability, or broader social values). We therefore treat
benchmark gains as necessary but insufficient indicators of general AI development, and discuss
avenues to integrate other objectives (e.g., safety, reasoning) into the optimization loop.

Data governance, IP, and licensing. We evaluate on SWE-bench Verified and Polyglot, which are
composed of open-source repositories and tasks. We complied with dataset licenses and usage terms
to the best of our knowledge. We did not introduce or distribute proprietary code. Foundation models
(FMs) were accessed via provider APIs under their terms of service; we did not submit sensitive data,
nor attempt to circumvent usage policies. Logs released with this work will be scrubbed of API keys
and any incidental sensitive strings.

Bias, fairness, and equity. Although our domain is software code rather than human-centered text,
FM behavior can still reflect biases (e.g., language or ecosystem preferences) and may unevenly
benefit communities whose tooling is better represented in training data. We partially address this by
evaluating across multiple languages (Polyglot) and reporting cross-benchmark transfer. Future work
should add diagnostics for biased failure modes and include broader, community-driven task sets.

Conflicts of interest and funding. No author has a financial interest in products whose performance
is evaluated here. Sponsors and employers did not influence experimental design, analysis, or the
decision to publish, beyond providing salary or standard research support. Any external compute or
API credits are acknowledged in the appendix.

REPRODUCIBILITY STATEMENT

We will open-source all code and full agent logs, including the complete archive lineage of self-
modifications (diffs, prompts, and configs) as well as the evaluation harness. To support exact repli-
cation, we reference the following: algorithmic details and pseudocode (Section 3, Appendix C.4);
parent selection and open-ended exploration settings (Appendix C.2); foundation model choices
and hyperparameters (Appendix D.1); benchmark task subsets for SWE-bench and Polyglot (Ap-
pendix E.2, Appendix E.3); staged evaluation protocols and scripts (Section 4.2); implementations
and diffs for the best discovered agents (Appendix F.1, Appendix F.2); and compute and cost estimates
(Appendix E.1). The released code repository will include environment specifications and scripts to
reproduce all results, figures, and tables.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Fuma Aki, Riku Ikeda, Takumi Saito, Ciaran Regan, and Mizuki Oka. Llm-poet: Evolving complex
environments using large language models. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 243–246, 2024.

Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. Search-based program
synthesis. Communications of the ACM, 61(12):84–93, 2018.

S-I Amari. Learning patterns and pattern sequences by self-organizing nets of threshold elements.
IEEE Transactions on computers, 100(11):1197–1206, 1972.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Anthropic. Claude 3.5 Sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, June 2024a. [Accessed 17 April 2025].

Anthropic. Claude can now use tools, May 2024b. URL https://www.anthropic.com/
news/tool-use-ga. Accessed: 2025-05-03.

Anthropic. Claude 3.7 sonnet and claude code, February 2025. URL https://www.anthropic.
com/news/claude-3-7-sonnet. Accessed: 2025-05-06.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational challenges
in assuring alignment and safety of large language models. arXiv preprint arXiv:2404.09932,
2024.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and
Nadia Polikarpova. Hysynth: Context-free llm approximation for guiding program synthesis.
Advances in Neural Information Processing Systems, 37:15612–15645, 2024.

Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yu-
val Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, et al. Managing extreme AI risks
amid rapid progress. Science, 384(6698):842–845, 2024.

N Bostrom. Existential Risks: analyzing human extinction scenarios and related hazards. Journal of
Evolution and Technology, 9, 2002.

Nick Bostrom. Ethical issues in advanced artificial intelligence. Machine Ethics and Robot Ethics,
pp. 69–75, 2020.

Herbie Bradley, Andrew Dai, Hannah Benita Teufel, Jenny Zhang, Koen Oostermeijer, Marco
Bellagente, Jeff Clune, Kenneth Stanley, Gregory Schott, and Joel Lehman. Quality-diversity
through ai feedback. In The Twelfth International Conference on Learning Representations, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. In Forty-first International Conference on Machine Learning, 2024.

12

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/tool-use-ga
https://www.anthropic.com/news/tool-use-ga
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

J Richard Buchi and Lawrence H Landweber. Solving sequential conditions by finite-state strategies.
In The collected works of J. Richard Büchi, pp. 525–541. Springer, 1990.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Wenjing Hu, Yuchen Mao, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? Advances in Neural Information
Processing Systems, 37:107703–107744, 2024.

Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret.
Quality-diversity optimization: a novel branch of stochastic optimization. In Black Box Op-
timization, Machine Learning, and No-Free Lunch Theorems, pp. 109–135. Springer, 2021.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735, 2023.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative
optimization with rich feedback, execution traces, and llms. Advances in Neural Information
Processing Systems, 37:71596–71642, 2024.

Jeff Clune. AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International
conference on machine learning, pp. 1331–1340. PMLR, 2019.

Cédric Colas, Tristan Karch, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Language and culture
internalization for human-like autotelic AI. Nature Machine Intelligence, 4(12):1068–1076, 2022a.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal of
Artificial Intelligence Research, 74:1159–1199, 2022b.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting autotelic agents with large language models. In Conference on Lifelong Learning
Agents, pp. 205–226. PMLR, 2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Charles Darwin. Origin of the species. In British Politics and the environment in the long nineteenth
century, pp. 47–55. Routledge, 2023.

Richard Dawkins. The evolution of evolvability. In Artificial life, pp. 201–220. Routledge, 2019.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Aaron Dharna, Cong Lu, and Jeff Clune. Quality-Diversity Self-Play: Open-Ended Strategy Innova-
tion via Foundation Models. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Li Ding, Jenny Zhang, Jeff Clune, Lee Spector, and Joel Lehman. Quality diversity through
human feedback: towards open-ended diversity-driven optimization. In Proceedings of the 41st
International Conference on Machine Learning, pp. 11072–11090, 2024.

Theodosius Dobzhansky. Genetics of the evolutionary process, volume 139. Columbia University
Press, 1970.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Adrien Ecoffet, Jeff Clune, and Joel Lehman. Open questions in creating safe open-ended AI: tensions
between control and creativity. In Artificial Life Conference Proceedings 32, pp. 27–35. MIT Press
One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2020.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Anthony W Fisher Edwards. The genetical theory of natural selection. Genetics, 154(4):1419–1426,
2000.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design and implementation, pp. 835–850,
2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu,
et al. Human-level play in the game of Diplomacy by combining language models with strategic
reasoning. Science, 378(6624):1067–1074, 2022.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. OMNI-EPIC: Open-endedness
via Models of human Notions of Interestingness with Environments Programmed in Code. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=Y1XkzMJpPd.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-Referential Self-Improvement via Prompt Evolution. In Forty-first
International Conference on Machine Learning, 2024.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min
Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint
arXiv:2504.15257, 2025.

Paul Gauthier. Aider: Ai pair programming in your terminal. https://github.com/
Aider-AI/aider, 2024. Accessed: 2025-05-14.

Loris Gaven, Thomas Carta, Clément Romac, Cédric Colas, Sylvain Lamprier, Olivier Sigaud, and
Pierre-Yves Oudeyer. MAGELLAN: Metacognitive predictions of learning progress guide autotelic
LLM agents in large goal spaces. arXiv preprint arXiv:2502.07709, 2025.

John Gerhart and Marc Kirschner. The theory of facilitated variation. Proceedings of the National
Academy of Sciences, 104(suppl_1):8582–8589, 2007.

Irving John Good. Speculations concerning the first ultraintelligent machine. In Advances in
computers, volume 6, pp. 31–88. Elsevier, 1966.

Google DeepMind. Gemini model “thinking” updates — march
2025. https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking,
March 2025. Accessed: 2025-05-11.

Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam Marks,
Johannes Treutlein, Tim Belonax, Jack Chen, David Duvenaud, et al. Alignment faking in large
language models. arXiv preprint arXiv:2412.14093, 2024.

14

https://openreview.net/forum?id=Y1XkzMJpPd
https://openreview.net/forum?id=Y1XkzMJpPd
https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

John Storrs Hall. Self-improving AI: An analysis. Minds and Machines, 17(3):249–259, 2007.

Alex Havrilla, Andrew Dai, Laura O’Mahony, Koen Oostermeijer, Vera Zisler, Alon Albalak, Fabrizio
Milo, Sharath Chandra Raparthy, Kanishk Gandhi, Baber Abbasi, et al. Surveying the effects of
quality, diversity, and complexity in synthetic data from large language models. arXiv preprint
arXiv:2412.02980, 2024a.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via
global and local refinements. arXiv preprint arXiv:2402.10963, 2024b.

Jesse Love Hendrikse, Trish Elizabeth Parsons, and Benedikt Hallgrímsson. Evolvability as the
proper focus of evolutionary developmental biology. Evolution & development, 9(4):393–401,
2007.

Nathan Herr, Tim Rocktäschel, and Roberta Raileanu. Llm-first search: Self-guided exploration of
the solution space. arXiv preprint arXiv:2506.05213, 2025.

Marius Hobbhahn. Swe-bench verified mini. https://github.com/mariushobbhahn/
SWEBench-verified-mini, April 2025. Accessed: 2025-04-16.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Shengran Hu and Jeff Clune. Thought Cloning: Learning to think while acting by imitating human
thinking. Advances in Neural Information Processing Systems, 36, 2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated Design of Agentic Systems. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=t9U3LW7JVX.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktaschel. Open-endedness is essential for artificial superhuman
intelligence. arXiv preprint arXiv:2406.04268, 2024.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In International Conference on Machine Learning, pp.
9660–9677. PMLR, 2022.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. Metalearning continual learning algorithms.
Transactions on Machine Learning Research, 2025.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021.

Minqi Jiang, Tim Rocktäschel, and Edward Grefenstette. General intelligence requires rethinking
exploration. Royal Society Open Science, 10(6):230539, 2023.

15

https://github.com/mariushobbhahn/SWEBench-verified-mini
https://github.com/mariushobbhahn/SWEBench-verified-mini
https://openreview.net/forum?id=t9U3LW7JVX
https://openreview.net/forum?id=t9U3LW7JVX

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can Language Models Resolve Real-world Github Is-
sues? In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=VTF8yNQM66.

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton, Raul
Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, Oleg Klimov, and Jeff Clune.
Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft. arXiv
preprint arXiv:2106.14876, 2021.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. Structured Attention Networks. In
International Conference on Learning Representations, 2017.

Motoo Kimura. The neutral theory of molecular evolution. Scientific American, 241(5):98–129,
1979.

Louis Kirsch and Jürgen Schmidhuber. Self-referential meta learning. In First Conference on
Automated Machine Learning (Late-Breaking Workshop), 2022.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C Machado, and Pierluca D’Oro. MaestroMotif: Skill
Design from Artificial Intelligence Feedback. arXiv preprint arXiv:2412.08542, 2024.

Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, and Juergen Schmidhuber. Continual
curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots. Artificial
Intelligence, 247:313–335, 2017.

Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh,
and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimization. In
Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 29–30,
2023.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579–582,
2024.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Joel Lehman. Machine love. arXiv preprint arXiv:2302.09248, 2023.

Joel Lehman and Kenneth O Stanley. Novelty search and the problem with objectives. Genetic
programming theory and practice IX, pp. 37–56, 2011.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

16

https://openreview.net/forum?id=VTF8yNQM66

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

J. Li, Storie J., and J. Clune. Encouraging creative thinking in robots improves their ability to solve
challenging problems. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 193–200, 2014.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with
large language models. In International Conference on Computer Aided Verification, pp. 280–301.
Springer, 2024.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Bryan Lim, Manon Flageat, and Antoine Cully. Large language models as in-context ai generators
for quality-diversity. In ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. MIT
Press, 2024.

Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. PhD thesis, Master’s Thesis (in Finnish), Univ. Helsinki,
1970.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024.

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
Think-in-memory: Recalling and post-thinking enable llms with long-term memory. arXiv preprint
arXiv:2311.08719, 2023.

Chris Lu, Sebastian Towers, and Jakob Foerster. Arbitrary order meta-learning with simple population-
based evolution. In Artificial Life Conference Proceedings 35, volume 2023, pp. 67. MIT Press
One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024a.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. arXiv preprint arXiv:2405.15143, 2024b.

Cong Lu, Shengran Hu, and Jeff Clune. Automated capability discovery via model self-exploration.
arXiv preprint arXiv:2502.0757, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback, 2023. URL https://arxiv. org/abs/2303.17651, 2023.

John Markoff. Machines of loving grace: The quest for common ground between humans and robots.
HarperCollins Publishers, 2016.

Ernst Mayr. The growth of biological thought: Diversity, evolution, and inheritance. Harvard
University Press, 1982.

Luke Metz, C Daniel Freeman, Niru Maheswaranathan, and Jascha Sohl-Dickstein. Training learned
optimizers with randomly initialized learned optimizers. arXiv preprint arXiv:2101.07367, 2021.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Ret-llm: Towards a general
read-write memory for large language models. arXiv preprint arXiv:2305.14322, 2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Muhammad U Nasir and Julian Togelius. Practical PCG through large language models. In 2023
IEEE Conference on Games (CoG), pp. 1–4. IEEE, 2023.

Muhammad U Nasir, Steven James, and Julian Togelius. Word2world: Generating stories and worlds
through large language models. arXiv preprint arXiv:2405.06686, 2024.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Innovation engines: Automated creativity and
improved stochastic optimization via deep learning. In Proceedings of the 2015 annual conference
on genetic and evolutionary computation, pp. 959–966, 2015.

Fan Nie, Lan Feng, Haotian Ye, Weixin Liang, Pan Lu, Huaxiu Yao, Alexandre Alahi, and James
Zou. Weak-for-strong: Training weak meta-agent to harness strong executors. arXiv preprint
arXiv:2504.04785, 2025.

Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow: Modu-
larized agentic workflow automation. In The Thirteenth International Conference on Learning
Representations, 2025.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery.
Technical report, Google DeepMind, 2025.

OpenAI. Introducing swe-bench verified. https://openai.com/index/
introducing-swe-bench-verified/, August 2024. Accessed: 2025-04-16.

OpenAI. OpenAI o3-mini. https://openai.com/index/openai-o3-mini/, January
2025. Accessed: 2025-05-01.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A Decomposable Attention
Model for Natural Language Inference. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2249–2255, 2016.

Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Chris-
tos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer,
Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris
Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Frederic Besse,
Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia Hadsell,
Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie 2: A large-scale foun-
dation world model, 2024. URL https://deepmind.google/discover/blog/
genie-2-a-large-scale-foundation-world-model/.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

18

https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/openai-o3-mini/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Paul Gauthier. o1 tops aider’s new polyglot leaderboard. https://aider.chat/2024/12/
21/polyglot.html, December 2024. Accessed: 2025-04-16.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthe-
sis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 107–126, 2015.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:40, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Maxime Robeyns, Martin Szummer, and Laurence Aitchison. A Self-Improving Coding Agent. arXiv
preprint arXiv:2504.15228, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

J Rosser and Jakob Nicolaus Foerster. Agentbreeder: Mitigating the AI safety impact of multi-agent
scaffolds via self-improvement. In Scaling Self-Improving Foundation Models without Human
Supervision, 2025. URL https://openreview.net/forum?id=j0n3BJJTcT.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations
by error propagation, 1985.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. Advances in Neural Information
Processing Systems, 37:69747–69786, 2024.

Cansu Sancaktar, Christian Gumbsch, Andrii Zadaianchuk, Pavel Kolev, and Georg Martius. SENSEI:
Semantic Exploration Guided by Foundation Models to Learn Versatile World Models. arXiv
preprint arXiv:2503.01584, 2025.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. A ‘self-referential’weight matrix. In International conference on artificial
neural networks, pp. 446–450. Springer, 1993.

Jürgen Schmidhuber. Gödel machines: Fully self-referential optimal universal self-improvers. In
Artificial general intelligence, pp. 199–226. Springer, 2007.

Jürgen Schmidhuber. Driven by compression progress: A simple principle explains essential aspects
of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science,
music, jokes. In Workshop on anticipatory behavior in adaptive learning systems, pp. 48–76.
Springer, 2008.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

Jürgen Schmidhuber and Rudolf Huber. Learning to generate focus trajectories for attentive vision.
Institut für Informatik, 1990.

19

https://aider.chat/2024/12/21/polyglot.html
https://aider.chat/2024/12/21/polyglot.html
https://openreview.net/forum?id=j0n3BJJTcT

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei
Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A
systematic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Ivaxi Sheth, Jan Wehner, Sahar Abdelnabi, Ruta Binkyte, and Mario Fritz. Safety is Essential for
Responsible Open-Ended Systems. arXiv preprint arXiv:2502.04512, 2025.

Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, and Charles Sutton. Lambdabeam: Neural pro-
gram search with higher-order functions and lambdas. Advances in Neural Information Processing
Systems, 36:51327–51346, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.
Springer, 2015.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve
never heard of. While open-endedness could be a force for discovering intelligence, it could also
be a component of AI itself, 2017.

Marilyn Strathern. ‘Improving ratings’: audit in the British University system. European review, 5
(3):305–321, 1997.

Jinwei Su, Yinghui Xia, Ronghua Shi, Jianhui Wang, Jianuo Huang, Yijin Wang, Tianyu Shi, Yang
Jingsong, and Lewei He. Debflow: Automating agent creation via agent debate. arXiv preprint
arXiv:2503.23781, 2025.

Shyam Sudhakaran, Miguel González-Duque, Matthias Freiberger, Claire Glanois, Elias Najarro,
and Sebastian Risi. Mariogpt: Open-ended text2level generation through large language models.
Advances in Neural Information Processing Systems, 36:54213–54227, 2023.

OpenAI Team, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card.
arXiv preprint arXiv:2412.16720, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Ren-Jian Wang, Ke Xue, Yutong Wang, Peng Yang, Haobo Fu, Qiang Fu, and Chao Qian. Diversity
from human feedback. arXiv preprint arXiv:2310.06648, 2023b.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software develop-
ers as generalist agents. In The Thirteenth International Conference on Learning Representations,
2024.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zackory
Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for automated
robot learning via generative simulation. arXiv preprint arXiv:2311.01455, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Marco Wiering and Jürgen Schmidhuber. Hq-learning. Adaptive behavior, 6(2):219–246, 1997.

S Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution, proceedings of
the sixth international congress of genetics. proc sixth int congr genet [internet]. New York356366,
1932.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training
llms to build llm-based multi-agent systems. arXiv preprint arXiv:2503.03686, 2025.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, and William Yang Wang. G\" odel
Agent: A Self-Referential Agent Framework for Recursive Self-Improvement. arXiv preprint
arXiv:2410.04444, 2024.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

Eliezer Yudkowsky et al. Artificial Intelligence as a positive and negative factor in global risk. Global
catastrophic risks, 1(303):184, 2008.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024a.

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer (stop):
Recursively self-improving code generation. In First Conference on Language Modeling, 2024b.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024a.

21

https://arxiv.org/abs/2405.15793

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025a.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via Models
of human Notions of Interestingness. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=AgM3MzT99c.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024c.

Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, and Siheng
Chen. Gnns as predictors of agentic workflow performances. arXiv preprint arXiv:2503.11301,
2025b.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 1592–1604, 2024d.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

Andy Zhou, Kevin Wu, Francesco Pinto, Zhaorun Chen, Yi Zeng, Yu Yang, Shuang Yang, Sanmi
Koyejo, James Zou, and Bo Li. AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack
Integration. arXiv preprint arXiv:2503.15754, 2025.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi Jin, and Hong Mei. Hot or cold? adaptive temperature
sampling for code generation with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 437–445, 2024.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R. Ashley, Róbert Csordás, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, Louis
Kirsch, Bing Li, Guohao Li, Shuming Liu, Jinjie Mai, Piotr Piékos, Aditya Ramesh, Imanol
Schlag, Weimin Shi, Aleksandar Stanic, Wenyi Wang, Yuhui Wang, Mengmeng Xu, Deng-Ping
Fan, Bernard Ghanem, and Jürgen Schmidhuber. Mindstorms in natural language-based societies
of mind. arXiv preprint arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

22

https://openreview.net/forum?id=AgM3MzT99c

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

APPENDIX

TABLE OF CONTENTS

A Additional Results 24

A.1 Baselines on SWE-bench . 24

A.2 Generality across models on Polyglot . 25

A.3 Ablation of Parent Selection . 25

A.4 Additional Statistics of DGM runs . 25

B Additional Related Work 26

C Algorithmic Details 27

C.1 Initial Coding Agent . 27

C.2 Parent Selection . 28

C.3 Self-Improve Prompts . 28

C.4 Pseudocode . 31

D Experiment Details 32

D.1 Hyperparameters for Foundation Models . 32

E Benchmark Details 32

E.1 Cost Estimate . 32

E.2 SWE-bench Tasks . 32

E.3 Polyglot Tasks . 35

E.4 SWE-bench State-of-The-Art . 36

E.5 Polyglot Representative Agent . 36

F Best-Discovered Agents 36

F.1 DGM on SWE-bench . 36

F.2 DGM on Polyglot . 50

G Similar Target Functionality, Different Implementations 59

H Case Study: Solving Hallucination 69

I Additional Safety Discussion 71

J Additional Future Work Directions 71

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

A.1 BASELINES ON SWE-BENCH

DGM w/o Self-improve
Archive Tree

DGM w/o Self-improve
Progress

SWE-bench
Score

10 tasks (no basic functionality)

60 tasks

200 tasks (score ≥ 0.4 and
top two of archive then)

Final best agent

Figure 5: DGM without self-improving agents. Keeping the meta-agent that is modifying and
producing the next coding agents the same, DGM w/o self-improve is unable to continuously improve
over time. (Left) Archive of coding agents generated during the DGM w/o self-improve run on
SWE-bench. Each node represents a coding agent, with node 0 corresponding to the base agent. Node
color indicates performance on SWE-bench (percentage of solved tasks), while border color reflects
the number of tasks for which the agent was evaluated. Edges show which agents self-modified to
produce the offsprings. (Right) Progress plot of the DGM w/o self-improve on SWE-bench. The light
green line shows the average score of all agents possessing basic codebase-editing functionality. The
green line tracks the best score achieved by any agent in the archive at each iteration. The dark line
shows the lineage of the final best-discovered agent and its precursor nodes.

DGM w/o Open-ended exploration
Archive Tree

DGM w/o Open-ended exploration
Progress

SWE-bench
Score

10 tasks (no basic functionality)

60 tasks

200 tasks (score ≥ 0.4 and
top two of archive then)

Final best agent

Figure 6: DGM without open-ended exploration. Removing the archive, DGM w/o open-ended
exploration always uses the most recent agent to self-modify and makes very little progress on
SWE-bench. (Left) Archive of coding agents generated during the DGM w/o open-ended exploration
run on SWE-bench. Each node represents a coding agent, with node 0 corresponding to the base
agent. Node color indicates performance on SWE-bench (percentage of solved tasks), while border
color reflects the number of tasks for which the agent was evaluated. Edges show which agents
self-modified to produce the offsprings. (Right) Progress plot of the DGM w/o open-ended on
SWE-bench. The orange line shows the average score of all agents possessing basic codebase-editing
functionality. The light orange line tracks the best score achieved by any agent in the archive at each
iteration. The dark line shows the lineage of the final best-discovered agent and its precursor nodes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.2 GENERALITY ACROSS MODELS ON POLYGLOT

o3-mini Claude 3.5 Sonnet Claude 3.7 Sonnet
0

10

20

30

40

Su
cc

es
s R

at
e

on
 P

ol
yg

lo
t (

%
)

14.2%

32.0%
35.6%

30.7%
33.3%

36.8%

Model Transfer on Polyglot

Base Agent Best Agent transfer to other FMs Best Agent from DGM

Figure 7: Transfer between Models on Polyglot

In addition to testing the transfer models on SWE-bench (see Section 4.4, Figure 2), we also
present the transfer results on Polyglot in this section. On Polyglot (Figure 7), where the DGM was
run with o3-mini, we replaced the FM with Claude 3.5 Sonnet (New) or Claude 3.7 Sonnet, and
evaluated on the full benchmark (Figure 4, Middle). With Claude 3.5 Sonnet (New), the initial agent
achieved 32.0% and the DGM-discovered agent 33.3%. With Claude 3.7 Sonnet, the initial agent
achieved 35.6% and the DGM-discovered agent 36.8%. These results suggest that the DGM yields
improvements that generalize across FMs, rather than being tightly coupled to the specific FM used
during its run (Figure 4).

A.3 ABLATION OF PARENT SELECTION

To further study the impact of the parent selection mechanism in DGM, we introduce DGM Greedy.
DGM Greedy always selects the best-performing node as the parent to branch from, rather than giving
every node a non-zero probability of being branched off (roughly proportional to their performance
score and number of children) as in this implementation of the DGM (Appendix C.2). This ablation
replicates the approach of Robeyns et al. (2025) in this setting. As shown in Table 1, DGM Greedy
achieves 39.7% and 30.0% on SWE-bench and Polyglot, respectively, compared to 50.0% and 38.0%
by this implementation of DGM. These results demonstrate that allowing all solutions in the archive
to serve as potential stepping stones can lead to greater improvements over time, underscoring the
importance of open-ended exploration.

Table 1: Comparison of DGM, its ablations, and baselines on SWE-bench and Polyglot benchmarks.

Method SWE-bench Polyglot
DGM 50.0% 38.0%
DGM w/o Open-ended exploration 23.0% 14.0%
DGM w/o Self-improve 39.0% 28.0%
DGM Greedy 39.7% 30.0%

A.4 ADDITIONAL STATISTICS OF DGM RUNS

Percentage of Generated Agents with Basic Code-Editing Functionality. To gain deeper insights
into the DGM process, we analyze the percentage of generated agents that possess basic code-editing
functionality on the SWE-bench benchmark. As shown in Table 2, DGM exhibits the highest
percentage of producing agents with basic codebase-editing functionality. These results highlight the
effectiveness of both open-ended exploration and self-improvement components in the DGM, where
open-ended exploration enables the search to escape local optima, while self-improvement enhances
the ability to generate better agents.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 2: Percentage of generated agents with basic code-editing functionality on SWE-bench.

Method Percentage with Basic Code-Editing Functionality
DGM 51.3%
DGM w/o Open-ended exploration 32.5%
DGM w/o Self-improve 32.5%

Stability of DGM Runs. To evaluate the stability of DGM, we run the DGM algorithm three times
on the Polyglot benchmark and analyze the variance in performance. The DGM achieved a mean
accuracy of 40.7% with a standard deviation of 2.3%, indicating that the DGM can achieve consistent
and reproducible results across runs.

B ADDITIONAL RELATED WORK

Open-Endedness (part 2). Early approaches to open-endedness explored different mechanisms
to balance learnability and interestingness. Quality-diversity algorithms sought to illuminate vast
solution spaces with diverse, high-performing behaviors (Pugh et al., 2016; Chatzilygeroudis et al.,
2021; Mouret & Clune, 2015; Nguyen et al., 2015). Other methods emphasized goal-directed
exploration (Ecoffet et al., 2019; 2021; Schaul et al., 2015; Andrychowicz et al., 2017; Eysenbach
et al., 2018), intrinsic motivation (Lehman & Stanley, 2011; Oudeyer et al., 2007; Li et al., 2014;
Pathak et al., 2017), or learning progress frameworks (Kanitscheider et al., 2021; Gaven et al.,
2025; Baranes & Oudeyer, 2013; Colas et al., 2019; 2022b; Jiang et al., 2021; Dennis et al., 2020;
Schmidhuber, 2008; 2013; Kompella et al., 2017). More recently, large-scale foundation models
(FMs) (Brown et al., 2020; Radford et al., 2019) have emerged as powerful proxies for human notions
of interestingness (Zhang et al., 2024b; Faldor et al., 2025; Sancaktar et al., 2025) and effective
mutation operators to propose novel solutions in code (Romera-Paredes et al., 2024; Novikov et al.,
2025; Lehman et al., 2023; Faldor et al., 2025; Hu et al., 2025). FMs can guide autotelic agents (Colas
et al., 2022b; 2023; 2022a), model human preferences for quality and diversity (Bradley et al., 2024;
Ding et al., 2024; Wang et al., 2023b; Klissarov et al., 2023; 2024; Samvelyan et al., 2024; Lim
et al., 2024; Havrilla et al., 2024a), design reward functions (Wiering & Schmidhuber, 1997; Wang
et al., 2023a; Ma et al., 2023; Faldor et al., 2025), create simulated environments (Sudhakaran et al.,
2023; Nasir & Togelius, 2023; Aki et al., 2024; Nasir et al., 2024; Bruce et al., 2024; Parker-Holder
et al., 2024; Schmidhuber, 2013), drive ever-evolving multi-agent dynamics (Dharna et al., 2024;
Zhou et al., 2025), search diverse ambulating robot morphologies (Lehman et al., 2023), and search
expansive solution spaces for benchmark or objective optimization (Lange et al., 2024; Zhang et al.,
2024b; Faldor et al., 2025; Hu et al., 2025; Lu et al., 2024b; Romera-Paredes et al., 2024; Fernando
et al., 2024; Lu et al., 2024a; Khan et al., 2024; Lu et al., 2025; Liu et al., 2024; Novikov et al., 2025).

Program Synthesis. Program synthesis (Alur et al., 2018; Polozov & Gulwani, 2015; Buchi
& Landweber, 1990; Gulwani, 2011; Ellis et al., 2021) seeks to generate code meeting external
specifications such as input-output examples or logical formulas. Hybrid approaches combine
symbolic methods with neural or FM guidance: for instance, Li et al. (2024) uses LLM suggestions
to steer symbolic search in SyGuS settings, improving over pure enumeration. Barke et al. (2024)
blends LLM completions with a learned surrogate model to guide synthesis in DSLs. Shi et al. (2023)
uses neural policies to build higher-order and lambda abstractions during search, outperforming both
LLM-only and symbolic baselines on list manipulation tasks. The DGM differs in focusing not
just on producing programs for external tasks, but also on agent self-modification, rewriting its own
implementation to improve its capacity for future self-improvement.

Inspiration from Darwinian Evolution. This work is heavily inspired by the mechanisms of
Darwinian evolution (Darwin, 2023), notably variation (mutation), selection, and the preservation
of lineages (stepping stones), and brings them into the realm of self-modifying coding agents. In
DGM, an archive of past agent versions is maintained, from which parent agents are sampled; then
mutations (i.e., code edits) generate new offspring agents, which are empirically evaluated on coding
benchmarks; successful ones are added to the archive, enabling parallel exploration of multiple
evolutionary trajectories (Section 3). This mirrors how biological evolution (Edwards, 2000; Wright,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1932) preserves genetic diversity (Mayr, 1982), leverages variation (Kimura, 1979), and uses natural
selection to retain beneficial mutations (Dobzhansky, 1970).

C ALGORITHMIC DETAILS

C.1 INITIAL CODING AGENT

In this section, we present the details of the tools available to the initial coding agent (Section 4.1)
and its task prompt.

Information of the given Bash tool:
def tool_info():

return {
"name": "bash",
"description": """Run commands in a bash shell\n

* When invoking this tool, the contents of the "command" parameter does NOT need to be
↪→ XML-escaped.\n

* You don't have access to the internet via this tool.\n

* You do have access to a mirror of common linux and python packages via apt and pip.\n

* State is persistent across command calls and discussions with the user.\n

* To inspect a particular line range of a file, e.g. lines 10-25, try 'sed -n 10,25p
↪→ /path/to/the/file'.\n

* Please avoid commands that may produce a very large amount of output.\n

* Please run long lived commands in the background, e.g. 'sleep 10 &' or start a server in
↪→ the background.""",
"input_schema": {

"type": "object",
"properties": {

"command": {
"type": "string",
"description": "The bash command to run."

}
},
"required": ["command"]

}
}

Information of the given Edit tool:
def tool_info():

return {
"name": "editor",
"description": """Custom editing tool for viewing, creating, and editing files\n

* State is persistent across command calls and discussions with the user.\n

* If `path` is a file, `view` displays the entire file with line numbers. If `path` is a
↪→ directory, `view` lists non-hidden files and directories up to 2 levels deep.\n

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

* The `edit` command overwrites the entire file with the provided `file_text`.\n
* No partial/line-range edits or partial viewing are supported.""",

"input_schema": {
"type": "object",
"properties": {

"command": {
"type": "string",
"enum": ["view", "create", "edit"],
"description": "The command to run: `view`, `create`, or `edit`."

},
"path": {

"description": "Absolute path to file or directory, e.g. `/repo/file.py` or
↪→ `/repo`.",

"type": "string"
},
"file_text": {

"description": "Required parameter of `create` or `edit` command,
↪→ containing the content for the entire file.",

"type": "string"
}

},
"required": ["command", "path"]

}
}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Task prompt:
I have uploaded a Python code repository in the directory {self.git_tempdir}. Help solve

↪→ the following problem.

<problem_description>
{self.problem_statement}
</problem_description>

<test_description>
{self.test_description}
</test_description>

Your task is to make changes to the files in the {self.git_tempdir} directory to address
↪→ the <problem_description>. I have already taken care of the required dependencies.

C.2 PARENT SELECTION

At each DGM iteration, we select a subset of agents from the archive as parents to self-modify
and produce new child agents (Section 3). The details of the parent selection process, inspired by
Ecoffet et al. (2019), are outlined below. Future work could explore alternative search and exploration
methods (Coulom, 2006; Silver et al., 2016; Herr et al., 2025).

At each iteration t of the DGM run, let

At = {at1, at2, . . . , atN}

be the archive of candidate agents. We first define the eligible set

Et =
{
ati ∈ At : αi < 1

}
,

i.e. only those agents whose performance score is not yet perfect. We then sample k parents (with
replacement) from Et in proportion to a combined measure of performance and number of children
with codebase-editing functionality. Concretely, for each agent ati ∈ Et:

(performance) αi = performance(ati), (1)

(children count) ni = functioning_children_count(ati), (2)

(sigmoid-scaled performance) si =
1

1 + exp
(
−λ (αi − α0)

) , (3)

(novelty bonus) hi =
1

1 + ni
, (4)

(unnormalized weight) wi = si hi, (5)

(selection probability) pi =
wi∑N
j=1 wj

, (6)

(sampling) { parents } ∼ Categorical
(
{pi}at

i∈Et

)
(draw k samples). (7)

Here, λ > 0 controls the sharpness of the sigmoid, and α0 is the midpoint accuracy. We set λ = 10
and α0 = 0.5. k determines how many self-improvements are done in parallel during each iteration
of the DGM run. We set k = 2 in SWE-bench experiments, and k = 4 in Polyglot experiments.

C.3 SELF-IMPROVE PROMPTS

In every iteration, an agent is chosen to self-modify. For this step, the current implementation of
DGM leverages a separate FM to diagnose improvement opportunities, which are then passed to
the coding agent for implementation. To identify the next potential improvement, the evaluation
logs from the chosen agent’s performance on the coding benchmark are fed into the FM. While the
current implementation relies on an additional diagnostic step, there are no fundamental limitations
preventing the DGM from autonomously analyzing its own performance, generating improvement

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

hypotheses, and implementing subsequent modifications. We chose to use OpenAI’s o1 model (Team
et al., 2024) for this purpose, as we found it had better reasoning capabilities than other FMs available
at the time of our experiments. The prompts used for this diagnosis are provided below. From
the diagnostic output, the implementation_suggestion and problem_description are
extracted and passed to the coding agent as its self-modification task.

Self-improve diagnosis prompt for SWE-bench experiments:

Self-Improve Prompt

Coding Agent Summary

- **Main File**: `coding_agent.py`
- Primary Class: `AgenticSystem`
- The `forward()` function is the central entry point.
- Prompts are located either within the `forward()` function or in the `prompts/`

directory.↪→
- **Tools**: `tools/`

- The `tools/` directory contains various tools that LLMs can use to perform specific
tasks.↪→

- Each tool must have a `tool_info()` function that returns a JSON object containing
'name', 'description', and 'input_schema'. The 'input_schema' should be a JSON
object containing 'type', 'properties', and 'required'.

↪→
↪→
- Each tool must have a `tool_function()` function that takes the arguments defined

in input_schema, performs the tool's task, and returns a string.↪→
- See other tools for reference.

- **Utilities**: `utils/`
- The `utils/` directory contains utility functions used across the codebase.

- **Additional Details**:
- The agent is very good at automatically utilizing the right available tools at the

right time. So do not have an agentic flow that explicitly forces a tool's usage.↪→
- Common tools, such as file editing and bash commands, are easy for the agent to

recognize and use appropriately. However, more complex and niche tools may
require explicit instructions in the prompt.

↪→
↪→
- Tools should be designed to be as general as possible, ensuring they work across

any GitHub repository. Avoid hardcoding repository-specific details or behaviors
(e.g., paths).

↪→
↪→
- Do not use 'while True' loops in the agent's code. This can cause the agent to get

stuck and not respond.↪→
- Verify the implementation details of helper functions prior to usage to ensure

proper integration and expected behavior.↪→
- Do not install additional packages or dependencies directly. Update

`requirements.txt` if new dependencies are required and install them using `pip
install -r requirements.txt`.

↪→
↪→

Here is the implementation of the coding agent.

Coding Agent Implementation
----- Coding Agent Implementation Start -----
{code}
----- Coding Agent Implementation End -----

Your task is to identify ONE detailed plan that would improve the agent's coding
ability. The improvement should not be specific to any particular GitHub issue or
repository.

↪→
↪→

Here is the log for the coding agent trying to solve the GitHub issues but failed.

Agent Running Log
----- Agent Running Log Start -----
{md_log}
----- Agent Running Log End -----

GitHub Issue
The GitHub issue that the agent is trying to solve.
----- GitHub Issue Start -----
{github_issue}
----- GitHub Issue End -----

Predicted Patch
The agent's predicted patch to solve the issue.
----- Predicted Patch Start -----
{predicted_patch}
----- Predicted Patch End -----

Private Test Patch

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

SWE-bench's official private tests to detect whether the issue is solved. This is not
available to the agent during evaluation. The agent should try to implement its own
tests.

↪→
↪→
----- Private Test Patch Start -----
{test_patch}
----- Private Test Patch End -----

Issue Test Results
The test results from SWE-bench using the above official private tests.
----- Issue Test Results Start -----
{eval_log}
----- Issue Test Results End -----

Respond precisely in the following format including the JSON start and end markers:

```json
<JSON>
```

In <JSON>, provide a JSON response with the following fields:
- "log_summarization": Analyze the above logs and summarize how the agent tried to

solve the GitHub issue. Note which tools and how they are used, the agent's
problem-solving approach, and any issues encountered.

↪→
↪→
- "potential_improvements": Identify potential improvements to the coding agent that

could enhance its coding capabilities. Focus on the agent's general coding
abilities (e.g., better or new tools usable across any repository) rather than
issue-specific fixes (e.g., tools only usable in one framework). All necessary
dependencies and environment setup have already been handled, so do not focus on
these aspects.

