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ABSTRACT

Multi-view compression technology, especially Stereo Image Compression (SIC),
plays a crucial role in car-mounted cameras and 3D-related applications. Inter-
estingly, the Distributed Source Coding (DSC) theory suggests that efficient data
compression of correlated sources can be achieved through independent encoding
and joint decoding. This motivates the rapidly developed deep-distributed SIC
methods in recent years. However, these approaches neglect the unique charac-
teristics of stereo-imaging tasks and incur high decoding latency. To address this
limitation, we propose a Feature-based Fast Cascade Alignment network (FFCA-
Net) to fully leverage the side information on the decoder. FFCA adopts a coarse-
to-fine cascaded alignment approach. In the initial stage, FFCA utilizes a feature
domain patch-matching module based on stereo priors. This module reduces re-
dundancy in the search space of trivial matching methods and further mitigates
the introduction of noise. In the subsequent stage, we utilize an hourglass-based
sparse stereo refinement network to further align inter-image features with a re-
duced computational cost. Furthermore, we have devised a lightweight yet high-
performance feature fusion network, called a Fast Feature Fusion network (FFF),
to decode the aligned features. Experimental results on InStereo2K, KITTI, and
Cityscapes datasets demonstrate the significant superiority of our approach over
traditional and learning-based SIC methods. In particular, our approach achieves
significant gains in terms of 3 to 10-fold faster decoding speed than other methods.

1 INTRODUCTION

With the rapid advancement of stereoscopic imaging technologies and the increasing popularity of
binocular imaging devices, stereo images have found wide applications in crucial fields such as au-
tonomous driving, augmented reality Livatino et al. (2012), video surveillance, and robot navigation
Murray & Little (2000). As a result, there is an urgent requirement to efficiently process and trans-
mit massive amounts of stereo image data. For example, a vehicle equipped with binocular cameras
for autonomous driving generates approximately 1GB of data per second. Hence, the development
of effective stereo image compression techniques has become increasingly significant.

Unlike single-image compression, Stereo Image Compression (SIC) not only focuses on reducing
redundancy within each image but also considers the correlation between images captured from dif-
ferent viewpoints to achieve higher coding efficiency. In general, most deep learning methods follow
existing multi-view coding standards, such as H.265-based MV-HEVC. Tech et al. (2015) employ-
ing a joint encoding structure to compress images from different viewpoints. These approaches
first compress the auxiliary views of stereo images using single-image compression methods. Then,
during the compression of the main view, redundant information between stereo images is elimi-
nated through disparity-compensated prediction, and only the residual after prediction needs to be
encoded. Thanks to advancements in deep single-image compression algorithms Ballé et al. (2016;
2018) and stereo-matching techniques, recent developments in stereo-image compression have ben-
efited greatly. Some works adopt traditional one-way encoding techniques, such as Liu et al. (2019),
Deng et al. (2021), and Wödlinger et al. (2022). These approaches follow a strict sequential en-
coding order, propagating potential representations of auxiliary views as context into the encoding
branch of the main view and employing disparity estimation or depth homography estimation to
remove redundancy. Additionally, Lei et al. (2022) introduces a novel context dependency between
views, compressing binocular images and extending the one-way encoding mechanism to bidirec-
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tional encoding. These works demonstrate the significant improvement in compression efficiency
achieved by deep learning methods in SIC scenarios. However, the encoders of these methods tend
to be excessively large. In practical applications of stereo images, such as in-car cameras and VR
devices, the terminal encoders lack powerful computational capabilities, making it more suitable to
perform complex computations at decoder terminals, such as cloud servers.

According to the theory of Distributed Source Coding (DSC) Slepian & Wolf (1973); Wolf (1973);
Wyner & Ziv (1976), encoding correlated data sources independently and utilizing side information
at the decoder can achieve the same compression rate as joint encoding. In recent years, there
have been some proposed deep learning algorithms based on distributed coding frameworks. In
attempts to achieve this asymmetric structure, integration of side information at the decoding stage
was explored in Mital et al. (2022) and Ayzik & Avidan (2020). However, effective alignment
between different sources of information was not achieved. On the other hand, Huang et al. (2023)
and Zhang et al. (2023) utilized complicated patch mapping and attention modules, respectively, in
the feature domain to capture contextual information between images. These methods failed to fully
exploit the priors provided by the stereoscopic image scene, resulting in unsatisfactory decoding
speed.

