
Under review for RLC 2025, to be published in RLJ |Cover Page

Which Experiences Are Influential for RL Agents?
Efficiently Estimating The Influence of Experiences

Anonymous authors
Paper under double-blind review

Keywords: reinforcement learning, data influence estimation

Summary
In reinforcement learning (RL) with experience replay, experiences stored in a replay buffer

influence the RL agent’s performance. Information about how these experiences influence the
agent’s performance is valuable for various purposes, such as identifying experiences that neg-
atively influence underperforming agents. One method for estimating the influence of experi-
ences is the leave-one-out (LOO) method. However, this method is usually computationally
prohibitive. In this paper, we present Policy Iteration with Turn-over Dropout (PIToD), which
efficiently estimates the influence of experiences. We evaluate how correctly PIToD estimates
the influence of experiences and its efficiency compared to LOO. We then apply PIToD to
amend underperforming RL agents, i.e., we use PIToD to estimate negatively influential expe-
riences for the RL agents and to delete the influence of these experiences. We show that RL
agents’ performance is significantly improved via amendments with PIToD.

Contribution(s)
1. For the first time, we propose a method that efficiently (i) estimates the influence of individ-

ual experiences (i.e., data) on the performance (e.g., empirical returns) of a RL agent and
(ii) disables that influence when necessary (Section 4).

Why this contribution is valuable? In many RL settings, we must manage experiences
of different quality levels. For example, in an off-policy RL setting, experiences collected
from multiple policies—ranging from random to near-optimal—are used to learn policies
or Q-functions. When experiences of different quality are intermixed, the ability to estimate
their influence on performance and disable any harmful influences is highly beneficial for
many purposes. For instance, (i) if an RL agent’s performance is degraded by specific
detrimental experiences, disabling their influence can help improve the agent’s overall
performance. (ii) In safety-critical applications (e.g., human-in-the-loop robotics or au-
tonomous driving), this ability may ensure safety by disabling the influence of experiences
that degrade safety performance before deployment. In addition, (iii) in memory-intensive
scenarios like image-based RL, where each experience consumes substantial computational
memory, this ability may enable efficient management of experiences by screening out
less useful experiences. Finally, (iv) when refining RL task design, analyzing influential
experiences may provide valuable insights for improving reward functions or state repre-
sentations, leading to better task design.

Context: (i) No prior work has addressed the efficient estimation and disabling of
experience influence in the online RL context. (ii) As a first step, this paper focuses on
verifying the proposed method’s effectiveness within a single-task off-policy RL setting
(MuJoCo and DMC) (Section 5 and 6, and Appendix G).



Which Experiences Are Influential for RL Agents?

Which Experiences Are Influential for RL Agents?
Efficiently Estimating The Influence of Experiences

Anonymous authors
Paper under double-blind review

Abstract

In reinforcement learning (RL) with experience replay, experiences stored in a replay1
buffer influence the RL agent’s performance. Information about how these experiences2
influence the agent’s performance is valuable for various purposes, such as identify-3
ing experiences that negatively influence underperforming agents. One method for es-4
timating the influence of experiences is the leave-one-out (LOO) method. However,5
this method is usually computationally prohibitive. In this paper, we present Policy6
Iteration with Turn-over Dropout (PIToD), which efficiently estimates the influence of7
experiences. We evaluate how correctly PIToD estimates the influence of experiences8
and its efficiency compared to LOO. We then apply PIToD to amend underperform-9
ing RL agents, i.e., we use PIToD to estimate negatively influential experiences for the10
RL agents and to delete the influence of these experiences. We show that RL agents’11
performance is significantly improved via amendments with PIToD.12

1 Introduction13

In reinforcement learning (RL) with experience replay, the performance of an RL agent is influ-14
enced by experiences. Experience replay (Lin, 1992) is a data-generation mechanism indispensable15
in modern off-policy RL methods (Mnih et al., 2015; Hessel et al., 2018; Haarnoja et al., 2018a;16
Kumar et al., 2020). It allows an RL agent to learn from past experiences. These experiences in-17
fluence the RL agent’s performance (e.g., cumulative rewards) (Fedus et al., 2020). Estimating how18
each experience influences the RL agent’s performance could provide useful information for many19
purposes. For example, we could improve the RL agent’s performance by identifying and deleting20
negatively influential experiences. The capability to estimate the influence of experience will be21
crucial, as RL is increasingly applied to tasks where agents must learn from experiences of diverse22
quality (e.g., a mixture of experiences from both expert and random policies) (Fu et al., 2020; Yu23
et al., 2020; Agarwal et al., 2022; Smith et al., 2023; Liu et al., 2024; Tirumala et al., 2024).24

However, estimating the influence of experiences with feasible computational cost is not trivial. One25
might consider estimating it by a leave-one-out (LOO) method (left part of Figure 1), which retrains26
an RL agent for each possible experience deletion. As we will discuss in Section 3, this method has27
quadratic time complexity and quickly becomes intractable due to the necessity of retraining.28

In this paper, we present PIToD, a policy iteration (PI) method that efficiently estimates the influ-29
ence of experiences (right part of Figure 1). PI is a fundamental method for many RL methods30
(Section 2). PIToD is PI augmented with turn-over dropout (ToD) (Kobayashi et al., 2020) to effi-31
ciently estimate the influence of experiences without retraining an RL agent (Section 4). We evaluate32
how correctly PIToD estimates the influence of experiences and its efficiency compared to the LOO33
method (Section 5). We then apply PIToD to amend underperforming RL agents by identifying and34
deleting negatively influential experiences (Section 6). To our knowledge, our work is the first to: (i)35
estimate the influence of experiences on the performance of RL agents with feasible computational36
cost, and (ii) modify RL agents’ performance simply by deleting influential experiences.37

1



Under review for RLC 2025, to be published in RLJ 2025

Figure 1: Leave-one-out (LOO) influence estimation method (left part) and our method (right part).
LOO estimates the influence of experiences by retraining an RL agent for each experience deletion.
In contrast, our method estimates the influence of experiences without retraining.

2 Preliminaries38

In Section 4, we will introduce our PI method for estimating the influence of experiences in the RL39
problem. As preliminaries for this, we explain the RL problem, PI, and influence estimation.40

Reinforcement learning (RL). RL addresses the problem of an agent learning to act in an environ-41
ment. The environment provides the agent with a state s. The agent responds by selecting an action42
a, and then the environment provides a reward r and the next state s′. This interaction between the43
agent and environment continues until the agent reaches a terminal state. The agent aims to find a44
policy π : S×A → [0, 1] that maximizes cumulative rewards (return). A Q-function Q : S×A → R45
is used to estimate the expected return.46

Policy iteration (PI). PI is a method for solving RL problems. PI updates the policy and Q-function
by iteratively performing policy evaluation and improvement. Many implementations of policy
evaluation and improvement have been proposed (e.g., Lillicrap et al. (2015); Fujimoto et al. (2018);
Haarnoja et al. (2018a)). In the main part of this paper, we focus on the policy evaluation and
improvement used in Deep Deterministic Policy Gradient (DDPG). In policy evaluation in DDPG,
the Q-function Qϕ : S ×A → R, parameterized by ϕ, is updated as:

(1)ϕ← ϕ−∇ϕE(s,a,r,s′)∼B, a′∼πθ(·|s′)

[(
r + γQϕ̄(s

′, a′)−Qϕ(s, a)
)2]

,

where B is a replay buffer containing the collected experiences, and Qϕ̄ is a target Q-function. In
policy improvement in DDPG, policy πθ, parameterized by θ, is updated as:

(2)θ ← θ +∇θEs∼B, aθ∼πθ(·|s) [Qϕ(s, aθ)] .

Estimating the influence of experiences. Given the policy and Q-functions updated through PI,
we aim to estimate the influence of experiences on performance. Formally, letting ei be the i-th
experience contained in the replay buffer B, we evaluate the influence of ei as

(3)L
(
Qϕ,B\{ei}, πθ,B\{ei}

)
− L (Qϕ,B, πθ,B) ,

where L is a metric for evaluating the performance of the Q-function and policy, Qϕ,B and πθ,B are47
the Q-function and policy updated with all experiences contained in B, and Qϕ,B\{ei} and πθ,B\{ei}48
are the ones updated with B other than ei. L is defined according to the focus of the experiments.49
In this paper, we define L as policy and Q-function loss for the experiments in Section 5, and as50
empirical return and Q-estimation bias for the applications in Section 6.51

2



Which Experiences Are Influential for RL Agents?

Algorithm 1 Leave-one-out influence estimation for policy iteration

1: given replay buffer B, learned parameters ϕ, θ, and number of policy iteration I .
2: for ei ∈ B do
3: Initialize temporal parameters ϕ′ and θ′.
4: for I iterations do
5: Update Qϕ′ with B\{ei} (policy evaluation).
6: Update πθ′ with B\{ei} (policy improvement).
7: Evaluate the influence of ei as

(4)L (Qϕ′ , πθ′)− L (Qϕ, πθ) .

