
Keep on Swimming: Real Attackers Only Need Partial
Knowledge of a Multi-Model System

Julian Collado ∗

HiddenLayer Inc.
jcollado@hiddenlayer.com

Kevin Stangl
HiddenLayer Inc.

kstangl@hiddenlayer.com

Abstract

Recent approaches in machine learning often solve a task using a composition of
multiple models or agentic architectures. When targeting a composed system with
adversarial attacks, it might not be computationally or informationally feasible
to train an end-to-end proxy model or a proxy model for every component of the
system. We introduce a method to craft an adversarial attack against the overall
multi-model system when we only have a proxy model for the final black-box
model, and when the transformation applied by the initial models can make the
adversarial perturbations ineffective. Current methods handle this by applying
many copies of the first model/transformation to an input and then re-use a standard
adversarial attack by averaging gradients, or learning a proxy model for both
stages. To our knowledge, this is the first attack specifically designed for this threat
model and our method has a substantially higher attack success rate (80% vs 25%)
and contains 9.4% smaller perturbations (MSE) compared to prior state-of-the-
art methods. Our experiments focus on a supervised image pipeline, but we are
confident the attack will generalize to other multi-model settings [e.g. a mix of
open/closed source foundation models], or agentic systems.

1 Introduction

Recent AI research has shown the effectiveness of agentic architectures and systems composed of
multiple models that decompose problems and create scaffolds in a solution pipeline[16, 29, 38, 27,
36, 6]. Alternatively consider an initial model doing a complex pre-processing step for a second
model, for example a foundation model[8, 10, 1, 2, 34, 18, 37] that processes the input and passes
its output to another model for a classification or some other task. In production systems, a service
is often a pipeline of multiple pre/post-processing steps based on heuristics and machine learning
models. Combining models this way has proven to be very effective and will likely increase over
time with the rise of multi-agent systems.

The proliferation of real world AI systems and the horizon of ever more powerful methods has made
securing these models against malicious or un-authorized use ever-more urgent. Model providers
have responded to these security threats by implementing a mix of a) including safety fine-tuning [19]
b) weaker side-car models that halt the model from responding based on detecting malicious queries
or harmful outputs [35] c) closed model weights to prevent an attacker from developing white-box
attacks [31] d) rate-limiting the users of a centrally served model to avoid black-box attacks [15].

However, the conmingling of multiple models, of closed/open source, introduces new security
vulnerabilities that are not precisely captured by existing threat models and complicates defense
based on keeping the weights hidden or rate limiting the user to avoid the creation of proxy models.

∗Primary and corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



We will show how to attack a system of models even when an adversary has restricted access to part
of this system such that they cannot create a proxy for the first models/components of the system.

White-Box attacks [22] assume perfect knowledge of the model weights, allowing gradient based
optimization techniques to find adversarial perturbations. Black-Box attacks [14, 32, 23] achieve a
similar effect to the White-Box attacks but without having access to the weights, instead the attackers
can only query the model with different inputs but may have varying degrees or knowledge about
the model architecture, biases and other parameters. Black-box attacks either typically train a proxy
model[32] or estimate local gradients to find perturbations for specific inputs. Grey-Box attacks are
similar to Black-Box attacks; one Grey-Box model could consist of White-Box access to part of a
system and Black-Box access to another component. For example in an encoder-decoder architecture,
the attacker may have White-Box access to the encoder and Black-Box access to the decoder.

1.1 Threat Model: Multi-Model System Attack With Partial Proxy Access

We introduce a new and realistic threat model for multi-agentic and multi-model applications that we
first test in a vision modality.

In the simplest case, consider a system that is a composition of two models, e.g. h1 and h2, so the
overall output is ŷ = h2(h1(x)). Specifically, we have black-box access to both models but it is only
feasible2 to create a proxy model for h2 as shown in Figure 1. The proxy model for h2 allows us to
perform gradient based attacks against h2, so we can compute a δadv such that h2(xmod + δadv) ̸=
ypred where xmod = h1(x) and ypred is the predicted label of x. In the rest of the paper, we refer
to xmod as the output of model h1. The key difficulty in this scenario is that the transformation
applied by h1 might destroy the adversarial modification such that h1(x+ δadv) ̸= xmod + δadv and
therefore h2(h1(x+ δadv)) = ypred.