To effectively incorporate side information at the decoder in SIC, this paper proposes a Feature-
based Fast Cascade Alignment network (FFCA). The main idea of our proposed course-to-fine cas-
cade structure is to perform coarse-grained matching of features using a priori-based stereo patch-
matching module in the feature domain. We then employ an hourglass-like stereo rectification net-
work to achieve fine-grained alignment in a sparse feature space. The aligned feature information
is fed into a fast feature fusion layer (FFF) for image reconstruction. Compared to state-of-the-art
SIC compression algorithms, our method achieves higher-quality reconstructed images with lower
bit consumption and significantly faster decoding speed, ranging from several to tens of times faster.

The main contributions of this paper can be summarized as follows:

• We propose a stereo patch matching technique that utilizes features and prior knowledge of
stereo images to achieve more precise alignment at the decoding end.

• We develop a pyramid-based sparse stereo refinement network and a lightweight feature fu-
sion module to efficiently refine the matched features obtained from stereo patch matching
and effectively fuse the aligned features for reconstructed images.

• We conduct extensive experiments on three large-scale high-resolution stereo datasets
to validate the outstanding performance of our method in SIC. Additionally, our ap-
proach demonstrates significantly faster decoding speed compared to existing learning-
based methods.

2 RELATED WORK

The intent of image compression algorithms is to explicitly or implicitly construct a superior repre-
sentation compared to the original image space. Traditional image compression methods often rely
on manually crafted transform representations, such as discrete cosine transform or inter-block pre-
diction after image partitioning Wallace (1992); Taubman et al. (2002). On the other hand, learning-
based end-to-end image compression algorithms Li et al. (2018); Minnen et al. (2018); He et al.
(2021); Mentzer et al. (2018) attempt to seek a more compressed representation through a trainable
non-linear transformation.

Learned Single Image Compression The development of deep neural networks has propelled the
introduction of deep compression algorithms. Ballé et al. (2016) pioneered an end-to-end model
based on autoencoders with rate-distortion loss as the optimization objective. Subsequently, this
work has been expanded upon: Ballé et al. (2018) . introduced spatial adaptation, factorization,
and hyperprior entropy models. Minnen et al. (2018) incorporated autoregressive context modeling
into the prior, significantly improving performance at the cost of decoding complexity. Cheng et al.
(2020). proposed a more accurate modeling of the latent distribution using discrete mixture models,
while He et al. (2021) proposed a parallel chessboard-style context model to speed up decoding.

Stereo Image Compression Stereo image compression requires considering the correlation between
views to save more bitrate. There are many works on learning-based stereo image compression, with
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Figure 1: Overview of various structures for stereo image coding, including (a) joint encoding archi-
tecture and (b) asymmetric DSC structure. (c) briefly outlines the coarse-to-fine alignment method
employed in our proposed FFCA-Net.

most of them following a single-sided encoding approach. This means that the auxiliary image is
independently encoded, and its contextual information is fused into the main image for encoding.
For example, Liu et al. (2019) uses a neural network in the feature domain to estimate disparity and
incorporates aligned auxiliary image context through skip modules. Deng et al. (2021) employs a
deep homography estimator to fit the correlation in stereo images and utilizes a high-performance
GMM-based context entropy encoder to estimate residual after prediction. Wödlinger et al. (2022)
learns element-wise shifts between viewpoints through an encoder optimized with MSE. Lei et al.
(2022) explores the possibility of bidirectional encoding, utilizing bidirectional contextual transfor-
mation modules and bidirectional conditional entropy models, achieving additional bitrate savings
for both views after compression. However, the encoders of these algorithms tend to be complex in
order to incorporate inter-image information, and the decoders often prioritize pixel-level prediction
and alignment, resulting in suboptimal decoding speeds.

Learned Distributed Source Coding Indeed, there are relatively few works on learning-based dis-
tributed coding. Ayzik & Avidan (2020) proposed using patch matching in the image domain to
reconstruct higher-quality images by exploiting a large amount of similarity or overlap between dif-
ferent views. However, this matching lacks robustness and exhibits suboptimal performance. Zhang
et al. (2023) employed a cross-attention mechanism to capture global correlations among different
viewpoints, surpassing the compression performance of joint encoding-decoding frameworks. How-
ever, in order to provide the decoding end with side information, this method necessitates additional
design modifications to the encoder to meet the requirement. Mital et al. (2022) used a feature
extractor to extract features of side information and combined it with the main information for aux-
iliary decoding. Nevertheless, this method did not consider registration between views, and the
results tend to be less satisfactory when there is a significant disparity between the views captured
by the cameras. To rectify this deficiency, Huang et al. (2023) proposed a patch-matching approach
in the multi-scale feature domain, enabling a more effective fusion of side information and yielding
astonishing encoding benefits. Although these methods are designed only at the decoding end, they
fail to fully consider the inherent relationship between stereo images, leaving room for optimization
in the task of stereo image compression.