3 Leave-one-out (LOO) influence estimation52

What method can be used to estimate the influence of experiences? One straightforward method is53
based on the LOO algorithm (Algorithm 1). This algorithm estimates the influence of experiences54
by retraining the RL agent’s components (i.e., policy and Q-functions) for each experience deletion.55
Specifically, it retrains the policy πθ′ and Q-function Qϕ′ using B\{ei} through I policy iterations56
(lines 4–6). Here, I equals the number of policy iterations required for training the original policy57
πθ and Q-function Qϕ. After retraining the components, the influence of ei is evaluated using Eq. 458
with πθ′ , Qϕ′ and πθ, Qϕ (line 7).59

However, in typical settings, Algorithm 1 becomes computationally prohibitive due to retraining.60
In typical settings (e.g., Fujimoto et al. (2018); Haarnoja et al. (2018b)), the size of the buffer B is61
small at the beginning of policy iteration and increases by one with each iteration. Consequently,62
the size of B is approximately equal to the number of iterations I (i.e., |B|≈ I). Since Algorithm 163
retrains the RL agent’s components through I policy iterations for each ei, the total number of policy64
iterations across the entire algorithm becomes I2. The value of I typically ranges between 103 and65
106 (e.g., Chen et al. (2021a); Haarnoja et al. (2018b)), which makes it difficult to complete all66
policy iterations in a realistic timeframe.67

In the next section, we will introduce a method to estimate the influence of experiences without68
retraining the RL agent’s components.69

4 Policy iteration with turn-over dropout (PIToD)70

In this section, we present Policy Iteration with Turn-over Dropout (PIToD), which estimates the71
influence of experiences without retraining. The concept of PIToD is shown in Figure 2, and an72
algorithmic description of PIToD is shown in Algorithm 2. Inspired by ToD (Kobayashi et al.,73
2020), PIToD uses masks and flipped masks to drop out the parameters of the policy and Q-function.74
Further details are provided in the following paragraphs.75

Masks and flipped masks. PIToD uses mask mi and flipped mask wi, which are binary vectors76
uniquely associated with experience ei. The mask mi consists of elements randomly initialized77
to 0 or 1. mi is used to drop out the parameters of the policy and Q-function during PI with ei.78
Additionally, the flipped mask wi is the negation of mi, i.e., wi = 1 −mi. wi is used to drop out79
the parameters of the policy and Q-function for estimating the influence of ei.80

Policy iteration with the mask (lines 5–6 in Algorithm 2). PIToD applies mi to the policy and
Q-function during PI with ei. It executes PI with variants of policy evaluation (Eq. 1) and improve-
ment (Eq. 2) where masks are applied to the parameters of the policy and Q-function. The policy
evaluation for PIToD is

(5)ϕ← ϕ−∇ϕEei=(s,a,r,s′,i)∼B, a′∼πθ,mi
(·|s′)

[(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2]
.

3



Under review for RLC 2025, to be published in RLJ 2025

Figure 2: The concept of PIToD. PIToD uses mask mi and flipped mask wi. It applies mi to the
policy and Q-function for PI with ei. Additionally, it applies wi to the policy and Q-function for
estimating the influence of ei.

The policy improvement for PIToD is

(6)θ ← θ +∇θEei=(s,i)∼B, aθ,mi
∼πθ,mi

(·|s) [Qϕ,mi
(s, aθ,mi

)] .

Here, Qϕ,mi
and πθ,mi

are the Q-function and policy to which the mask mi is applied. In Eq. 581
and Eq. 6, for inputs from ei, Qϕ,mi

and πθ,mi
compute their outputs without using the parameters82

that are dropped out by mi. Thus, the parameters dropped out by mi (i.e., the parameters obtained83
by applying wi) are expected not to be influenced by ei. More theoretically, if Qϕ,mi and πθ,mi84
are dominantly influenced by ei, the parameters obtained by wi are provably not influenced by ei85
(see Appendix A for details). Based on this theoretical property, we estimate the influence of ei by86
applying wi to policy and Q-functions (see the next paragraph for details).87

Estimating the influence of experience with flipped mask (lines 7–8 in Algorithm 2). PIToD
periodically estimates the influence of ei by applying wi to the policy and Q-function. It estimates
the influence of ei (Eq. 3) as

(7)L (Qϕ,wi
, πθ,wi

)− L (Qϕ, πθ) ,

where the first term is the performance when ei is deleted, and the second term is the performance88
with all experiences. Qϕ,wi and πθ,wi are the Q-function and policy with dropout based on wi.89
Qϕ and πθ are the Q-function and policy without dropout. For the second term, if we want to90
highlight the influence of ei more significantly, the term can be evaluated by alternatively using the91
masked policy and Q-functions: L (Qϕ,mi

, πθ,mi
). The influence estimation is performed every Iie92

iterations (line 7 in Algorithm 2). These influence estimations by PIToD do not require retraining93
for each experience deletion, unlike the LOO method.94

Implementation details for PIToD. For the experiments in Sections 5 and 6, each mask element95
is initialized to 0 or 1, drawn from a discrete uniform distribution, to minimize overlap between96
the masks (see Appendix B for details). Additionally, we implemented PIToD using Soft Actor-97
Critic (Haarnoja et al., 2018b) for these experiments (see Appendix C for details).98

4



Which Experiences Are Influential for RL Agents?

Algorithm 2 Policy iteration with turn-over dropout (PIToD)

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B; Set
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′. Define an experience using i′

as: ei′ = (s, a, r, s′, i′); B ← B
⋃
{ei′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Update ϕ with gradient descent using

∇ϕ

∑
(s,a,r,s′,i)

(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2
, a′ ∼ πθ,mi

(·|s′).

6: Update θ with gradient ascent using

∇θ

∑
(s,i)

Qϕ,mi(s, aθ,mi), aθ,mi ∼ πθ,mi(·|s).

7: if i′%Iie = 0 then
8: For ei ∈ B, estimate the influence of ei using

L (Qϕ,wi , πθ,wi)− L (Qϕ, πθ) or L (Qϕ,wi , πθ,wi)− L (Qϕ,mi , πθ,mi) .

5 Evaluations for PIToD99

In the previous section, we introduced PIToD, a method that efficiently estimates the influence of100
experiences. In this section, we evaluate how it correctly estimate the influence (Section 5.1) and its101
computational efficiency (Section 5.2).102

5.1 How correctly does PIToD estimate the influence of experiences? Evaluations with103
self-influence104

In this section, we evaluate how correctly PIToD estimates the influence of experiences by focusing105
on their self-influence. Self-influence (Kobayashi et al., 2020; Thakkar et al., 2023; Bejan et al.,106
2023) is the influence of an experience on prediction performance using that same experience. We107
define self-influences on policy evaluation and on policy improvement. The self-influence of an108
experience ei := (s, a, r, s′, i) on policy evaluation is109

Lpe,i(Qϕ,wi
)− Lpe,i(Qϕ,mi

). (8)

Here, Lpe,i represents the temporal difference error based on ei, and it is defined as110

Lpe,i(Q) =
(
r + γQϕ̄,mi

(s′, a′)−Q(s, a)
)2

, a′ ∼ πθ,mi
(·|s′).

The value of Eq. 8 is expected to be positive. Qϕ,mi
is optimized by PIToD to minimize Lpe,i (c.f.111

line 5 in Algorithm 2), while Qϕ,wi is not. Therefore, Lpe,i(Qϕ,mi) ≤ Lpe,i(Qϕ,wi), implying that112

Lpe,i(Qϕ,wi
)− Lpe,i(Qϕ,mi

)︸ ︷︷ ︸
Eq. 8

≥ 0. (9)

The self-influence of ei on policy improvement is113

Lpi,i(πθ,wi)− Lpi,i(πθ,mi). (10)

Here, Lpi,i represents the Q-value estimate based on ei, and it it defined as114

Lpi,i(π) = Qϕ,mi
(s, a′), a′ ∼ π(·|s).

5



Under review for RLC 2025, to be published in RLJ 2025

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 3: The ratio of experiences for which PIToD correctly estimated self-influence. The left-hand
figure displays this ratio in policy evaluation cases, where a self-influence value is expected to be
posive (i.e., Eq. 8 ≥ 0). The right-hand figure displays the ratio in policy improvement cases, where
a self-influence value is expected to be negative (i.e., Eq. 10 ≤ 0). In both figures, the vertical axis
represents the ratio of correctly estimated experiences, and the horizontal axis shows the number of
epochs. In both cases, the ratio of correctly estimated experiences surpasses the chance rate of 0.5.

