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ABSTRACT

Tool-augmented large language models (LLMs) may need to forget learned tools
due to security concerns, privacy restrictions, or deprecated tools. However, “tool
unlearning” has not been investigated in machine unlearning literature. We intro-
duce this novel task, which requires addressing distinct challenges compared to
traditional unlearning: knowledge removal rather than forgetting individual sam-
ples, the high cost of optimizing LLMs, and the need for principled evaluation
metrics. To bridge these gaps, we propose TOOLDELETE, the first approach for
unlearning tools from tool-augmented LLMs which implements three properties
for effective tool unlearning, and a new membership inference attack (MIA) model
for evaluation. Experiments on three tool learning datasets and tool-augmented
LLMs show that TOOLDELETE effectively unlearns both randomly selected and
category-specific tools, while preserving the LLM’s knowledge on non-deleted
tools and maintaining performance on general tasks1.

1 INTRODUCTION

Tool-augmented Large Language Models (LLMs) learn how to use external tools like calcula-
tors (Schick et al., 2023), Python interpretors (Gao et al., 2023), simulated API requests (Tang et al.,
2023), or other AI models (Patil et al., 2023) to complement their parametric knowledge and boost
their capability of solving more complex tasks (Schick et al., 2023; Patil et al., 2023). For example,
WebGPT (Nakano et al., 2021) is developed based on GPT-3 (Brown et al., 2020) and can use search
engines to access up-to-date information and boost GPT-3’s performance in question answering and
fact verification, particularly on recent events that happened after GPT-3 was trained.

Despite rapid advancements in tool-augmented LLMs, the ability to selectively unlearn tools has
not been investigated. In real-world applications, the need to forget learned tools is crucial for
reasons such as security, privacy, and model reliability. For example, if a tool-augmented LLM
retains knowledge on making insecure HTTP requests, it will cause significant security risks and
can become vulnerable to attacks2. The goal of this work is to address this gap in existing literature.

We introduce and formalize the novel task of Tool Unlearning, which aims to remove the ability
of using specific tools from a tool-augmented LLM while preserving its ability to use others tools
and perform general tasks such text generation. Ideally, an effective tool unlearning model should
behave as it had never learned the tools marked for unlearning. Tool unlearning differs from tradi-
tional sample-level unlearning as it focuses on removing “skills” or the ability to use specific tools,
rather than removing individual data samples from a model. In addition, success in tool unlearning
should be measured by the model’s ability to forget or retain tool-related skills, which differs from
traditional metrics like forgetting class probability. These differences are discussed in details in §3.

Tool unlearning has several challenges: it focuses on removing skills and existing unlearning meth-
ods are not fundamentally designed for tool removal; similar to sample-level unlearning, in tool
unlearning, modifying the parameters of LLMs is essential but computationally expensive and may
lead to unforeseen behaviors (Cohen et al., 2024; Gu et al., 2024); and existing membership infer-
ence attack (MIA) techniques, a common evaluation method in machine unlearning which aims to
determine whether specific data samples were used during training, are unsuitable for evaluating
tool unlearning, as they focus on sample-level data rather than tool-based knowledge.

1Our code will be published upon acceptance.
2https://datatracker.ietf.org/doc/html/rfc7807
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To address these challenges, we propose TOOLDELETE, the first tool unlearning algorithm for tool-
augmented LLMs, which satisfies three key properties for effective tool unlearning: tool knowledge
removal, which focuses on removing any knowledge gained on tools marked for unlearning; tool
knowledge retention, which focuses on preserving the knowledge gained on other remaining tools;
and general utility preservation, which applies task arithmetic (Ilharco et al., 2023; Barbulescu &
Triantafillou, 2024) to maintain LLM’s capability on a range of general tasks like text and code
generation. In addition, we develop LiRA-Tool, an adaptation of the Likelihood Ratio Attack
(LiRA) (Carlini et al., 2022) to tool unlearning, which enables us to assess whether tool-related
knowledge has been unlearned.

Our contributions are:
• introducing and conceptualizing tool unlearning for tool-augmented LLMs,
• TOOLDELETE, which implements three key properties for effective tool unlearning;
• LiRA-Tool, which is the first membership inference attack (MIA) for tool unlearning.