3 METHODOLOGY

FFCA employs a cascaded structure that operates in a coarse-to-fine manner, facilitating swift and
efficient alignment between feature layers of disparate perspective views. In specific terms, FFCA
can be divided into two components: stereo patch matching and hourglass-based sparse stereo re-
finement. Figure 2 delineates the architectural framework of our method: our primary view image
is initially directed into a baseline single-image encoder-decoder, yielding a range of multi-scale
primary view features denoted as hi

x̂ are extracted from the decoder of the upsampling structure.
Simultaneously, auxiliary view features denoted as hi

ŷ . Here, i signifies that the layer represents the
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Figure 2: The overview of the proposed model architecture. ENC and DEC refer to the encoder and
decoder of the baseline single-image compressor, respectively. FEN represents the feature extraction
network used to extract precise side information features.

feature map obtained after the i-th iteration of upsampling with a scale = 2 in the decoder, using the
latent code as input. Compared with the MSFDPM method (Huang et al. (2023)), we have employed
a more lightweight feature extractor to capture multi-scale lossless side information.

3.1 STEREO PATCH MATCHING ON MULTI-SALE FEATURE-DOMAIN

We have observed that stereo images exhibit a fixed direction of horizontal displacement for rigid
transformations in the image domain, a characteristic that is also preserved in the features extracted
by general CNN-based models. In fact, this has been confirmed by many works in the field of SIC.
Our proposed stereo patch matching technique is based on this super-prior. Subsequently, for a given
i, we perform sampling on hi

x̂ with a window size of B. The strides of the window sliding are set
to S. Once all the sampling is completed, we define the collection of patches obtained from all the
sampled windows as:

P
(
hi
x̂, B, S

)
=

{
p
(
hi
x̂, B, S,m, n

)}
, where m = 0, · · · ,

⌊
H −B

S

⌋
, n = 0, · · · ,

⌊
W −B

S

⌋
. (1)

Here, P represents the set of the overall sampling, while p denotes a specific sampled patch within
it, with m,n representing the coordinates of that patch. Based on this definition, we sample a set
P
(
hi
x̂, B,B

)
from hi

x̂. It is important to note that there is no overlap between each patch in this set.
For each patch in the above set, we aim to find the most similar window in hi

ŷ that closely resembles

it. To accomplish this objective, we similarly sample P
(
hi
ŷ, B, 1

)
. Actually, when the size of hi

ŷ

is large, the resulting patch collection P sampled from it will be exceedingly vast. This leads to
lower algorithm efficiency and an increased likelihood of erroneous matches. To address this, we
leverage the prior knowledge of stereo images to narrow down the matching range. For each patch
from P

(
hi
x̂, B,B

)
we restrict our search in the hi

ŷ to windows located in the same row as the patch

block and within the disparity direction, defined as P⃗m

(
hi
ŷ, B, 1

)
. Subsequently, we can calculate

the distance between the target patch and this search set:

ρ
(
p
(
hi
x̂, B,B,m, n

)
, P⃗m

(
hi
ŷ, B, 1

))
. (2)

Here ρ(·, ·) refers to the cosine distance, where a smaller distance indicates a higher similarity be-
tween two patches. The computation of this distance is equivalent to seeking the most similar patch
within the search range to the target patch. For the sake of simplicity, we denote the aforementioned
distance as ρm,n. This super-prior is reasonable, as illustrated in the Figure 3. Although adopting a
greedy search strategy expands the search space multiple times, it often leads to incorrect matching
when dealing with dissimilar patches that exhibit significant positional differences across different
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Figure 3: Different match results. Figure 4: One iteration of fast feature fusion network.

viewpoints. On the other hand, stereo patch matching consistently manages to find the correct patch
pairs under the same circumstances.

It is worth noting that due to the constraint on the search space for patch matching, we can proceed
with parallel searching for patches from set P

(
hi
x̂, B,B

)
that are located on different rows. To

accomplish this, we have devised a grouped convolution approach that enables parallel computation
of correlation coefficients, resulting in a significant speed boost for the matching process.