The value of Eq. 10 is expected to be negative. πθ,mi
is optimized by PIToD to maximize Lpi,i (c.f.115

line 6 in Algorithm 2), while πθ,wi
is not. Therefore, Lpi,i(πθ,mi

) ≥ Lpi,i(πθ,wi
), which implies116

that117

Lpi,i(πθ,wi
)− Lpi,i(πθ,mi

)︸ ︷︷ ︸
Eq. 10

≤ 0. (11)

In this section, we evaluate whether PIToD has correctly estimated the influence of experiences118
based on whether Eq. 9 and Eq. 11 are satisfied. We periodically evaluate the ratio of experiences119
for which PIToD has correctly estimated self-influence in the MuJoCo environments (Todorov et al.,120
2012). The MuJoCo tasks for this evaluation are Hopper, Walker2d, Ant, and Humanoid. In this121
evaluation, 5000 policy iterations (i.e., lines 3–6 of Algorithm 2) constitute one epoch, with 125122
epochs allocated for Hopper and 300 epochs for the others. At each epoch, we perform the following123
steps: (i) for each experience in the replay buffer, we check whether Eq. 8 and Eq. 10 satisfy Eq. 9124
and Eq. 11, respectively; and (ii) we record the ratio of experiences that satisfy these equations.125

Evaluation results (Figure 3) show that the ratio of experiences whose the self-influence (Eq. 8 and126
Eq. 10) is correctly estimated exceeds the chance rate of 0.5. For self-influence on policy evaluation127
(Eq. 8), the ratio of correctly estimated experiences (i.e., those satisfying Eq. 9) is higher than128
0.9 across all environments. Furthermore, for self-influence on policy improvement (Eq. 10), the129
ratio of correctly estimated experiences (i.e., those satisfying Eq. 11) exceeds 0.7 in Hopper, 0.8 in130
Walker2d and Ant, and 0.9 in Humanoid. These results suggest that PIToD estimates the influence131
of experiences more correctly than random estimation.132

Supplementary analysis. How are experiences that exhibit significant self-influence distributed?133
Figure 4 shows the distribution of self-influence across experiences. From the figure, we see that134
in policy evaluation, the self-influence of older experiences (with smaller normalized experience135
indexes) becomes more significant as the epoch progresses. This tendency can be seen as a primacy136
bias (Nikishin et al., 2022), suggesting that the RL agent is overfitting more significantly to the137
experiences of the early stages of learning. Conversely, for policy improvement, we do not observe138
a clear tendency for primacy bias. These observations may indicate that policy improvement is less139
prone to causing overfit to older experiences than policy evaluation.140

6



Which Experiences Are Influential for RL Agents?

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

0

1

2

3

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

0.2

0.4

0.6

0.8

1.0

1.2

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

0

1

2

3

4

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

0.25

0.50

0.75

1.00

1.25

1.50

In
flu

en
ce

×108

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

4

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

6

4

2

0

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

1.25

1.00

0.75

0.50

0.25

0.00

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

5

4

3

2

1

0

In
flu

en
ce

×102

(b) Distribution of self-influence on policy improvement (Eq. 10).

Figure 4: Distribution of self-influence on policy evaluation and policy improvement. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences to
1.0 for the most recent experiences. This index corresponds to the normalized i used in Algorithm 2.
The horizontal axis represents the number of epochs. The color bar represents the value of self-
influence. Interpretation of this figure: For example, if the value of self-influence for ei in policy
evaluation cases is 2 · 108, this indicates that the value of Lpe,i(Qϕ,wi

) is 2 · 108 larger than that
of Lpe,i(Qϕ,mi

). Key insight: In policy evaluation, experiences with high self-influence tend to
concentrate on older ones (with smaller normalized experience indexes) as the epochs progress.

5.2 How efficiently does PIToD estimate the influence of experiences? Evaluation for141
computational time142

We evaluate the computational time required for influence estimation with PIToD and compare it143
to the estimated time for LOO. To measure the computational time for PIToD, we run the method144
under the same settings as in the previous section and record its wall-clock time. For comparison,145
we also evaluate the estimated time required for influence estimation using LOO (Section 3). To146
estimate the time for LOO, we record the average time required for one policy iteration with PIToD147
and multiply this by the total number of policy iterations required for LOO 1.148

The evaluation results (Figure 5) show that PIToD significantly reduces computational time com-149
pared to LOO. The time required for LOO increases quadratically as epochs progress, taking, for150
example, more than 4 · 107 seconds (≈ 462 days) up to 300 epochs in Humanoid. In contrast, the151
time required for PIToD increases linearly, taking about 1.4·105 seconds (≈ one day) for 300 epochs152
in Humanoid.153

6 Application of PIToD: amending policies and Q-functions by deleting154

negatively influential experiences155

In the previous section, we demonstrated that PIToD can correctly and efficiently estimate the in-156
fluence of experiences. What scenarios might benefit from this capability? In this section, we157
demonstrate how PIToD can be used to amend underperforming policies and Q-functions.158

1The total number of policy iterations for LOO is I2, as discussed in Section 3. However, in the practical implementation
of PIToD used in our experiments, we divide the experiences in the buffer into groups of 5000 experiences and estimate the
influence of each group (Appendix C). For a fair comparison with this implementation, we use I2

5000
instead of I2 as the total

number of policy iterations for LOO.

7



Under review for RLC 2025, to be published in RLJ 2025

0 100 200 300
epoch

0

1

2

3

4

tim
e 

(in
 se

co
nd

s)

1e7
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

tim
e 

(in
 se

co
nd

s)

1e5
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 5: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO. The left
figure shows the time for both PIToD and LOO. The right figure shows the time for PIToD alone to
allow readers to see the details of PIToD’s time more clearly. The results show that the time required
for LOO increases quadratically with the number of epochs, whereas the time required for PIToD
increases linearly.

We amend policies and Q-functions by deleting experiences that negatively influence performance.159
We evaluate the performance of policies and Q-functions based respectively on returns and Q-160
estimation biases (Fujimoto et al., 2018; Chen et al., 2021a). The influence of an experience ei161
on the return, Lret, is evaluated as follows:162

Lret(πθ,wi
)− Lret(πθ), where Lret(π) = Eat∼π(·|st)

[∑
t=0

γtr(st, at)

]
. (12)

Here, st is sampled from an environment. In our setup, Lret is estimated using Monte Carlo returns
collected by rolling out policies πθ,wi and πθ. The influence of ei on Q-estimation bias, Lbias, is
evaluated as follows:

(13)
Lbias(Qϕ,wi

)− Lbias(Qϕ),

where Lbias(Q) = Eat∼πθ(·|st),at′∼πθ(·|st′ )

∑
t=0

∣∣∣Q(st, at)−
∑

t′=t γ
t′r(st′ , at′)

∣∣∣
|
∑

t′=t γ
t′r(st′ , at′)|

 .

Here, Lbias quantifies the discrepancy between the estimated and true Q-values using their L1 dis-163
tance. Based on Eq. 12 and Eq. 13, we identify and delete the experience e∗ that has the strongest164
negative influence on them. We apply w∗, which maximizes Eq. 12, to the policy to delete e∗. Ad-165
ditionally, we apply w∗, which minimizes Eq. 13, to the Q-function to delete e∗. The algorithmic166
description of our amendment process is presented in Algorithm 4 in Appendix D.167

We evaluate the effect of the amendments on trials in which the policy and Q-function underperform.168
We run ten learning trials with the amendments (Algorithm 4) and evaluate (i) Lret(πθ,w∗) for the169
two trials in which the policy scores the lowest returns Lret(πθ) and (ii) Lbias(Qϕ,w∗) for the two170
trials in which the Q-function scores the highest biases Lbias(Qϕ). The average scores of Lret(πθ,w∗)171
and Lbias(Qϕ,w∗) for these underperforming trials are shown in Figure 6. The average scores of172
Lret(πθ,w∗) and Lbias(Qϕ,w∗) for all ten trials are shown in Figure 11 in Appendix E.173

The results of the policy and Q-function amendments (Figure 6) show that performance is improved174
through the amendments. From the policy amendment results (left part of Figure 6), we see that the175
return (Lret) is significantly improved in Hopper and Walker. For example, in Hopper, the return176

8



Which Experiences Are Influential for RL Agents?

0 100 200 300
epoch

0

2

4

6
re

tu
rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 6: Results of policy amendments (left) and Q-function amendments (right) in underperform-
ing trials. The solid lines represent the post-amendment performances: return for the policy (left;
i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the
pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)). These fig-
ures demonstrate that the amendments improve returns in Hopper and Walker2d, and reduce biases
in Ant and Humanoid.

before the amendment (the blue dashed line) is approximately 1000, but after the amendment (the177
blue solid line), it exceeds 3000. Additionally, from the Q-function amendment results (right part of178
Figure 6), we see that the Q-estimation bias (Lbias) is significantly reduced in Ant and Humanoid.179
For example, in Humanoid, the estimation bias of the Q-function before the amendment (the red180
dashed line) is approximately 30 during epochs 250–300, but after the amendment, it is reduced to181
approximately 20 (the red solid line).182

What kinds of experiences negatively influence policy or Q-function performance? Policy perfor-183
mance: Some experiences negatively influencing returns are associated with stumbling or falling.184
An example of such experiences in Hopper is shown in the video “PIToD-Hopper.mp4,” which is185
included in the supplementary material. Q-function performance: Experiences negatively influ-186
encing Q-estimation bias tend to be older experiences. The lower part of Figure 12 in Appendix E187
shows the distribution of influences on Q-estimation bias in each environment. For example, in the188
Humanoid environment, we observe that older experiences often have a negative influence (high-189
lighted in darker colors).190

Additional experiments. We analyzed the correlation between the experience influences (i.e.,191
Eq. 12 and Eq. 13) (Appendix F). Additionally, we performed amendments for other environments192
and RL agents using PIToD (Appendix G and Appendix H).193

7 Related work194

Influence estimation in supervised learning. Our research builds upon prior studies that esti-195
mate the influence of data within the supervised learning (SL) regime. In Section 4, we introduced196
our method for estimating the influence of data (i.e., experiences) in RL settings. Methods that197
estimate the influence of data have been extensively studied in the SL research community. Typ-198
ically, these methods require SL loss functions that are twice differentiable with respect to model199
parameters (e.g., Koh & Liang (2017); Yeh et al. (2018); Hara et al. (2019); Koh et al. (2019);200
Guo et al. (2020); Chen et al. (2021b); Schioppa et al. (2022)). However, these methods are not201
directly applicable to our RL setting, as such SL loss functions are unavailable. In contrast, turn-202
over dropout (ToD) (Kobayashi et al., 2020) estimates the influence without requiring differentiable203
SL loss functions. We extended ToD for RL settings (Sections 4, 5, and 6). For this extension of204