We focus on the case when the modifications applied by the h1 are reversible in the sense that xmod,
and xmod + δadv, can be "re-inserted" into x. Consider the case where h1 is a segmentation model
that detects a region of interest and crops the image and we have designed an adversarial perturbation
attacking the cropped subset of the full image. That adversarial perturbation could be re-inserted into
the original image inside the crop box. Formally, h1 : X → X and h2 : X → Y , for some input
modality X. This allows us to "re-insert" the adversarial sample xmod + δadv crafted for h2 into
x to create an adversarial sample for the whole system. Another example of a pair of models that
satisfies this property could be a pair of natural language models; where the first model processes a
piece of text, generating a new text string, that is then handed off to the second model for the final
computation.

1.2 Our Contributions

To our knowledge, we propose the first attack specifically for a multi-model compositional problem
where a proxy is only available for the last model. We observe that this is a more realistic scenario for
industrial applications where it might not be feasible to create a proxy for each section of the system
or where an adversary might not have access to information about the first sections of the system, for
example the pre-processing of the data or an adversarial defense, but the last leg of the system might
be approximated with an open source model or have been trained in a public dataset.

We provide an iterative method, which we name the Keep on Swimming Attack (KoS, pronounced
chaos) to ensure that the attack survives the modifications applied by the non-proxy-able sections
of the system, and show our attack has a higher success rate and lower noise levels than the natural
baseline method, based on Expectation over Transformation (EoT) [4]. In Appendix A.1, we show
how an end-to-end black-box attack was ineffective in this setting; it is this dead end that motivated
us to design and develop the KoS Algorithm. Our method shows that even if a system has a secure
and restricted section, there are instances in which the overall system can still be exploited with
adversarial attacks.

2Due to limited computational or query budget for the first model while the second model is more accesible
or has an open weights version.

2



Figure 1: Multi-Model System with Gradient Restrictions: We have limited query access to h1 and
full query/gradient access to h2 and want to craft an end-to-end attack. The core issue is that the
adversarial sample against h2 (second row) might not remain adversarial after the transformation
of h1. E.g. in the case where h1 is a segmentation and image crop, the perturbation could slightly
modify the crop box out of h1, such that the sample is no longer adversarial to h2 (third row).

2 Related Work

Our setting is similar to the Expectation over Transformation [4] method when the first model h1 is
thought of as an arbitrary transformation instead of a learned model. In that work, the transformations
are physically motivated and represent parametric transformations of the input like lighting and
camera noise. In general, the attacker must know enough about the first transformation to sample
from the family of transformations, which is different from our threat model, where we only have
query access to the first model. This allows the creation of a set of transformation input points, to
be used for averaging gradients. This is the primary competing method and we conduct baseline
experiments using this method.

BPDA (Backward-Pass Differentiable Approximation)[3], designed to attack systems that intention-
ally obfuscate gradients for security reasons, uses a differentiable proxy model to craft gradient based
attacks. It is challenging to apply this method in our setting, since in contrast to the defenses attacked
in [3], creating a good proxy for a full-size model is a meaningful task and our paper focuses on
the case when creating such a proxy is not feasible, e.g. rate-limiting defense or attacker resource
constraints like information, computation, and query limits 3.

HopSkipJumpAttack[13] could be used for end-to-end black-box attacks in a system like the one we
propose since it does not require a proxy for h1. However, in our experiments we found that while
this attack was able to achieve the desired target, the adversarial noise introduced was too large to be
considered a successful human adversarial attack (see Appendix A.1).

There has been previous work that considers multi-model systems, for example treating the modifica-
tions applied by optics and image processing pipelines in cameras as h1 and a classification model as
h2 [33]. However, this attack creates a proxy model for h1 which is not possible in our problem.

Recent work [24] has shown adversaries can compose multiple-‘safe’ models to achieve ‘unsafe’
behavior and prior work in algorithmic fairness and strategic classification, [7, 21, 20, 9, 17] showed
that even in the context of supervised binary classification the composition of ‘fair’ models can result
in highly ‘unfair’ outcomes. Our work suggests a similar effect is present in adversarial robustness;
having a ‘safe’ (e.g. black-box, non-proxy-able) section of the system does not guarantee the safety
of the overall system.

Very intriguingly [12], extracted exact information from a production grade language model, e..g the
exact projection embedding layer, in a top-down manner meaning the algorithm extracted information

3Future work will characterize the query complexity of KoS. From our experiments we expect KoS will show
a substantial decrease in query complexity compared to creating a proxy model.

3



Figure 2: Keep on Swimming (KoS) Multi-Model Attack: Update the sample fed into the start of the
pipeline whenever the adversarial perturbation is made ineffective by h1

from the final layers of the neural network. Demonstrated vulnerabilities like this, combined with
our algorithm, could allow attackers to execute an effective end-to-end attacks on closed weight
production grade systems using their partial knowledge.

