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ABSTRACT

Transfer learning is a fast developing paradigm for utilizing existing knowledge
from previous learning tasks to improve the performance of new ones. It has
enjoyed numerous empirical successes and inspired a growing number of theo-
retical studies. This paper addresses the feasibility issue of transfer learning. It
begins by establishing the necessary mathematical concepts and constructing a
mathematical framework for transfer learning. It then identifies and formulates the
three-step transfer learning procedure as an optimization problem, allowing for the
resolution of the feasibility issue. Importantly, it demonstrates that under certain
technical conditions, such as appropriate choice of loss functions and data sets, an
optimal procedure for transfer learning exists. This study of the feasibility issue
brings additional insights into various transfer learning problems. It sheds light
on the impact of feature augmentation on model performance, explores potential
extensions of domain adaptation, and examines the feasibility of efficient feature
extractor transfer in image classification.

1 INTRODUCTION

Transfer learning is a popular paradigm in machine learning. The basic idea of transfer learning is
simple: it is to leverage knowledge from a well-studied learning problem, known as the source task, to
enhance the performance of a new learning problem with similar features, known as the target task. In
deep learning applications with limited and relevant data, it has become standard practice to employ
transfer learning by utilizing large datasets (e.g., ImageNet) and their corresponding pre-trained
models (e.g., ResNet50). Transfer learning has demonstrated success across various fields, including
natural language processing (Ruder et al., 2019; Devlin et al., 2019; Sung et al., 2022), sentiment
analysis (Jiang & Zhai, 2007; Deng et al., 2013; Liu et al., 2019), computer vision (Deng et al., 2009;
Long et al., 2015; Ganin et al., 2016; Wang & Deng, 2018), activity recognition Cook et al. (2013);
Wang et al. (2018), medical data analysis (Zeng et al., 2019; Wang et al., 2022; Kim et al., 2022),
bio-informatics (Hwang & Kuang, 2010), finance (Leal et al., 2020; Rosenbaum & Zhang, 2021),
recommendation system (Pan et al., 2010; Yuan et al., 2019), and fraud detection (Lebichot et al.,
2020). (For further insights, refer to various review papers such as Pan & Yang (2010); Tan et al.
(2018); Zhuang et al. (2020)). Transfer learning remains a versatile and enduring paradigm in the
rapidly evolving AI landscape, where new machine learning techniques and tools emerge at a rapid
pace.

Given the empirical successes of transfer learning, there is a growing body of theoretical work
focused on transfer learning, particularly transferability. For instance, transferability in the domain
adaptation setting is often quantified by measuring the similarity between the source and target
domains using various divergences, including low-rank common information in Saenko et al. (2010),
KL-divergence in Ganin & Lempitsky (2015); Ganin et al. (2016); Tzeng et al. (2017), l2-distance in
Long et al. (2014), the optimal transportation cost in Courty et al. (2017), and the Renyi divergence
in Azizzadenesheli et al. (2019).

In classification tasks within the fine-tuning framework, transferability metrics and generalization
bounds are derived under different measurements, such as the VC-dimension of the hypothesis space
adopted in Blitzer et al. (2007), total variation distance in Ben-David et al. (2010), f -divergence in
Harremoës & Vajda (2011), Jensen-Shannon divergence in Zhao et al. (2019), H-score in Bao et al.
(2019), negative conditional entropy between labels in Tran et al. (2019), mutual information in Bu
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et al. (2020), X 2-divergence in Tong et al. (2021), Bhattacharyya class separability in Pándy et al.
(2022), and variations of optimal transport cost in Tan et al. (2021).

Recent research has aimed to design transferability metrics that encompass more general supervised
learning tasks and deep learning models. For example, Mousavi Kalan et al. (2020) studied transfer
learning with shallow layer neural networks and established the minimax generalization bound;
Nguyen et al. (2020) measured transferability by computing the negative cross-entropy of soft labels
generated by the pre-trained model. You et al. (2021) estimated transferability using the marginalized
likelihood of labeled target data, assuming the addition of a linear classifier on top of the pre-trained
deep learning model. Huang et al. (2022) introduced TransRate, a computationally-efficient and
optimization-free transferability measure. Nguyen et al. (2022) bounded the transfer accuracy of a
deep learning model using a quantity called the majority predictor accuracy. Additionally, theoretical
bounds for transfer learning in the context of representation learning Tripuraneni et al. (2020) and
few-shot learning Galanti et al. (2022) have also been explored.