9



Under review for RLC 2025, to be published in RLJ 2025

ToD, we provided a theoretical justification (Appendix A) and considered practical implementations205
(Appendix C).206

Influence estimation in off-policy evaluation (OPE). A few studies in the OPE community have207
focused on efficiently estimating the influence of experiences (Gottesman et al., 2020; Lobo et al.,208
2022). These studies are limited to estimating the influence on policy evaluation using nearest-209
neighbor or linear Q-functions. In contrast, our study estimates influence on a broader range of210
performance metrics (e.g., return or Q-estimation bias) using neural-network-based Q-functions and211
policies.212

Prioritized experience replay (PER). In PER, the importance of experiences is estimated to pri-213
oritize experiences during experience replay. The importance of experiences is estimated based214
on criteria such as TD-error (Schaul et al., 2016; Fedus et al., 2020) or on-policyness (Novati &215
Koumoutsakos, 2019; Sun et al., 2020). Some readers might think that PER resembles our method.216
However, PER fundamentally differs from our method, as it cannot efficiently estimate or disable217
the influence of experiences in hindsight.218

Interpretable RL. Our method (Section 4) estimates the influence of experiences, thereby providing219
a certain type of interpretability. Previous studies in the RL community have proposed interpretable220
methods based on symbolic (or relational) representation (Džeroski et al., 2001; Yang et al., 2018;221
Lyu et al., 2019; Garnelo et al., 2016; Andersen & Konidaris, 2017; Konidaris et al., 2018), inter-222
pretable proxy models (e.g., decision trees) (Degris et al., 2006; Liu et al., 2019; Coppens et al.,223
2019; Zhu et al., 2022), saliency explanation (Zahavy et al., 2016; Greydanus et al., 2018; Mott224
et al., 2019; Wang et al., 2020; Anderson et al., 2020), and sparse kernel models (Dao et al., 2018) 2.225
Unlike these studies, our study proposes a method to estimate the influence of experiences on RL226
agent performance. This method helps us, for example, identify influential experiences when RL227
agents perform poorly, as demonstrated in Section 6.228

8 Conclusion and limitations229

In this paper, we proposed PIToD, a policy iteration (PI) method that efficiently estimates the influ-230
ence of experiences (Section 4). We demonstrated that PIToD (i) correctly estimates the influence231
of experiences (Section 5.1), and (ii) significantly reduces the time required for influence estimation232
compared to the leave-one-out (LOO) method (Section 5.2). Furthermore, we applied PIToD to233
identify and delete negatively influential experiences, which improved the performance of policies234
and Q-functions (Section 6).235

We believe that our work provides a solid foundation for understanding the relationship between236
experiences and RL agent performance. However, it has several limitations. Details on these limita-237
tions and directions for future work are summarized in Appendix I.238

2For a comprehensive review of interpretable RL, see Milani et al. (2024).

10



Which Experiences Are Influential for RL Agents?

References239

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.240
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In Proc.241
NeurIPS, 2022.242

Garrett Andersen and George Konidaris. Active exploration for learning symbolic representations.243
In Proc. NeurIPS, 2017.244

Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed245
Irvine, Souti Chattopadhyay, Matthew Olson, Alan Fern, and Margaret Burnett. Mental models246
of mere mortals with explanations of reinforcement learning. ACM Transactions on Interactive247
Intelligent Systems, 10(2):1–37, 2020.248

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint249
arXiv:1607.06450, 2016.250

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-251
ing with offline data. arXiv preprint arXiv:2302.02948, 2023.252

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-253
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,254
2023.255

Irina Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stability and256
utility of self-influence for learning from noisy NLP datasets. In Houda Bouamor, Juan Pino, and257
Kalika Bali (eds.), Proc. EMNLP, 2023.258

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco259
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applica-260
tions. Applied Sciences, 2021.261

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double Q-262
learning: Learning fast without a model. In Proc. ICLR, 2021a.263

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient264
data relevance analysis for interpreting deep neural networks. In Proc. AAAI, 2021b.265

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, and Ann Nowe. Distilling deep reinforce-266
ment learning policies in soft decision trees. In Proc. IJCAI Workshop on Explainable Artificial267
Intelligence, 2019.268

Giang Dao, Indrajeet Mishra, and Minwoo Lee. Deep reinforcement learning monitor for snapshot269
recording. In proc. ICMLA, 2018.270

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the structure of factored271
markov decision processes in reinforcement learning problems. In Proc. ICML, 2006.272

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and273
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.274
In Proc. ICLR, 2023.275

Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine276
learning, 43(1):7–52, 2001.277

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark278
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In Proc. ICML, 2020.279

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep280
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.281

11



Under review for RLC 2025, to be published in RLJ 2025

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-282
critic methods. In Proc. ICML, 2018.283

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement284
learning. arXiv preprint arXiv:1609.05518, 2016.285

Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo Celi, Emma Brunskill, and Fi-286
nale Doshi-Velez. Interpretable off-policy evaluation in reinforcement learning by highlighting287
influential transitions. In Proc. ICML, 2020.288

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding289
atari agents. In Proc. ICML, 2018.290

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and291
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv292
preprint arXiv:2205.10330, 2022.293

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:294
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint295
arXiv:2012.15781, 2020.296

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy297
maximum entropy deep reinforcement learning with a stochastic actor. In Proc. ICML, 2018a.298

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash299
Kumar, Henry Zhu, Abhishek Gupta, and Pieter Abbeel. Soft actor-critic algorithms and applica-300
tions. arXiv preprint arXiv:1812.05905, 2018b.301

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with SGD.302
In Proc. NeurIPS, 2019.303

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,304
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining305
improvements in deep reinforcement learning. In Proc. AAAI, 2018.306

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.307
Dropout Q-functions for doubly efficient reinforcement learning. In Proc. ICLR, 2022.308

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-309
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–310
1476, 2022.311

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.312

Sosuke Kobayashi, Sho Yokoi, Jun Suzuki, and Kentaro Inui. Efficient estimation of influence of a313
training instance. arXiv preprint arXiv:2012.04207, 2020.314

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In315
Proc. ICML, 2017.316

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence317
functions for measuring group effects. In Proc. NeurIPS, 2019.318

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learn-319
ing symbolic representations for abstract high-level planning. Journal of Artificial Intelligence320
Research, 61:215–289, 2018.321

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline322
reinforcement learning. In Proc. NeurIPS, 2020.323

12



Which Experiences Are Influential for RL Agents?

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-324
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.325

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,326
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv327
preprint arXiv:1509.02971, 2015.328

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.329
Machine learning, 8(3):293–321, 1992.330

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement331
learning with linear model U-trees. In Proc. ECML-PKDD, 2019.332

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-333
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.334

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-335
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe rein-336
forcement learning. Journal of Data-centric Machine Learning Research, 2024.337

Elita Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin, and Himabindu Lakkaraju. Data poi-338
soning attacks on off-policy policy evaluation methods. In proc. UAI, 2022.339

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: interpretable and data-efficient340
deep reinforcement learning leveraging symbolic planning. In Proc. AAAI, 2019.341

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learn-342
ing: A survey and comparative review. ACM Comput. Surv., 2024.343

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-344
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level345
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.346

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.347
Towards interpretable reinforcement learning using attention augmented agents. In Proc NeurIPS,348
2019.349

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and350
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of rein-351
forcement learning. In Proc. ICML, 2024.352

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The353
primacy bias in deep reinforcement learning. In Proc. ICML, 2022.354

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In Proc.355
ICML, 2019.356

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In357
Proc. ICLR, Puerto Rico, 2016.358

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-359
tions. In Proc. AAAI, 2022.360

Laura M. Smith, J. Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey361
Levine. Learning and adapting agile locomotion skills by transferring experience. In Proc. RSS,362
2023.363

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experience replay. In Proc. AAAI, 2020.364

13



Under review for RLC 2025, to be published in RLJ 2025

Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and Partha365
Talukdar. Self-influence guided data reweighting for language model pre-training. In Proc.366
EMNLP, 2023.367

Dhruva Tirumala, Thomas Lampe, Jose Enrique Chen, Tuomas Haarnoja, Sandy Huang, Guy Lever,368
Ben Moran, Tim Hertweck, Leonard Hasenclever, Martin Riedmiller, Nicolas Heess, and Markus369
Wulfmeier. Replay across experiments: A natural extension of off-policy RL. In Proc. ICLR,370
2024.371

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.372
In Proc. IROS, pp. 5026–5033. IEEE, 2012.373

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom374
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for375
continuous control. Software Impacts, 2020. ISSN 2665-9638.376

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement377
learning. Electronics, 9(9):1363, 2020.378

Yuyao Wang, Masayoshi Mase, and Masashi Egi. Attribution-based salience method towards inter-379
pretable reinforcement learning. In Proc. AAAI–MAKE, 2020.380

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. PEORL: integrating symbolic planning381
and hierarchical reinforcement learning for robust decision-making. In Proc. IJCAI, 2018.382

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection383
for explaining deep neural networks. In Proc. NeurIPS, 2018.384

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey385
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.386
In Proc. CoRL, 2020.387

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding DQNs. In388
Proc. ICML, 2016.389

Yuanyang Zhu, Xiao Yin, and Chunlin Chen. Extracting decision tree from trained deep reinforce-390
ment learning in traffic signal control. IEEE Transactions on Computational Social Systems,391
2022.392

14



Which Experiences Are Influential for RL Agents?