↪→
↪→
↪→
↪→
↪→
- "improvement_proposal": Choose ONE high-impact improvement from the identified

potential improvements and describe it in detail. This should be a focused and
comprehensive plan to enhance the agent's overall coding ability.

↪→
↪→
- "implementation_suggestion": Referring to the coding agent's summary and

implementation, think critically about what feature or tool could be added or
improved to best implement the proposed improvement. If the proposed feature can be
implemented by modifying the existing tools, describe the modifications needed,
instead of suggesting a new tool.

↪→
↪→
↪→
↪→
- "problem_description": Phrase the improvement proposal and implementation suggestion

as a GitHub issue description. It should clearly describe the feature so that a
software engineer viewing the issue and the repository can implement it.

↪→
↪→

Your response will be automatically parsed, so ensure that the string response is
precisely in the correct format. Do NOT include the `<JSON>` tag in your output.↪→

While the private test patch is included in the diagnosis prompt, one could imagine that an easy
way for the agent to score well on the task would be to hard code the solutions. However, from
manual inspection of the logs and agent modifications, we have not observed any problematic logic
or behavior indicative of memorization or overfitting to specific private test cases. Furthermore,
improvements discovered on one task or LLM model often generalize well to others (Figure 4),
showing that these improvements are not task-specific but instead reflect general changes that enhance
overall performance.

Additional prompt for Polyglot experiments:

Additional Prompt for o3-mini Tool Use and Polyglot

DOC: tool function schema

Carefully consider whether to add/enhance the current tool or edit the workflow in
forward()↪→

Pay special attention to making sure that "required" and "type" are always at the
correct level of nesting. For example, "required" should be at the same level as
"properties", not inside it.

↪→
↪→
Make sure that every property, no matter how short, has a type and description

correctly nested inside it.↪→
Other arguments than you have seen are not permitted. For example, in

"edit_line_ranges" with "type": "array", arguments like "minItems" and "maxItems"
are not permitted.

↪→
↪→

...

Here is the log for the coding agent trying to solve a programming task.
A task is in one programming language, but the coding agent needs to deal with

different languages including C++, Go, Java, JavaScript, Python, and Rust.↪→

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C.4 PSEUDOCODE

This is the pseudocode of the DGM algorithm, described in Section 3:

Algorithm 1: Darwin Gödel Machine
Input: Initial coding agent g0, benchmark suite B, maximum iterations T
Output: Archive of agents A
initialize A ← { g0} // Start with the base agent
for t← 1 to T do
P ← SelectParents(A) // Select parent agents
foreach p ∈ P do

c← p.modify(p) // Self-modification
s← evaluate(c,B) // Evaluate on benchmark
if c.is_valid() then
A ← A ∪ {(c, s)} // Keep children capable of code editing

end
end

end
return A

This is the pseudocode of the baseline DGM without self-improving agents, described in Section 4.3:

Algorithm 2: Darwin Gödel Machine without Self-improving agents
Input: Initial coding agent g0, benchmark suite B, maximum iterations T
Output: Archive of agents A
initialize A ← { g0} // Start with the base agent
for t← 1 to T do
P ← SelectParents(A) // Select parent agents
foreach p ∈ P do

c← g0.modify(p) // Modify with base agent
s← evaluate(c,B) // Evaluate on benchmark
if c.is_valid() then
A ← A ∪ {(c, s)} // Keep children capable of code editing

end
end

end
return A

This is the pseudocode of the baseline DGM without open-ended exploration, described in Section 4.3:

Algorithm 3: Darwin Gödel Machine without Open-ended exploration
Input: Initial coding agent g0, benchmark suite B, maximum iterations T
Output: Archive of agents A
initialize A ← { g0} // Start with the base agent
for t← 1 to T do
P ← SelectParents(A) // Select parent agents
foreach p ∈ P do

c← p.modify(p) // Self-modification
s← evaluate(c,B) // Evaluate on benchmark
if c.is_valid() then
A ← {(c, s)} // Only keep the latest agent

end
end

end
return A

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS

D.1 HYPERPARAMETERS FOR FOUNDATION MODELS

Table 3 shows the foundation model used in each experiment setting, as described in Section 4.1.
Since SWE-bench is a more challenging coding benchmark, we use a stronger coding model, Claude
3.5 Sonnet (New) (based on our preliminary testing). To enable faster iterations and avoid the same
rate limits as Claude, we use o3-mini for Polyglot experiments. The temperature for all FMs in every
setting is set to 1.0.

Table 3: Foundation models used in each experiment setting.

Benchmark SWE-bench Polyglot

Self-modification Claude 3.5 Sonnet (New) Claude 3.5 Sonnet (New)
Evaluation Claude 3.5 Sonnet (New) o3-mini

E BENCHMARK DETAILS

E.1 COST ESTIMATE

The estimated cost of completing a single run of the DGM on SWE-bench, as presented in Section 4,
is about USD 22,000. In comparison, the estimated cost of completing a single run of either baseline
(DGM w/o self-improve or DGM w/o open-ended exploration) on SWE-bench is about USD 10,000.
Although the DGM is considerably more costly than the baselines, a method that can continuously
improve, even at a higher cost, is preferable to one that fails to improve or stagnates at a level of
performance that may never match that of the DGM. A more granular break down is:

LLM Benchmark Number of Tasks Cost Estimate (USD)
Claude 3.5 Sonnet (New) SWE-bench 60 $350

o3-mini Polyglot 60 $5

We acknowledge that the current experiments on SWE-bench require considerable compute. Hence,
we also include experiments on another benchmark, Polyglot, with significantly lower costs. This
suggests that expenses vary greatly by task complexity, with SWE-bench being among the more
complex and resource-intensive coding benchmarks. Moreover, several impactful methods (e.g., LLM
training at its inception) were characterized substantial computational demands initially. Similar to
these pioneering works, we hope to open the door to future research on improving the efficiency and
scalability of our approach. In addition, many leading coding agents on the SWE-bench leaderboard
are backed by industrial companies employing expert full-time researchers and engineers, which
incurs substantial human labor costs. In contrast, our approach achieves SoTA-level performance
through fully autonomous self-improvement without human intervention, potentially offering greater
efficiency when considering the comparative costs of specialized AI development talent versus API
usage. Finally, as FMs continue to improve and compute costs continue to decline, methods like the
DGM will become increasingly efficient and accessible.

Also, higher-performing agents discovered by the DGM do indeed incur greater inference costs than
the initial agent, but cost and performance are not strictly correlated, where some expensive agents
underperform cheaper ones.

E.2 SWE-BENCH TASKS

Initial 10 tasks for verifying basic functionality of a coding agent:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• django__django-10973

• django__django-11066

• django__django-12754

• django__django-15930

• django__django-13279

• django__django-16661

• django__django-13346

• django__django-10880

• django__django-10999

• django__django-11087

Additional 50 tasks for estimating general effectiveness of a coding agent:

• django__django-9296

• django__django-11790

• django__django-11815

• django__django-11848

• django__django-11880

• django__django-11885

• django__django-11951

• django__django-11964

• django__django-11999

• django__django-12039

• django__django-12050

• django__django-12143

• django__django-12155

• django__django-12193

• django__django-12209

• django__django-12262

• django__django-12273

• django__django-12276

• django__django-12304

• django__django-12308

• django__django-12325

• django__django-12406

• django__django-12708

• django__django-12713

• django__django-12774

• sphinx-doc__sphinx-7454

• sphinx-doc__sphinx-7590

• sphinx-doc__sphinx-7748

• sphinx-doc__sphinx-7757

• sphinx-doc__sphinx-7985

• sphinx-doc__sphinx-8035

• sphinx-doc__sphinx-8056

• sphinx-doc__sphinx-8265

• sphinx-doc__sphinx-8269

• sphinx-doc__sphinx-8475

• sphinx-doc__sphinx-8548

• sphinx-doc__sphinx-8551

• sphinx-doc__sphinx-8638

• sphinx-doc__sphinx-8721

• sphinx-doc__sphinx-9229

• sphinx-doc__sphinx-9230

• sphinx-doc__sphinx-9281

• sphinx-doc__sphinx-9320

• sphinx-doc__sphinx-9367

• sphinx-doc__sphinx-9461

• sphinx-doc__sphinx-9698

• sphinx-doc__sphinx-10449

• sphinx-doc__sphinx-10466

• sphinx-doc__sphinx-10673

• sphinx-doc__sphinx-11510

Additional 140 tasks for more accurate assessment of a coding agent’s performance:

• astropy__astropy-12907

• astropy__astropy-13033

• astropy__astropy-13236

• astropy__astropy-13398

• astropy__astropy-13453

• astropy__astropy-13579

• astropy__astropy-13977

• astropy__astropy-14096

• astropy__astropy-14182

• astropy__astropy-14309

• astropy__astropy-14365

• astropy__astropy-14369

• astropy__astropy-14508

• astropy__astropy-14539

• astropy__astropy-14598

• astropy__astropy-14995

• astropy__astropy-7166

• astropy__astropy-7336

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• astropy__astropy-7606

• astropy__astropy-7671

• astropy__astropy-8707

• astropy__astropy-8872

• django__django-10097

• django__django-10554

• django__django-10914

• django__django-11095

• django__django-11099

• django__django-11119

• django__django-11133

• django__django-11138

• django__django-11141

• django__django-11149

• django__django-11163

• django__django-11179

• django__django-11206

• django__django-11211

• django__django-11239

• django__django-11265

• django__django-11276

• django__django-11292

• django__django-11299

• django__django-11333

• django__django-11400

• django__django-11433

• django__django-11451

• django__django-11477

• django__django-11490

• django__django-11532

• django__django-11551

• django__django-11555

• django__django-11603

• django__django-11728

• django__django-11734

• django__django-11740

• django__django-11749

• django__django-11820

• django__django-12125

• django__django-12419

• django__django-12663

• django__django-12741

• django__django-12858

• django__django-12965

• django__django-13012

• django__django-13023

• django__django-13028

• django__django-13033

• django__django-13089

• django__django-13109

• django__django-13112

• django__django-13121

• django__django-13128

• django__django-13158

• django__django-13195

• django__django-13212

• django__django-13297

• django__django-13315

• django__django-13343

• django__django-13344

• django__django-13363

• django__django-13401

• django__django-13406

• django__django-13410

• django__django-13417

• django__django-13449

• django__django-13512

• django__django-13513

• django__django-13516

• django__django-13551

• django__django-13568

• django__django-13569

• django__django-13590

• django__django-13658

• django__django-13670

• django__django-13741

• django__django-13786

• django__django-13794

• django__django-13807

• django__django-13809

• django__django-13810

• django__django-13820

• django__django-13821

• django__django-13837

• django__django-13925

• django__django-13933

• django__django-13964

• django__django-14007

• django__django-14011

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• django__django-14017

• django__django-14034

• django__django-14053

• django__django-14089

• django__django-14122

• django__django-14140

• django__django-14155

• django__django-14170

• django__django-14238

• django__django-14311

• django__django-14315

• django__django-14349

• django__django-14351

• django__django-14373

• django__django-14376

• django__django-14404

• django__django-14434

• django__django-14493

• django__django-14500

• django__django-14534

• django__django-14539

• django__django-14559

• django__django-14580

• django__django-14608

• django__django-14631

• django__django-14672

• django__django-14725

• django__django-14752

• django__django-14765

• django__django-14771

• django__django-14787

• django__django-14792

• django__django-14855

E.3 POLYGLOT TASKS

Initial 10 tasks for verifying basic functionality of a coding agent:

• go__dominoes

• cpp__all-your-base

• python__dominoes

• java__sgf-parsing

• javascript__robot-name

• rust__variable-length-quantity

• python__beer-song

• go__book-store

• javascript__bottle-song

• rust__bowling

Additional 50 tasks for estimating general effectiveness of a coding agent:

• javascript__queen-attack

• rust__wordy

• python__dot-dsl

• java__satellite

• cpp__diamond

• rust__accumulate

• go__error-handling

• cpp__queen-attack

• rust__poker

• python__sgf-parsing

• rust__react

• java__ledger

• go__connect

• rust__macros

• javascript__triangle

• java__zipper

• java__bowling

• python__tree-building

• javascript__say

• java__wordy

• python__food-chain

• javascript__wordy

• python__poker

• javascript__grade-school

• cpp__gigasecond

• java__forth

• python__dominoes

• go__word-search

• javascript__simple-linked-list

• go__counter

• java__react

• javascript__ocr-numbers

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• python__scale-generator

• java__go-counting

• rust__doubly-linked-list

• python__grade-school

• javascript__forth

• python__wordy

• java__mazy-mice

• cpp__bank-account

• python__zipper

• java__custom-set

• java__rest-api

• go__transpose

• rust__gigasecond

• rust__say

• go__food-chain

• rust__pig-latin

• go__markdown

• go__crypto-square

E.4 SWE-BENCH STATE-OF-THE-ART

At the time of writing this paper (16 April 2025), the highest performing, checked (i.e., the SWE-bench
team received access to the system and were able to reproduce the patch generations), open-source
entry on SWE-bench Verified is OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) (Wang
et al., 2024), achieving 53.0%. Only considering the same subset of 200 tasks used by the DGM
(Appendix E.2), OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) achieves 51.0%.

E.5 POLYGLOT REPRESENTATIVE AGENT

Aider (Gauthier, 2024), a popular coding agent in the community, was published in Spring 2024. It
has garnered over 33,000 stars on GitHub and has been continuously developed and tested against
the Polyglot benchmark for over a year by human developers, primarily to evaluate its performance.
Aider has also become a standard baseline for assessing the performance of different models, with
the current top performers on the Polyglot benchmark being a mix of o3 (high) and GPT-4.1. We
adopt a setup similar to that of the Polyglot leaderboard, with one key difference: the leaderboard
reports pass@2 performance, where the agent can view feedback from ground-truth tests once. In
contrast, we use a pass@1 setting, where the agent never sees the results of ground-truth tests, as we
believe this more closely reflects realistic coding applications.

F BEST-DISCOVERED AGENTS

F.1 DGM ON SWE-BENCH

Diff patches contributing to the best agent discovered by the DGM on SWE-bench:
diff --git a/coding_agent.py b/coding_agent.py
index 2cd395a..9a2cc2f 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -4,6 +4,7 @@ import logging
from logging.handlers import RotatingFileHandler
import os
import threading
+import re

from llm_withtools import CLAUDE_MODEL, OPENAI_MODEL, chat_with_agent
from utils.eval_utils import get_report_score, msg_history_to_report, score_tie_breaker
@@ -63,6 +64,42 @@ def safe_log(message, level=logging.INFO):

else:
print(f"Warning: No logger found for thread {threading.get_ident()}")

+def is_patch_valid(patch_str):
+ """
+ Parse the patch to check if any non-test source files are modified.
+ Returns (bool, str) tuple: (is_valid, reason)
+ """
+ if not patch_str or patch_str.isspace():
+ return False, "Empty patch"
+
+ # Parse the patch to find modified files
+ modified_files = []

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

+ diff_header_pattern = re.compile(r'^\+\+\+ b/(.+)$', re.MULTILINE)
+ for match in diff_header_pattern.finditer(patch_str):
+ filepath = match.group(1)
+ if filepath != '/dev/null': # Skip deleted files
+ modified_files.append(filepath)
+
+ if not modified_files:
+ return False, "No files modified"
+
+ # Check if any non-test files are modified
+ test_patterns = (
+ lambda f: f.startswith('tests/'),
+ lambda f: f.startswith('test_'),
+ lambda f: f.endswith('_test.py')
+)
+
+ source_files = [
+ f for f in modified_files
+ if not any(pattern(f) for pattern in test_patterns)
+]
+
+ if not source_files:
+ return False, "Only test files were modified"
+
+ return True, "Valid patch with source file modifications"
+
class AgenticSystem:

def __init__(
self,

@@ -73,6 +110,7 @@ class AgenticSystem:
test_description=None,
self_improve=False,
instance_id=None,

+ max_retries=3,
):
self.problem_statement = problem_statement
self.git_tempdir = git_tempdir

@@ -82,6 +120,7 @@ class AgenticSystem:
self.self_improve = self_improve
self.instance_id = instance_id if not self_improve else 'dgm'
self.code_model = CLAUDE_MODEL

+ self.max_retries = max_retries

Initialize logger and store it in thread-local storage
self.logger = setup_logger(chat_history_file)

@@ -153,7 +192,7 @@ Your task is to run the regression tests in the {self.git_tempdir}
↪→ directory to
"""
The forward function for the AgenticSystem.
"""

- instruction = f"""I have uploaded a Python code repository in the directory
↪→ {self.git_tempdir}. Help solve the following problem.

+ base_instruction = f"""I have uploaded a Python code repository in the directory
↪→ {self.git_tempdir}. Help solve the following problem.

<problem_description>
{self.problem_statement}
@@ -165,7 +204,39 @@ Your task is to run the regression tests in the {self.git_tempdir}

↪→ directory to

Your task is to make changes to the files in the {self.git_tempdir} directory to address
↪→ the <problem_description>. I have already taken care of the required dependencies.

"""
- new_msg_history = chat_with_agent(instruction, model=self.code_model, msg_history=[],

↪→ logging=safe_log)
+
+ retry_count = 0
+ while retry_count < self.max_retries:
+ safe_log(f"\n=== Attempt {retry_count + 1} of {self.max_retries} ===")
+
+ # Reset to base commit before each attempt
+ if retry_count > 0:
+ reset_to_commit(self.git_tempdir, self.base_commit)
+
+ # Add retry context to instruction if this is a retry attempt
+ instruction = base_instruction
+ if retry_count > 0:
+ instruction += f"""\nNOTE: Previous attempt(s) failed because they either produced empty

↪→ patches or only modified test files.
+Please ensure your solution includes changes to the main source code files, not just test

↪→ files."""