Given the advancements made in both empirical and theoretical aspects of transfer learning, it is
imperative that we address another fundamental issue: the feasibility of transfer learning.

Understanding the feasibility of transfer learning helps make informed decisions about when and
how to apply transfer learning techniques. It also guides the development of appropriate algorithms,
methodologies, and frameworks for effective knowledge transfer. By establishing the feasibility of
transfer learning, we can unlock its potential for enhancing model performance, accelerating learning
processes, and addressing data limitations in various real-world applications.

Our work. This paper addresses the feasibility issue of transfer learning through several steps. It
begins by establishing the necessary mathematical concepts, and then constructs a comprehensive
mathematical framework. This framework encompasses the general procedure of transfer learning by
identifying its three key steps and components. Next, it formulates the three-step transfer learning
procedure as an optimization problem, allowing for the resolution of the feasibility issue. Importantly,
it demonstrates that under appropriate technical conditions, such as the choice of proper loss functions
and compact data sets, an optimal procedure for transfer learning exists.

Furthermore, this study of the feasibility issue brings additional insights into various transfer learning
problems. It sheds light on the impact of feature augmentation on model performance, explores
potential extensions of domain adaptation, and examines the feasibility of efficient feature extractor
transfer in the context of image classification.

2 MATHEMATICAL FRAMEWORK OF TRANSFER LEARNING

In this section, we will introduce necessary concepts and establish a mathematical framework for the
entire procedure of transfer learning. For ease of exposition and without loss of generality, we will
primarily focus on a supervised setting involving a source task S and a target task T on a probability
space (Ω,F ,P).

To motivate the mathematical concepts and framework, we begin by revisiting some transfer problems.

2.1 EXAMPLES OF TRANSFER LEARNING

Domain adaption. This particular class of transfer learning problems is also known as covariate
shift Saenko et al. (2010); Long et al. (2014); Ganin & Lempitsky (2015); Ganin et al. (2016); Courty
et al. (2017); Tzeng et al. (2017); Azizzadenesheli et al. (2019). In domain adaptation, the crucial
assumption is that the relation between input and output remain the same for both the source and
the target tasks. As a result, the focus is to capture the difference between source and target inputs.
Mathematically, this assumption implies that once the conditional distribution of the output variable
given the input variable is learned from the source task, it suffices to derive an appropriate input
transport mapping that aligns the distribution of the target inputs with that of the source inputs. This
perspective, often referred to as the "optimal transport" view of transfer learning, has been extensively
studied by Flamary et al. Courty et al. (2017).
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Image classification. This popular class of problems in transfer learning Tran et al. (2019); Bao
et al. (2019); Tan et al. (2021); You et al. (2021); Huang et al. (2022) is typically addressed using a
neural network approach. In this approach, the neural network structure comprises a feature extractor
module, followed by a final classifier layer. Relevant studies, such as Bao et al. (2019) and Tan et al.
(2021), often adopt this architecture. In this setup, only the last few layers of the model are retrained
when solving the target task, while the feature extraction layers derived from the source task are
directly utilized. This approach allows for leveraging the learned representations from the source
task, optimizing the model specifically for the target task.

Large language model. This class of problem such as Devlin et al. (2019); Xia et al. (2022) serves
as a prominent testing ground for transfer learning techniques due to the scale of network models and
the complexity of the data involved. A widely used example is the BERT model Devlin et al. (2019),
which typically consists of neural networks with a substantial number of parameters, hence it usually
starts with pretraining the model over a large and generic dataset, followed by a fine-tuning process
for specific downstream tasks. Here, the pretraining process over generic datasets can be viewed as
solving for the source task, and the designated downstream tasks can be categorized as target tasks.
For instance, Xia et al. (2022) suggests a particular fining-tuning technique to better solve the target
tasks. This technique combines structure pruning with distillation: after pretraining a large language
model with multi-head self-attention layers and feed-forward layers, the study suggests applying
a structure pruning technique to each layer. This pruning process selects a simplified sub-model
specifically tailored for the designated downstream task. Subsequently, a distillation procedure
ensures the transfer of most relevant knowledge to the pruned sub-model.