A Important theoretical property of PIToD393

In this section, we theoretically prove the following property of PIToD: “Assuming that the policy394
πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions Qϕ,wi and πθ,wi ,395
which use the flipped mask wi, are unaffected by the gradients associated with experience ei.” This396
property is important as it justifies the use of the flipped mask wi to estimate the influence of ei in397
PIToD.398

First, we define key terms for our theoretical proof:399
Experience: We define an experience ei as ei = (s, a, r, s′, i), where s is the state, a is the action,400
r is the reward, s′ is the next state, and i is a unique identifier. We also define another experience as401
ei′ , where i′ is a unique identifier.402
Parameters: At the j-th iteration of Algorithm 2 (lines 3–6), we define the parameters of the Q-403
function and policy that are not dropped by the mask mi′ as ϕj,mi′ and θj,mi′ , respectively. Addi-404
tionally, We define parameters that are dropped by mi′ as ϕj,wi′ and θj,wi′ .405
Policy and Q-function: We define the policy and Q-function, where all parameters except ϕj,mi′406
and θj,mi′ are set to zero (i.e., dropped), as Qϕj,m

i′
and πθj,m

i′
. Similarly, the policy and Q-function,407

where all parameters except ϕj,wi′ and θj,wi′ are zero, are defined as Qϕj,w
i′

and πθj,w
i′

.408

Next, we introduce two assumptions required for our proof. The first assumption is for the policy409
and Q-function with masks.410

Assumption 1. Qϕj,m
i′

and πθj,m
i′

can be replaced by Qϕ′
j,m

i′
and πθ′

j,m
i′

, whose parameters411

ϕ′
j,mi′

and θ′j,mi′
satisfy the following gradient properties:412

The property of ϕ′
j,mi′

is as follows:413

∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2

, a′ ∼ πθ′
j,mi

(·|s′)

= ∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2
· I(i = i′), a′ ∼ πθ′

j,mi
(·|s′).

Here, I is an indicator function that returns 1 if the specified condition (i.e., i = i′) is true and 0414
otherwise.415

The property of θ′j,mi′
is as follows:416

∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a), a ∼ πθ′

j,mi
(·|s)

= ∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a) · I(i = i′), a ∼ πθ′

j,mi
(·|s).

Intuitively, Assumption 1 can be interpreted as “Qϕj,m
i′

and πθj,m
i′

are dominantly influenced by417
the experience ei′ (i.e., the influence of other experiences is negligible).”418

The second assumption is for ϕj,wi′ and θj,wi′ :419

Assumption 2. For the gradient with respect to ϕj,wi′ , the following equation holds:420

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
, a′ ∼ πθ′

j,mi
(·|s′)

= ∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′). (14)

For the gradient with respect to θj,wi′ , the following equation holds:421

∇θj,w
i′
Qϕj+1,mi

(s, a), a ∼ πθj−1,mi
(·|s)

= ∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s). (15)

15



Under review for RLC 2025, to be published in RLJ 2025

Intuitively, Assumption 2 can be interpreted as “When updating parameters by using ei, the param-422
eters dropped out (i.e., ϕj,wi

and θj,wi
) are not influenced by the gradient that is calculated with423

ei.”424

Based on the above assumptions, we will derive the property of PIToD described at the beginning425
of this section 3. Some readers may think that Assumption 2 corresponds to this property. However,426
in addition to Assumption 2, we must guarantee that the components used to create target signals427
for Eq. 14 and Eq. 15 (i.e., the components highlighted in red below) are also not influenced by ei428
when i ̸= i′. Otherwise, ϕj,wi

and θj,wi
might still be updated by using components influenced by429

ei even when i ̸= i′.430

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′).

431

∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s).

Based on Assumption 1, we can ensure that these red-highlighted components are not influenced by432
ei when i ̸= i′.433

Based on Assumption 1, the following theorem holds:434

Theorem 1. Given that, for j > 0, the parameters ϕ′
j,mi′

and θ′j,mi′
are updated in the same way435

as the original parameters ϕj,mi′ and θj,mi′ , according to Eq. 5 and Eq. 6, the following equation436
holds:437

ϕ′
j,mi′

← ϕ′
j−1,mi′

−
∑

(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′).
438

θ′j,mi′
← θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s).

Proof.

ϕ′
j,mi′

← ϕ′
j−1,mi′

−∇ϕ′
j−1,m

i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2

,

a′ ∼ πθ′
j−1,mi

(·|s′)
(1)
= ϕ′

j−1,mi′
−

∑
(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

θ′j,mi′
← θ′j−1,mi′

−∇θ′
j−1,m

i′

∑
(s,a,r,s′,i)

Qϕ′
j,mi

(s, a), a ∼ πθ′
j−1,mi

(·|s)

(1)
= θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s)

(1) Apply Assumption 1.439

3“Assuming that the policy πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions Qϕ,wi
and

πθ,wi
, which use the flipped mask wi, are unaffected by the gradients associated with experience ei.”

16



Which Experiences Are Influential for RL Agents?

This theorem implies that Qϕ′
j,m

i′
and πθ′

j,m
i′

are dominantly influenced by the experience ei′ for440

j > 0. Thus, if the red-highlighted components above can be replaced with these components, we441
can say that ϕj,wi

and θj,wi
are not influenced by gradients depending on ei in both cases of i = i′442

and i ̸= i′. Below, we will show that such a replacement is doable.443

Based on Assumptions 1 and 2, the following theorem holds:444

Theorem 2. For any j > 0, the parameters ϕj,wi′ and θj,wi′ in Algorithm 2 are updated as follows:445

ϕj,wi′ ← ϕj−1,wi′ −
∑

(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

446

θj,wi′ ← θj−1,wi′ −
∑

(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

Proof. For ϕj,wi′ ,447

ϕj,wi′ ← ϕj−1,wi′ −∇ϕj−1,w
i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
,

a′ ∼ πθj−1,mi
(·|s′)

(1)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθj−1,mi
(·|s′)

(2)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

(1) Apply Assumption 2. (2) Apply Assumption 1.448

Similarly, for θj,wi′ ,449

θj,wi′ ← θj−1,wi′ −∇θj−1,w
i′

∑
(s,a,r,s′,i)

Qϕj,mi
(s, a), a ∼ πθj−1,mi

(·|s)

(1)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕj,mi

(s, a) · I(i ̸= i′), a ∼ πθj−1,mi
(·|s)

(2)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

450

This theorem implies that:451

(i) When i = i′, neither θj,wi′ nor ϕj,wi′ is influenced by gradients dependent on experience ei′ .452

(ii) When i ̸= i′, θj,wi′ and ϕj,wi′ are updated without depending on the components that might be453
influenced by ei′ .454

Therefore, we conclude that “Qϕ,wi′ and πθ,wi′ , and consequently Qϕ,wi
and πθ,wi

, are not influ-455
enced by the gradients related to the experiences ei′ and ei, respectively.”456

17



Under review for RLC 2025, to be published in RLJ 2025

B Analyzing and minimizing overlap in elements of masks457

In our method (Section 4), each experience is assigned a mask. If there is significant overlap in the458
elements of different masks, one experience could significantly interfere with other experiences. In459
this section, we discuss (i) the expected overlap between the masks of experiences ei and ei′ and (ii)460
the dropout rate that minimizes this overlap.461

For discussion, we introduce the following definitions and assumptions. We define the mask size462
as M , and the number of overlapping elements between masks as m. We assume that each mask463
element is independently initialized as 0 with probability p (i.e., dropout rate) and 1 with probability464
1− p.465

Below, we derive the probability and expected number of overlaps in the mask elements.466
Probability of m overlaps. First, we calculate the probability that a specific position in the masks467
of ei and ei′ has the same value. The probability that both elements of the masks have 0 at the same468
position is p · p = p2. Similarly, the probability that both elements have 1 at the same position is469
(1− p) · (1− p) = (1− p)2. Therefore, the probability q that the values at a specific position in the470
masks are the same is471

q = p2 + (1− p)2 = 2p2 − 2p+ 1. (16)

The probability that the masks have m overlaps follows the binomial distribution:472 (
M

m

)
qm(1− q)M−m. (17)

Expected number of overlaps. Using Eq.16 and Eq.17, the expected number of overlaps can be
represented as

(18)
M∑

k =0

k

(
M

k

)
qk(1− q)M−k = Mq

= M(2p2 − 2p+ 1).

For better understanding, we show a plot of Eq. 18 values with respect to p and M in Figure 7.

200 400 600 800 1000
mask size M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dr
op

ou
t r

at
e

49.6

54.4

59.2

64.0

68.8

73.6

78.4

83.2

88.0

ov
er

la
p 

ra
te

 (%
)

Figure 7: The distribution of the expected number of overlaps (Eq. 18) with respect to the dropout
rate p and mask size M . For clarity, we plot the expected overlap rate (m/M ) instead of the expected
number of overlaps m.

473

The dropout rate of p = 0.5 minimizes the expected number of overlaps. Since Eq. 18 is convex474

in p, the value of p that minimizes the expected overlap is determined by solving dM(2p2−2p+1)
dp = 0.475

18



Which Experiences Are Influential for RL Agents?