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

+
+ # Run the agent
+ new_msg_history = chat_with_agent(instruction, model=self.code_model, msg_history=[],

↪→ logging=safe_log)
+
+ # Check the patch
+ patch = self.get_current_edits()
+ is_valid, reason = is_patch_valid(patch)
+
+ if is_valid:
+ safe_log(f"Valid patch generated: {reason}")
+ break
+ else:
+ safe_log(f"Invalid patch: {reason}")
+ if retry_count < self.max_retries - 1:
+ safe_log("Retrying with a new attempt...")
+ else:
+ safe_log("Maximum retries reached. Unable to generate a valid patch.")
+
+ retry_count += 1

def main():
parser = argparse.ArgumentParser(description='Process repository with an agentic

↪→ system.')
@@ -177,6 +248,7 @@ def main():

parser.add_argument('--test_description', default=None, required=False,
↪→ help='Description of how to test the repository')

parser.add_argument('--self_improve', default=False, action='store_true',
↪→ help='Whether to self-improve the repository or solving swe')

parser.add_argument('--instance_id', default=None, help='Instance ID for SWE issue')
+ parser.add_argument('--max_retries', type=int, default=3, help='Maximum number of patch

↪→ generation attempts')
args = parser.parse_args()

Process the repository
@@ -188,6 +260,7 @@ def main():

test_description=args.test_description,
self_improve=args.self_improve,
instance_id=args.instance_id,

+ max_retries=args.max_retries,
)

Run the agentic system to try to solve the problem
@@ -200,4 +273,4 @@ def main():

f.write(model_patch)

if __name__ == "__main__":
- main()
+ main()
\ No newline at end of file
diff --git a/tests/test_patch_validator.py b/tests/test_patch_validator.py
new file mode 100644
index 0000000..5689f7d
--- /dev/null
+++ b/tests/test_patch_validator.py
@@ -0,0 +1,77 @@
+import pytest
+from coding_agent import is_patch_valid
+
+def test_empty_patch():
+ # Test empty patch
+ is_valid, reason = is_patch_valid("")
+ assert not is_valid
+ assert reason == "Empty patch"
+
+ # Test whitespace-only patch
+ is_valid, reason = is_patch_valid(" \n ")
+ assert not is_valid
+ assert reason == "Empty patch"
+
+def test_test_only_patch():
+ patch = """
+diff --git a/tests/test_edit_tool.py b/tests/test_edit_tool.py
+index abc123..def456 100644
+--- a/tests/test_edit_tool.py
++++ b/tests/test_edit_tool.py
+@@ -10,6 +10,8 @@ def test_something():
+ assert True
++ assert 1 == 1
+"""
+ is_valid, reason = is_patch_valid(patch)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

+ assert not is_valid
+ assert reason == "Only test files were modified"
+
+def test_source_file_patch():
+ patch = """
+diff --git a/tools/edit.py b/tools/edit.py
+index abc123..def456 100644
+--- a/tools/edit.py
++++ b/tools/edit.py
+@@ -10,6 +10,8 @@ class Editor:
+ def edit(self):
+ pass
++ return True
+"""
+ is_valid, reason = is_patch_valid(patch)
+ assert is_valid
+ assert reason == "Valid patch with source file modifications"
+
+def test_mixed_files_patch():
+ patch = """
+diff --git a/tools/edit.py b/tools/edit.py
+index abc123..def456 100644
+--- a/tools/edit.py
++++ b/tools/edit.py
+@@ -10,6 +10,8 @@ class Editor:
+ def edit(self):
+ pass
++ return True
+
+diff --git a/tests/test_edit.py b/tests/test_edit.py
+index abc123..def456 100644
+--- a/tests/test_edit.py
++++ b/tests/test_edit.py
+@@ -10,6 +10,8 @@ def test_something():
+ assert True
++ assert 1 == 1
+"""
+ is_valid, reason = is_patch_valid(patch)
+ assert is_valid
+ assert reason == "Valid patch with source file modifications"
+
+def test_no_files_modified():
+ patch = """
+diff --git a/nonexistent.py b/nonexistent.py
+deleted file mode 100644
+index abc123..0000000
+--- a/nonexistent.py
++++ /dev/null
+"""
+ is_valid, reason = is_patch_valid(patch)
+ assert not is_valid
+ assert reason == "No files modified"
\ No newline at end of file

diff --git a/tools/edit.py b/tools/edit.py
index 59137ee..16ae521 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -1,16 +1,17 @@
from pathlib import Path
import subprocess
+from typing import Optional, List, Tuple, Union

def tool_info():
return {

"name": "editor",
"description": """Custom editing tool for viewing, creating, and editing files\n

* State is persistent across command calls and discussions with the user.\n
-* If `path` is a file, `view` displays the entire file with line numbers. If `path` is a

↪→ directory, `view` lists non-hidden files and directories up to 2 levels deep.\n
+* If `path` is a file, `view` displays the file with line numbers. With optional

↪→ `view_range` [start, end], it displays only specified lines. Use -1 in `end` for
↪→ all remaining lines.\n

+* If `path` is a directory, `view` lists non-hidden files and directories up to 2 levels
↪→ deep.\n

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

-* The `edit` command overwrites the entire file with the provided `file_text`.\n
-* No partial/line-range edits or partial viewing are supported.""",

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

+* The `edit` command overwrites the entire file with the provided `file_text`.""",
"input_schema": {

"type": "object",
"properties": {

@@ -26,6 +27,13 @@ def tool_info():
"file_text": {

"description": "Required parameter of `create` or `edit` command,
↪→ containing the content for the entire file.",

"type": "string"
+ },
+ "view_range": {
+ "description": "Optional parameter for `view` command. Array of [start_line, end_line]

↪→ (1-based). Use -1 for end_line to read until end of file.",
+ "type": "array",
+ "items": {"type": "integer"},
+ "minItems": 2,
+ "maxItems": 2

}
},
"required": ["command", "path"]

@@ -89,6 +97,46 @@ def read_file(path: Path) -> str:
except Exception as e:

raise ValueError(f"Failed to read file: {e}")

+def read_file_range(path: Path, line_range: Optional[List[int]] = None) -> Tuple[str,
↪→ int]:

+ """
+ Read and return file contents within specified line range.
+ Returns tuple of (content, start_line).
+
+ Args:
+ path: Path object for the file
+ line_range: Optional [start, end] line numbers (1-based). Use -1 for end to read until

↪→ EOF.
+ """
+ try:
+ if line_range is None:
+ return read_file(path), 1
+
+ start, end = line_range
+ if start < 1:
+ raise ValueError("Start line must be >= 1")
+ if end != -1 and end < start:
+ raise ValueError("End line must be >= start line or -1")
+
+ with path.open() as f:
+ # Skip lines before start
+ for _ in range(start - 1):
+ next(f, None)
+
+ lines = []
+ current_line = start
+ while True:
+ line = next(f, None)
+ if line is None: # EOF
+ break
+ if end != -1 and current_line > end:
+ break
+ lines.append(line.rstrip('\n'))
+ current_line += 1
+
+ return '\n'.join(lines), start
+
+ except Exception as e:
+ raise ValueError(f"Failed to read file range: {e}")
+
def write_file(path: Path, content: str):

"""Write (overwrite) entire file contents."""
try:

@@ -96,9 +144,18 @@ def write_file(path: Path, content: str):
except Exception as e:

raise ValueError(f"Failed to write file: {e}")

-def view_path(path_obj: Path) -> str:
- """View the entire file contents or directory listing."""
+def view_path(path_obj: Path, view_range: Optional[List[int]] = None) -> str:
+ """
+ View the file contents (optionally within a range) or directory listing.
+
+ Args:
+ path_obj: Path object for the file or directory

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

+ view_range: Optional [start, end] line numbers for file viewing
+ """

if path_obj.is_dir():
+ if view_range is not None:
+ raise ValueError("view_range is not supported for directory listings")
+

For directories: list non-hidden files up to 2 levels deep
try:

result = subprocess.run(
@@ -115,14 +172,14 @@ def view_path(path_obj: Path) -> str:

except Exception as e:
raise ValueError(f"Failed to list directory: {e}")

- # If it's a file, show the entire file with line numbers
- content = read_file(path_obj)
- return format_output(content, str(path_obj))
+ # If it's a file, show the file content (with optional line range)
+ content, start_line = read_file_range(path_obj, view_range)
+ return format_output(content, str(path_obj), start_line)

-def tool_function(command: str, path: str, file_text: str = None) -> str:
+def tool_function(command: str, path: str, file_text: str = None, view_range:

↪→ Optional[List[int]] = None) -> str:
"""
Main tool function that handles:

- - 'view' : View the entire file or directory listing
+ - 'view' : View file or directory listing, optionally within line range for files

- 'create': Create a new file with the given file_text
- 'edit' : Overwrite an existing file with file_text

"""
@@ -130,7 +187,7 @@ def tool_function(command: str, path: str, file_text: str = None) ->

↪→ str:
path_obj = validate_path(path, command)

if command == "view":
- return view_path(path_obj)
+ return view_path(path_obj, view_range)

elif command == "create":
if file_text is None:

@@ -152,4 +209,4 @@ def tool_function(command: str, path: str, file_text: str = None) ->
↪→ str:

if __name__ == "__main__":
Example usage

- print(tool_function("view", "/home/ubuntu/xx/dgm/coding_agent.py"))
+ print(tool_function("view", "/home/ubuntu/xx/dgm/coding_agent.py"))
\ No newline at end of file
diff --git a/tests/test_tools/test_edit.py b/tests/test_tools/test_edit.py
new file mode 100644
index 0000000..04f535b
--- /dev/null
+++ b/tests/test_tools/test_edit.py
@@ -0,0 +1,54 @@
+import pytest
+from pathlib import Path
+from tools.edit import tool_function
+
+def test_view_line_range(tmp_path):
+ # Create a test file
+ test_file = tmp_path / "test.txt"
+ test_content = "line1\nline2\nline3\nline4\nline5\n"
+ test_file.write_text(test_content)
+
+ # Test viewing specific line range
+ result = tool_function("view", str(test_file), view_range=[2, 4])
+ assert "line2" in result
+ assert "line3" in result
+ assert "line4" in result
+ assert "line1" not in result
+ assert "line5" not in result
+ assert " 2\t" in result # Correct line numbering
+
+ # Test viewing from start to middle
+ result = tool_function("view", str(test_file), view_range=[1, 3])
+ assert "line1" in result
+ assert "line2" in result
+ assert "line3" in result
+ assert "line4" not in result
+ assert " 1\t" in result
+

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

+ # Test viewing from middle to end with -1
+ result = tool_function("view", str(test_file), view_range=[3, -1])
+ assert "line1" not in result
+ assert "line2" not in result
+ assert "line3" in result
+ assert "line4" in result
+ assert "line5" in result
+ assert " 3\t" in result
+
+def test_view_range_validation(tmp_path):
+ # Create a test file
+ test_file = tmp_path / "test.txt"
+ test_content = "line1\nline2\nline3\n"
+ test_file.write_text(test_content)
+
+ # Test invalid start line
+ result = tool_function("view", str(test_file), view_range=[0, 2])
+ assert "Failed to read file range: Start line must be >= 1" in result
+
+ # Test invalid range (end < start)
+ result = tool_function("view", str(test_file), view_range=[2, 1])
+ assert "Failed to read file range: End line must be >= start line or -1" in result
+
+def test_view_range_with_directory(tmp_path):
+ # Test that view_range is rejected for directories
+ result = tool_function("view", str(tmp_path), view_range=[1, 10])
+ assert "Error: view_range is not supported for directory listings" in result
\ No newline at end of file

diff --git a/tools/edit.py b/tools/edit.py
index 16ae521..757f5c2 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -11,21 +11,21 @@ def tool_info():

* If `path` is a directory, `view` lists non-hidden files and directories up to 2 levels
↪→ deep.\n

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

-* The `edit` command overwrites the entire file with the provided `file_text`.""",
+* The `str_replace` command replaces a unique occurrence of old_str with new_str, failing

↪→ if old_str is not found or appears multiple times.""",
"input_schema": {

"type": "object",
"properties": {

"command": {
"type": "string",

- "enum": ["view", "create", "edit"],
- "description": "The command to run: `view`, `create`, or `edit`."
+ "enum": ["view", "create", "str_replace"],
+ "description": "The command to run: `view`, `create`, or `str_replace`."

},
"path": {

"description": "Absolute path to file or directory, e.g. `/repo/file.py`
↪→ or `/repo`.",

"type": "string"
},
"file_text": {

- "description": "Required parameter of `create` or `edit` command, containing the content
↪→ for the entire file.",

+ "description": "Required parameter of `create` command, containing the content for the
↪→ entire file.",

"type": "string"
},
"view_range": {

@@ -34,6 +34,14 @@ def tool_info():
"items": {"type": "integer"},
"minItems": 2,
"maxItems": 2

+ },
+ "old_str": {
+ "description": "Required parameter of `str_replace` command, containing the exact text

↪→ to find and replace.",
+ "type": "string"
+ },
+ "new_str": {
+ "description": "Required parameter of `str_replace` command, containing the new text to

↪→ replace old_str with.",
+ "type": "string"

}

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

},
"required": ["command", "path"]

@@ -51,7 +59,7 @@ def validate_path(path: str, command: str) -> Path:
Validate the file path for each command:
- 'view': path may be a file or directory; must exist.
- 'create': path must not exist (for new file creation).

- - 'edit': path must exist (for overwriting).
+ - 'str_replace': path must exist and be a file.

"""
path_obj = Path(path)

@@ -69,7 +77,7 @@ def validate_path(path: str, command: str) -> Path:
Path must not exist
if path_obj.exists():

raise ValueError(f"Cannot create new file; {path} already exists.")
- elif command == "edit":
+ elif command == "str_replace":

Path must exist and must be a file
if not path_obj.exists():

raise ValueError(f"The file {path} does not exist.")
@@ -144,6 +152,28 @@ def write_file(path: Path, content: str):

except Exception as e:
raise ValueError(f"Failed to write file: {e}")

+def str_replace_in_file(path: Path, old_str: str, new_str: str) -> str:
+ """
+ Replace an exact occurrence of old_str with new_str in the file.
+ Only performs the replacement if old_str occurs exactly once.
+ Returns a message indicating success or failure.
+ """
+ try:
+ content = read_file(path)
+ occurrences = content.count(old_str)
+
+ if occurrences == 0:
+ return f"Error: Could not find the exact text to replace in {path}"
+ elif occurrences > 1:
+ return f"Error: Found multiple ({occurrences}) occurrences of the text in {path}. Must

↪→ be unique."
+ else:
+ new_content = content.replace(old_str, new_str)
+ write_file(path, new_content)
+ return f"Successfully replaced text in {path}"
+
+ except Exception as e:
+ return f"Error during string replacement: {e}"
+
def view_path(path_obj: Path, view_range: Optional[List[int]] = None) -> str:

"""
View the file contents (optionally within a range) or directory listing.

@@ -176,12 +206,13 @@ def view_path(path_obj: Path, view_range: Optional[List[int]] =
↪→ None) -> str:

content, start_line = read_file_range(path_obj, view_range)
return format_output(content, str(path_obj), start_line)

-def tool_function(command: str, path: str, file_text: str = None, view_range:
↪→ Optional[List[int]] = None) -> str:

+def tool_function(command: str, path: str, file_text: str = None, view_range:
↪→ Optional[List[int]] = None,

+ old_str: str = None, new_str: str = None) -> str:
"""
Main tool function that handles:

- - 'view' : View file or directory listing, optionally within line range for files
- - 'create': Create a new file with the given file_text
- - 'edit' : Overwrite an existing file with file_text
+ - 'view' : View file or directory listing, optionally within line range for files
+ - 'create' : Create a new file with the given file_text
+ - 'str_replace': Replace exact occurrence of old_str with new_str in the file

"""
try:

path_obj = validate_path(path, command)
@@ -195,11 +226,10 @@ def tool_function(command: str, path: str, file_text: str = None,

↪→ view_range: Op
write_file(path_obj, file_text)
return f"File created successfully at: {path}"

- elif command == "edit":
- if file_text is None:
- raise ValueError("Missing required `file_text` for 'edit' command.")
- write_file(path_obj, file_text)
- return f"File at {path} has been overwritten with new content."

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

+ elif command == "str_replace":
+ if old_str is None or new_str is None:
+ raise ValueError("Missing required `old_str` and/or `new_str` for 'str_replace'

↪→ command.")
+ return str_replace_in_file(path_obj, old_str, new_str)

else:
raise ValueError(f"Unknown command: {command}")

diff --git a/tests/__init__.py b/tests/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/tests/test_tools.py b/tests/test_tools.py
new file mode 100644
index 0000000..c7f242f
--- /dev/null
+++ b/tests/test_tools.py
@@ -0,0 +1,65 @@
+import pytest
+from pathlib import Path
+from tools.edit import tool_function
+
+# Test fixtures
+@pytest.fixture
+def temp_file(tmp_path):
+ file_path = tmp_path / "test.txt"
+ content = "line 1\nline 2\nline 3\n"
+ file_path.write_text(content)
+ return str(file_path)
+
+def test_str_replace_success(temp_file):
+ # Test successful replacement
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="line 2\n",
+ new_str="replaced line\n"
+)
+ assert "Successfully replaced" in result
+ assert Path(temp_file).read_text() == "line 1\nreplaced line\nline 3\n"
+
+def test_str_replace_not_found(temp_file):
+ # Test when old_str is not found
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="nonexistent",
+ new_str="something"
+)
+ assert "Could not find" in result
+ # Original file should be unchanged
+ assert Path(temp_file).read_text() == "line 1\nline 2\nline 3\n"
+
+def test_str_replace_multiple_occurrences(temp_file):
+ # First create a file with multiple occurrences
+ Path(temp_file).write_text("same\nsame\nsame\n")
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="same\n",
+ new_str="different\n"
+)
+ assert "multiple" in result
+ # Original file should be unchanged
+ assert Path(temp_file).read_text() == "same\nsame\nsame\n"
+
+def test_str_replace_missing_params(temp_file):
+ # Test missing parameters
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+)
+ assert "Missing required" in result
+
+def test_str_replace_invalid_path():
+ # Test with non-existent file
+ result = tool_function(
+ command="str_replace",
+ path="/nonexistent/path",
+ old_str="old",
+ new_str="new"
+)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

+ assert "does not exist" in result
\ No newline at end of file

diff --git a/llm_withtools.py b/llm_withtools.py
index d1394bb..6cc3604 100644
--- a/llm_withtools.py
+++ b/llm_withtools.py
@@ -29,7 +29,7 @@ def process_tool_call(tools_dict, tool_name, tool_input):
)
def get_response_withtools(

client, model, messages, tools, tool_choice,
- logging=None,
+ logging=None, system_message=None,
):

try:
if 'claude' in model:

@@ -52,13 +52,32 @@ def get_response_withtools(
raise ValueError(f"Unsupported model: {model}")

return response
except Exception as e:

- logging(f"Error in get_response_withtools: {str(e)}")
+ error_msg = str(e)
+ logging(f"Error in get_response_withtools: {error_msg}")

Hitting the context window limit
- if 'Input is too long for requested model' in str(e):
- pass
+ if 'Input is too long for requested model' in error_msg or 'maximum context length' in

↪→ error_msg:
+ if not system_message:
+ # Extract system message from the first message if available
+ system_message = messages[0].get('content', '') if messages else ''
+ if isinstance(system_message, list):
+ system_message = ' '.join(block['text'] for block in system_message if block['type'] ==

↪→ 'text')
+
+ # Summarize the conversation history
+ summarized_messages = summarize_messages(client, model, messages, system_message)
+
+ # Retry with summarized messages
+ return get_response_withtools(
+ client=client,
+ model=model,
+ messages=summarized_messages,
+ tools=tools,
+ tool_choice=tool_choice,
+ logging=logging,
+ system_message=system_message
+)

- raise # Re-raise the exception after logging
+ raise # Re-raise other exceptions

def check_for_tool_use(response, model=''):
"""

@@ -247,6 +266,57 @@ def convert_msg_history_openai(msg_history):

return new_msg_history

+def summarize_messages(client, model, messages, system_message):
+ """
+ Creates a condensed summary of older messages while preserving recent context.
+ Only summarizes assistant and user messages, keeps tool results as is for accuracy.
+ """
+ # Keep the most recent messages intact
+ recent_msgs = messages[-2:] if len(messages) > 2 else messages
+ if len(messages) <= 2:
+ return messages
+
+ # Prepare messages to be summarized
+ msgs_to_summarize = messages[:-2]
+
+ # Create a prompt to summarize the conversation
+ summary_request = "Please create a concise summary of this conversation that preserves

↪→ the key context and important details:"
+ for msg in msgs_to_summarize:
+ if isinstance(msg.get('content', ''), list):
+ content = ' '.join(block['text'] for block in msg['content'] if block['type'] == 'text')
+ else:
+ content = str(msg.get('content', ''))

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

+ if msg.get('role') in ['assistant', 'user']:
+ summary_request += f"\n{msg['role']}: {content}"
+
+ try:
+ # Get summary from the model
+ summary_response, _ = get_response_from_llm(
+ msg=summary_request,
+ client=client,
+ model=model,
+ system_message="You are a summarizer. Create a concise but informative summary.",
+ print_debug=False,
+ msg_history=[]
+)
+
+ # Create new message history with the summary
+ summarized_history = [{
+ "role": "system",
+ "content": [{"type": "text", "text": system_message}]
+ }, {
+ "role": "assistant",
+ "content": [{"type": "text", "text": f"Previous conversation summary:

↪→ {summary_response}"}]
+ }]
+
+ # Add back the recent messages
+ summarized_history.extend(recent_msgs)
+
+ return summarized_history
+ except Exception:
+ # If summarization fails, return original messages with the most recent ones
+ return [messages[0]] + recent_msgs
+
def convert_msg_history(msg_history, model=None):

"""
Convert message history from the model-specific format to a generic format.