2.2 MATHEMATICAL FRAMEWORK FOR TRANSFER LEARNING

Built on the intuition of the previous transfer learning problems, we will now establish the rigorous
mathematical framework of transfer learning, staring with fixing the notation for the source and the
target tasks.

2.2.1 SOURCE AND TARGET TASKS IN TRANSFER LEARNING

Target task T . In the target task T , we denote XT and YT as its input and output spaces, respectively,
and (XT , YT ) as a pair of XT × YT -valued random variables. Here, (XT , ∥ · ∥XT

) and (YT , ∥ · ∥YT
)

are Banach spaces with norms ∥ · ∥XT
and ∥ · ∥YT

, respectively. Let LT : YT × YT → R be a
real-valued function, and assume that the learning objective for the target task is

min
f∈AT

LT (fT ) = min
fT∈AT

E[LT (YT , fT (XT ))], (1)

where LT (fT ) is a loss function that measures a model fT : XT → YT for the target task T , and AT

denotes the set of target models such that

AT ⊂ {fT |fT : XT → YT }. (2)

Take the image classification task as an example, XT is a space containing images as high dimensional
vectors, YT is a space containing image labels, (XT , YT ) is a pair of random variables satisfying the
empirical distribution of target images and their corresponding labels, and LT is the cross-entropy loss
function between the actual label YT and the predicted label fT (XT ). For the image classification task
using neural networks, AT will depend on the neural network architecture as well as the constraints
applied to the network parameters.

Let f∗
T denote the optimizer for the optimization problem equation 1, and PT = Law(f∗

T (XT )) for
the probability distribution of its output. Then the model distribution PT depends on three factors:
LT , the conditional distribution Law(YT |XT ), and the marginal distribution Law(XT ). Note that
in direct learning, this optimizer f∗

T ∈ AT is solved directly by analyzing the optimization problem
equation 1, whereas in transfer learning, one leverages knowledge from the source task to facilitate
the search of f∗

T .

Source task S. In the source task S, we denote XS and YS as the input and output spaces of
the source task, respectively, and (XS , YS) as a pair of XS × YS-valued random variables. Here,
(XS , ∥ · ∥XS

) and (YS , ∥ · ∥YS
) are Banach spaces with norms ∥ · ∥XS

and ∥ · ∥YS
, respectively. Let
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LS : YS × YS → R be a real-valued function and let us assume that the learning objective for the
source task is

min
fS∈AS

LS(fS) = min
f∈AS

E[LS(YS , fS(XS))], (3)

where LS(fS) is the loss function for a model fS : XS → YS for the source task S. Here AS denotes
the set of source task models such that

AS ⊂ {fS |fS : XS → YS}. (4)

Moreover, denote the optimal solution for this optimization problem equation 3 as f∗
S , and the

probability distribution of the output of f∗
S by PS = Law(f∗

S(XS)). Meanwhile, similar as the
target model, the model distribution PS will depend on the function LS , the conditional distribution
Law(YS |XS), and the marginal distribution Law(XS).

Back to the image classification example, the target task may only contain images of items in an office
environment, the source task may have more image samples from a richer dataset, e.g., ImageNet.
Meanwhile, XS and YS may have different dimensions compared with XT and YT , since the image
resolution and the class number vary from task to task. Similar to the admissible set AT in the target
task, AS depends on the task description, and f∗

S is usually a deep neural network with parameters
pretrained using the source data.

In transfer learning, the optimal model f∗
S for the source task is also referred to as a pretrained

model. The essence of transfer learning is to utilize this pretrained model f∗
S from the source task to

accomplish the optimization objective equation 1. We now define this procedure in three steps.