Next, we establish the mapping relationship for all m,n:

u(m,n), v(m,n) =
{
u, v | ρ

(
p
(
hi
ŷ, B, 1, u, v

)
, p

(
hi
x̂, B,B,m, n

))
= ρm,n

}
. (3)

Based on the extracted lossless side information hi
y , we can rearrange the information into patches

to obtain hi
y⋆ using the aforementioned mapping:

p
(
hi
y⋆ , B,B,m, n

)
= p

(
hi
y, B, 1, u(m,n), v(m,n)

)
. (4)

Indeed, patch matching on feature layers at every scale is a highly complex and unnecessary en-
deavor, as it inadvertently introduces superfluous noise Huang et al. (2023). Inspired by this work,
we employed the approach of Reusing First Feature Layer Inter-Patch Correlation. This method
involves performing patch matching solely in the high-resolution feature layer at i = 1. The ob-
tained u(m,n) and v(m,n) from the matching process will serve as guidance, with corresponding
scaling, for aligning the remaining feature layers. Specifically, we restrict the stereo-patch matching
to only occur at i = 1, where we compute the inter-patch correlation and obtain the mapping rela-
tionships by 3 to obtain u1(m,n), v1(m,n). During the matching process in the remaining layers
{i = 2, 3, 4}, we maintain these inter-patch mapping relationships. However, due to the dimen-
sional variations in these layers, we need to apply corresponding transformations to the indices of
the mappings:

ui(m,n), vi(m,n) = 2i−1 ∗ u1(m,n), 2i−1 ∗ v1(m,n). (5)

3.2 HOURGLASS-BASED SPARSE STEREO REFINEMENT

Numerous studies in stereo matching Shen et al. (2021); Gu et al. (2020); Zhou et al. (2020); Chang
& Chen (2018) have emphasized the importance of utilizing multi-scale features. However, these
approaches often rely on a wide range of disparity searches and the construction of 3D convolutions,
resulting in high computational costs. To efficiently perform alignment in the feature domain, we
propose a sparse stereo rectification network in an hourglass-style architecture. The network struc-
ture is illustrated in the figure, and more detailed parameters can be found in the appendix. Firstly,
we construct a cost volume at different scales:

Vconcat (x, y
⋆) = hx̂∥hy⋆ . (6)

Here, ∥ denotes the operation of concatenation along the channel dimension. Since low-resolution
feature layers do not provide accurate disparity information, we exclude the lowest-resolution fea-
tures (i.e., i = 4) from the operation. To reduce computational complexity, we employ grouped
convolution layers with skip connections to regularize and fuse features at different scales. Addi-
tionally, a grouped convolution module with a downsampling structure is utilized to downsample the
fused features at the highest resolution, which are then merged with the features of the next scale.
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Once all feature volumes are connected to the encoder, we apply grouped transposed convolution to
perform upsampling. The network’s output is dp1, a 2D disparity map of size D×H1 ×W1, where
H1,W1 represent the height and width of the hi

x̂, and D represents the disparity range. We will ac-
quire {dpi, i = 2, 3, 4} through downsampling of dp1. Due to the purpose of this model, which is to
perform fine-grained refinement after stereo patch matching, we only need to set a smaller disparity
search range, significantly increasing the efficiency of the network.

However, applying pixel-level disparity uniformly across all feature channels may not be an optimal
strategy. Based on empirical observations, we have found that the variations in features between
the main information and the side information are non-uniform across channels. The distribution
of these differences tends to follow a long-tail distribution, where a few channels exhibit signifi-
cantly larger differences compared to the rest. This implies that different channels require varying
degrees of alignment accuracy. In stereo images, there are numerous structurally similar features,
and their corresponding channels may not require additional alignment. To address this challenge,
we propose a sparse alignment strategy. we actively select a subset of channels with significant
differences while freezing the remaining channels, allowing the disparity map to only affect these
selected channels. This approach prevents the introduction of unnecessary noise from channels with
smaller differences during training and avoids overcorrection on these channels, which could hin-
der subsequent decoding processes. Based on this observation, we can define channels that exhibit
significant differences:

G =
{
g | ∥hi

x̂;g − hi
y⋆;g∥2 ≥ µ

}
, (7)

where hi
⊙;g represents the g-th channel of the feature volume hi

⊙, and µ is a hyperparameter. Here,
Gc refers to the complement of G, representing the set of feature channels that are not selected.
Then, we perform warp operations using the 2D disparity map only on these selected channels. Fi-
nally, we have obtained the side information features hi

y⋆⋆ after performing coarse-to-fine matching,
where:

hi
y⋆⋆;g =

{
Warp(hi

y⋆;g, dpi), g ∈ G
hi
y⋆;g, g ∈ Gc . (8)

To efficiently and rapidly integrate feature blocks hx̂ and hy⋆⋆ , we have devised the Fast Feature
Fusion (FFF) network, as shown in Figure 4. The structure of FFF follows a similar pattern as in
Huang et al. (2023). Taking inspiration from Zhang et al. (2018), we employ a network that utilizes
shuffle blocks and depthwise separable convolutions. At i-th stage (i = 1, 2, 3, 4) of the FFF, the
input consists of the aligned feature block hi

x̂,h
i
y⋆⋆ and output from the previous stage, defined

as ϕi−1. The input is first passed through a shuffle block to fuse features and then undergoes a
lightweight upsampling block to output a higher-resolution feature block. The final output of the
network is obtained by adding it to the reconstructed image from a single-image decoder.