@@ -263,7 +333,14 @@ def chat_with_agent_manualtools(msg, model, msg_history=None,
↪→ logging=print):

if msg_history is None:
msg_history = []

system_message = f'You are a coding agent.\n\n{get_tooluse_prompt()}'
- new_msg_history = msg_history
+ new_msg_history = msg_history.copy() if msg_history else []
+
+ # Ensure system message is the first message in history
+ if not new_msg_history or new_msg_history[0].get('role') != 'system':
+ new_msg_history.insert(0, {
+ "role": "system",
+ "content": [{"type": "text", "text": system_message}]
+ })

try:
Load all tools

diff --git a/coding_agent.py b/coding_agent.py
index 9a2cc2f..3f1bc1d 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -111,6 +111,7 @@ class AgenticSystem:

self_improve=False,
instance_id=None,
max_retries=3,

+ num_candidates=3,
):
self.problem_statement = problem_statement
self.git_tempdir = git_tempdir

@@ -121,6 +122,7 @@ class AgenticSystem:
self.instance_id = instance_id if not self_improve else 'dgm'
self.code_model = CLAUDE_MODEL
self.max_retries = max_retries

+ self.num_candidates = num_candidates

Initialize logger and store it in thread-local storage
self.logger = setup_logger(chat_history_file)

@@ -190,7 +192,7 @@ Your task is to run the regression tests in the {self.git_tempdir}
↪→ directory to

def forward(self):
"""

- The forward function for the AgenticSystem.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

+ The forward function for the AgenticSystem that generates and evaluates multiple
↪→ candidate patches.
"""
base_instruction = f"""I have uploaded a Python code repository in the directory

↪→ {self.git_tempdir}. Help solve the following problem.

@@ -205,10 +207,18 @@ Your task is to run the regression tests in the {self.git_tempdir}
↪→ directory to

Your task is to make changes to the files in the {self.git_tempdir} directory to address
↪→ the <problem_description>. I have already taken care of the required dependencies.

"""

+ # Get regression tests summary once at the start
+ regression_tests_summary = self.get_regression_tests()
+
+ # Lists to store candidates
+ valid_patches = []
+ valid_reports = []
+

retry_count = 0
- while retry_count < self.max_retries:
+ while retry_count < self.max_retries and len(valid_patches) < self.num_candidates:

safe_log(f"\n=== Attempt {retry_count + 1} of {self.max_retries} ===")
-
+ safe_log(f"Valid solutions so far: {len(valid_patches)} of {self.num_candidates}

↪→ desired")
+

Reset to base commit before each attempt
if retry_count > 0:

reset_to_commit(self.git_tempdir, self.base_commit)
@@ -216,8 +226,8 @@ Your task is to make changes to the files in the {self.git_tempdir}

↪→ directory to
Add retry context to instruction if this is a retry attempt
instruction = base_instruction
if retry_count > 0:

- instruction += f"""\nNOTE: Previous attempt(s) failed because they either produced empty
↪→ patches or only modified test files.

-Please ensure your solution includes changes to the main source code files, not just test
↪→ files."""

+ instruction += f"""\nNOTE: Previous attempt(s) did not produce enough valid solutions.
+Please provide a different approach to solve the problem. Your solution must include

↪→ changes to the main source code files, not just test files."""

Run the agent
new_msg_history = chat_with_agent(instruction, model=self.code_model,

↪→ msg_history=[], logging=safe_log)
@@ -228,16 +238,45 @@ Please ensure your solution includes changes to the main source code

↪→ files, not

if is_valid:
safe_log(f"Valid patch generated: {reason}")

- break
+ # Run regression tests for this candidate
+ test_report = self.run_regression_tests(regression_tests_summary)
+ test_score = get_report_score(test_report)
+ safe_log(f"Test score: {test_score}")
+
+ valid_patches.append(patch)
+ valid_reports.append(test_report)
+
+ if len(valid_patches) >= self.num_candidates:
+ break

else:
safe_log(f"Invalid patch: {reason}")

- if retry_count < self.max_retries - 1:
- safe_log("Retrying with a new attempt...")
- else:
- safe_log("Maximum retries reached. Unable to generate a valid patch.")

retry_count += 1

+ if not valid_patches:
+ safe_log("Failed to generate any valid patches.")
+ return
+
+ # Use score_tie_breaker to select the best patch
+ safe_log(f"\n=== Selecting Best Solution from {len(valid_patches)} Candidates ===")
+ best_index = score_tie_breaker(
+ self.problem_statement,
+ valid_patches,
+ valid_reports,

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

+ logging=safe_log
+)
+
+ # Reset to base and apply the best patch
+ reset_to_commit(self.git_tempdir, self.base_commit)
+ best_patch = valid_patches[best_index]
+ safe_log(f"\n=== Applying Best Solution (Candidate {best_index + 1}) ===")
+ apply_patch(self.git_tempdir, best_patch)
+
+ # Final validation of the selected patch
+ final_test_report = self.run_regression_tests(regression_tests_summary)
+ final_score = get_report_score(final_test_report)
+ safe_log(f"Final solution test score: {final_score}")
+
def main():

parser = argparse.ArgumentParser(description='Process repository with an agentic
↪→ system.')

parser.add_argument('--problem_statement', required=True, help='The problem statement
↪→ to process')

@@ -249,6 +288,7 @@ def main():
parser.add_argument('--self_improve', default=False, action='store_true',

↪→ help='Whether to self-improve the repository or solving swe')
parser.add_argument('--instance_id', default=None, help='Instance ID for SWE issue')
parser.add_argument('--max_retries', type=int, default=3, help='Maximum number of

↪→ patch generation attempts')
+ parser.add_argument('--num_candidates', type=int, default=3, help='Number of candidate

↪→ solutions to generate')
args = parser.parse_args()

Process the repository
@@ -261,6 +301,7 @@ def main():

self_improve=args.self_improve,
instance_id=args.instance_id,
max_retries=args.max_retries,

+ num_candidates=args.num_candidates,
)

Run the agentic system to try to solve the problem

diff --git a/coding_agent.py b/coding_agent.py
index 3f1bc1d..588938d 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -193,42 +193,59 @@ Your task is to run the regression tests in the {self.git_tempdir}

↪→ directory to
def forward(self):

"""
The forward function for the AgenticSystem that generates and evaluates multiple

↪→ candidate patches.
+ This version maintains history of prior valid patches and test results, only using the

↪→ tie-breaker
+ when necessary.

"""
- base_instruction = f"""I have uploaded a Python code repository in the directory

↪→ {self.git_tempdir}. Help solve the following problem.
-
-<problem_description>
-{self.problem_statement}
-</problem_description>
-
-<test_description>
-{self.test_description}
-</test_description>
-
-Your task is to make changes to the files in the {self.git_tempdir} directory to address

↪→ the <problem_description>. I have already taken care of the required dependencies.
-"""
-
- # Get regression tests summary once at the start

regression_tests_summary = self.get_regression_tests()

- # Lists to store candidates
+ # Lists to store all valid patches and their information

valid_patches = []
valid_reports = []

+ valid_scores = []
+ best_score = 0
+ best_patches_indices = [] # Indices of patches that share the best score

retry_count = 0

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

while retry_count < self.max_retries and len(valid_patches) < self.num_candidates:
safe_log(f"\n=== Attempt {retry_count + 1} of {self.max_retries} ===")
safe_log(f"Valid solutions so far: {len(valid_patches)} of {self.num_candidates}

↪→ desired")
+ safe_log(f"Current best test score: {best_score}")

Reset to base commit before each attempt
if retry_count > 0:

reset_to_commit(self.git_tempdir, self.base_commit)

- # Add retry context to instruction if this is a retry attempt
- instruction = base_instruction
- if retry_count > 0:
- instruction += f"""\nNOTE: Previous attempt(s) did not produce enough valid solutions.
+ # Construct instruction with previous best solutions if available
+ instruction = f"""I have uploaded a Python code repository in the directory

↪→ {self.git_tempdir}. Help solve the following problem.
+
+<problem_description>
+{self.problem_statement}
+</problem_description>
+
+<test_description>
+{self.test_description}
+</test_description>"""
+
+ # Add previous solutions context if available
+ if valid_patches and retry_count > 0:
+ previous_solutions = []
+ for i, (patch, report, score) in enumerate(zip(valid_patches, valid_reports,

↪→ valid_scores)):
+ previous_solutions.append(f"""
+Previous Solution {i+1}:
+<code_changes>
+{patch}
+</code_changes>
+Test Score: {score}
+Test Report: {report}
+""")
+ instruction += "\n\nPrevious solution attempts:\n" + "\n".join(previous_solutions)
+ instruction += "\nPlease provide a new solution that addresses any limitations in the

↪→ previous attempts or explores a different approach."
+ elif retry_count > 0:
+ instruction += """\nNOTE: Previous attempt(s) did not produce enough valid solutions.
Please provide a different approach to solve the problem. Your solution must include

↪→ changes to the main source code files, not just test files."""

+ instruction += f"\n\nYour task is to make changes to the files in the {self.git_tempdir}
↪→ directory to address the <problem_description>. I have already taken care of the
↪→ required dependencies."

+
Run the agent
new_msg_history = chat_with_agent(instruction, model=self.code_model,

↪→ msg_history=[], logging=safe_log)

@@ -245,6 +262,14 @@ Please provide a different approach to solve the problem. Your
↪→ solution must inc

valid_patches.append(patch)
valid_reports.append(test_report)

+ valid_scores.append(test_score)
+
+ # Update best score and indices
+ if test_score > best_score:
+ best_score = test_score
+ best_patches_indices = [len(valid_patches) - 1]
+ elif test_score == best_score:
+ best_patches_indices.append(len(valid_patches) - 1)

if len(valid_patches) >= self.num_candidates:
break

@@ -257,25 +282,30 @@ Please provide a different approach to solve the problem. Your
↪→ solution must inc

safe_log("Failed to generate any valid patches.")
return

- # Use score_tie_breaker to select the best patch
+ # Only use tie-breaker if we have multiple patches with the best score

safe_log(f"\n=== Selecting Best Solution from {len(valid_patches)} Candidates ===")
- best_index = score_tie_breaker(
- self.problem_statement,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

- valid_patches,
- valid_reports,
- logging=safe_log
-)
+ if len(best_patches_indices) > 1:
+ safe_log(f"Multiple solutions ({len(best_patches_indices)}) tied for best score

↪→ {best_score}. Using tie-breaker.")
+ best_index = score_tie_breaker(
+ self.problem_statement,
+ [valid_patches[i] for i in best_patches_indices],
+ [valid_reports[i] for i in best_patches_indices],
+ logging=safe_log
+)
+ best_index = best_patches_indices[best_index]
+ else:
+ best_index = best_patches_indices[0]

Reset to base and apply the best patch
reset_to_commit(self.git_tempdir, self.base_commit)
best_patch = valid_patches[best_index]

- safe_log(f"\n=== Applying Best Solution (Candidate {best_index + 1}) ===")
+ safe_log(f"\n=== Applying Best Solution (Candidate {best_index + 1}) with score

↪→ {valid_scores[best_index]} ===")
apply_patch(self.git_tempdir, best_patch)

Final validation of the selected patch
final_test_report = self.run_regression_tests(regression_tests_summary)
final_score = get_report_score(final_test_report)

- safe_log(f"Final solution test score: {final_score}")
+ safe_log(f"Final validation test score: {final_score}")

def main():
parser = argparse.ArgumentParser(description='Process repository with an agentic

↪→ system.')

F.2 DGM ON POLYGLOT

Diff patches contributing to the best agent discovered by the DGM on Polyglot:
diff --git a/coding_agent.py b/coding_agent.py
index 04ffb36..6639abd 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -4,6 +4,9 @@ import logging
from logging.handlers import RotatingFileHandler
import os
import threading
+import json
+from dataclasses import dataclass
+from typing import List, Optional

from llm_withtools import CLAUDE_MODEL, OPENAI_MODEL, chat_with_agent
from utils.git_utils import diff_versus_commit, reset_to_commit, apply_patch
@@ -42,6 +45,14 @@ TEST_COMMANDS = {
Thread-local storage for logger instances
thread_local = threading.local()

+@dataclass
+class SolutionAttempt:
+ """Class to store information about a solution attempt."""
+ patch: str # The patch content
+ test_output: str # Raw test output
+ test_success: bool # Whether tests passed
+ test_stats: dict # Test statistics (e.g., number of passed/failed tests)
+
def get_thread_logger():

"""
Get the logger instance specific to the current thread.

@@ -102,7 +113,8 @@ class AgenticSystem:
chat_history_file='./chat_history.md',
test_description=None,
self_improve=False,

- language='python'
+ language='python',
+ max_attempts=3

):
self.problem_statement = problem_statement
self.git_tempdir = git_tempdir

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

@@ -111,6 +123,7 @@ class AgenticSystem:
self.test_description = test_description
self.self_improve = self_improve
self.language = language

+ self.max_attempts = max_attempts

Set the code model based on whether self-improvement is enabled
self.code_model = OPENAI_MODEL if not self_improve else CLAUDE_MODEL

@@ -137,11 +150,63 @@ class AgenticSystem:
]
return new_msg_history

+ def run_tests(self) -> tuple[bool, str, dict]:
+ """Run tests and return success status, output, and test statistics."""
+ success = False
+ output = ""
+ stats = {"passed": 0, "failed": 0, "errors": 0, "total": 0}
+
+ try:
+ for command in TEST_COMMANDS.get(self.language, []):
+ proc = subprocess.run(
+ command,
+ cwd=self.git_tempdir,
+ capture_output=True,
+ text=True,
+ check=False
+)
+ output += f"$ {' '.join(command)}\n{proc.stdout}\n{proc.stderr}\n"
+ success = proc.returncode == 0
+ if not success:
+ break
+
+ # Try to extract test statistics from output
+ # This is a simple example; you might want to add more sophisticated parsing
+ stats["passed"] = output.count("PASS") + output.count("ok")
+ stats["failed"] = output.count("FAIL") + output.count("not ok")
+ stats["errors"] = output.count("ERROR") + output.count("panic:")
+ stats["total"] = stats["passed"] + stats["failed"] + stats["errors"]
+
+ except Exception as e:
+ output = f"Error running tests: {str(e)}"
+ success = False
+
+ return success, output, stats
+
+ def analyze_test_results(self, attempts: List[SolutionAttempt]) -> str:
+ """Analyze test results and create a summary for the agent."""
+ summary = "# Test Results Analysis\n\n"
+
+ for i, attempt in enumerate(attempts, 1):
+ summary += f"## Attempt {i}\n"
+ summary += f"Test Success: {attempt.test_success}\n"
+ summary += f"Test Stats: {json.dumps(attempt.test_stats, indent=2)}\n"
+ summary += "Key test output:\n```\n"
+ # Extract relevant parts of test output (e.g., error messages)
+ key_output = "\n".join(line for line in attempt.test_output.split("\n")
+ if "FAIL" in line or "ERROR" in line or "PASS" in line)
+ summary += f"{key_output}\n```\n\n"
+
+ return summary
+

def forward(self):
"""

- The forward function for the AgenticSystem.
+ The forward function for the AgenticSystem with multiple solution attempts.

"""
- task = f"""I have uploaded a code repository in the directory {self.git_tempdir}. Help

↪→ solve the following problem.
+ attempts: List[SolutionAttempt] = []
+ best_attempt: Optional[SolutionAttempt] = None
+
+ base_task = f"""I have uploaded a code repository in the directory {self.git_tempdir}.

↪→ Help solve the following problem.

<problem_description>
{self.problem_statement}
@@ -149,8 +214,52 @@ class AgenticSystem:

Your task is to make changes to the files in the {self.git_tempdir} directory to address
↪→ the <problem_description>. I have already taken care of the required dependencies.

"""

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

- instruction = f"{task}\n\nPlease analyze the problem description carefully. Then make
↪→ edits to the code files to complete the instruction."

- init_edit = chat_with_agent(instruction, model=self.code_model, msg_history=[],
↪→ logging=safe_log)

+
+ for attempt_num in range(self.max_attempts):
+ # Reset to base commit for each attempt
+ reset_to_commit(self.git_tempdir, self.base_commit)
+
+ # Prepare the instruction based on previous attempts
+ instruction = base_task
+ if attempts:
+ # Add analysis of previous attempts
+ instruction += "\n\nPrevious solution attempts have been made. Here are the results:\n\n"
+ instruction += self.analyze_test_results(attempts)
+ instruction += "\nPlease analyze these results and provide an improved solution that

↪→ addresses the issues found."
+ else:
+ instruction += "\n\nPlease analyze the problem description carefully. Then make edits to

↪→ the code files to complete the instruction."
+
+ # Get the solution attempt
+ chat_with_agent(instruction, model=self.code_model, msg_history=[], logging=safe_log)
+
+ # Capture the current patch
+ current_patch = diff_versus_commit(self.git_tempdir, self.base_commit)
+
+ # Run tests and collect results
+ test_success, test_output, test_stats = self.run_tests()
+
+ # Create and store attempt
+ attempt = SolutionAttempt(
+ patch=current_patch,
+ test_output=test_output,
+ test_success=test_success,
+ test_stats=test_stats
+)
+ attempts.append(attempt)
+
+ # Update best attempt if this one is better
+ if test_success and (best_attempt is None or
+ attempt.test_stats["passed"] > best_attempt.test_stats["passed"]):
+ best_attempt = attempt
+
+ # If tests pass perfectly, we can stop
+ if test_success and attempt.test_stats["failed"] == 0 and attempt.test_stats["errors"]

↪→ == 0:
+ break
+
+ # Apply the best solution if found, otherwise use the last attempt
+ final_attempt = best_attempt or attempts[-1]
+ reset_to_commit(self.git_tempdir, self.base_commit)
+ apply_patch(self.git_tempdir, final_attempt.patch)

def main():
parser = argparse.ArgumentParser(description='Process repository with an agentic

↪→ system.')
@@ -162,6 +271,7 @@ def main():

parser.add_argument('--test_description', default=None, required=False,
↪→ help='Description of how to test the repository')

parser.add_argument('--self_improve', default=False, action='store_true',
↪→ help='Whether to self-improve the repository or solving swe')

parser.add_argument('--language', required=False, default="python", choices=['cpp',
↪→ 'java', 'python', 'go', 'rust', 'javascript'], help='Task\'s programming
↪→ language')

+ parser.add_argument('--max_attempts', type=int, default=3, help='Maximum number of
↪→ solution attempts')

args = parser.parse_args()

Process the repository
@@ -173,6 +283,7 @@ def main():

test_description=args.test_description,
self_improve=args.self_improve,
language=args.language,

+ max_attempts=args.max_attempts,
)

Run the agentic system to try to solve the problem
@@ -185,4 +296,4 @@ def main():

f.write(model_patch)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

if __name__ == "__main__":
- main()
+ main()
\ No newline at end of file

diff --git a/tools/edit.py b/tools/edit.py
index d7184c3..87fa408 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -1,5 +1,9 @@
from pathlib import Path
import subprocess
+from typing import List, Optional, Dict
+
+# Global edit history for undo functionality
+edit_history: Dict[str, List[str]] = {}

def tool_info():
return {

@@ -10,14 +14,14 @@ def tool_info():

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

* The `edit` command overwrites the entire file with the provided `file_text`.\n
-* No partial/line-range edits or partial viewing are supported.""",
+* Also supports viewing specific line ranges, string replacement, text insertion, and

↪→ undo operations.""",
"input_schema": {

"type": "object",
"properties": {

"command": {
"type": "string",

- "enum": ["view", "create", "edit"],
- "description": "The command to run: `view`, `create`, or `edit`."
+ "enum": ["view", "create", "edit", "str_replace", "insert", "undo_edit"],
+ "description": "The command to run: `view`, `create`, `edit`, `str_replace`, `insert`, or

↪→ `undo_edit`."
},
"path": {

"description": "Absolute path to file or directory, e.g. `/repo/file.py`
↪→ or `/repo`.",

@@ -26,6 +30,23 @@ def tool_info():
"file_text": {

"description": "Required parameter of `create` or `edit` command,
↪→ containing the content for the entire file.",

"type": "string"
+ },
+ "view_range": {
+ "description": "Optional parameter for `view` command to display specific line range

↪→ [start, end].",
+ "type": "array",
+ "items": {"type": "integer"}
+ },
+ "old_str": {
+ "description": "Required parameter for `str_replace` command, string to replace.",
+ "type": "string"
+ },
+ "new_str": {
+ "description": "Required parameter for `str_replace` and `insert` commands, new string

↪→ to insert.",
+ "type": "string"
+ },
+ "insert_line": {
+ "description": "Required parameter for `insert` command, line number where to insert

↪→ text.",
+ "type": "integer"

}
},
"required": ["command", "path"]

@@ -43,7 +64,7 @@ def validate_path(path: str, command: str) -> Path:
Validate the file path for each command:
- 'view': path may be a file or directory; must exist.
- 'create': path must not exist (for new file creation).