2.2.2 THREE-STEP TRANSFER LEARNING PROCEDURE

Step 1. Input transport. Since XT is not necessarily contained by the source input space XS , the
first step is therefore to make an appropriate adaptation to the target input XT ∈ XT . In the example
of image classification, popular choices for input transport may include resizing, cropping, rotation,
and grayscale. We define this adaptation as an input transport mapping.

Definition 1 (Input transport mapping). A function

TX ∈ {finput|finput : XT → XS} (5)

is called an input transport mapping with respect to the source and target task pair (S, T ) if it takes
any data point in the target input space XT and maps it into the source input space XS .

With an input transport mapping TX , the first step of transfer learning can be represented as follows.

XT ∋ XT
Step 1. Input transport by TX

7−−−−−−−−−−−−−−−→ TX(XT ) ∈ XS .

Recall that in domain adaption, it is assumed that the difference between the source input distribution
Law(XS) and target input distribution Law(XT ) is the only factor to motivate the transfer. Therefore,
once a proper input transport mapping TX is found, transfer learning is accomplished. Definition 1
is thus consistent with Courty et al. (2017), in which domain adaption is formulated as an optimal
transport from the target input to the source input.

For most transfer learning problems, however, one needs both a transport mapping for the input
and a transport mapping for the output. For instance, the labeling function for different classes of
computer vision tasks, such as object detection, instance segmentation, and image classification, can
vary greatly and depend on the specific task. Hence, the following two more steps are required.

Step 2. Applying pretrained model. After applying an input transport mapping TX to the target
input XT , the pretrained model f∗

S will take the transported data TX(XT ) ∈ XS as an input. That is,

XS ∋ TX(XT )
Step 2. Apply f∗

S7−−−−−−−−−→ (f∗
S ◦ TX)(XT ) ∈ YS ,

where (f∗
S ◦ TX)(XT ) denotes the corresponding output of the pretrained model f∗

S . Note here the
composed function f∗

S ◦ TX ∈ {fint|fint : XT → YS}.
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Step 3. Output transport. After utilizing the pretrained model f∗
S , the resulting model f∗

S ◦ TX ∈
{fint|fint : XT → YS} may still be inadequate for the target model: one may need to map the
YS-valued output into the target output space YT and in many cases such as image classification
or large language models, YS and YT do not necessarily coincide. Besides, more fine-tuning steps
are needed for problems other than domain adaptation. Hence, it is necessary to define an output
transport mapping to map an intermediate model from {fint|fint : XT → YS} to a target model in
AT .
Definition 2 (Output transport mapping). A function

TY ∈ {foutput|foutput : XT × YS → YT } (6)

is called an output transport mapping with respect to the source and target task pair (S, T ) if, for
an optimal source model f∗

S : XS → YS and an input transport mapping TX as in Definition 1, the
composed function TY (·, f∗

S ◦ TX(·)) ∈ AT .

This output transport mapping can be further tailored to adapt to more complex models; see, for
instance, the discussion of large language models in Section 2.3. Many popular applications of
transfer learning contain an output mapping component as in Definition 2. Take the aforementioned
image classification in Section 2.1: after adopting the feature extractor f∗

S obtained from the source
task, an additional classifier layer is attached after the module of f∗

S in the network structure and
will be fine-tuned for the target task. This classifier layer takes the exact role of the output transport
mapping.

Now, this third and the final step in transfer learning can be expressed as

XT × YS ∋ (XT , (f
∗
S ◦ TX)(XT ))

Step 3. Output transport by TY

7−−−−−−−−−−−−−−−−→ TY
(
XT , (f

∗
S ◦ TX)(XT )

)
∈ YT .