3 Method

We can easily craft gradient based attacks for h2 using well known methods[22, 11, 30, 28] if we
have white-box access to h2 or have created a reliable proxy model. However, since we only have
black-box access to h1 and cannot train a proxy model for that component, we cannot directly craft an
end-to-end gradient based adversarial attack h2(h1(x)). Furthermore since the modifications applied
by h1 are specific to each sample and thus each adversarial sample iteration, there is no guarantee
that adversarial modifications against h2 will survive the transformation applied by h1.

We propose an iterative method, the Keep on Swimming Attack. Simply update the sample that we will
attack for h2 when the adversarial perturbation has been removed by h1, using the new output of h1.

Formally, attack h2 and after K gradient based attack iterations, re-insert the adversarial perturbation
attacking h2 into the original input and pass it through h1 to check if the attack is still adversarial.
If the adversarial perturbation survived the transformation of h1, e.g. h1(x + δadv) is still in the
same domain of xmod, which in our experiment means whether the cropping box coordinates are
unchanged, and if we have reached our goal e.g. h2(h1(x+ δadv)) = ytarget, we terminate and have
achieved our objective of an end-to-end attack.

Else if the adversarial transformation survived h1 but has not yet reached the adversarial target, e.g.
h1(x+ δadv) = xmod + δadv and h2(h1(x+ δadv)) ̸= ytarget then we attack for K more iterations.

Else if the adversarial sample was transformed/warped by h1 and we have a new xmod, so h1(x+
δadv) = xmod2, we just Keep on Swimming; we replace the adversarial sample that we had so far,
xmod + δadv with the new modified output of xmod2 and keep attacking.

The attack finishes after a maximum number of iterations or when the end-to-end attack is successful.
The algorithm is described in detail in Algorithm 1 and shown in Figure 2.

In Algorithm 1, the ReInsert(x, xadv) operator takes the accumulated adversarial perturbations that
have been applied to xadv and pastes it back into the original x. In our experiment this means pasting
xmod + δadv into the region of x from which we extracted xmod. While our proposed attack pipeline
uses a gradient based attack against h2, the pipeline is still valid for non-gradient based attacks.

While our experiments focus on this specific modality, we believe in the general applicability of our
framework and Algorithm 1. One example of an application could be a system that processes and
answers questions about a text. A first non-proxy-able model extracts quotes from the text related to
the question and the second proxy-able model generates an answer. Our method makes is suitable for
agentic architectures and in general systems where there is a sequential combination of either models
or heuristics in which we only have a partial information.

4



Algorithm 1 Keep on Swimming (KoS) Attack

x0, xmod, ytarget ▷ Original input, Output of h1 and input of h2, Target output for attack
h1(x0)→ xmod, h2(xmod)→ ypred ▷ h1 and h2

Attack(xmod, ytarget, h2) ▷ Attack iteration on proxy-able section
ReInsert(x0, xmod) ▷ Function to re-insert adversarial modifications from xmod into x0

SameDomain(xmod.adv, xmod)→ bool ▷ Checks if values have the same domain
MaxRestarts ▷ Max number of restarts due to a different xmod domain
MaxIterations ▷ Max number times K of attack iterations on a single xmod. This also controls
how frequently to obtain feedback from the h1 transformation while crafting δadv

δadv ← 0
x0,adv ← x0 + δadv ▷ Initialize intermediate solution to x0

i← 0
while i <MaxRestarts do

xmod ← h1(x0,adv) ▷ reference for original domain
xadv ← h1(x0,adv)
j ← 0
while SameDomain(h1(x0,adv), xmod) and j <MaxIterations do ▷ Keep on Swimming

if h2(h1(x0,adv)) == ytarget then
Finish and return x0,adv

end if
for k=1:K do

δadv ← Attack(xadv, ytarget, h2)
xadv ← xadv + δadv
j ← j + 1

end for
x0,adv ← ReInsert(x0, xadv)

end while
i← i+ 1

end while
return AttackFailure

▷ Note: SameDomain(h1(x0,adv), xmod) checks that h1 has not changed the domain of
xmod.adv = h1(x0,adv) from the original domain of xmod such that it destroys the attack. If the
domain has changed we restart to adapt to the new domain.