3.3 LOSS FUCTION

The training problem of the FFCA model is equivalent to a joint optimization problem of com-
pression rate and distortion. Simultaneously, we aspire for our pixel-level refinement network to
converge, necessitating the inclusion of inter-view feature distortion to aid in training. Hence, a
training loss composed of three metrics is used:

L = R(ẑ) + λ
(
(1− α)d1 (x, x̂) + αd2

(
h1
x̂,h

1
y⋆

))
. (9)

Here, d1(·, ·) refers to the reconstruction loss between x and x̂, while d2(·, ·) represents the distor-
tion between the main image feature block and the side information feature block. R(·) denotes the
compression rate of the latent representation z. λ is the weight that controls the trade-off between
distortion and compression rate, while α is the weight that balances the two types of distortion.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We validate our method on three high-resolution stereo image datasets: KITTI-stereo
Menze & Geiger (2015), Cityscapes Cordts et al. (2016), and InStereo2K Bao et al. (2020). KITTI-
stereo and Cityscapes represent outdoor distant views, while InStereo2K represents indoor near
views.

6



Under review as a conference paper at ICLR 2024

0.0 0.1 0.2 0.3 0.4 0.5
Bit-rate [bpp]

0.88

0.90

0.92

0.94

0.96

0.98

M
S-

SS
IM

KITTI

BPG
Cheng2020
DSIC
HESIC
SASIC
BCSIC

NDIC
LDMIC_fast
LDMIC
MSFDPM
Proposed

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bit-rate [bpp]

0.975

0.980

0.985

0.990

M
S-

SS
IM

Cityscapes

BPG
Cheng2020
DSIC
SASIC
NDIC

LDMIC_fast
LDMIC
MSFDPM
Proposed

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Bit-rate [bpp]

0.91

0.93

0.95

0.97

0.99

M
S-

SS
IM

InStereo2k

BPG
Cheng2020
DSIC
HESIC
SASIC
BCSIC

NDIC
LDMIC_fast
LDMIC
MSFDPM
Proposed

0.0 0.1 0.2 0.3 0.4 0.5
Bit-rate [bpp]

22

24

26

28

30

PS
N

R
(d

b)

KITTI

BPG
Cheng2020
DSIC
HESIC
SASIC
BCSIC

NDIC
LDMIC_fast
LDMIC
MSFDPM
Proposed

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bit-rate [bpp]

34

36

38

40

42

PS
N

R
(d

b)

Cityscapes

BPG
Cheng2020
DSIC
SASIC
NDIC

LDMIC_fast
LDMIC
MSFDPM
Proposed

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Bit-rate [bpp]

31

33

35

37

39

PS
N

R
(d

b)

InStereo2k

BPG
Cheng2020
DSIC
HESIC
SASIC
BCSIC

NDIC
LDMIC_fast
LDMIC
MSFDPM
Proposed

Figure 5: Rate–distortion curves for PSNR (dB) and MS-SSIM with various compression methods.

Metrics. Bits per pixel (bpp) is used to measure the bitrate. For assessing image quality, peak
signal-to-noise ratio (PSNR) and multi-scale structural similarity (MS-SSIM) Wang et al. (2003) are
utilized. These two metrics are widely recognized for evaluating distortion in image reconstruction.
Additionally, we apply Bjøntegaard delta PSNR (BD-PSNR) Bjontegaard (2001) to evaluate bitrate
savings at the same level of distortion, and BD-rate to determine PSNR gainings at the same level
of bitrate.

Baseline. We compare three categories of baseline models: (1) Single-image compression models:
This includes the traditional algorithm BPG Bellard (2014) and the learning-based method Cheng
et al. (2020). Specifically, we employ the version of ”cheng2020” implemented by Bégaint et al.
(2020). (2) Joint encoding-decoding stereo image compression models: This encompasses HESIC
Deng et al. (2021), SASIC Wödlinger et al. (2022), BCSIC Lei et al. (2022), and DSIC Liu et al.
(2019) mentioned earlier. Among these, for HESIC and BCSIC, we used the results reported in
their respective papers. It should be noted that HESIC and BCSIC have not been validated on the
Cityscapes dataset. (3) Learning-based distributed compression models, which include NDIC Mital
et al. (2022), MSFDPM Huang et al. (2023), and LDMIC(LDMIC-fast) Zhang et al. (2023). Exclud-
ing HESIC and BCSIC, we re-evaluated the rest of the baseline models utilizing their open-source
codes and published parameters. For the LDMIC model’s evaluation, to ensure a fair comparison,
we abstained from the fine-tuning strategy mentioned in Zhang et al. (2023).