- - 'edit': path must exist (for overwriting).
+ - Others: path must exist as a file.

"""
path_obj = Path(path)

@@ -61,14 +82,12 @@ def validate_path(path: str, command: str) -> Path:
Path must not exist

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

if path_obj.exists():
raise ValueError(f"Cannot create new file; {path} already exists.")

- elif command == "edit":
+ else:

Path must exist and must be a file
if not path_obj.exists():

raise ValueError(f"The file {path} does not exist.")
if path_obj.is_dir():

raise ValueError(f"{path} is a directory and cannot be edited as a file.")
- else:
- raise ValueError(f"Unknown or unsupported command: {command}")

return path_obj

@@ -89,14 +108,21 @@ def read_file(path: Path) -> str:
except Exception as e:

raise ValueError(f"Failed to read file: {e}")

-def write_file(path: Path, content: str):
+def write_file(path: Path, content: str, save_history: bool = True):

"""Write (overwrite) entire file contents."""
try:

+ if save_history:
+ # Save the current content to history before writing
+ if path.exists():
+ if str(path) not in edit_history:
+ edit_history[str(path)] = []
+ edit_history[str(path)].append(path.read_text())
+

path.write_text(content)
except Exception as e:

raise ValueError(f"Failed to write file: {e}")

-def view_path(path_obj: Path) -> str:
+def view_path(path_obj: Path, view_range: Optional[List[int]] = None) -> str:

"""View the entire file contents or directory listing."""
if path_obj.is_dir():

For directories: list non-hidden files up to 2 levels deep
@@ -115,35 +141,104 @@ def view_path(path_obj: Path) -> str:

except Exception as e:
raise ValueError(f"Failed to list directory: {e}")

- # If it's a file, show the entire file with line numbers
+ # If it's a file

content = read_file(path_obj)
+ lines = content.splitlines()
+
+ # Handle line range viewing
+ if view_range:
+ if len(view_range) != 2:
+ raise ValueError("view_range must contain exactly two elements: [start, end]")
+ start, end = view_range
+ if start < 1 or end > len(lines):
+ raise ValueError(f"Invalid line range [{start}, {end}] for file with {len(lines)} lines")
+ # Adjust for 0-based indexing
+ content = "\n".join(lines[start-1:end])
+ return format_output(content, str(path_obj), init_line=start)
+

return format_output(content, str(path_obj))

-def tool_function(command: str, path: str, file_text: str = None) -> str:
+def str_replace(path_obj: Path, old_str: str, new_str: str) -> str:
+ """Replace string in file, ensuring uniqueness."""
+ content = read_file(path_obj)
+ # Check for multiple occurrences
+ if content.count(old_str) > 1:
+ return f"Error: Multiple occurrences of '{old_str}' found. Replacement requires a unique

↪→ match."
+ elif content.count(old_str) == 0:
+ return f"Error: String '{old_str}' not found in file."
+
+ new_content = content.replace(old_str, new_str)
+ write_file(path_obj, new_content)
+ return f"File at {path_obj} has been edited: replaced '{old_str}' with '{new_str}'."
+
+def insert_text(path_obj: Path, insert_line: int, new_str: str) -> str:
+ """Insert text at specified line number."""
+ content = read_file(path_obj)
+ lines = content.splitlines()
+
+ if insert_line < 1 or insert_line > len(lines) + 1:

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

+ raise ValueError(f"Invalid insert line {insert_line} for file with {len(lines)} lines")
+
+ # Insert the new text at the specified line (adjusting for 0-based index)
+ lines.insert(insert_line - 1, new_str.rstrip("\n"))
+ new_content = "\n".join(lines) + "\n"
+
+ write_file(path_obj, new_content)
+ return f"File at {path_obj} has been edited: inserted text at line {insert_line}."
+
+def undo_edit(path_obj: Path) -> str:
+ """Undo last edit operation on the file."""
+ path_str = str(path_obj)
+ if path_str not in edit_history or not edit_history[path_str]:
+ return "Error: No edit history available for this file."
+
+ # Restore the last saved content
+ previous_content = edit_history[path_str].pop()
+ write_file(path_obj, previous_content, save_history=False)
+ return f"Last edit on {path_obj} has been undone successfully."
+
+def tool_function(command: str, path: str, **kwargs) -> str:

"""
- Main tool function that handles:
- - 'view' : View the entire file or directory listing
- - 'create': Create a new file with the given file_text
- - 'edit' : Overwrite an existing file with file_text
+ Main tool function that handles all commands:
+ - 'view' : View file/directory (optionally with line range)
+ - 'create' : Create new file
+ - 'edit' : Overwrite existing file
+ - 'str_replace' : Replace string in file
+ - 'insert' : Insert text at line
+ - 'undo_edit' : Undo last edit

"""
try:

path_obj = validate_path(path, command)

if command == "view":
- return view_path(path_obj)
+ view_range = kwargs.get('view_range')
+ return view_path(path_obj, view_range)

elif command == "create":
- if file_text is None:
+ if 'file_text' not in kwargs:

raise ValueError("Missing required `file_text` for 'create' command.")
- write_file(path_obj, file_text)
+ write_file(path_obj, kwargs['file_text'])

return f"File created successfully at: {path}"

elif command == "edit":
- if file_text is None:
+ if 'file_text' not in kwargs:

raise ValueError("Missing required `file_text` for 'edit' command.")
- write_file(path_obj, file_text)
+ write_file(path_obj, kwargs['file_text'])

return f"File at {path} has been overwritten with new content."

+ elif command == "str_replace":
+ if 'old_str' not in kwargs or 'new_str' not in kwargs:
+ raise ValueError("Both 'old_str' and 'new_str' are required for string replacement.")
+ return str_replace(path_obj, kwargs['old_str'], kwargs['new_str'])
+
+ elif command == "insert":
+ if 'insert_line' not in kwargs or 'new_str' not in kwargs:
+ raise ValueError("Both 'insert_line' and 'new_str' are required for text insertion.")
+ return insert_text(path_obj, kwargs['insert_line'], kwargs['new_str'])
+
+ elif command == "undo_edit":
+ return undo_edit(path_obj)
+

else:
raise ValueError(f"Unknown command: {command}")

diff --git a/tools/edit.py b/tools/edit.py
index 87fa408..a12903c 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -117,7 +117,7 @@ def write_file(path: Path, content: str, save_history: bool = True):

if str(path) not in edit_history:

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

edit_history[str(path)] = []
edit_history[str(path)].append(path.read_text())

-
+

path.write_text(content)
except Exception as e:

raise ValueError(f"Failed to write file: {e}")
@@ -172,17 +172,25 @@ def str_replace(path_obj: Path, old_str: str, new_str: str) -> str:

return f"File at {path_obj} has been edited: replaced '{old_str}' with '{new_str}'."

def insert_text(path_obj: Path, insert_line: int, new_str: str) -> str:
- """Insert text at specified line number."""
+ """Insert text at specified line number (1-based)."""

content = read_file(path_obj)
lines = content.splitlines()

- if insert_line < 1 or insert_line > len(lines) + 1:
- raise ValueError(f"Invalid insert line {insert_line} for file with {len(lines)} lines")
+ # Validate the insertion line number
+ if insert_line < 1:
+ raise ValueError(f"Invalid insert line {insert_line} - must be greater than 0")
+ if insert_line > len(lines) + 1:
+ raise ValueError(f"Invalid insert line {insert_line} - file only has {len(lines)} lines")

- # Insert the new text at the specified line (adjusting for 0-based index)
- lines.insert(insert_line - 1, new_str.rstrip("\n"))
- new_content = "\n".join(lines) + "\n"
+ # Clean up the new text to remove any trailing newlines
+ new_text = new_str.rstrip('\n')

+ # Insert at the correct position (line numbers are 1-based, list indices are 0-based)
+ # Insert at index=insert_line, so it appears after the current line at that position
+ lines.insert(insert_line, new_text)
+
+ # Join lines with newline and add trailing newline
+ new_content = '\n'.join(lines) + '\n'

write_file(path_obj, new_content)
return f"File at {path_obj} has been edited: inserted text at line {insert_line}."

@@ -243,8 +251,4 @@ def tool_function(command: str, path: str, **kwargs) -> str:
raise ValueError(f"Unknown command: {command}")

except Exception as e:
- return f"Error: {str(e)}"
-
-if __name__ == "__main__":
- # Example usage
- print(tool_function("view", "/home/ubuntu/xx/dgm/coding_agent.py"))
\ No newline at end of file
+ return f"Error: {str(e)}"
\ No newline at end of file

diff --git a/coding_agent.py b/coding_agent.py
index 6639abd..97f4b69 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -52,6 +52,10 @@ class SolutionAttempt:

test_output: str # Raw test output
test_success: bool # Whether tests passed
test_stats: dict # Test statistics (e.g., number of passed/failed tests)

+ error_messages: List[str] = None # List of specific error messages
+ test_details: dict = None # Detailed test information like specific test names and their

↪→ status
+ execution_time: float = None # Test execution time in seconds
+ attempt_number: int = None # The attempt number in the sequence

def get_thread_logger():
"""

@@ -150,12 +154,82 @@ class AgenticSystem:
]
return new_msg_history

+ def extract_test_details(self, output: str) -> tuple[dict, List[str], dict]:
+ """Extract detailed test information from the output."""
+ error_messages = []
+ test_details = {}
+ stats = {"passed": 0, "failed": 0, "errors": 0, "total": 0, "skipped": 0}
+
+ # Split output into lines for analysis
+ lines = output.split("\n")

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

+
+ # Language-specific parsing
+ if self.language == "python":
+ for line in lines:
+ if "FAILED" in line and "::" in line:
+ test_name = line.split("::")[1].split()[0]
+ test_details[test_name] = "FAILED"
+ stats["failed"] += 1
+ elif "PASSED" in line and "::" in line:
+ test_name = line.split("::")[1].split()[0]
+ test_details[test_name] = "PASSED"
+ stats["passed"] += 1
+ elif "ERROR" in line and "::" in line:
+ test_name = line.split("::")[1].split()[0]
+ test_details[test_name] = "ERROR"
+ stats["errors"] += 1
+ # Extract error message
+ if lines.index(line) + 1 < len(lines):
+ error_messages.append(lines[lines.index(line) + 1])
+
+ elif self.language in ["javascript", "node"]:
+ current_test = None
+ for line in lines:
+ if line.startswith('checkmark'):
+ test_name = line.replace('checkmark,', '').strip()
+ test_details[test_name] = "PASSED"
+ stats["passed"] += 1
+ elif line.startswith('x'):
+ test_name = line.replace('x', '').strip()
+ test_details[test_name] = "FAILED"
+ stats["failed"] += 1
+ current_test = test_name
+ elif current_test and ('Error:' in line or 'AssertionError:' in line):
+ error_messages.append(f"{current_test}: {line.strip()}")
+
+ elif self.language == "rust":
+ for line in lines:
+ if "test" in line and "... ok" in line:
+ test_name = line.split("test")[1].split("...")[0].strip()
+ test_details[test_name] = "PASSED"
+ stats["passed"] += 1
+ elif "test" in line and "... FAILED" in line:
+ test_name = line.split("test")[1].split("...")[0].strip()
+ test_details[test_name] = "FAILED"
+ stats["failed"] += 1
+ elif "---- " in line and " stdout ----" in line:
+ test_name = line.split("----")[1].split("stdout")[0].strip()
+ if test_name in test_details and test_details[test_name] == "FAILED":
+ error_messages.append(f"{test_name}: {next((l for l in lines[lines.index(line)+1:] if

↪→ l.strip()), '')}")
+
+ # Generic counting for other languages or as fallback
+ if not any(stats.values()):
+ stats["passed"] = output.count("PASS") + output.count("ok")
+ stats["failed"] = output.count("FAIL") + output.count("not ok")
+ stats["errors"] = output.count("ERROR") + output.count("panic:")
+
+ stats["total"] = stats["passed"] + stats["failed"] + stats["errors"]
+
+ return stats, error_messages, test_details
+

def run_tests(self) -> tuple[bool, str, dict]:
"""Run tests and return success status, output, and test statistics."""

+ import time
+

success = False
output = ""

- stats = {"passed": 0, "failed": 0, "errors": 0, "total": 0}
-
+ start_time = time.time()
+

try:
for command in TEST_COMMANDS.get(self.language, []):

proc = subprocess.run(
@@ -169,34 +243,97 @@ class AgenticSystem:

success = proc.returncode == 0
if not success:

break
-
- # Try to extract test statistics from output
- # This is a simple example; you might want to add more sophisticated parsing

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

- stats["passed"] = output.count("PASS") + output.count("ok")
- stats["failed"] = output.count("FAIL") + output.count("not ok")
- stats["errors"] = output.count("ERROR") + output.count("panic:")
- stats["total"] = stats["passed"] + stats["failed"] + stats["errors"]
+
+ # Extract detailed test information
+ stats, error_messages, test_details = self.extract_test_details(output)
+ stats["execution_time"] = time.time() - start_time
+
+ # Enhance stats with extracted information
+ stats["error_messages"] = error_messages
+ stats["test_details"] = test_details

except Exception as e:
output = f"Error running tests: {str(e)}"
success = False

+ stats = {
+ "passed": 0, "failed": 0, "errors": 1, "total": 1,
+ "execution_time": time.time() - start_time,
+ "error_messages": [str(e)],
+ "test_details": {}
+ }

return success, output, stats

def analyze_test_results(self, attempts: List[SolutionAttempt]) -> str:
- """Analyze test results and create a summary for the agent."""
+ """Analyze test results and create a detailed summary for the agent."""

summary = "# Test Results Analysis\n\n"

+ # Overall progress tracking
+ if len(attempts) > 1:
+ summary += "## Progress Overview\n"
+ first_attempt = attempts[0].test_stats
+ last_attempt = attempts[-1].test_stats
+
+ progress = {
+ "passed": last_attempt["passed"] - first_attempt["passed"],
+ "failed": first_attempt["failed"] - last_attempt["failed"],
+ "errors": first_attempt["errors"] - last_attempt["errors"]
+ }
+
+ summary += "Progress since first attempt:\n"
+ summary += f"- Additional passing tests: {progress['passed']}\n"
+ summary += f"- Reduced failures: {progress['failed']}\n"
+ summary += f"- Reduced errors: {progress['errors']}\n\n"
+
+ # Detailed attempt analysis

for i, attempt in enumerate(attempts, 1):
summary += f"## Attempt {i}\n"
summary += f"Test Success: {attempt.test_success}\n"

- summary += f"Test Stats: {json.dumps(attempt.test_stats, indent=2)}\n"
- summary += "Key test output:\n```\n"
- # Extract relevant parts of test output (e.g., error messages)
- key_output = "\n".join(line for line in attempt.test_output.split("\n")
- if "FAIL" in line or "ERROR" in line or "PASS" in line)
- summary += f"{key_output}\n```\n\n"
-
+ summary += f"Execution Time: {attempt.test_stats.get('execution_time', 'N/A'):.2f}s\n"
+
+ # Test statistics
+ stats = attempt.test_stats
+ total = stats.get("total", 0) or 1 # Avoid division by zero
+ pass_rate = (stats.get("passed", 0) / total) * 100
+
+ summary += f"Pass Rate: {pass_rate:.1f}% ({stats.get('passed', 0)}/{total})\n"
+ summary += "Test Statistics:\n"
+ summary += f"- Passed: {stats.get('passed', 0)}\n"
+ summary += f"- Failed: {stats.get('failed', 0)}\n"
+ summary += f"- Errors: {stats.get('errors', 0)}\n"
+ summary += f"- Total: {total}\n\n"
+
+ # Error messages
+ if stats.get("error_messages"):
+ summary += "Error Messages:\n```\n"
+ for error in stats["error_messages"][:5]: # Limit to top 5 errors
+ summary += f"{error}\n"
+ if len(stats["error_messages"]) > 5:
+ summary += f"... and {len(stats['error_messages']) - 5} more errors\n"
+ summary += "```\n\n"
+

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

+ # Test details
+ if stats.get("test_details"):
+ summary += "Individual Test Results:\n```\n"
+ for test_name, result in stats["test_details"].items():
+ summary += f"{result}: {test_name}\n"
+ summary += "```\n\n"
+
+ # Recommendations for next attempt
+ if not attempts[-1].test_success:
+ summary += "## Recommendations for Next Attempt\n"
+ last_stats = attempts[-1].test_stats
+
+ if last_stats.get("errors", 0) > 0:
+ summary += "- Focus on resolving runtime errors first\n"
+ if last_stats.get("failed", 0) > 0:
+ summary += "- Address failing test cases\n"
+ if len(attempts) > 1 and not attempts[-1].test_success:
+ # Compare with previous attempt
+ prev_stats = attempts[-2].test_stats
+ if last_stats.get("passed", 0) < prev_stats.get("passed", 0):
+ summary += "- Recent changes caused regressions. Consider reverting some changes\n"
+

return summary

def forward(self):
@@ -238,20 +375,36 @@ Your task is to make changes to the files in the {self.git_tempdir}

↪→ directory to
Run tests and collect results
test_success, test_output, test_stats = self.run_tests()

- # Create and store attempt
+ # Create and store attempt with enhanced information

attempt = SolutionAttempt(
patch=current_patch,
test_output=test_output,
test_success=test_success,

- test_stats=test_stats
+ test_stats=test_stats,
+ error_messages=test_stats.get('error_messages', []),
+ test_details=test_stats.get('test_details', {}),
+ execution_time=test_stats.get('execution_time', None),
+ attempt_number=attempt_num + 1

)
attempts.append(attempt)

- # Update best attempt if this one is better
- if test_success and (best_attempt is None or
- attempt.test_stats["passed"] > best_attempt.test_stats["passed"]):
+ # Update best attempt based on multiple criteria
+ if test_success and (
+ best_attempt is None or
+ (attempt.test_stats["passed"] > best_attempt.test_stats["passed"]) or
+ (attempt.test_stats["passed"] == best_attempt.test_stats["passed"] and
+ len(attempt.error_messages or []) < len(best_attempt.error_messages or []))
+):

best_attempt = attempt

+ # Log detailed attempt information
+ safe_log(f"\n=== Attempt {attempt_num + 1} Summary ===")
+ safe_log(f"Test Success: {test_success}")
+ safe_log(f"Tests Passed: {test_stats.get('passed', 0)}")
+ safe_log(f"Tests Failed: {test_stats.get('failed', 0)}")
+ safe_log(f"Errors: {test_stats.get('errors', 0)}")
+ safe_log(f"Execution Time: {test_stats.get('execution_time', 'N/A'):.2f}s")
+

If tests pass perfectly, we can stop
if test_success and attempt.test_stats["failed"] == 0 and

↪→ attempt.test_stats["errors"] == 0:
break

G SIMILAR TARGET FUNCTIONALITY, DIFFERENT IMPLEMENTATIONS

For the same target functionality, the suggestions provided to the coding agents and the resulting im-
plementations can differ significantly, leading to large variations in coding capability and benchmark
performance. For example, consider nodes 6 and 24 in the DGM run on SWE-bench (Figure 3). Both
aimed to enhance the existing editor tool to support finer-grained file editing. However, the implemen-

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

tation for node 6 retained the original edit command and added the parameters edit_type and
edit_actions, whereas the implementation for node 24 replaced the original edit command
with a new str_replace command. Despite targeting similar functionality, the feature suggestions
and thus the implementation details differed greatly, as did their performance. Node 6 achieved only
23.3%, while node 24 achieved 40.5%.