4 Experiments

In order to simulate the scenario proposed in this paper we focus on the problem of creating an
adversarial attack to cause the numerical value of a check to be misread. The input for this system
is an image of a check. The first model of the system (h1) consists of a segmentation model that
identifies the areas of the image with text. The output of model h1 is the area of the image containing
the check’s numerical amount (xmod), written in latin numerals 4. The second model of the system
(h2) is an OCR (optical character recognition) system that identifies the numerals in the image. To
simulate the target system we use the CRAFT [5] segmenter (h1) to create cropped one line text
image. To obtain the text in each image (h2), we used the publicly available Microsoft’s Transformer
based OCR for handwritten text[26]. We ran our experiments on a database of pictures of checks
filled with handwritten information in which CRAFT was able to correctly identify and extract the
numerical amount of the check. The attack objective is to transform the predicted numerical amount
of one check to another value for a total of 20 attack samples.

For the attack, we assume black-box access to h1 but not the possibility of creating a proxy. To create
the adversarial sample for the image-to-text (OCR) section (h2) we use the "I See Dead People"
(ISDP)[25]. This attack is grey-box since it has white-box access to the image encoder but not to
the text decoder. In this case we had white-box access to the image encoder since we used the same
OCR model as CRAFT but a proxy model for the image encoder could have been used making this
attack entirely black-box. Note that this does not affect the results since ISDP was used with all

4I.e. we only attack the numerical OCR part of the check and not the written text and latin numerals.

5



Table 1: Comparison of adversarial attack pipelines using the "I See Dead People" (ISDP) Image2Text
attack. All values are averages that consider successful and failed attack attempts. Success rate is
the percentage of attacks where the full check image output matches the target output. L-Full is the
Levenshtein distance between the target output and the output when passing the full check image,
h2(h1(x)). L-Crop is the Levenshtein distance between the target output and the output of h2 using
the cropped image as input, h2(x) attack). MSE is the mean squared error on the full check image.
Time is the average time to run the attack per sample in seconds.

Method Success Rate L-Full L-Crop MSE Time (s)

Original Image 0% 0 0 0 0
ISDP Baseline[25] 5% 4.8 0.7 0.39 49.99
Crop Robust ISDP[4] 25% 2.25 0.85 0.53 375.29
Keep on Swimming ISDP 80% 1.1 0.05 0.48 85.09

attack pipelines and the objective of the KoS attack pipeline is to create an adversarial sample that
survives h1 and is still effective for h2. The KoS attack is not affected by how the adversarial sample
was created for h2.

4.1 Benchmarks

We compare our method with a baseline of only attacking h2 and re-inserting the adversarial cropped
image into the original large image (ISDP Baseline). We also compare our method with creating
attacks that are robust to the transformation from h1 using the method from [4] (Crop Robust ISDP).
For the Crop Robust ISDP, we take a slightly larger crop than the one from the starting image,
perform 10 random crops such that the text is always contained in the crop, attack each random crop
independently, average the gradients and update the image to create the adversarial version. We found
these hyperparameters to provide the best overall results for this method.

We compare the methods in terms of the attack success rate, the mean squared error (MSE) with
respect to the original image, and computational cost. Table 1 shows the success rate of the KoS
pipeline is considerably higher and the Levenshtein distance the final output of both the cropped and
the full image are considerably lower than just using the ISDP attack or creating a version that is
robust to cropping.

The KoS pipeline introduces more noise and takes more time than the Baseline ISDP but less than the
Crop Robust ISDP attack. The key benefit of our method, that clearly Pareto dominates the other
methods is our substantially higher attack success rate. We would note that we investigated these
alternate baseline methods first and it was only our inability to craft successful attacks that required
us to design the KoS attack.

5 Conclusion

We have shown how adversaries can use their knowledge of one model in a multi-model system to craft
effective end-to-end attacks with the KoS algorithm. Further work is needed to study the convergence
properties of KoS, and generalizing the attack to other settings like attacking a composition of LLMs.
That said, these initial results already demonstrate the need for timely research into attacks and
defenses in the threat model of Multi-Model Systems With Partial Proxy Access. If multi-agent and
multi-model systems inherit the vulnerability of the most ‘proxy-able’ model, that suggests serious
un-patched vulnerabilities already exist in the foundation model era, and we can expect the impact of
such vulnerabilities to be amplified in the upcoming era of agentic AI.

Acknowledgments and Disclosure of Funding

We are grateful to HiddenLayer for supporting this research and its publication.

6



A Appendix

A.1 HopSkipJumpAttack

We attempted to use the HopSkipJumpAttack on the system but failed to produce samples where
the attack is adversarial for human viewers, i.e. perturbations do not change the true label. Figure 3
shows one a sample where the initial number 25.86 is misread as the target output 100.00.