Combining these three steps, transfer learning can be presented by the following diagram,

XS ∋ XS
Pretrained model f∗

S from equation 3
======================⇒ f∗

S(XS) ∈ YS

TX
~ww ww�TY

XT ∋ XT
Direct learning equation 1− − − − − − − − − − →

f∗
T∈argminf∈AT

LT (fT )
f∗
T (XT ) ∈ YT

(7)

In summary, transfer learning aims to find an appropriate pair of input and output transport mappings
TX and TY , where the input transport mapping TX translates the target input XT back to the source
input space XS in order to utilize the optimal source model f∗

S , and the output transport mapping TY

transforms a YS-valued model to a YT -valued model. This is in contrast to the direct learning, where
the optimal model f∗

T is derived by solving the optimization problem in the target task equation 1. In
other words, transfer learning is the following optimization problem.
Definition 3 (Transfer learning). The three-step transfer learning procedure presented in equation 7
is to solve the optimization problem

min
TX∈TX ,TY ∈TY

LT

(
TY (·, (f∗

S ◦ TX)(·))
)
:= min

TX∈TX ,TY ∈TY
E
[
LT

(
YT , T

Y (XT , (f
∗
S ◦ TX)(XT ))

)]
.

(8)

Here, TX and TY are proper sets of transport mappings such that{
TY (·, (f∗

S ◦ TX)(·))|TX ∈ TX , TY ∈ TY
}
⊂ AT .

In particular, when XS = XT (resp. YS = YT ), the identity mapping idX(x) = x (resp. idY (x, y) =
y) is included in TX (resp. TY ).

Let us reexamine the aforementioned examples of transfer learning, from this new optimization
perspective.

2.3 EXAMPLES OF TRANSFER LEARNING THROUGH THE LENS OF OPTIMIZATION

Domain adaption. Here we define the family of admissible output transport mappings as TY =
{idY}, where idY denotes the identity mapping on Y; define the family of admissible input transport
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mappings as TX = {TX : XT → XS |TX is one-to-one}. When the output variables for both the
source and the target tasks coincide such that YS = YY = Y , and when the loss functions for both
tasks take the same form such that LS = LT = L : Y × Y → R, then T ∗X is the optimal solution to
the optimization problem equation 8 taking a particular form of

min
TX∈TX

E[L(Y, f∗
S(T

X(XT )))]. (9)

Moreover, it can be shown that the optimal source model and optimal target model satisfy the relation
f∗
T = f∗

S ◦ TX,∗, where

f∗
S := argmin

fS :XS→Y
E[L(Y, fS(XS))], f∗

T := argmin
fT :XT→Y

E[L(Y, fT (XT ))].

That is, solving the transfer learning problem is reduced to finding an optimal input transport mapping
TX,∗, given the pre-trained model f∗

S . This is exactly domain adaptation.

Image classification. For this class of problems, we take the transfer learning problem over a
benchmark dataset, the Office-31 Saenko et al. (2010), as an example. This dataset consists of images
from three domains: Amazon (A), Webcam (W), and DSLR (D), containing 4110 images of 31
categories of objects in an office environment.

Here, the source task S can be chosen from any of three domains (A, D, or W), where all input
images are first resized into dimension 3× 244× 244, that is, XS ⊂ R3×244×244 being the space of
resized image samples from the source domain, and

YS = ∆31 := {p ∈ R31 :

31∑
1

pi = 1, pi ≥ 0,∀1 ≤ i ≤ 31}

being the space of image class labels. Since the purpose of solving this source task is to derive the
feature extractor module implemented as a ResNet50 network structure in Figure 1, we define the
effective source output space as the feature space, YS ⊂ R2048. For any target task T (A, D, or W)
different from that of S,

XT = XS ⊂ R3×244×244

is the space of resized image samples from the target domain, and the output space is set to be
YT = YS = ∆31. For both the source and the target tasks, the loss function LS = LT is chosen to
be the cross entropy between the actual label and the predicted label.

Figure 1: Illustration of input transport TX , pretrained model f∗
S and output transport TY in the

Office-31 transfer learning task.

As introduced in Figure 1, the set of source models are given by

AS = {fNN ◦ fRes : XS → YS |fNN ∈ NN31
2048, fRes ∈ Res20483×244×244}.