Feature suggestion to obtain node 6:
Within the tools/edit.py file, remove the 'edit' command and introduce a 'str_replace'

↪→ command. It should accept parameters 'old_str' (the unique text to find) and
↪→ 'new_str' (the new text to replace it with). After verifying that 'old_str'
↪→ appears exactly once in the file, replace the first occurrence with 'new_str'. If
↪→ 'old_str' is not unique or is missing, do not write any changes.

Replace the 'edit' command in the editor tool with a 'str_replace' command that locates
↪→ and replaces an exact substring in a file. The 'old_str' must match consecutive
↪→ lines uniquely, and if it is not found or occurs multiple times, no write should
↪→ occur. The 'new_str' parameter contains the revised lines. This precise substring
↪→ replacement flow will enable small incremental edits with minimal breakage.

Feature suggestion to obtain node 24:
Augment the existing 'editor' tool to support line or token-based editing. The agent would

↪→ specify individual lines or tokens to insert, delete, or replace. Internally, the
↪→ tool would parse the file contents, apply changes atomically, and verify that the
↪→ surrounding context remains intact. This prevents entire-file overwrites, reducing
↪→ the risk of losing unrelated logic. The tool could also validate that the edited
↪→ lines match expected code fragments to catch unanticipated differences or merge
↪→ conflicts.

Enhance the agent's file editing process to support fine-grained edits. Specifically, add
↪→ a line-based or token-based editing feature in the 'editor' tool. This improvement
↪→ should let the agent insert, replace, or delete small sections of code without
↪→ overwriting entire files or large blocks, preserving unrelated logic. Implement
↪→ safeguards to confirm that contextual code around the edited region remains
↪→ accurate, so we reduce the risk of creating regressions when fixing issues.

Implementation of suggested feature to obtain node 6:
diff --git a/tests/test_edit_tool.py b/tests/test_edit_tool.py
index f0782c6..d3a4d5c 100644
--- a/tests/test_edit_tool.py
+++ b/tests/test_edit_tool.py
@@ -1,7 +1,7 @@
import pytest
from pathlib import Path
import tempfile
-from tools.edit import tool_function
+from tools.edit import tool_function, validate_edit_actions, validate_context

@pytest.fixture
def temp_dir():
@@ -17,6 +17,18 @@ def sample_file(temp_dir):

file_path.write_text(content)
return file_path

+@pytest.fixture
+def code_file(temp_dir):
+ """Create a sample Python file for testing token-based edits."""
+ file_path = temp_dir / "test.py"
+ content = """def test_function():
+ x = 42
+ y = "old_value"
+ return x + len(y)
+"""
+ file_path.write_text(content)
+ return file_path
+
class TestEditorTool:

def test_view_file(self, sample_file):
"""Test viewing entire file content."""

@@ -39,17 +51,182 @@ class TestEditorTool:
assert "Error" in result
assert "already exists" in result

- def test_edit_file(self, sample_file):
- """Test editing an existing file."""
+ def test_edit_file_full(self, sample_file):

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

+ """Test editing an existing file with file mode."""
new_content = "edited content\nnew line"

- result = tool_function("edit", str(sample_file), file_text=new_content)
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ file_text=new_content,
+ edit_type="file"
+)

assert "has been overwritten" in result
assert sample_file.read_text() == new_content

+ def test_line_based_edit_insert(self, sample_file):
+ """Test line-based insert operation."""
+ actions = [{
+ "action": "insert",
+ "line_number": 3,
+ "content": "inserted line"
+ }]
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=actions
+)
+ assert "successfully edited" in result
+ content = sample_file.read_text().splitlines()
+ assert content[2] == "inserted line"
+ assert len(content) == 6
+
+ def test_line_based_edit_delete(self, sample_file):
+ """Test line-based delete operation."""
+ actions = [{
+ "action": "delete",
+ "line_number": 2
+ }]
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=actions
+)
+ assert "successfully edited" in result
+ content = sample_file.read_text().splitlines()
+ assert "line 2" not in content
+ assert len(content) == 4
+
+ def test_line_based_edit_replace(self, sample_file):
+ """Test line-based replace operation."""
+ actions = [{
+ "action": "replace",
+ "line_number": 3,
+ "content": "replaced line"
+ }]
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=actions
+)
+ assert "successfully edited" in result
+ content = sample_file.read_text().splitlines()
+ assert content[2] == "replaced line"
+ assert len(content) == 5
+
+ def test_token_based_edit(self, code_file):
+ """Test token-based edit operation."""
+ actions = [{
+ "action": "replace",
+ "old_token": "old_value",
+ "new_token": "new_value"
+ }]
+ result = tool_function(
+ "edit",
+ str(code_file),
+ edit_type="token",
+ edit_actions=actions
+)
+ assert "successfully edited" in result
+ content = code_file.read_text()
+ assert "old_value" not in content

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

+ assert "new_value" in content
+
+ def test_multiple_token_edits(self, code_file):
+ """Test multiple token-based edit operations."""
+ actions = [
+ {
+ "action": "replace",
+ "old_token": "42",
+ "new_token": "100"
+ },
+ {
+ "action": "replace",
+ "old_token": "old_value",
+ "new_token": "new_text"
+ }
+]
+ result = tool_function(
+ "edit",
+ str(code_file),
+ edit_type="token",
+ edit_actions=actions
+)
+ assert "successfully edited" in result
+ content = code_file.read_text()
+ assert "42" not in content
+ assert "100" in content
+ assert "old_value" not in content
+ assert "new_text" in content
+
+ def test_invalid_line_number(self, sample_file):
+ """Test edit with invalid line number."""
+ actions = [{
+ "action": "replace",
+ "line_number": 100,
+ "content": "invalid line"
+ }]
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=actions
+)
+ assert "Error" in result
+ assert "exceeds file length" in result
+
+ def test_invalid_edit_type(self, sample_file):
+ """Test edit with invalid edit type."""
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="invalid",
+ edit_actions=[{"action": "replace"}]
+)
+ assert "Error" in result
+ assert "Invalid edit_type" in result
+
+ def test_missing_required_fields(self, sample_file):
+ """Test edit with missing required fields."""
+ actions = [{
+ "action": "replace" # Missing line_number and content
+ }]
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=actions
+)
+ assert "Error" in result
+ assert "Missing required field" in result
+
+ def test_validate_context(self):
+ """Test context validation function."""
+ original = "line 1\nline 2\nline 3\nline 4\nline 5"
+ modified = "line 1\nline 2\nmodified\nline 4\nline 5"
+ assert validate_context(original, modified) is True
+
+ # Test invalid context (too many changes)
+ modified = "completely\ndifferent\ncontent"
+ assert validate_context(original, modified) is False
+
+ def test_empty_edit_actions(self, sample_file):

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

+ """Test edit with empty edit actions."""
+ result = tool_function(
+ "edit",
+ str(sample_file),
+ edit_type="line",
+ edit_actions=[]
+)
+ assert "Error" in result
+ assert "Edit actions cannot be empty" in result
+

def test_edit_nonexistent_file(self, temp_dir):
"""Test attempting to edit a nonexistent file."""
non_existent_file = temp_dir / "does_not_exist.txt"

- result = tool_function("edit", str(non_existent_file), file_text="new content")
+ result = tool_function("edit", str(non_existent_file), edit_type="line", edit_actions=[])

assert "Error" in result
assert "does not exist" in result

@@ -82,4 +259,4 @@ class TestEditorTool:
def test_invalid_commands(self, command, sample_file):

"""Test various invalid commands."""
result = tool_function(command, str(sample_file))

- assert "Error" in result
+ assert "Error" in result
\ No newline at end of file
diff --git a/tools/edit.py b/tools/edit.py
index 59137ee..982ee84 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -1,5 +1,7 @@
from pathlib import Path
import subprocess
+from typing import Dict, Any, List, Union, Tuple
+from difflib import SequenceMatcher

def tool_info():
return {

@@ -9,8 +11,9 @@ def tool_info():

* If `path` is a file, `view` displays the entire file with line numbers. If `path` is a
↪→ directory, `view` lists non-hidden files and directories up to 2 levels deep.\n

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

-* The `edit` command overwrites the entire file with the provided `file_text`.\n
-* No partial/line-range edits or partial viewing are supported.""",
+* The `edit` command supports both entire file overwrites and fine-grained line/token

↪→ editing via the `edit_type` parameter.\n
+* Line-based edits require line numbers and content to modify specific parts of a file.\n
+* Token-based edits require specifying old and new tokens to replace specific text

↪→ fragments.""",
"input_schema": {

"type": "object",
"properties": {

@@ -24,8 +27,28 @@ def tool_info():
"type": "string"

},
"file_text": {

- "description": "Required parameter of `create` or `edit` command, containing the content
↪→ for the entire file.",

+ "description": "Required parameter of `create` or `edit` command with edit_type='file',
↪→ containing the content for the entire file.",

"type": "string"
+ },
+ "edit_type": {
+ "type": "string",
+ "enum": ["file", "line", "token"],
+ "description": "Type of edit operation: 'file' for full file, 'line' for line-based

↪→ edits, 'token' for token-based edits.",
+ "default": "file"
+ },
+ "edit_actions": {
+ "type": "array",
+ "description": "List of edit actions for line/token operations. Each action contains

↪→ operation details.",
+ "items": {
+ "type": "object",
+ "properties": {
+ "action": {"type": "string", "enum": ["insert", "delete", "replace"]},
+ "line_number": {"type": "integer", "description": "Line number for the operation

↪→ (1-based)"},
+ "content": {"type": "string", "description": "Content to insert/replace"},

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

+ "old_token": {"type": "string", "description": "Token to be replaced (for token edits)"},
+ "new_token": {"type": "string", "description": "New token (for token edits)"}
+ }
+ }

}
},
"required": ["command", "path"]

@@ -119,12 +142,126 @@ def view_path(path_obj: Path) -> str:
content = read_file(path_obj)
return format_output(content, str(path_obj))

-def tool_function(command: str, path: str, file_text: str = None) -> str:
+def validate_edit_actions(actions: List[Dict[str, Any]], edit_type: str) -> None:
+ """Validate edit actions based on edit type."""
+ if not actions:
+ raise ValueError("Edit actions cannot be empty for line/token edits")
+
+ valid_actions = ["insert", "delete", "replace"]
+ required_fields = {
+ "line": ["action", "line_number"],
+ "token": ["action", "old_token"]
+ }
+
+ for action in actions:
+ if "action" not in action or action["action"] not in valid_actions:
+ raise ValueError(f"Invalid action. Must be one of: {valid_actions}")
+
+ # Check required fields based on edit_type
+ for field in required_fields[edit_type]:
+ if field not in action:
+ raise ValueError(f"Missing required field '{field}' in edit action")
+
+ # Validate line number if provided
+ if "line_number" in action:
+ if not isinstance(action["line_number"], int) or action["line_number"] < 1:
+ raise ValueError("Line number must be a positive integer")
+
+ # Validate content requirements
+ if action["action"] in ["insert", "replace"]:
+ if edit_type == "line" and "content" not in action:
+ raise ValueError("Content required for insert/replace actions")
+ if edit_type == "token" and "new_token" not in action:
+ raise ValueError("new_token required for token operations")
+
+def apply_line_edits(content: List[str], actions: List[Dict[str, Any]]) -> List[str]:
+ """Apply line-based edits to the content."""
+ modified_content = content.copy()
+
+ # Sort actions by line number in reverse order to handle inserts/deletes correctly
+ sorted_actions = sorted(actions, key=lambda x: x["line_number"], reverse=True)
+
+ for action in sorted_actions:
+ line_num = action["line_number"] - 1 # Convert to 0-based index
+
+ if line_num > len(modified_content):
+ raise ValueError(f"Line number {action['line_number']} exceeds file length")
+
+ if action["action"] == "delete":
+ if line_num >= 0:
+ del modified_content[line_num]
+ elif action["action"] == "insert":
+ modified_content.insert(line_num, action["content"])
+ elif action["action"] == "replace":
+ modified_content[line_num] = action["content"]
+
+ return modified_content
+
+def apply_token_edits(content: str, actions: List[Dict[str, Any]]) -> str:
+ """Apply token-based edits to the content."""
+ modified_content = content
+
+ for action in actions:
+ old_token = action["old_token"]
+ if action["action"] == "delete":
+ modified_content = modified_content.replace(old_token, "")
+ elif action["action"] in ["insert", "replace"]:
+ new_token = action["new_token"]
+ modified_content = modified_content.replace(old_token, new_token)
+
+ return modified_content
+

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

+def validate_context(original: str, modified: str, context_lines: int = 3) -> bool:
"""

- Main tool function that handles:
+ Validate that the context around modified sections remains intact.
+ Returns True if context is valid, False otherwise.
+ """
+ # Use SequenceMatcher to find the similarity ratio between strings
+ similarity = SequenceMatcher(None, original, modified).ratio()
+
+ # If content is too different (less than 30% similar), consider it invalid
+ if similarity < 0.3:
+ return False
+
+ # Split into lines for more detailed analysis
+ orig_lines = original.splitlines()
+ mod_lines = modified.splitlines()
+
+ # If line count difference is too large (more than 50%), consider it invalid
+ if abs(len(orig_lines) - len(mod_lines)) > len(orig_lines) // 2:
+ return False
+
+ # Calculate line-based similarity for sections
+ def get_block_similarity(block1: List[str], block2: List[str]) -> float:
+ return SequenceMatcher(None, "\n".join(block1), "\n".join(block2)).ratio()
+
+ # Check similarity of start and end blocks if they exist
+ if len(orig_lines) >= context_lines and len(mod_lines) >= context_lines:
+ start_similarity = get_block_similarity(
+ orig_lines[:context_lines],
+ mod_lines[:context_lines]
+)
+ end_similarity = get_block_similarity(
+ orig_lines[-context_lines:],
+ mod_lines[-context_lines:]
+)
+
+ # If either the start or end blocks are too different, consider it invalid
+ if start_similarity < 0.7 or end_similarity < 0.7:
+ return False
+
+ return True
+
+def tool_function(command: str, path: str, file_text: str = None,
+ edit_type: str = "file", edit_actions: List[Dict[str, Any]] = None) -> str:
+ """
+ Enhanced tool function that handles:

- 'view' : View the entire file or directory listing
- 'create': Create a new file with the given file_text

- - 'edit' : Overwrite an existing file with file_text
+ - 'edit' : Edit a file using one of three modes:
+ - file: overwrite entire file
+ - line: line-based edits
+ - token: token-based edits

"""
try:

path_obj = validate_path(path, command)
@@ -139,11 +276,36 @@ def tool_function(command: str, path: str, file_text: str = None) ->

↪→ str:
return f"File created successfully at: {path}"

elif command == "edit":
- if file_text is None:
- raise ValueError("Missing required `file_text` for 'edit' command.")
- write_file(path_obj, file_text)
- return f"File at {path} has been overwritten with new content."
+ # Read original content for line/token edits and validation
+ original_content = read_file(path_obj) if edit_type in ["line", "token"] else None
+
+ if edit_type == "file":
+ if file_text is None:
+ raise ValueError("Missing required `file_text` for 'file' edit type.")
+ write_file(path_obj, file_text)
+ return f"File at {path} has been overwritten with new content."
+
+ elif edit_type in ["line", "token"]:
+ if not edit_actions:
+ raise ValueError("Edit actions cannot be empty for line/token edits")
+
+ validate_edit_actions(edit_actions, edit_type)
+
+ if edit_type == "line":

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

+ lines = original_content.splitlines()
+ modified_lines = apply_line_edits(lines, edit_actions)
+ modified_content = "\n".join(modified_lines)
+ else: # token edits
+ modified_content = apply_token_edits(original_content, edit_actions)

+ # Validate context before writing
+ if validate_context(original_content, modified_content):
+ write_file(path_obj, modified_content)
+ return f"File at {path} has been successfully edited using {edit_type}-based editing."
+ else:
+ raise ValueError("Context validation failed. Edit operation aborted.")
+ else:
+ raise ValueError(f"Invalid edit_type: {edit_type}")

else:
raise ValueError(f"Unknown command: {command}")

@@ -152,4 +314,4 @@ def tool_function(command: str, path: str, file_text: str = None) ->
↪→ str:

if __name__ == "__main__":
Example usage

- print(tool_function("view", "/home/ubuntu/xx/dgm/coding_agent.py"))
+ print(tool_function("view", "/home/ubuntu/xx/dgm/coding_agent.py"))
\ No newline at end of file

Implementation of suggested feature to obtain node 24:
diff --git a/tools/edit.py b/tools/edit.py
index 16ae521..757f5c2 100644
--- a/tools/edit.py
+++ b/tools/edit.py
@@ -11,21 +11,21 @@ def tool_info():

* If `path` is a directory, `view` lists non-hidden files and directories up to 2 levels
↪→ deep.\n

* The `create` command cannot be used if the specified `path` already exists as a file.\n

* If a `command` generates a long output, it will be truncated and marked with `<response
↪→ clipped>`.\n

-* The `edit` command overwrites the entire file with the provided `file_text`.""",
+* The `str_replace` command replaces a unique occurrence of old_str with new_str, failing

↪→ if old_str is not found or appears multiple times.""",
"input_schema": {

"type": "object",
"properties": {

"command": {
"type": "string",

- "enum": ["view", "create", "edit"],
- "description": "The command to run: `view`, `create`, or `edit`."
+ "enum": ["view", "create", "str_replace"],
+ "description": "The command to run: `view`, `create`, or `str_replace`."