As a result, we find that p = 0.5 minimizes the expected overlap. With p = 0.5, we can expect a476
50% overlap between the two masks. Figure 8 shows the probability of the overlap rate m/M with477
p = 0.5 for various values of M . From this figure, we see that the probability of having a between478
0-50% overlap is very high, while the probability of having a between 50-100% overlap is very low,479
regardless of the value of M .

200 400 600 800 1000
mask size M

20

40

60

80

100

ov
er

la
p 

ra
te

 (%
)

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

Pr
ob

ab
ilit

y

Figure 8: The probability of the overlap rate m/M with p = 0.5 for various values of M .

480

19



Under review for RLC 2025, to be published in RLJ 2025

Algorithm 3 SAC version of PI with group mask in PIToD

1: Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, and an empty replay buffer B.
2: for i′ = 0, ..., I do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′; Define an experience using the

group identifier i′′ ← ⌊i′/5000⌋ as ei′′ = (s, a, r, s′, i′′); B ← B
⋃
{ei′′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Compute target yi:

yi = r + γ

(
min
j=1,2

Qϕ̄j ,mi
(s′, a′)− α log πθ,mi(a

′|s′)
)
, a′ ∼ πθ,mi(·|s′).

6: for j = 1, 2 do
7: Update ϕj with gradient descent using

∇ϕj

∑
(s,a,r,s′,i)

(
Qϕj ,mi

(s, a)− yi
)2

.

8: Update target networks with ϕ̄j ← ρϕ̄j + (1− ρ)ϕj .
9: Update θ with gradient ascent using

∇θ

∑
(s,a,r,s′,i)

(
1

2

2∑
i=1

Qϕj ,mi
(s, aθ,mi

)− α log πθ,mi
(a|s)

)
, a, aθ,mi

∼ πθ,mi
(·|s).

C Practical implementation of PIToD for Section 5 and Section 6481

In this section, we describe the practical implementation of PIToD. Specifically, we explain (i) the482
soft actor-critic (SAC) (Haarnoja et al., 2018b) version of PI with a mask, (ii) group mask, and (iii)483
key implementation decisions to improve learning. This practical implementation is used in our484
experiments (Section 5 and Section 6).485

(i) SAC version of PI with a mask. The SAC version of PI with masks is presented in Algorithm 3.
The mask is applied to the policy and Q-functions during policy evaluation (lines 5–8) and policy
improvement (line 9). For the policy evaluation, two Q-functions Qϕj

, where j ∈ {1, 2}, are updated
as:

ϕj ← ϕj

−∇ϕjEei=(s,a,r,s′,i)∼B, a′∼πθ,mi
(·|s′)

[(
r+ γ

(
min
j′=1,2

Qϕ̄j′ ,mi
(s′, a′)− α log πθ,mi(a

′|s′)
)

−Qϕj ,mi(s, a)

)2
]
.

(19)

This is a variant of Eq. 1 that uses clipped double Q-learning with two target Q-functions Qϕ̄j′ ,mi

and entropy bonus α log πθ,mi
(a′|s′). Additionally, for policy improvement, policy πθ is updated as

θ ← θ +∇θEei=(s,i)∼B, aθ,mi
,a∼πθ,mi

(·|s)

1

2

2∑
j=1

Qϕj ,mi
(s, aθ,mi

)− α log πθ,mi
(a|s)

 .

(20)

This is a variant of Eq. 2 that uses the entropy bonus.486

(ii) Group Mask. In our preliminary experiments, we found that the influence of a single expe-487
rience on performance was negligibly small. To examine more significant influences, we shifted488

20



Which Experiences Are Influential for RL Agents?

Figure 9: Network architectures for policy and Q-function. The policy network takes states as
inputs and outputs the parameters of the policy distribution (mean and variance for a Gaussian
distribution). The Q-function network takes state-action pairs as inputs and outputs Q-estimates.
These networks incorporate macro-block dropout and layer normalization. Macro-block dropout.
Our architecture utilizes an ensemble of 20 multi-layer perceptrons (MLPs), applying dropout with
masks (and flipped masks) to each MLP’s output. Layer normalization. Layer normalization is
applied after every activation (ReLU) layer in each MLP.

our focus from the influence of individual experiences to grouped experiences. To estimate the in-489
fluence of grouped experiences, we organize experiences into groups and assign a mask to each490
group. Specifically, we treated 5000 experiences as a single group. This grouping process was im-491
plemented by assigning a group identifier to each experience, calculated as i′′ ← ⌊i′/5000⌋ (line 3492
of Algorithm 3).493

(iii) Key implementation decisions to improve learning. In our preliminary experiments, we494
found that directly applying masks and flipped masks to dropping out the parameters of the policy495
and Q-function degrades learning performance. To address this issue, we implemented macro-block496
dropout and layer normalization (Figure 9). Macro-block dropout. Instead of applying dropout to497
individual parameters, we apply dropout at the block level. Specifically, we group several parameters498
into a “block” and apply dropout to these blocks. In our experiment, we used an ensemble of 20499
multi-layer perceptrons (MLPs) for the policy and Q-function, and treated each MLP’s parameters500
as a single block. Layer normalization. We applied layer normalization (Ba et al., 2016) after each501
activation (ReLU) layer. Recent works show that layer normalization improves learning in a wide502
range of RL settings (e.g., Hiraoka et al. (2022); Ball et al. (2023); Nauman et al. (2024)).503

To evaluate the effect of our key implementation decisions, we compare four implementations of504
Algorithm 3:505

1. PIToD applies vanilla dropout with masks to each parameter of the policy and Q-function.506

2. PIToD+LN applies layer normalization to the policy and Q-function.507

3. PIToD+MD applies macro-block dropout to the policy and Q-function.508

4. PIToD+LN+MD applies layer normalization and macro-block dropout to the policy and Q-509
function.510

These implementations are compared based on the empirical returns obtained in test episodes.511

The comparison results (Figure 10) indicate that the implementation with our key decisions512
(PIToD+LN+MD) achieves the highest returns in each environment.513

21



Under review for RLC 2025, to be published in RLJ 2025

0 25 50 75 100 125
epoch

0

1

2

3

re
tu

rn

1e3 Hopper-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3 Walker2d-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

4

2

0

2

4

6

re
tu

rn

1e3 Ant-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

1

2

3

4

re
tu

rn

1e3 Humanoid-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

Figure 10: Ablation study results. The vertical axis represents returns, and the horizontal axis rep-
resents epochs. In each environment, the implementation with our key decisions (PIToD+LN+MD)
achieves the highest returns.

22



Which Experiences Are Influential for RL Agents?

D Algorithm for amending policy and Q-function used in Section 6514

Algorithm 4 Amendment of policy and Q-function using influence estimates. Lines 5–7 are for
policy amendment. Lines 8–10 are for Q-function amendment.

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B. Set the
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Execute environment interaction, store experiences, and perform policy iteration as per lines

3–6 of Algorithm 2.
4: if i′%Iie = 0 then
5: Identify w∗ for policy as follows:

w∗ = arg max
wi

Lret (πθ,wi)− Lret (πθ) .

6: if Lret (πθ,w∗)− Lret (πθ) > 0 then
7: Evaluate the return of the amended policy Lret (πθ,w∗).
8: Identify w∗ for Q-function as follows:

w∗ = arg min
wi

Lbias (Qϕ,wi)− Lbias (Qϕ) .

9: if Lbias (Qϕ,w∗)− Lbias (Qϕ) < 0 then
10: Evaluate the Q-estimation bias of the amended Q-function Lbias (Qϕ,w∗).

23



Under review for RLC 2025, to be published in RLJ 2025

E Supplementary experimental results for Section 6515

0 100 200 300
epoch

0

2

4

6

re
tu

rn
1e3

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.0

0.5

1.0

1.5

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 11: Results of policy amendments (left) and Q-function amendments (right) for all ten tri-
als. The solid lines represent the post-amendment performances: return for the policy (left; i.e.,
Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the pre-
amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

3.0

2.5

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

3.0

2.5

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

(a) Distribution of influence on return (Eq. 12).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

0

2

4

6

8

In
flu

en
ce

×10 2

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

1

0

1

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

3

2

1

0

1

2

3

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 13).

Figure 12: Distribution of influence on return and Q-estimation bias for all ten trials. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences
to 1.0 for the most recent experiences. The horizontal axis represents the number of epochs. The
color bar represents the value of influence.

24



Which Experiences Are Influential for RL Agents?

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

en
vi

ro
nm

en
t i

nt
er

ac
tio

n

1e6
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 13: The number of environment interactions required for policy amendments in Section 6.

25



Under review for RLC 2025, to be published in RLJ 2025

F Analysis of the correlation between the influences of experiences516

In Sections 5 and 6, we estimated the influences of experiences on performance (e.g., return or Q-517
estimation bias). In Appendix B, we discussed how the dropout rate of masks elements relates to the518
overlap between the masks. In this section, we analyze two points: (i) the correlation between the519
influences of experiences within each performance metric, and (ii) how the dropout rate of masks520
affects this correlation 4.521

We calculate the correlation between the experience influences for each performance metric used522
in Sections 5 and 6. In these sections, we estimated the influences of experiences on policy evalu-523
ation (Lpe,i), policy improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias). We treat the524
influences of experiences on each metric at each epoch as a vector of random variables, where each525
element represents the influence of a single experience. We calculate the Pearson correlation be-526
tween these elements. The influence values observed in the ten learning trials are used as samples.527
In the following discussion, we focus on the average value of the correlations between the pairs of528
vector elements.529

(i) The correlation between the influences of experiences. The correlation between the influences530
of experiences is shown in Figure 14. The figure shows that the correlation tends to approach zero531
as the number of epochs increases. For return and bias, the correlation converges to zero early in532
the learning process, regardless of the environments. For policy evaluation and improvement, the533
degree of correlation convergence varies significantly across environments.