Figure 3: Adversarial attack sample using HopSkipJumpAttack; the adversarial modification is too
evident to be useful.

B Visual Comparison of Adversarial Samples

Figure 4: Visual comparison of final cropped images for each attack pipeline converting 79.12 value
to 100.00 and vice-versa showing if the attack was successful or not. The final adversarial sample is
the whole check image but here we show the cropped versions to highlight visual differences on the
adversarial modifications. One can observe the KoS samples have less noticeable perturbations in this
particular sample as reflected by the lower average MSE from Table 1.

(a) ISDP Baseline, Fail (b) Crop Robust Success (c) KoS Success

(d) ISDP Baseline Success (e) Crop Robust Fail (f) KoS Success

7



C Social Impact Statement

Our paper takes an adversarial approach to disclose possible vulnerabilites for systems of machine
learning models; we demonstrate a new attack on composed models. Using the attack would require
a new attacker to obtain knowledge about the attacked system.

Unlike papers that publish jailbreaks or zero-days, our disclosure cannot be used immediately off the
shelf to attack production grade systems. That said, we are currently working on a generalization of
this work that could be used to target systems currently in production.

This attack is very natural and well-motivated so it is possible or even likely similar attacks exist
in-the-wild and are being used by real world attackers, so we believe introducing and studying the
vulnerability in this proof-of-concept will allow for the design and deployment of effective defenses
to this vulnerability.

One interpretation of our work, which we do not advocate for, is that releasing model weights could
allow for attackers to break real world multi-model systems. Thus securing the modern AI stack
requires locking down model weights. This would be an inversion of the well known Kerchoff’s
Principle from cryptography. We note, but do not advocate, for this interpretation which would no
doubt have a significant social impact even though it is difficult to forecast if it would be positive or
negative.

8



References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2022. URL https://arxiv.
org/abs/2203.05154.

[3] A. Athalye, N. Carlini, and D. A. Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. CoRR, abs/1802.00420, 2018. URL http:
//arxiv.org/abs/1802.00420.

[4] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial examples,
2018. URL https://arxiv.org/abs/1707.07397.

[5] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character region awareness for text detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9365–9374, 2019.

[6] T. Birr, C. Pohl, A. Younes, and T. Asfour. Autogpt+p: Affordance-based task planning with
large language models, 2024. URL https://arxiv.org/abs/2402.10778.

[7] A. Blum, K. Stangl, and A. Vakilian. Multi stage screening: Enforcing fairness and maximizing
efficiency in a pre-existing pipeline. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 1178–1193, 2022.

[8] R. Bommasani, D. A. Hudson, E. Adeli, R. B. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. S.
Chatterji, A. S. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya,
E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie,
K. Goel, N. D. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt,
D. E. Ho, J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,
G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S. Krass, R. Krishna, R. Kuditipudi, and et al.
On the opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021. URL
https://arxiv.org/abs/2108.07258.

[9] A. Bower, S. N. Kitchen, L. Niss, M. J. Strauss, A. Vargas, and S. Venkatasubramanian. Fair
pipelines. CoRR, abs/1707.00391, 2017. URL http://arxiv.org/abs/1707.00391.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

[11] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. CoRR,
abs/1608.04644, 2016. URL http://arxiv.org/abs/1608.04644.

[12] N. Carlini, D. Paleka, K. D. Dvijotham, T. Steinke, J. Hayase, A. F. Cooper, K. Lee, M. Jagielski,
M. Nasr, A. Conmy, I. Yona, E. Wallace, D. Rolnick, and F. Tramèr. Stealing part of a production
language model, 2024. URL https://arxiv.org/abs/2403.06634.

[13] J. Chen and M. I. Jordan. Boundary attack++: Query-efficient decision-based adversarial attack.
CoRR, abs/1904.02144, 2019. URL http://arxiv.org/abs/1904.02144.

[14] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security, CCS ’17. ACM, Nov. 2017.
doi: 10.1145/3128572.3140448. URL http://dx.doi.org/10.1145/3128572.3140448.

[15] S. Chen, N. Carlini, and D. A. Wagner. Stateful detection of black-box adversarial attacks.
CoRR, abs/1907.05587, 2019. URL http://arxiv.org/abs/1907.05587.