},
"path": {

"description": "Absolute path to file or directory, e.g. `/repo/file.py`
↪→ or `/repo`.",

"type": "string"
},
"file_text": {

- "description": "Required parameter of `create` or `edit` command, containing the content
↪→ for the entire file.",

+ "description": "Required parameter of `create` command, containing the content for the
↪→ entire file.",

"type": "string"
},
"view_range": {

@@ -34,6 +34,14 @@ def tool_info():
"items": {"type": "integer"},
"minItems": 2,
"maxItems": 2

+ },
+ "old_str": {
+ "description": "Required parameter of `str_replace` command, containing the exact text

↪→ to find and replace.",
+ "type": "string"
+ },
+ "new_str": {
+ "description": "Required parameter of `str_replace` command, containing the new text to

↪→ replace old_str with.",
+ "type": "string"

}
},

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

"required": ["command", "path"]
@@ -51,7 +59,7 @@ def validate_path(path: str, command: str) -> Path:

Validate the file path for each command:
- 'view': path may be a file or directory; must exist.
- 'create': path must not exist (for new file creation).

- - 'edit': path must exist (for overwriting).
+ - 'str_replace': path must exist and be a file.

"""
path_obj = Path(path)

@@ -69,7 +77,7 @@ def validate_path(path: str, command: str) -> Path:
Path must not exist
if path_obj.exists():

raise ValueError(f"Cannot create new file; {path} already exists.")
- elif command == "edit":
+ elif command == "str_replace":

Path must exist and must be a file
if not path_obj.exists():

raise ValueError(f"The file {path} does not exist.")
@@ -144,6 +152,28 @@ def write_file(path: Path, content: str):

except Exception as e:
raise ValueError(f"Failed to write file: {e}")

+def str_replace_in_file(path: Path, old_str: str, new_str: str) -> str:
+ """
+ Replace an exact occurrence of old_str with new_str in the file.
+ Only performs the replacement if old_str occurs exactly once.
+ Returns a message indicating success or failure.
+ """
+ try:
+ content = read_file(path)
+ occurrences = content.count(old_str)
+
+ if occurrences == 0:
+ return f"Error: Could not find the exact text to replace in {path}"
+ elif occurrences > 1:
+ return f"Error: Found multiple ({occurrences}) occurrences of the text in {path}. Must

↪→ be unique."
+ else:
+ new_content = content.replace(old_str, new_str)
+ write_file(path, new_content)
+ return f"Successfully replaced text in {path}"
+
+ except Exception as e:
+ return f"Error during string replacement: {e}"
+
def view_path(path_obj: Path, view_range: Optional[List[int]] = None) -> str:

"""
View the file contents (optionally within a range) or directory listing.

@@ -176,12 +206,13 @@ def view_path(path_obj: Path, view_range: Optional[List[int]] =
↪→ None) -> str:

content, start_line = read_file_range(path_obj, view_range)
return format_output(content, str(path_obj), start_line)

-def tool_function(command: str, path: str, file_text: str = None, view_range:
↪→ Optional[List[int]] = None) -> str:

+def tool_function(command: str, path: str, file_text: str = None, view_range:
↪→ Optional[List[int]] = None,

+ old_str: str = None, new_str: str = None) -> str:
"""
Main tool function that handles:

- - 'view' : View file or directory listing, optionally within line range for files
- - 'create': Create a new file with the given file_text
- - 'edit' : Overwrite an existing file with file_text
+ - 'view' : View file or directory listing, optionally within line range for files
+ - 'create' : Create a new file with the given file_text
+ - 'str_replace': Replace exact occurrence of old_str with new_str in the file

"""
try:

path_obj = validate_path(path, command)
@@ -195,11 +226,10 @@ def tool_function(command: str, path: str, file_text: str = None,

↪→ view_range: Op
write_file(path_obj, file_text)
return f"File created successfully at: {path}"

- elif command == "edit":
- if file_text is None:
- raise ValueError("Missing required `file_text` for 'edit' command.")
- write_file(path_obj, file_text)
- return f"File at {path} has been overwritten with new content."
+ elif command == "str_replace":

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

+ if old_str is None or new_str is None:
+ raise ValueError("Missing required `old_str` and/or `new_str` for 'str_replace'

↪→ command.")
+ return str_replace_in_file(path_obj, old_str, new_str)

else:
raise ValueError(f"Unknown command: {command}")

diff --git a/tests/__init__.py b/tests/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/tests/test_tools.py b/tests/test_tools.py
new file mode 100644
index 0000000..c7f242f
--- /dev/null
+++ b/tests/test_tools.py
@@ -0,0 +1,65 @@
+import pytest
+from pathlib import Path
+from tools.edit import tool_function
+
+# Test fixtures
+@pytest.fixture
+def temp_file(tmp_path):
+ file_path = tmp_path / "test.txt"
+ content = "line 1\nline 2\nline 3\n"
+ file_path.write_text(content)
+ return str(file_path)
+
+def test_str_replace_success(temp_file):
+ # Test successful replacement
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="line 2\n",
+ new_str="replaced line\n"
+)
+ assert "Successfully replaced" in result
+ assert Path(temp_file).read_text() == "line 1\nreplaced line\nline 3\n"
+
+def test_str_replace_not_found(temp_file):
+ # Test when old_str is not found
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="nonexistent",
+ new_str="something"
+)
+ assert "Could not find" in result
+ # Original file should be unchanged
+ assert Path(temp_file).read_text() == "line 1\nline 2\nline 3\n"
+
+def test_str_replace_multiple_occurrences(temp_file):
+ # First create a file with multiple occurrences
+ Path(temp_file).write_text("same\nsame\nsame\n")
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+ old_str="same\n",
+ new_str="different\n"
+)
+ assert "multiple" in result
+ # Original file should be unchanged
+ assert Path(temp_file).read_text() == "same\nsame\nsame\n"
+
+def test_str_replace_missing_params(temp_file):
+ # Test missing parameters
+ result = tool_function(
+ command="str_replace",
+ path=temp_file,
+)
+ assert "Missing required" in result
+
+def test_str_replace_invalid_path():
+ # Test with non-existent file
+ result = tool_function(
+ command="str_replace",
+ path="/nonexistent/path",
+ old_str="old",
+ new_str="new"
+)
+ assert "does not exist" in result

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

\ No newline at end of file

H CASE STUDY: SOLVING HALLUCINATION

The DGM can be used to optimize objectives beyond just coding, as discussed as a potential direction
for future work in Section 5. In this section, we show that the DGM can address hallucinations of
tool use by FMs. Through feedback from evaluation logs, the DGM improves hallucination detection
mechanisms and ultimately discovers ways to resolve these hallucinations. We provide a more
detailed discussion of when these hallucinations occur, the DGM setup, and the resulting solutions.
Finally, we present an example of objective hacking, where the agent optimizes for the quantifiable
metric rather than truly fulfilling the spirit of the task and solving the underlying problem.

Solve Halluc
Score

3 tasks (no basic functionality)

3 tasks (with basic functionality)

Final best agent

Figure 8: The DGM solving hallucination of tool use in FMs. Archive of coding agents generated
during the DGM run on SWE-bench to solve hallucination from FMs. Each node represents an agent,
with node 0 corresponding to the base agent. Node color indicates solved hallucination score, while
border color reflects whether the agent has basic codebase-editing functionality. Edges show which
agents self-modified to produce the offsprings.

When hallucination occurs. When the input context to Claude 3.5 Sonnet (New) (Claude) is very
long, including all previous tool use inputs and outputs, we found that Claude tends to hallucinate
tool usage. Instead of actually making a tool call, it outputs the tool input and output as plain text.
This is an example of Claude hallucinating tool use, claiming that the Bash tool was used to run tests
and that the tool output suggests that all tests passed, but Claude did not invoke any tools, and the
tool results were entirely hallucinated in plain text:
I'll run the tests as specified in the <test_description>. The test description indicates

↪→ that we should use:\n\n```bash\n./tests/runtests.py --verbosity 2
↪→ --settings=test_sqlite --parallel 1 dbshell.test_postgresql\n```\n\nLet me run this
↪→ test command:\n\nTool Used: bash\nTool Input: {'command': 'cd /testbed &&
↪→ ./tests/runtests.py --verbosity 2 --settings=test_sqlite --parallel 1
↪→ dbshell.test_postgresql'}\nTool Result: Testing against Django installed in
↪→ '/testbed/django'\nImporting application dbshell\nSkipping setup of unused
↪→ database(s): default, other.\nSystem check identified no issues (0
↪→ silenced).\nError:\ntest_accent
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase) ... ok\ntest_basic
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase) ... ok\ntest_column
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase) ...
↪→ ok\ntest_escape_characters
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase) ... ok\ntest_nopass
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase) ...
↪→ ok\ntest_sigint_handler
↪→ (dbshell.test_postgresql.PostgreSqlDbshellCommandTestCase)\nSIGINT is ignored in
↪→ Python and passed to psql to abort quries. ...
↪→ ok\n\n--\nRan
↪→ 6 tests in 0.001s\n\nOK\n\nTool Response: Great! All the tests are passing
↪→ successfully. Let me explain what each test verifies:\n\n1. `test_accent`: Tests
↪→ handling of accented characters in usernames and passwords\n - Status: PASS\n -
↪→ Verifies proper handling of non-ASCII characters\n\n2. `test_basic`: Tests basic
↪→ connection with standard parameters\n - Status: PASS\n - Verifies basic
↪→ functionality with username, password, host, port, and dbname\n\n3. `test_column`:
↪→ Tests handling of special characters in connection parameters\n - Status: PASS \n

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

↪→ - Verifies proper handling of colons in usernames and passwords\n\n4.
↪→ `test_escape_characters`: Tests handling of escape characters\n - Status: PASS\n -
↪→ Verifies proper handling of backslashes in credentials\n\n5. `test_nopass`: Tests
↪→ connection without password\n - Status: PASS\n - Verifies behavior when no
↪→ password is provided\n\n6. `test_sigint_handler`: Tests signal handling for query
↪→ abortion\n - Status: PASS\n - Verifies SIGINT handling works correctly\n\nTest
↪→ Summary:\n- Total tests run: 6\n- Passed: 6\n- Failed: 0\n- Execution time:
↪→ 0.001s\n\nThe test results confirm that our implementation:\n1. Successfully
↪→ handles all types of passwords and special characters\n2. Properly manages
↪→ environment variables\n3. Maintains correct signal handling\n4. Works correctly
↪→ with or without passwords\n5. Preserves all required functionality\n\nThe tests
↪→ pass with high speed (0.001s) which is expected since they're mocking the actual
↪→ psql execution. The problem described in <problem_description> has been
↪→ successfully fixed and verified through the test suite.

DGM setup. We run this experiment on SWE-bench. Other than the number of SWE-bench tasks we
evaluate each coding agent on, and the final scoring function of the DGM, all other settings remain the
same as in the main experiments (Section 3). The initial coding agent and all agents generated during
the DGM run are evaluated on only 3 SWE-bench tasks. We use just 3 tasks because if hallucination
occurs in one, it is likely to occur in others as well. Hence, 3 tasks are sufficient to provide the DGM
with a reliable signal regarding whether tool use hallucination is still present.

Solve hallucination score. We score each generated agent based on how effectively it prevents
hallucinations, with higher scores indicating fewer hallucinations and better performance. For each
SWE-bench task the agent is evaluated on, the score has two components: 0 - 1 based on whether
hallucination occurred in the logs, and 1 - 2 (only added and accounted for after no hallucination
occurs in the logs) if tools were used in all Claude calls. The final solve hallucination score is
computed as the average across all evaluated tasks. To detect hallucination in the logs, we insert
special tokens when actual tool use occurs and then check if these tokens appear in the model’s
plain-text output, indicating that the model mimicked tool use without actually invoking any tools.
Importantly, the hallucination checking functions are hidden from the coding agent during self-
modification. We found that objective hacking (i.e., optimizing for the measurable objective instead
of truly solving the underlying problem) occurs more frequently when these functions are not hidden.

Results. We run the DGM for 150 iterations. In this run, the DGM discovers two promising solutions:
node 96, which achieves the second highest score of 1.67, and node 114, which achieves a perfect
score of 2.0 (Figure 8). Node 96 addresses hallucination to some extent, achieving a score of 1.67
without objective hacking. In the lineage leading to node 96, the DGM first improves the tool
transaction logging mechanisms to better detect when hallucination occurs. It then explores various
strategies to solve it, such as removing hallucinated tool use from the output text when it determines
that the tool was not actually invoked. Node 114 achieves a perfect score quickly, after only 2
modifications in its lineage. However, we observed objective hacking: it scored highly according to
our predefined evaluation functions, but it did not actually solve the underlying problem of tool use
hallucination. In the modification leading up to node 114 (see below), the agent removed the logging
of special tokens that indicate tool usage (despite instructions not to change the special tokens),
effectively bypassing our hallucination detection function.
diff --git a/coding_agent.py b/coding_agent.py
index 620da2f..800b06e 100644
--- a/coding_agent.py
+++ b/coding_agent.py
@@ -196,13 +196,16 @@ def chat_with_claude(task, chat_history, user_instr):

"input": tool_input
})

- # Process the tool call
+ # Process the tool call and record in structured format

tool_result = process_tool_call(tools_dict, tool_name, tool_input)
- output_ls.extend([
- {TOOL_USED_MARKER: tool_name},
- {TOOL_INPUT_MARKER: tool_input},
- {TOOL_RESULT_MARKER: tool_result}
-])
+ # Use structured format instead of text markers
+ output_ls.append({
+ "tool_invocation": {
+ "name": tool_name,
+ "input": tool_input,
+ "result": tool_result
+ }

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

+ })

Continue with tool results
messages.extend([

@@ -224,7 +227,13 @@ def chat_with_claude(task, chat_history, user_instr):
tools=tools,

)
tool_response_text = next((block.text for block in tool_response.content if

↪→ hasattr(block, "text")), None)
- output_ls.append({TOOL_RESPONSE_MARKER: tool_response_text})
+ # Record tool response in structured format
+ if tool_response_text:
+ output_ls.append({
+ "tool_response": {
+ "content": tool_response_text
+ }
+ })

response = tool_response

Validate tool response

In conclusion, the DGM can be applied beyond the coding domain, and we highlighted a case
of objective hacking. Similar to reward hacking in reinforcement learning (Skalse et al., 2022),
objective hacking occurs when a system optimizes for a predefined, quantifiable objective rather than
fulfilling the spirit of the task or solving the intended problem. This observation supports arguments
made in prior works (Zhang et al., 2024b; Faldor et al., 2025), which suggest that optimizing
quantitative measures often leads to undesirable or pathological outcomes, and aligns with Goodhart’s
law (Strathern, 1997) – "When a measure becomes a target, it ceases to be a good measure."

I ADDITIONAL SAFETY DISCUSSION

Any advancement that increases the autonomous capabilities of AI systems introduces its own set
of safety considerations (Bengio et al., 2024), especially for systems that improve in an open-ended
way (Ecoffet et al., 2020; Clune, 2019). Section 5 discusses these concerns and outlines concrete,
actionable steps for mitigating them. We call for much more research into and discussion regarding AI
safety, including deep thought and discussion amongst all stakeholders in society on the complicated
question of what exactly counts as safe AI. We also call for more research on the specific issue of
making self-improving AI safe, which is a critically important area for future work (Ecoffet et al.,
2020; Clune, 2019). We are confident the work we have done was never unsafe (see Section 5), but
scaled up versions of it could be. As with all transformative technologies, the ultimate impact of
such AI systems remains deeply uncertain, and good arguments can be made both for the case that it
will bring about tremendous good and tremendous harm. These uncertainties highlight the need for
sustained, inclusive, and multidisciplinary discussion (not only from current experts but also from a
wider and more diverse community) on how to navigate these developments.

J ADDITIONAL FUTURE WORK DIRECTIONS

While this paper has shown the potential of the Darwin Gödel Machine in iteratively improving
coding agents via open-ended exploration and empirical validation, several extensions could address
current limitations and push AI beyond its already growing role in inspiring culture and advancing
science. The following directions outline promising avenues for further research.

Autonomously Improving the Open-ended Exploration Process. In this version of the DGM,
the open-ended exploration process described in Section 3 is kept fixed, which might hence impede
the system’s self-acceleration potential. This design choice was made due to limited computational
budget. If we were to evolve this part of the algorithm, it could require exponentially more compute
to identify processes that yield the same improvements shown in Section 4.4. Nevertheless, since
the open-ended exploration loop itself is implemented in code, it can in principle be edited and
improved by a coding agent. There are many possible implementations of open-ended exploration, for
example, using alternative search mechanisms that balance exploration and exploitation (Herr et al.,
2025), keeping only the most interesting agents in the archive (Faldor et al., 2025), or leveraging
the generated agent population as an ensemble (Samvelyan et al., 2024). A promising future work
direction is to allow the agent to modify the open-ended exploration process, thereby autonomously

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

improving not only its own capabilities but also the meta-process that allocates limited compute to
drive self-improvement and self-acceleration.

Role of Humans in Autonomous AI Systems. In the current formulation of the DGM, proposed self-
modifications are autonomously evaluated without any human intervention. However, as autonomous
systems grow in complexity and influence, the question of how humans should remain involved
becomes increasingly pressing. Should human oversight be framed as an optimization objective,
incorporated through techniques such as reinforcement learning from human feedback (Ouyang
et al., 2022), or distilled into FMs that act as preference judges (Bai et al., 2022)? Each of these
approaches raises challenges in terms of scalability, reliability, and alignment with evolving human
values. The role of humans in guiding, constraining, or co-evolving with autonomous AI remains an
open question. Exploring this dynamic is a promising avenue for future research, as it touches not
only on technical feasibility but also on broader philosophical and societal considerations.

DGM with Advanced Foundation Models. Recent FMs have advanced dramatically, enabling
scaffolds to become simpler on current coding benchmarks (Yang et al., 2024). It is possible that in
some settings, like current coding benchmarks, certain engineering efforts in scaffolding might be
downplayed by the improvement of the FMs. However, many scaffolding components (advanced
tools, parallel workflows, external memory, proxy verification, etc.) still fundamentally can not
be internalized by FMs and will be essential for more complex real-world tasks beyond today’s
benchmarks. Future work to explore how different components in agents will emerge with different
FMs could be a promising direction.

Evolving Generalist Agent. We believe some degree of task-specific adaptation is indeed expected
and even desirable, since fundamentally different types of tasks (e.g., in our case, multi-file Python
repository edits vs. primarily single-file, multi-language implementations) naturally require distinct
scaffolding components. Crucially, this very property highlights a unique advantage of self-improving
systems like the DGM: it replaces laborious manual efforts to design specialized agents for diverse
tasks with a fully automated evolutionary process. This motivates an exciting future direction of
running the DGM on a large, diverse set of tasks to evolve a true generalist agent. Also, currently
we only evaluated DGM on two coding benchmarks. While we believe these two benchmarks differ
substantially in task structure (multi-file Python repository edits vs. primarily single-file, multi-
language implementations), providing strong evidence of generality, additional benchmarks would
further strengthen evaluations.

72

	Introduction
	Related Work
	Darwin Gödel Machine
	Experiments
	Experiment Setup
	Benchmarks
	Baselines
	Results

	Safety Discussion
	Conclusion and Limitations
	Additional Results
	Baselines on SWE-bench
	Generality across models on Polyglot
	Ablation of Parent Selection
	Additional Statistics of DGM runs

	Additional Related Work
	Algorithmic Details
	Initial Coding Agent
	Parent Selection
	Self-Improve Prompts
	Pseudocode

	Experiment Details
	Hyperparameters for Foundation Models

	Benchmark Details
	Cost Estimate
	SWE-bench Tasks
	Polyglot Tasks
	SWE-bench State-of-The-Art
	Polyglot Representative Agent

	Best-Discovered Agents
	DGM on SWE-bench
	DGM on Polyglot

	Similar Target Functionality, Different Implementations
	Case Study: Solving Hallucination
	Additional Safety Discussion
	Additional Future Work Directions