Experiments on three datasets and tool-augmented LLMs show that TOOLDELETE outperforms
existing general and LLM-specific unlearning algorithms. TOOLDELETE outperforms existing
general and LLM-specific unlearning methods. In addition, it can save 74.8% of training time
compared to retraining, handle sequential unlearning requests, and retain 95+% performance in low
resource settings.

2 RELATED WORK

Unlearning for non-LLM models A wide range of machine unlearning methods have been pro-
posed to remove influence of training data from trained models. These include efficient retraining
approaches (Bourtoule et al., 2021; Wu et al., 2020b;a; Liu et al., 2022; Dukler et al., 2023; Lin et al.,
2023), methods with theoretical guarantee with convex loss assumption (Golatkar et al., 2020; Guo
et al., 2020; Neel et al., 2021; Brophy & Lowd, 2021; Wu et al., 2023; Izzo et al., 2021; Suriyakumar
& Wilson, 2022; Liu et al., 2023a), methods that enforce performing as a randomly initialized model
on deleted samples (Chundawat et al., 2023a), methods that enforce memorizing wrong labels for
deleted samples (Graves et al., 2021), those that focus on pruning before unlearning (Jia et al., 2023)
or finding salient parameters (Fan et al., 2024b) and manipulating gradients Ullah et al. (2021);
Hoang et al. (2024), adversarial methods (Liu et al., 2023b; Setlur et al., 2022; Wei et al., 2023),
approximation of inverse Hessian (Zhang et al., 2024a), and data augmentation (Choi et al., 2024).
Other works study unlearning on graphs (Chen et al., 2022; Chien et al., 2023; Cheng et al., 2023;
Cong & Mahdavi, 2023; Wu et al., 2023; Sinha et al., 2023), under multimodal setting (Cheng &
Amiri, 2023), image-to-image models (Li et al., 2024), and finding the most challenging unlearning
subset within a dataset (Fan et al., 2024a). Recently, a few works started to benchmark MU perfor-
mances on unlearning fictitious user profiles (Maini et al., 2024), world knowledge (Jin et al., 2024)
and a variety of tasks (Cheng & Amiri, 2024).

Unlearning for LLMs Recently, more attention has been given to LLM unlearning, where gra-
dient ascent is a common technique (Eldan & Russinovich, 2023; Jang et al., 2023). (Yao et al.,
2024) evaluated several traditional unlearning methods on LLMs. KGA (Wang et al., 2023) formu-
lated unlearning as achieving knowledge gap between training data and test data similar to that of
training data and deleted data. Yao et al. (2023) proposed to predict if the LLM output is gram-
matically correct on deleted samples, such that the knowledge is not over unlearned. Other meth-
ods include second-order-optimization (Jia et al., 2024), performing direct preference optimization
with no positive examples (Zhang et al., 2024b), and reinforcement learning with a negative reward
model (Kassem et al., 2023). Unlearning from logits difference (Ji et al., 2024) first builds an as-
sisted LLM which memorizes data to be deleted and forgets the retained data, which is later used to
derive the unlearned LLM by deviating from the assisted LLM in logits.

Tool-Augmented LLMs TAML (Parisi et al., 2022) used self-play to boost LLMs’ performance
on math and reasoning tasks. Schick et al. (2023) discovered that LLMs can teach themselves how
to use APIs. Recently, efforts have been devoted to building benchmarks to train and evaluate the
tool-using ability of LLMs, such as agent-based data generation (Tang et al., 2023; Li et al., 2023),
bootstrapping training data with seed examples (Patil et al., 2023), modifying existing datasets (Basu
et al., 2024), and dataset development with GPT-4 (Qin et al., 2024).
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3 TOOL UNLEARNING: PRELIMINARIES

Problem Definition: Tool Learning LetD = {T ,Q,Y} be a dataset with N tools T , and (Q,Y)
denotes query-output examples that demonstrate how to use the tools in T . Each tool ti ∈ T may
have one or more demonstrations {Qi,Yi}, |Qi| = |Yi| ≥ 1. Starting with a vanilla LLM f0, which
has not been trained on using tools, a tool learning algorithm explicitly trains f0 on D and results
in a tool-augmented model f that can use the N tools in T . We note that prior to explicit tool
learning, the vanilla model f0 may already have some tool-using capabilities such as performing
basic arithmetic operations. An example of tool-augmented models is WebGPT (Nakano et al.,
2021), which mimics human behavior in answering open-ended questions using a text-based web
browser to retrieve information and improve its responses.