Implementation Details Our proposed method is implemented using PyTorch Paszke et al. (2019).
Experiments were conducted on two Intel(R) Xeon(R) Silver 4210 CPUs and two NVIDIA 2080ti
GPUs. The Adam optimizer Kingma & Ba (2014) was employed with a learning rate of 1 × 10−4.
Other hyper-parameters include: (i) The hyper-parameter for filtering significant inter-feature chan-
nels, with µ = 0.5. (ii) The patch size set at B = 16. (iii) The weight for two stages of distortions,
defined as α = 0.1. For more experimental details, please refer to Appendix 6.2.

4.2 RESULTS AND ANALYSIS

Quantitative results. Table 1 presents the BD-rate results of our method and other approaches,
using BPG as the baseline. A lower BD-rate indicates a more significant performance improvement
relative to the baseline model. Figure 5 illustrates the RD curves for all compared methods. As
mentioned earlier, our approach optimizes based on MS-SSIM, so we evaluated MS-SSIM across
all datasets. To maintain consistency with prior works, we also assessed PSNR. Our MSSSIM-
based BD-rate outperforms other methods across all datasets. Even when evaluated using PSNR as
a criterion, our method surpasses most baseline models.
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Table 1: BD-rate comparisons relative to BPG on different datasets, with the best results inred and
second-best ones in blue.

Classifications Methods
Kitti Cityscapes InStereo2K

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

Single Cheng2020 -21.61% -59.11% -2.75% -43.54% 38.02% -30.29%

Joint

HESIC -65.98% -35.13% - - -12.83% -66.91%
DSIC -55.33% -18.64% -6.89% -38.67% 85.37% -31.98%

SASIC -68.62% -50.95% -23.30% -21.14% -34.99% -26.33%
BCSIC -69.82% -40.05% - - -15.96% -62.14%

Distributed

NDIC 2.83% -66.42% 10.02% -33.15% 15.24% -55.21%
MSFDPM -65.92% -83.41% -24.29% -53.52% -10.18% -50.82%

LDMIC-fast -54.66% -37.10% -22.80% -42.82 % -41.61% -31.99%
LDMIC -63.29% -43.60% -38.09% -49.05% -58.45% -55.69%

FFCA(Proposed) -74.62% -85.18% -37.84% -55.36% -47.02% -69.75%

Figure 6: Visual comparison of the reconstructed using our proposed FFCA and the comparison
methods including BPG (Bellard (2014)) and MSFDPM (Huang et al. (2023)).

Our method, termed FFCA, demonstrates significant improvements in compression performance
when compared to the baseline model. Particularly on the InStereo2K dataset, FFCA achieves an
impressive bit savings of 85.04% when evaluated in terms of PSNR. When benchmarked against
the joint encoding-decoding schemes, FFCA consistently delivers superior PSNR and MS-SSIM
values than these baseline models at comparable bit rates. For instance, when pitted against MSE-
optimized algorithms like DSIC (SASIC), FFCA exhibits a substantial reduction in bits across mul-
tiple datasets, as quantified by PSNR. When contrasted with the asymmetric DSC baseline, our
approach stands out with clear advantages. As previously discussed in Section 3.1, MSFDPM tends
to underperform on close-range indoor views, often resulting in mismatched patches. Our innovative
stereo-patch matching technique successfully mitigates this problem, leading to substantial bit sav-
ings on the InStereo2K dataset, both in terms of PSNR and MS-SSIM. LDMIC, with its integration
of multi-head attention modules, sets a high benchmark in compression, especially when assessed
using the PSNR metric. Notably, FFCA’s performance is nearly on par with LDMIC across various
datasets and even surpasses it on the KITTI dataset. Moreover, when judged based on the MS-SSIM
metric, our method consistently outshines LDMIC. An additional point worth highlighting is that
the computational complexity of FFCA is only comparable to the streamlined version, LDMIC-fast.