Here Res20483×244×244 denotes all ResNet50 architectures with 3× 244× 244-dimensional input and
2048-dimensional output, and NN31

2048 denotes all two-layer neural networks which map a 2048-
dimensional feature vector to a 31-dimensional probability vector in YS . The source model f∗

Res,S
and f∗

NN,S is obtained by solving the source task optimization equation 3.
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To transfer the source task to the target task, the pretrained ResNet50 model f∗
Res,S will be fixed,

while the last two-layer classifier fNN ∈ NN31
2048 will be fine-tuned using part of the data from the

target domain (XT ,YT ). In this case, the input transport set TX is a singleton set whose element is
the identity mapping on R3×244×244, while the output transport mapping TY is a two-layer classifier
from the corresponding set TY given by

TY = {fNN|fNN ∈ NN31
2048}. (10)

Meanwhile, the set of admissible target models is given by

AT = {fNN ◦ f∗
Res,S : XT → YT |fNN ∈ NN31

2048}, (11)

and the transfer learning task is formulated as minTY ∈TY E
[
LT

(
YT , T

Y (XT )
)]

. Note the formula-
tion is slightly simpler than equation 8 because in this particular example, the output transport in TY

takes inputs from XT instead of XT × YS .

Large language models. Following the discussion in Section 2.1 on the large language models
such as in Xia et al. (2022), the combined operation of structure pruning and distillation can be
interpreted as an extended form of output transport mapping: it is an operator

TY : {fint|fint : XT → YS} → {fT |fT : XT → YT } (12)

such that for an optimal source model f∗
S : XS → YS and an input transport mapping TX as in

Definition 1, the output TY (f∗
S ◦ TX) ∈ AT . In these models, combining structure pruning and

distillation technique is shown to improve the performance of the pretrained model f∗
S : pruning

eliminates unnecessary parameters in the pretrained model, and the distillation filters out irrelevant
information with proper adjustment of model parameters. From Xia et al. (2022) we observe that
the design of the output transport mapping TY depends on the target input data and is tailored to the
specific input dataset.

3 FEASIBILITY OF TRANSFER LEARNING AS AN OPTIMIZATION PROBLEM

The above optimization reformulation of the three-step transfer learning procedure provides a unified
framework to analyze the impact and implications of various transfer learning techniques. In particulr,
it enables analyzing the feasibility of transfer learning. We show that under appropriate technical
conditions, there exists an optimal procedure for transfer learning, i.e., the pair of transport mappings
(TX,∗, TY,∗) for equation 8.

3.1 FEASIBILITY OF TRANSFER LEARNING

To facilitate the feasibility analysis, the following class of loss function LT is introduced.
Definition 4 (Proper loss function). Let (X,Y ) be a pair of XT × YT -valued random variables
with Law(XT , YT ) ∈ P(XT × YT ). A loss functional LT over AT is said to be proper with respect
to (X,Y ) if there exist a corresponding function LT : YT × YT → R bounded from below such
that for any f ∈ AT , LT (f) = E[LT (Y, f(X))] = E[E[LT (Y, f(X))|X]]; moreover, the function
L̃T : YT → R, given by L̃T (y) = E[LT (Y, Y

′)|Y ′ = y] for all y ∈ YT , is continuous.

Examples of proper loss functions include mean squared error and KL-divergence and more generally
the Bregman divergence Banerjee et al. (2005) given by

Dϕ(u, v) = ϕ(u)− ϕ(v)− ⟨u− v,∇ϕ(v)⟩ (13)

for some strictly convex and differentiable ϕ : Y → R, assuming that the first and second moments
of Y conditioned on Y ′ = y is continuous with respect to y.

Without loss of generality, we shall in this section assume the input transport set TX contains all
functions from XT to XS . We then specify the following assumptions for the well-definedness of
equation 8.
Assumption 1. 1. LT is a proper loss functional with respect to (XT , YT );

2. the image f∗
S(XS) is compact in (YS , ∥ · ∥YS

);
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3. the set TY ⊂ C(XT ;YT ) is such that the following set of functions

T̃Y = {T̃Y : XT → YT | ∃TY ∈ TY s.t. L̃T (T̃
Y (x)) = inf

y∈f∗
S(XS)

L̃T (T
Y (x, y)), ∀x ∈ XT }

is compact in ({f |f : XT → YT }, ∥ · ∥∞), where for any f : XT → YT , ∥f∥∞ :=
supx∈XT

∥f(x)∥YT
.