Problem Definition: Tool Unlearning We introduce the novel task of Tool Unlearning, which
aims to remove specific tools from tool-augmented LLMs. Let Df = {Tf ,Qf ,Yf} denotes k < N
tools and their corresponding demonstrations to be unlearned from the tool-augmented model f ,
and Dr = D\Df = {Tr,Qr,Yr} denotes the retained tools. The goal is to obtain an unlearned
model f ′ that has limited knowledge on using Tf tools–can no longer perform tasks involving those
tools–while preserving f ’s ability to use Tr tools as before.

Importance The ability to forget learned tools is essential in various real-world applications. For
example, addressing the insecure tools from untrustworthy developers that could be exploited by ad-
versarial attackers; removing tools restricted by their providers due to copyright or privacy concerns,
such as APIs that start allowing unauthorized downloads of book chapters or releasing publications
that users did not author; unlearning broken or deprecated tool that lead to failed operations or
corrupted outputs; unlearning tools that may no longer be needed; and managing limited model
capacity, where new tools and evolving needs necessitate replacing outdated tools.

Difference to Standard Unlearning Tasks Tool unlearning is different from traditional sample-
level unlearning as it focuses on removing “skills” rather than individual training data samples. Ob-
jective: sample-level unlearning aims to reduce the likelihood of memorizing or extracting posterior
probabilities of specific data samples (qi, yi), which is useful for removing copyrighted or private
information. In contrast, tool unlearning targets the “ability” to solve tasks using tools marked
for unlearning (Tf ). For example, generating f ′(qi) that is different from yi (while preserving the
semantic of the input) is considered successful for sample-level unlearning. However, for tool un-
learning, preserving semantics indicates maintained knowledge on Tf , which makes unlearning a
failure. Figure 1b shows successful tool unlearning, where the ability to use the API is forgotten,
despite the high lexical memorization between output of the unlearned model and the training data.
In addition, selectively removing knowledge from tool-augmented models is a challenging tasks be-
cause changes to one tool may unexpectedly affect the model’s ability to use other tools–referred to
as ripple effect in fact editing literature (Cohen et al., 2024; Gu et al., 2024). Furthermore, LLMs are
general models that can conduct a wide range of tasks beyond tool using, and this ability must be
retained. Evaluation: metrics like extraction probability and perplexity are standard in sample-level
unlearning. For tool unlearning, success is measured by the ability to forget or retain tool-related
skills, which are more appropriate. Data: sample-level unlearning require access to all individual
samples marked for unlearning, while tool unlearning does not. This aligns with “concept erasure”
in diffusion models (Gandikota et al., 2023b; Kumari et al., 2023) and zero-shot unlearning (Chun-
dawat et al., 2023b) but differs from traditional LLM unlearning (Yao et al., 2024).

Retraining: An Impractical Solution A straightforward solution is to delete Df from D and
retrain a new model only on Dr. However, this is often infeasible due to the high cost and potential
unavailability of the original training data (Zhang et al., 2023; Ilharco et al., 2023; Gandikota et al.,
2023a). In addition, unlearning should not be evaluated solely based on similarity to retraining as
the potential solution space is highly complex and multidimensional. Specifically, prior work has
shown that relying on similarity to retraining has several drawbacks, such as poor auditability (Thudi
et al., 2022) and ineffective deletion (Cheng et al., 2023; Cheng & Amiri, 2023). Therefore there is
a need for designing specialized and efficient unlearning methods for tool-augmented models.
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(a) Tool Learning and Tool Unlearning

Tool Deletion Requests
(Insecure tools, Broken tools, ...) 