Visualization. To showcase the compression results, we provide visualizations in Figure 6. For a fair
comparison, we ensured similar compression rates across different schemes. Our method achieves
higher PSNR values with fewer or equivalent bits compared to traditional approaches like BPG and
the deep DSC method MSFDPM. Our algorithm preserves strong structural similarity, even at very
low bit rates, avoiding the prominent distortions and artifacts observable in BPG. In comparison to
MSFDPM, our fine-grained calibration retains more image details, capturing small text and object
textures even at reduced bit rates.
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Computational complexity. Table 2 compares the
FLOPs and decoding latency of our model with
baseline models. Owing to the unique structure of
asymmetric DSC, it allows for lightweight encoders
and parallel encoding, advantages not present in
joint encoding-decoding mode. For fairness, we
focus on comparing the complexity of decoding.
FFCA not only exhibits the lowest FLOPs and de-
coding latency among all baseline methods but also
achieves decoding latency that is 3.06-5.82 times
faster when compared to joint decoding methods,
and 1.15-4.91 times faster against asymmetric DSC
methods. The method MSFDPM (Huang et al.
(2023)) shows a decrease in decoding speed due to
its greedy strategy-based patch matching, while our
stereo-based patch matching achieves a 10-20 times
speedup.

Table 2: Computation complexity tested on
InStereo2K with the resolution as 832 × 1024

Methods FLOPs Time

DSIC 3378.65G 15.03s
HESIC 1122.87G 28.56s
SASIC 2532.87G 19.58s
NDIC 1245.89G 5.64s

MSFDPM 1604.74G 23.85s
LDMIC-fast 1851.69G 6.66s

LDMIC 1838.42G 27.77s
FSCA(Propsed) 781.76G 4.91s

4.3 ABLATION STUDY.

We conducted ablation experiments on the InStereo2K dataset and calculated the BD-rate and BD-
PSNR, as shown in Table 3. For the ablation experiments regarding decoding speed, please refer to
the appendix for more details.

Hourglass-based sparse stereo refinement: The
performance of our model without the fine-grained
refinement module is represented by ”W/O HSSR”.
As can be observed, omitting this module results in
a decrease of approximately 0.23dB at the same bit
rate, indicating the effectiveness of this module.
Stereo patch matching: ”W/O SPM & HSSR” rep-
resents our model’s performance without both the
coarse and fine-grained alignment. Compared to
”W/O HSSR”, the absence of the Stereo patch matc-

Table 3: Comparison in ablation study

Model BD-rate BD-PSNR

W/O SPM HSSR -16.61% 0.52dB
W/O HSSR -49.31% 2.04dB
W/O FFF -54.71% 2.25dB
Proposed -54.51% 2.27dB

hing module causes a notable performance drop, with a decrease in BD-PSNR by 1.75 dB. This
emphasizes the significance of coarse matching in the initial stage, suggesting that decoding without
matching fails to effectively utilize inter-view information.

Fast Feature Fusion: The Fast Feature Fusion module is primarily designed to accelerate decoding.
However, in our experiments, we found that at lower bit rates, the lightweight decoder slightly
outperforms the decoder with a more complex structure. Although a minor performance decline
is noticed at higher bit rates, overall, this result validates our adoption of FFF for achieving faster
decoding latency.

5 CONCLUSIONS

This paper introduces FFCA-Net, a fast cascaded framework for distributed compression of stereo
images. Our approach utilizes coarse-to-fine feature matching to align side information features
with the main information. Experimental evidence demonstrates that FFCA effectively leverages
stereo view information, achieving superior encoding gains while maintaining a significantly lower
decoding latency compared to existing methods. Based on this framework, future work can be
extended in two aspects. Firstly, extracting more general priors can broaden the applicability of this
method to various scenarios. Secondly, exploring more efficient ways to apply these priors in order
to accelerate the encoding and decoding processes is worth investigating.
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David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hierarchical priors
for learned image compression. Advances in neural information processing systems, 31, 2018.
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6 APPENDIX

6.1 EXPERIMENTAL DETAILS

6.1.1 DATASETS

We have validated our method on three high-resolution stereo image datasets, namely Cityscape
Cordts et al. (2016) and Kitti-stereo Menze & Geiger (2015), which represent outdoor distant views,
as well as InStereo2K Bao et al. (2020), which represents indoor near views. Cityscape consists of
5000 pairs of 2048 × 1024 images, with 2975 pairs for training, 500 pairs for validation, and 1525
pairs for testing. Kitti-stereo comprises 1578 training image pairs and 790 test image pairs, all with
the size of 1242 × 375. InStereo2K includes 2010 training image pairs and 50 test image pairs, all
with a size of 1080× 860.