0 100 200 300
epoch

2

0

2

4

av
er

ag
e 

co
rre

la
tio

n

1e 1 policy evaluation
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

1

0

1

2

3

4

av
er

ag
e 

co
rre

la
tio

n

1e 1 policy improvement
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

co
rre

la
tio

n

return
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

co
rre

la
tio

n

bias
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 14: Correlation between the influences of experiences on policy evaluation (Lpe,i), policy
improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias) for each epoch in each environment.
The vertical axis represents the average correlation of experience influences, ranging from -1.0 to
1.0. The horizontal axis represents the number of epochs.

534

(ii) The relationship between the correlation and the dropout rate. We evaluated the correlations535
between the influences of experiences by varying the dropout rate of the masks. Specifically, we536
evaluated the correlations using PIToD with four different dropout rates:537
DR0.5: PIToD with a dropout rate of 0.5, which is the setting used in the main experiments of this538
paper.539
DR0.25: PIToD with a dropout rate of 0.25.540
DR0.1: PIToD with a dropout rate of 0.1.541
DR0.05: PIToD with a dropout rate of 0.05.542
The correlations for these cases in the Hopper environment are shown in Figure 15. The results543
imply that the impact of the dropout rate on the correlation depends significantly on the specific544
performance metric. For instance, we do not observe a significant impact of the dropout rate in545
policy evaluation or policy improvement. In contrast, for return, we observe that the correlation546
increases as the dropout rate decreases.547

4Note that we focus on analyzing the correlation independently for each performance metric and do not examine correla-
tions across different metrics.

26



Which Experiences Are Influential for RL Agents?

0 25 50 75 100 125
epoch

1

0

1

2

3

av
er

ag
e 

co
rre

la
tio

n

1e 1 policy evaluation
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e 

co
rre

la
tio

n

1e 1 policy improvement
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

co
rre

la
tio

n

return
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

co
rre

la
tio

n

bias
DR0.5
DR0.25
DR0.1
DR0.05

Figure 15: Correlation between the influences of experiences at each epoch in the Hopper environ-
ment. The vertical axis represents the average correlation of experience influences. The horizontal
axis represents the number of learning epochs. Each label in the legend corresponds to a dropout
rate for masks. For example, “DR0.5” means a dropout rate of 0.5 (half of the elements in each
mask are set to zero), and “DR0.1” means a dropout rate of 0.1 (10% of the elements in each mask
are set to zero).

27



Under review for RLC 2025, to be published in RLJ 2025

G Amending policies and Q-functions in DM control environments with548

adversarial experiences549

In Section 6, we applied PIToD to amend policies and Q-functions in the MuJoCo (Todorov et al.,550
2012) environments.551

In this section, we apply PIToD to amend policies and Q-functions in DM control (Tunyasuvunakool552
et al., 2020) environments with adversarial experiences. We focus on the DM control environments:553
finger-turn_hard, hopper-stand, hopper-hop, fish-swim, cheetah-run, quadruped-run, humanoid-run,554
and humanoid-stand. In these environments, we introduce adversarial experiences. An adversarial555
experience contains an adversarial reward r′, which is a reversed and magnified version of the orig-556
inal reward r: r′ = −100 · r. These adversarial experiences are designed to (i) disrupt the agent’s557
ability to maximize original rewards and (ii) have greater influence than other non-adversarial ex-558
periences stored in the replay buffer. At 150 epochs (i.e., in the middle of training), the RL agent559
encounters 5000 adversarial experiences. In these environments, we amend policies and Q-functions560
as in Section 6.561

The results of the policy and Q-function amendments (Figures 16 and 17) show that performance562
is improved by the amendments. The policy amendment results (Figure 16) show that returns are563
improved, particularly in fish-swim. Additionally, the Q-function amendment results (Figure 17)564
show that the Q-estimation bias is significantly reduced in finger-turn_hard, hopper-stand, hopper-565
hop, fish-swim, cheetah-run, and quadruped-run.

0 100 200 300
epoch

0

2

4

6

8

re
tu

rn

1e2
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e2
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 16: Results of policy amendments in DM control environments with adversarial experiences.
The solid lines represent the post-amendment return for the policy (i.e., Lret(πθ,w∗)). The dashed
lines show the pre-amendment return (i.e., Lret(πθ)).

566

Can PIToD identify adversarial experiences? PIToD identifies adversarial experiences as (i)567
strongly influential experiences for policy evaluation and (ii) positively influential experiences for568
Q-estimation bias. Policy evaluation: Figure 18 shows the distribution of influences on policy569
evaluation. We observe that adversarial experiences have a strong influence (highlighted in lighter570
colors), except in humanoid-run. Q-estimation bias: Figure 19 shows the distribution of influences571
on Q-estimation bias. Interestingly, we observe that adversarial experiences have a strong positive572
influence (highlighted in lighter colors). Namely, these adversarial experiences contribute to reduc-573
ing Q-estimation bias. However, after introducing adversarial experiences (i.e., after epoch 150),574
we also observe experiences with a negative influence. We hypothesize that adversarial experiences575
hinder the learning from other experiences.576

28



Which Experiences Are Influential for RL Agents?

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

bi
as

1e1
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0.0

0.2

0.4

0.6

0.8

1.0

bi
as

1e2
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 17: Results of Q-function amendments in DM control environments with adversarial expe-
riences. The solid lines represent the post-amendment bias for the Q-function (i.e., Lbias(Qϕ,w∗)).
The dashed lines show the pre-amendment bias (i.e., Lbias(Qϕ)).

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 finger-turn_hard

1

2

3

4

5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-stand

0.2

0.4

0.6

0.8

1.0

1.2
In

flu
en

ce
×106

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 hopper-hop

2

4

6

8

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 fish-swim

0.5

1.0

1.5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 cheetah-run

0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 quadruped-run

0.5

1.0

1.5

2.0

2.5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-stand

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-run

0.00

0.25

0.50

0.75

1.00

1.25

In
flu

en
ce

×105

Figure 18: Distribution of influence on policy evaluation (Eq. 8) in DM control environments with
adversarial experiences.

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 finger-turn_hard

0

2

4

6

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-stand

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-hop

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 fish-swim

0.00

0.25

0.50

0.75

1.00

1.25

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 cheetah-run

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 quadruped-run

0.5

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-stand

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×10 1

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-run

0

1

2

3

In
flu

en
ce

×10 2

Figure 19: Distribution of influence on Q-estimation bias (Eq. 13) in DM control environments with
adversarial experiences.

29



Under review for RLC 2025, to be published in RLJ 2025

G.1 Additional experimental in DM control environments with adversarial experiences577

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 finger-turn_hard

3

2

1

0

1

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-stand

1.25

1.00

0.75

0.50

0.25

0.00

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-hop

3

2

1

0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 fish-swim

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 cheetah-run

8

6

4

2

0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 quadruped-run

3

2

1

0

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-stand

6

4

2

0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-run

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

Figure 20: Distribution of influence on policy improvement (Eq. 10) in DM control environments
with adversarial experiences.

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 finger-turn_hard

3

2

1

0

1

2

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-stand

4

3

2

1

0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 hopper-hop

1.0

0.8

0.6

0.4

0.2

0.0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 fish-swim

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 cheetah-run

3

2

1

0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 quadruped-run

3

2

1

0

1

2

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 humanoid-stand

2.5

2.0

1.5

1.0

0.5

0.0
In

flu
en

ce
×102

0 100 200 300
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 humanoid-run

5

4

3

2

1

0

In
flu

en
ce

×101

Figure 21: Distribution of influence on return (Eq. 12) in DM control environments with adversarial
experiences.

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 22: The ratio of experiences for which PIToD correctly estimated influence on policy evalu-
ation (Eq. 8).

30



Which Experiences Are Influential for RL Agents?

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio

policy improvement

finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 23: The ratio of experiences for which PIToD correctly estimated influence on policy im-
provement (Eq. 10).

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

tim
e 

(in
 se

co
nd

s)

1e7
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

tim
e 

(in
 se

co
nd

s)
1e7

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 24: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO.

0 100 200 300
epoch

0

2

4

6

tim
e 

(in
 se

co
nd

s)

1e4
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0

2

4

6

tim
e 

(in
 se

co
nd

s)

1e4
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 25: Wall-clock time required for influence estimation by PIToD.