(c) ToolDelete

(b) Traditional Unlearning vs. Tool Unlearning

AI ASSISTANT: www.google.com

Pretrained
LLM

Tool-Augmented
LLM

USER: List the emails of all the
Apple users.

AI ASSISTANT: a               @gmial.com

USER: List the emails of all the
Apple users.

<Make HTTP GET Request>
list_users(active_since=date, location="USA")

<Make HTTP POST Request>
list_sessions(active_since=True, location="2024")

Traditional Sample-Level Unlearning 

Tool Unlearning

Tool-Unlearned
LLM

Failed function calling ->
Unlearned knowledge

Successful tool unlearning

Low memorization
Successful sample unlearning 

USER: List the emails of all the
Apple users.

AI ASSISTANT: Unfortunately, I
don't know how to use that tool.

Task Arithmetic: 
Obtain general knowledge +
instruction-following ability

Instruction-Tuned
LLM

Prior Unlearning

Post Unlearning

Prior Unlearning

Post Unlearning

Tool-Free Response

SFT, DPO, ...

Random
LLM

Figure 1: A novel unlearning task – Tool Unlearning and the proposed method TOOLDELETE. (a):
Illustration of tool learning and tool unlearning. Learned tools may be requested to be unlearned
due to many reasons, such as tools being insecure, restricted, or deprecated. (b): Differences be-
tween tool unlearning and traditional sample unlearning, in terms of objective and training data. (c):
Proposed method TOOLDELETE. We encourage the unlearned model f ′ to follow the vanilla model
f0 which has never seen Tf before. Meanwhile, we maintain its ability on Tr and general tasks by
matching the tool-augmented model f and with task arithmetic.

4 TOOLDELETE

We propose to develop, TOOLDELETE, an effective tool unlearning approach that removes the ca-
pability of using tools marked for unlearning (Tf ) or solving tasks that depend on them, while
minimizing the impact on the ability of using the remaining tools (Tr) and general tasks such as text
and code generation. TOOLDELETE implements three key properties for effective tool unlearning:

4.1 TOOL KNOWLEDGE REMOVAL

The knowledge of model f on Tf is obtained through tool learning. After unlearning, any knowledge
on Tf gained during tool learning should be removed, ideally as if Tf was never part of the training
set. In other words, the knowledge of f ′ on Tf should be no more than the knowledge of f0 on Tf ,
such that all previously gained knowledge from tool learning on Tf is successfully removed.

Definition 1 (Tool Knowledge Removal). Let ti ∈ Tf denote a tool to be unlearned, and let g be
a function that measures the amount of knowledge a model has on a tool. The unlearned model f ′

satisfies Tool Knowledge Removal if:

E
ti∈Tf

[g(f0, ti)− g(f ′, ti)] ≥ 0. (1)

This formulation allows users to control the extent of knowledge removal from f ′. For instance,
when we unlearn a “malicious” tool that calls a malignant program, we may require f ′ retains no
knowledge of this tool, i.e. g(f ′, ti) = 0. In less critical cases, users can choose to reset f ′’s
knowledge to pre-tool augmentation level, i.e. g(f ′, ti) = g(f0, ti)

To measure tool knowledge in LLMs, we follow previous works that used prompting to probe LLMs’
knowledge (Brown et al., 2020; Singhal et al., 2023), i.e. adopting the output of LLMs as their
knowledge on a given tool. For each ti ∈ Tf and its associated demonstrations {Qi,Yi}, we query
the vanilla model f0 with Qi and collect its responses Y ′

i = f0(Qi). Since f0 has never seen ti
or {Qi,Yi}, Y ′

i represents the tool-free response. We then encourage the unlearned model f ′ to
generate similar responses as Y ′

i to prevent it from retaining any knowledge of ti.

4.2 TOOL KNOWLEDGE RETENTION

The unlearning process should preservemodel’s knowledge of tools in Tr. Ideally, all knowledge
gained on Tr during tool learning should be retained after unlearning.

4
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Definition 2 (Tool Knowledge Retention). Let tm ∈ Tr denote a retained tool, and let g be a
function that measures the amount of knowledge a model has on a tool. The unlearned model f ′

satisfies Knowledge Retention if:

E
tm∈Tr

[g(f, tm)− g(f ′, tm)] = ϵ, (2)

where ϵ is an infinitesimal constant.