6.1.2 EXPERIMENTAL SETTING

Initially, we trained a single-image compression baseline Cheng et al. (2020). Subsequently, we
trained the complete model, where the parameters of the autoencoder were initialized using the
pretrained baseline. For the InStereo2K dataset, training results were reported for seven different
values of λ: λ ∈ {1, 0.2, 0.1, 0.07, 0.035, 0.02, 0.01}. On the KITTI and Cityscapes datasets, results
were provided for six different λ values: λ ∈ {0.5, 0.1, 0.07, 0.035, 0.01, 0.005}. The training
epochs for the KITTI and Instereo2K datasets were set at 80, while for the Cityscapes dataset, it
was set at 100. Across all datasets, a batch size of 16 was used. During the training process, the
datasets of KITTI and Instero2K are randomly cropped into blocks of size 320×960 and 512×512,
respectively, while Cityscape follows the conventional preprocessing approach: for every image,
we crop 64, 256, and 128 pixels from the top, bottom, and sides, respectively, to remove the car
hood Wödlinger et al. (2022); Zhang et al. (2023). During testing, we employ replication-padding
to extend the edges of the feature maps Huang et al. (2023) until the length of the feature maps can
be evenly divided by the patch size. After the completion of matching, we will trim the feature maps
back to their original size.

6.2 ABLATION FOR ACCELERATION

In this section, we will delve into our specific contributions in model acceleration and lightweight
design. Our model consists of three components: coarse-grained stereo patch matching, fine-grained
module hourglass-based sparse stero refinement and a fast feature fusion module. For each compo-
nent, we have carefully selected comparable and compelling baselines for comparison.

Stereo Patch Matching We have chosen Multi-scale Patch-matching Huang et al. (2023) as our
baseline, which is similar to our approach as it also involves coarse-grained matching based on
feature level. Our input image size is 832 × 1024, resulting in feature map dimensions of 128 ×
416 × 512. We conducted inference speed tests for both methods on CPU and GPU, as shown in
Table 4. It is evident from the results that our algorithm outperforms the baseline method by nearly

Table 4: Acceleration evaluation of Stereo Patch Matching.

Method Inference Speed(CPU) Inference Speed(GPU)

Stereo PM (Proposed) 0.76s 0.027s
Multi-scale PM (Huang et al. (2023)) 15.32s 0.46s

20-fold, both in CPU and GPU environments. This significant speed improvement is attributed to
our efficient parallel computing techniques, which have proven to be reliable.

Fast Feature Fusion We have chosen Feature Fusion Huang et al. (2023) as our baseline. Our
proposed FFF module is an enhanced version of the Feature Fusion module, with a smaller parameter
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count and faster inference speed. Here, we provide a more detailed explanation of the input and
output of the FFF module. For each iteration FFF i, where i = 1, 2, 3, it can be abstracted as the
following equation.

ϕi = FFF i(ϕi+1, hi
x̂, h

i
y⋆⋆) i = 1, 2, 3.

Since the FFF module cannot access features from the previous layer when fusing the lowest-
resolution feature map (i = 4), the abstraction of the FFF module at this stage is as:

ϕ4 = FFF 4(h4
x̂, h

4
y⋆⋆).

Next, we validate our proposed method and the baseline approach on a scene with an input image
size of 832× 1024. Table 5 presents the runtime and model parameter count for our method and the
baseline method on CPU. The results confirm the effectiveness of our model.

Table 5: Acceleration evaluation of Fast Feature Fusion.

Method Inference Speed(CPU) Parameters

Fast Feature Fusion (Proposed) 1.84s 3.04M
Feature Fusion (Huang et al. (2023)) 2.20s 7.02M

Hourglass-based Sparse Stereo Refinement To the best of our knowledge, the only prior learning-
based SIC work that utilizes stereo matching to eliminate inter-view redundancy is DSIC Liu et al.
(2019). For fairness, we have chosen the Parametric Skip Function, a crucial component of DSIC,
as the baseline method. We conducted validation on a scene with an input image size of 832×1024.
Table 6 presents the runtime and model parameter count for our proposed method and the DSIC
baseline on CPU.

Table 6: Acceleration evaluation of Hourglass-based Sparse Stereo Refinement.

Method Inference Speed(CPU) Parameters

Hourglass-based SS Refinement (Proposed) 1.41s 0.24M
Parametric Skip Function (Liu et al. (2019)) 4.22s 8.64M

In comparison to the baseline, our approach exhibits a significant speed improvement, being only
1/4 of the baseline’s runtime. Additionally, our method achieves a parameter count that is merely
1/40 of the baseline’s parameter count.
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