Popular choices of loss functions, such as mean squared error from the Bregman loss family, are
not only proper but also strongly convex, therefore the compactness assumptions can be removed.
Otherwise, compactness condition can be implemented by choosing a particular family of activation
functions or imposing boundaries restrictions to weights and biases when constructing machine
learning models.

Now we are ready to establish the following feasibility result.
Theorem 1. There exists an optimal solution (TX,∗, TY,∗) ∈ TX × TY for optimization problem
equation 8 under Assumption 1.

Proof of Theorem 1. Since LT is proper, there exists a function LT : YT × YT → R such that
inf(y,y′)∈YT×YT

LT (y, y
′) > −∞, and LT (T

Y (·, (f∗
S ◦ TX)(·))) = E[LT (YT , T

Y (XT , (f
∗
S ◦

TX)(XT )))] for all TX ∈ TX , TX ∈ TX . Therefore, for the function L̃T (·) = E[LT (Y, Y
′)|Y ′ =

·], there exists m ∈ R such that L̃T (y) ≥ m for any y ∈ YT .

Now fix any TY ∈ TY . The continuity of L̃T and the continuity of TY (x, ·) for each x ∈ XT

guarantee the continuity of L̃T (T
y(x, ·)). Together with the compactness of f∗

S(XS), we have that
for any x ∈ XT ,

Mx
TY := argmin

y∈f∗
S(XS)

L̃T (T
Y (x, y)) ̸= ∅. (14)

Therefore, for any TY ∈ TY and its corresponding T̃Y ∈ T̃Y , one can construct T̃X ∈ TX such that
f∗
S(T̃

X(x)) ∈ Mx
TY for any x ∈ XT and hence we have

min
TX∈TX

LT (T
Y (·, (f∗

S ◦ TX)(·))) = E[L̃T (T̃
Y (XT ))] =: L̃T (T̃

Y ).

The continuity of the new loss functional L̃T comes from the continuity of the function L̃, and the
particular choice of the function space ({f |f : XT → YT }, ∥ · ∥∞), where {f |f : XT → YT }
contains all functions from XT to YT . Since T̃Y is compact in ({f |f : XT → YT }, ∥ · ∥∞), the
minimum over T̃Y is attained at some T̃Y,∗. According to the definition of T̃Y , there exists TY,∗ ∈ TY

such that L̃T (T̃
Y,∗(·)) = infy∈f∗

S(XS) L̃TT
Y,∗(·, y). Let TX,∗ be the T̃X ∈ TX corresponding to

TY,∗. For any TX ∈ TX and TY ∈ TY , we have
LT (T

Y (·, (f∗
S ◦ TX)(·))) ≥ LT (T

Y (·, (f∗
S ◦ T̃X)(·))) = L̃T (T̃

Y (·)) ≥ L̃T (T̃
Y,∗(·))

= LT (T
Y,∗(·, (f∗

S ◦ TX,∗))(·)) ≥ min
TX∈TX ,TY ∈TY

LT

(
TY (·, (f∗

S ◦ TX)(·))
)
.

Therefore, the transfer learning problem equation 8 is well-defined and it attains its minimum at
(TX,∗, TY,∗) described above.

3.2 DISCUSSION

We now demonstrate that the feasibility analysis puts existing transfer learning studies on a firm
mathematical footing, including domain adaptation and image classification. Additionally, it provides
valuable insight for feature augmentation in particular, and expands the potential for improving model
performance in general.

Feasibility of domain adaption. Following the discussion on the domain adaption problem in
Section 2.3, the feasibility of the transfer learning framework equation 8 is clearly guaranteed: this is
attributed to the optimality of the pretrained model f∗

S inherited from the source optimization problem
and the existence of an optimal transport mapping TX,∗ from Law(XT ) to Law(XS).

Furthermore, for transfer learning problems not satisfying the usual premise of domain adaption, our
framework enables introducing an output transport mapping, which allows for the alignment of the
output distributions between the source and target tasks.