For the purpose of Tool Knowledge Retention, f ′ is further tuned using demonstrations associated
with Tr, or, more practically, a subset of Tr of similar size to Tf .

4.3 TASK ARITHMETIC FOR PRESERVING GENERAL UTILITY

Optimizing the above two objectives may lead to effective unlearning, but it may not be sufficient to
retain the general capabilities of f ′, as LLMs are foundation models and are expected to maintain
general capabilities such as text generation, question answering, instruction-following, math, and
coding. These capabilities refer to skills f0 originally had prior to tool augmentation or those that
don’t rely on tools. Therefore, we aim to preserve the general capabilities of f ′ for successful tool
unlearning in tool-augmented LLMs.
Definition 3 (General Capability Retention). Let TG denote general tasks used to evaluate LLMs.
An unlearned model retains general capability if it preserves the knowledge on TG that it originally
obtained prior to tool learning:

E
tg∈TG

[g(f0, tg)− g(f ′, tg)] = ϵ, (3)

where ϵ is an infinitesimal constant.

We propose to use task arithmetic to preserve the general capabilities of f ′, as it is simple, effi-
cient and effective. The objective is to encourage f ′ to retain as much general knowledge as f0,
an instruction tuned LLM trained from a randomly initialized model fR. Let θ0 and θR denote the
parameters of f0 and fR respectively. The vector θ0− θR represents the direction of general knowl-
edge acquisition (Ilharco et al., 2023; Barbulescu & Triantafillou, 2024), which we apply to θ′–the
parameters of f ′:

θ′∗ ← θ′ + (θ0 − θR). (4)

Why Task Arithmetic? Task arithmetic is efficient, practical, and effective. Efficiency: task
arithmetic is a simple vector operation that does not scale with dataset size, which makes it more
efficient than retraining on large datasets. Practicality: general capabilities include knowledge
obtained during pre-training and instruction tuning (Zhou et al., 2024), which may be impractical
to replicate due to the size and data availability–the actual pre-training data is often not fully open-
source or pre-processed, even in some open-source LLMs (Touvron et al., 2023b). In addition, any
data imbalance and ill-representation can introduce other problems. Effectiveness: applying θ0−θR
directly restores the foundational abilities of f ′, such as text generation and instruction-following,
without requiring expensive and time-consuming retraining on large datasets.

4.4 TRAINING DETAILS

To obtain for the unlearned model f ′, we solve the following problem:

θ′∗ = argmin
θ′

Eti∈Tf
[g(f0, ti)− g(f ′, ti)] + Etm∈Tr [g(f, tm)− g(f ′, tm)] + α(θ0 − θR), (5)

where α is a hyperparameter that controls the magnitude of task arithmetic. The above formu-
lation provides flexibility in training TOOLDELETE using existing paradigms such as supervised
fine-tuning (SFT), direct preference optimization (DPO), reinforcement learning from human feed-
back (RLHF), as well as parameter-efficient fine-tuning (PEFT) (He et al., 2022; Su et al., 2023) or
quantization (Dettmers et al., 2022; Ma et al., 2024) techniques. Below we describe two variants of
TOOLDELETE:

TOOLDELETE-SFT uses supervised fine-tuning (SFT), which fine-tunes f on T ′
f with tool-free

data Qf , f0(Qf ) and on Tr with the original data Qr,Yr using language modeling loss.

5
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TOOLDELETE-DPO uses direct preference optimization (DPO) through an implicit reward
modeling to prioritize a positive response over a negative response. For (ti,Qi,Yi) ∈ Tf to
be unlearned, we prioritize tool-free response Y ′

i = f0(Qi) over the original response Yi. For
(tj ,Qj ,Yj) ∈ Tr, the original response Yj is prioritized over the tool-free response Y ′

i = f0(Qj).
Therefore, the knowledge of the unlearned model f ′ on Tf can be removed without affecting Tr.