9

https://arxiv.org/abs/2203.05154
https://arxiv.org/abs/2203.05154
http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1707.07397
https://arxiv.org/abs/2402.10778
https://arxiv.org/abs/2108.07258
http://arxiv.org/abs/1707.00391
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1608.04644
https://arxiv.org/abs/2403.06634
http://arxiv.org/abs/1904.02144
http://dx.doi.org/10.1145/3128572.3140448
http://arxiv.org/abs/1907.05587


[16] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu, Y.-H. Hung, C. Qian, Y. Qin,
X. Cong, R. Xie, Z. Liu, M. Sun, and J. Zhou. Agentverse: Facilitating multi-agent collaboration
and exploring emergent behaviors, 2023. URL https://arxiv.org/abs/2308.10848.

[17] L. Cohen, S. Sharifi-Malvajerdi, K. Stangl, A. Vakilian, and J. Ziani. Sequential strategic
screening. In International Conference on Machine Learning, pages 6279–6295. PMLR, 2023.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

[19] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[20] C. Dwork and C. Ilvento. Fairness under composition. CoRR, abs/1806.06122, 2018. URL
http://arxiv.org/abs/1806.06122.

[21] C. Dwork, C. Ilvento, and M. Jagadeesan. Individual fairness in pipelines. arXiv preprint
arXiv:2004.05167, 2020.

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[23] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks with limited queries
and information, 2018. URL https://arxiv.org/abs/1804.08598.

[24] K. Kenthapadi, M. Sameki, and A. Taly. Grounding and evaluation for large language models:
Practical challenges and lessons learned (survey). In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 6523–6533, 2024.

[25] R. Lapid and M. Sipper. I see dead people: Gray-box adversarial attack on image-to-text models,
2023. URL https://arxiv.org/abs/2306.07591.

[26] M. Li, T. Lv, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei. Trocr: Transformer-based
optical character recognition with pre-trained models, 2021.

[27] N. Liu, L. Chen, X. Tian, W. Zou, K. Chen, and M. Cui. From llm to conversational agent:
A memory enhanced architecture with fine-tuning of large language models, 2024. URL
https://arxiv.org/abs/2401.02777.

[28] Y. Liu, Y. Cheng, L. Gao, X. Liu, Q. Zhang, and J. Song. Practical evaluation of adversarial
robustness via adaptive auto attack, 2022. URL https://arxiv.org/abs/2203.05154.

[29] Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang. Dynamic llm-agent network: An llm-agent
collaboration framework with agent team optimization, 2023. URL https://arxiv.org/
abs/2310.02170.

[30] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks, 2019. URL https://arxiv.org/abs/1706.06083.

[31] OpenAI. Openai’s comment to the ntia on open model weights. https://openai.
com/global-affairs/openai-s-comment-to-the-ntia-on-open-model-weights/,
2024. Accessed: 2024-09-19.

[32] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples, 2016. URL https://arxiv.org/
abs/1605.07277.

[33] B. Phan, F. Mannan, and F. Heide. Adversarial imaging pipelines. In 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 16046–16056, Los Alamitos,
CA, USA, jun 2021. IEEE Computer Society. doi: 10.1109/CVPR46437.2021.01579. URL
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01579.

10

https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1806.06122
https://arxiv.org/abs/1804.08598
https://arxiv.org/abs/2306.07591
https://arxiv.org/abs/2401.02777
https://arxiv.org/abs/2203.05154
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/1706.06083
https://openai.com/global-affairs/openai-s-comment-to-the-ntia-on-open-model-weights/
https://openai.com/global-affairs/openai-s-comment-to-the-ntia-on-open-model-weights/
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01579


[34] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. CoRR, abs/2103.00020, 2021. URL https://arxiv.org/abs/
2103.00020.

[35] T. Rebedea, R. Dinu, M. Sreedhar, C. Parisien, and J. Cohen. Nemo guardrails: A toolkit for
controllable and safe llm applications with programmable rails, 2023. URL https://arxiv.
org/abs/2310.10501.

[36] N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion:
Language agents with verbal reinforcement learning, 2023. URL https://arxiv.org/abs/
2303.11366.

[37] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and
efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

[38] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing rea-
soning and acting in language models, 2023. URL https://arxiv.org/abs/2210.03629.

11

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2310.10501
https://arxiv.org/abs/2310.10501
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2210.03629

	Introduction
	Threat Model: Multi-Model System Attack With Partial Proxy Access
	Our Contributions

	Related Work
	Method
	Experiments
	Benchmarks

	Conclusion
	Appendix
	HopSkipJumpAttack

	Visual Comparison of Adversarial Samples
	Social Impact Statement