31



Under review for RLC 2025, to be published in RLJ 2025

H Amending the policies and Q-functions of DroQ and Reset agents578

In Section 6, we amended the SAC agent using PIToD. In this section, we apply PIToD to amend579
other RL agents.580

We evaluate two PIToD implementations: DroQToD and ResetToD.581
DroQToD is a PIToD implementation based on DroQ (Hiraoka et al., 2022). DroQ is the SAC582
variant that applies dropout and layer normalization to the Q-function. DroQToD differs from the583
original PIToD implementation (Appendix C) in that it has a dropout layer after each weight layer584
in the Q-function. The dropout rate is set to 0.01 as in Hiraoka et al. (2022). Layer normalization585
is already included in the Q-function of the original PIToD implementation; thus, no additional586
changes are made to it.587
ResetToD is a PIToD implementation based on the periodic reset (Nikishin et al., 2022; D’Oro588
et al., 2023) of the Q-function and policy parameters. ResetToD differs from the original PIToD589
implementation in that it resets the parameters of the Q-function and policy every 105 steps.590

The policies and Q-functions of these implementations are amended as in Section 6 (i.e., the amend-591
ment process follows Algorithm 4 in Appendix D).592

The results of the policy and Q-function amendments (Figures 26 and 27) show that the performance593
of both DroQToD and ResetToD is significantly improved after the amendments. Return: For594
DroQToD, the return is significantly improved after amendment, especially in Hopper (the left side595
of Figure 26). For ResetToD, the return is significantly improved across all environments (the left596
side of Figure 27). Q-estimation bias: For DroQToD, the estimation bias is significantly reduced597
after amendment, especially in Humanoid (the right side of Figure 26). For ResetToD, the estimation598
bias is reduced in the early stages of training (epochs 0–10) in Ant and Walker2d (the right side of599
Figure 27).

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

4

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 26: Results of policy amendments (left) and Q-function amendments (right) for DroQToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

600

What experiences negatively influence Q-function or policy performance in the case of DroQToD?601
Regarding Q-function performance, older experiences negatively influence Q-estimation bias in the602
early stages of training (the lower part of Figure 31 in Appendix H.1). Regarding policy perfor-603
mance, some experiences negatively influencing returns are associated with wobbly movements.604
An example of such experiences in the Humanoid environment is shown in the video “DroQToD-605
Humanoid.mp4,” which is included in the supplementary material.606

32



Which Experiences Are Influential for RL Agents?

0 100 200 300
epoch

0

1

2

3

4

5

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.00

0.25

0.50

0.75

1.00

1.25

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 27: Results of policy amendments (left) and Q-function amendments (right) for ResetToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

33



Under review for RLC 2025, to be published in RLJ 2025

H.1 Additional experimental results for DroQToD607

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 28: The ratio of experiences for which DroQToD correctly estimated self-influence.

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

0.5

1.0

1.5

2.0

2.5

3.0

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

0.2

0.4

0.6

0.8

1.0
In

flu
en

ce
×105

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Ant-v2

0.0

0.5

1.0

1.5

2.0

2.5

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

0

1

2

3

In
flu

en
ce

×105

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

8

6

4

2

0

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

4

2

0

2

4
In

flu
en

ce

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Humanoid-v2

3

2

1

0

In
flu

en
ce

×101

(b) Distribution of self-influence on policy improvement (Eq. 10).

Figure 29: Distribution of self-influence on policy evaluation and policy improvement.

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

4

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 30: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.

34



Which Experiences Are Influential for RL Agents?

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

2.5

2.0

1.5

1.0

0.5

0.0

0.5
In

flu
en

ce
×103

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Ant-v2

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

2.5

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

(a) Distribution of influence on return (Eq. 12).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

0

2

4

6

8

In
flu

en
ce

×10 2

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

4

2

0

2

4

6
In

flu
en

ce

×10 1

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Humanoid-v2

1.0

0.5

0.0

0.5

1.0

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 13).

Figure 31: Distribution of influence on return and Q-estimation bias for all ten trials.

35



Under review for RLC 2025, to be published in RLJ 2025

H.2 Additional experimental results for ResetToD608

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 32: The ratio of experiences for which ResetToD correctly estimated self-influence.

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

1

2

3

4

5

6

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

0

2

4

6

8
In

flu
en

ce
×105

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Ant-v2

0

1

2

3

4

5

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

0

1

2

3

4

5

In
flu

en
ce

×105

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

6

4

2

0

2

4

6

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

1

0

1

2

3

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

6

4

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Humanoid-v2

3

2

1

0

In
flu

en
ce

×101

(b) Distribution of self-influence on policy improvement (Eq. 10).

Figure 33: Distribution of self-influence on policy evaluation and policy improvement.

0 100 200 300
epoch

0

1

2

3

4

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

2

0

2

4

6

8

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 34: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.

36



Which Experiences Are Influential for RL Agents?

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5
In

flu
en

ce
×103

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Ant-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Humanoid-v2

8

6

4

2

0

In
flu

en
ce

×102

(a) Distribution of influence on return (Eq. 12).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Hopper-v2

0.5

0.0

0.5

1.0

1.5

In
flu

en
ce

×10 1

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Walker2d-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d 
ex

pe
rie

nc
e 

in
de

x 1e 1 Ant-v2

1.5

1.0

0.5

0.0

0.5

1.0
In

flu
en

ce

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d 

ex
pe

rie
nc

e 
in

de
x 1e 1 Humanoid-v2

1.0

0.5

0.0

0.5

1.0

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 13).

Figure 35: Distribution of influence on return and Q-estimation bias for all ten trials.

37



Under review for RLC 2025, to be published in RLJ 2025

I Limitations and future work609

Influence on exploration in RL algorithms. In this paper, we do not consider the influence of610
removing experiences on the exploration process of RL algorithms (i.e., line 3 in Algorithm 2).611
Considering such an influence would be an interesting direction for future research.612

Refining implementation decisions for PIToD. PIToD employs a dropout rate of 0.5 (Section 4613
and Appendix B), which often leads to degradation in learning performance. To mitigate this issue,614
we have considered various design choices in the implementation of PIToD (Appendix C). However,615
further refinement may still be necessary to improve the practicality of PIToD.616

Overlap of experience masks. PIToD assigns each experience a randomly generated binary mask617
(Section 4). When there is significant overlap between the elements of masks, applying the flipped618
mask to delete the influence of a specific experience also deletes the influence of other experiences.619
For example, if the masks mi and mi′ corresponding to the experiences ei and ei′ have a 100% over-620
lap, applying the flipped mask wi completely deletes the influence of both ei and ei′ . Additionally,621
significant overlap between masks may hinder the fulfillment of Assumption 1 and thus compromise622
the theoretical property derived in Section A. We set the dropout rate of the mask elements to mini-623
mize this overlap, but a 50% overlap can still occur (Appendix B). Developing practical methods to624
reduce mask overlap across experiences would be an important direction for future work.625

Invasiveness of PIToD. PIToD introduces invasive changes to the base PI method (e.g., DDPG or626
SAC) to equip it with efficient influence estimation capabilities (Section 4). Specifically, PIToD627
incorporates turn-over dropout, which may affect the learning outcomes of the base PI method.628
Consequently, PIToD may not be suitable for estimating the influence of experiences on the original629
learning outcomes of the base PI method. One direction for future work is to explore non-invasive630
influence estimation methods.631

Exploring surrogate evaluation metrics for amendments. To amend RL agents in Section 6,632
we used the return-based evaluation metric Lret, which requires additional environment interactions633
for evaluation. In our case, evaluating Lret required as many as 3 · 106 interactions (Figure 13 in634
Appendix E). These additional interactions may become a bottleneck in settings where interacting635
with environments is costly (e.g., real-world or slow simulator environments). Exploring surrogate636
evaluation metrics that do not require additional interactions is an interesting research direction.637

Exploring broader applications of PIToD. In this paper, we applied PIToD to amend RL agents638
in single-task RL settings (Section 6, Appendix G, and Appendix H). However, we believe that the639
potential applications of PIToD extend beyond single-task RL settings. For instance, it could be640
applied to multi-task RL (Vithayathil Varghese & Mahmoud, 2020) (including multi-goal RL (Liu641
et al., 2022) or meta RL (Beck et al., 2023)), continual RL (Khetarpal et al., 2022), safe RL (Gu642
et al., 2022), offline RL (Levine et al., 2020), or multi-agent RL (Canese et al., 2021). Investigating643
the broader applicability of PIToD in these settings is a promising direction for future work. Addi-644
tionally, in this paper, we estimated the influence of experiences by assigning masks to experiences.645
We may also be able to estimate the influence of specific hyperparameter values by assigning masks646
to those values. Exploring such applications is another promising direction for future work.647

38



Which Experiences Are Influential for RL Agents?

J Computational resources used in experiments648

For our experiments in Section 5.2, we used a machine equipped with two Intel Xeon CPUs E5-649
2667 v4 and five NVIDIA Tesla K80 GPUs. For the experiments in Section G, we used a machine650
equipped with two Intel Xeon Gold 6148 CPUs and four NVIDIA V100 SXM2 GPUs.651

K Hyperparameter setting652

The hyperparameter setting for our experiments (Sections 5 and 6) is described in Table 1. We set653
different values of Iie in Sections 5 and 6. In Section 5, we use computationally lighter implementa-654
tions of evaluation metric L (i.e., Lpe,i and Lpi,i), which allows us to perform influence estimation655
more frequently; thus, we set a value of 5000 for Iie. On the other hand, in Section 6, we use heavier656
implementations of L (i.e., Lret and Lbias), and thus set a value of 50000 for Iie.

Table 1: Hyperparameter settings

Parameter Value
optimizer Adam (Kingma & Ba, 2015)
learning rate 0.0003
discount rate γ 0.99
target-smoothing coefficient ρ 0.005
replay buffer size 2 · 106
number of hidden layers for all networks 2
number of hidden units per layer 128
mini-batch size 256
random starting data 5000
replay (update-to-data) ratio 4
masking (dropout) rate 0.5
influence estimation interval Iie 5000 for Section 5 and 50000 for Section 6

657

39