4.5 LIRA-TOOL FOR TOOL UNLEARNING EVALUATION

A key challenge in evaluating tool unlearning is lack of membership inference attack (MIA) models
to infer if a tool was used during tool learning. Traditional MIA approaches focus on determining
if a specific training sample is in training set, not abstract concepts like tools. We propose to adapt
the state-of-the-art MIA approach, Likelihood Ratio Attack (LiRA) (Carlini et al., 2022), to tool
unlearning settings.

Traditional Sample-level LiRA To infer the membership of a sample (x, y), LiRA constructs
two distributions of model losses: Q̃in and Q̃out with (x, y) in and out of the model training set
respectively. These distributions are approximated as Gaussians whose parameters are estimated
based on “shadow models” trained on different subsets of the training data. Intuitively, LiRA queries
the loss of (x, y) to determine if (x, y) is more likely to be from Q̃in or Q̃out, where membership is
decided by the Likelihood-ratio Test (Vuong, 1989; Carlini et al., 2022). For LLMs, the test statistic
is defined by (Pawelczyk et al., 2024) as:

Λ =
P (l(f(x), y)|Q̃in)

P (l(f(x), y)|Q̃out)
=

Π(xi,yi)∈Df
PU (l(f

′(xi), yi))

Π(xi,yi)∈Df
PTr (l(f(xi), yi))

. (6)

LiRA-Tool (Knowledge-level LiRA) The major difficulty in adapting LiRA to tool unlearning is
in approximating the distributions of losses Q̃in and Q̃out for tools, rather than individual training
samples. Simply using the observed data related to a tool in the training set may overfit to specific
distribution of observations, and may fail to comprehensively approximate the distribution of the
target tool marked for unlearning. We propose to obtain a “shadow distribution” P to generate tool
learning samples. We then sample a series of “shadow” data that evaluates the tool using the ability
to compute loss and test statistic as follows:

Λ =
Πti∈Tf

Π(x,y)∈Pti
PU (l(f

′(x), y))

Πtj∈Tr
Π(x,y)∈Ptj

PTr
(l(f(x), y))

, (7)

where Pti is the distribution that controls the generation of tool learning samples for ti.

The major difference is that traditional LiRA approximates Q̃in and Q̃out with a series of shadow
models by controlling which samples are present in training set. In LiRA-Tool, however, unlearning
a skill (tool) is prioritized by sampling “shadow” data related to a specific tool to ensure that the
losses reflect tool-using abilities, not just membership of a specific training sample. In practice,
we prompt GPT-4 with various distinct instructions to draw “shadow samples” for approximating
Q̃in and Q̃out and performing likelihood-ratio test. The proposed formulation share similarities to
previous MIA for sample-level unlearning, such as the ratio of existence probability distribution
prior- and post-unlearning (Cheng et al., 2023; Cheng & Amiri, 2023), and other adaptations of
LiRA which performs likelihood-ratio test over shadow models (Kurmanji et al., 2023; Pawelczyk
et al., 2024). But this work, to the best of our knowledge, is the first adaptation of LiRA to detect
tool presence in tool learning datasets for LLMs.

Novelty We adapt sample-level MIA into knowledge-level MIA to infer the membership of tools
for tool unlearning evaluation; and propose a new method to estimate Q̃in and Q̃out. This provides a
comprehensive approximation of abstract concepts beyond observed training data.

Limitations Shadow samples from GPT-4 may not fully represent the complexity of original tool-
learning data to capture the tool-related knowledge. Although this can lead to incomplete approxi-
mations of the knowledge distributions, LiRA-Tool is still a fair evaluation approach because shadow
samples provide a more consistent basis for evaluating changes in tool-using abilities of models than

6
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simply using the observed samples in the dataset, which is highly biased. In addition, if the size of
the shadow sample is large enough for each tool, it can better approximate the knowledge distribu-
tion for the tool.

5 EXPERIMENTAL SETUP

Datasets & Tool-Augmented LLMs We experiment with the following datasets and LLMs:
• ToolAlpaca (Tang et al., 2023) is an agent-generated tool learning dataset consisting of 495

tools and 3975 training examples. The tool-augmented LLM ToolAlpaca 7B is fine-tuned
on ToolAlpaca using Vicuna-v1.3 (Zheng et al., 2023).