8
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Feasibility of image classification. Take the aforementioned classification problems in Section
2.3 as an example. In practice, cross-entropy loss is convex with respect to the predicted probability
vector, and the sigmoid activation function for the classifier layer ensures the the compactness
assumption on TY . For image data, XS is typically a compact subset of an Euclidean space and
therefore the image set for a continuous ResNet50 network is compact in the feature space. Hence
the feasibility result holds. Our feasibility analysis provides the flexibility of incorporating an input
transport mapping: it is feasible, and in fact beneficial for effectively utilizing the transferred feature
extractor as investigated in Wang et al. (2022).

Feasibility with feature augmentation. Feature augmentation refers to the process of expanding
the set of features used in a machine learning problem, which plays a significant role in improving
the performance and effectiveness of models Volpi et al. (2018); Chen et al. (2019); Li et al. (2021).
Importantly, transfer learning combined with feature augmentation can be integrated into the mathe-
matical framework presented in Definition 3, enabling the feasibility of feature augmentation to be
established accordingly. Specifically, in transfer learning with feature augmentation, we consider a
source task S with input and output variables X ∈ X and Y ∈ Y . The target task involves predicting
the same output Y from X along with an additional feature denoted by Z ∈ Z , with:

Source task: min
f :X→Y

E [Dϕ(Y, f(X))] , Target task: min
f :X×Z→Y

E [Dϕ(Y, f(X,Z))] . (15)

According to the feasibility result in Theorem 1, the loss functions in equation 15 can be selected as
the Bregman loss in equation 13.

Moreover, the following result shows that, under the special case of “redundant information", transfer
learning with feature augmentation can be solve explicitly by finding the appropriate input and output
transport mappings.
Corollary 1. Assume Y and Z are independent conditioned on X . The optimal input and output
transport mappings (TX , TY ) in the transfer learning optimization problem equation 8 under the
feature augmentation setting equation 15 is given by

TX(x, z) = ProjX (x, z) = x, and TY (y) = idY(y) = y.

Moreover, we have
Corollary 2. Let (TX,∗, TY,∗) be the optimal input and output transport mappings from solving the
transfer learning optimization problem equation 8 under the feature augmentation setting equation 15,
i.e.,

(TX,∗, TY,∗) = argmin
TX∈TX ,TY ∈TY

E
[
Dϕ

(
Y, TY (X,Z, (f∗

S ◦ TX)(X,Z))
)]

, (16)

where f∗
S = argminf :X→Y E [Dϕ(Y, f(X))] is the optimal pretrained model. Then,

E
[
Dϕ

(
Y, TY,∗(X,Z, (f∗

S ◦ TX,∗)(X,Z))
)]

≤ E [Dϕ(Y, f
∗
S(X))] . (17)

Proof of Corollary 1 and 2. First recall that under the Bregman loss, the optimal source and target
models in equation 15 are given by the conditional expectations f∗

S(X) = E[Y |X] and f∗
T (X,Z) =

E[Y |X,Z] (see Banerjee et al. (2005) for more details). Then, Corollary 1 follows from the fact that
when Y and Z are independent conditioned on X , E[Y |X] = E[Y |X,Z]. Moreover, notice that
ProjX ∈ TX and idY ∈ TY and Corollary 2 follows from the optimality of (TX,∗, TY,∗).

Corollary 1 suggests that if the added feature Z does not provide more relevant information compared
to the original feature X , transfer learning can be accomplished by discarding the additional feature
and directly applying the pretrained model. Moreover, Corollary 2 demonstrates that incorporating
additional information in transfer learning will not have any negative impact on model performance.
In other words, the inclusion of supplementary information through transfer learning can, at worst,
maintain the same level of model performance, and in general, can lead to performance improvement.

4 CONCLUSION

This paper establishes a mathematical framework for transfer learning, and resolves its feasibility
issue. This study opens up new avenues for enhancing model performance, expanding the scope of
transfer learning applications, and improving the efficiency of transfer learning techniques.
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