• ToolBench (Qin et al., 2024) consists of more than 16k real world APIs from 49 cate-
gories, where each training demonstration involves complex task solving traces. The tool-
augmented LLM ToolLLaMA is fine-tuned on ToolBench using LLaMA-2 7B (Touvron
et al., 2023b).

• API-Bench (Patil et al., 2023) focus on APIs that load machine learning models. The tool-
augmented LLM, Gorilla, is fine-tuned on API-Bench from LLaMA 7B (Touvron et al.,
2023a).

Setup & Evaluation We use the public checkpoints of the above tool-augmented LLMs as trained
models–the starting point for unlearning. Then we conduct unlearning experiments with 2–20%
tools randomly selected as Tf
We evaluate tool unlearning effectiveness, general capability of tool-unlearned LLMs, and robust-
ness to membership inference attack (MIA). For unlearning effectiveness, we measure performance
on test sets (TT , ↑), forget set (Tf , ↓), and remaining set (Tr, ↑), where “performance” reflects the
ability to solve tasks that depend on specific tools, depending on the unique metrics in the original
tool-augmented models f . To evaluate general capabilities, we evaluate the unlearned LLMs on a
wide range of tasks: college STEM knowledge with MMLU dataset (Hendrycks et al., 2021), rea-
soning ability with BBH-Hard (Suzgun et al., 2023), instruction-following with IFEval dataset (Zhou
et al., 2023), and factual knowledge with MMLU (Hendrycks et al., 2021). To evaluate robustness
to MIA using the proposed LiRA-Tool. Following prior work on LiRA (Pawelczyk et al., 2024),
we train the shadow models with forget set size of {1, 5, 10, 20} and primarily investigate the True
Positive Rate (TPR) at low False Positive Rate (FPR) (TPR @ FPR = 0.01), where TPR means the
attacker successfully detects a tools is present. Therefore, a lower TPR indicates better privacy.

Baselines As there are no prior works on tool unlearning, we adapt the following unlearning meth-
ods to tool unlearning setting. Four general unlearning approaches: GRADASCENT (Golatkar et al.,
2020; Yao et al., 2024), which runs gradient ascent on Tf ; RANDLABEL (Graves et al., 2021), which
fine-tunes on Tr and Tf with corrupted labels; SALUN (Fan et al., 2024b), which performs RAND-
LABEL on unlearning-related parameters discovered by saliency map. In addition, we include three
LLM-specific unlearning approaches: ICUL (Pawelczyk et al., 2024), which uses Tf with corrupted
label as in-context demonstrations, SGA (Jang et al., 2023; Barbulescu & Triantafillou, 2024), which
performs gradient ascent on Tf whose memorization probability exceeds a pre-defined threshold,
and TAU (Barbulescu & Triantafillou, 2024), which performs task arithmetic on SGA. For ICUL,
we randomly select one example (qi, yi) from Tf and corrupt the output yi with randomly selected
tokens. Then we concatenate this corrupted sequence with other intact sequences as the in-context
demonstrations. For all other baselines, we treat all data related to Tf as unlearning examples and
all data related to Tr as remaining examples. Everything else remains the same for each baseline.
See §3 for our discussion on why sample-level unlearning methods are inadequate for effective tool
unlearning.

6 RESULTS

Comparison to general unlearning methods Compared to RETRAIN, the best-performing base-
line in the general unlearning methods category, TOOLDELETE-SFT outperforms RETRAIN by 0.6,
9.4, 2.4, 6.5 absolute points on TT , Tr, Tf , TG respectively. TOOLDELETE-DPO outperforms RE-
TRAIN by 1.3, 3.3, 9.8, 1.8 absolute points across the same metrics. We note that GRADASCENT can
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Table 1: Tool unlearning performances when deleting 20% of tools on ToolAlpaca. Evaluation is
performed with the specific metric for each tool-augmented LLM on test tools TT , remaining tools
Tr, and unlearned tools Tf , as well as general benchmarks for evaluation LLMs TG. Best and second
best performances are bold and underlined respectively. Original denotes the tool-augmented LLM

prior unlearning and is provided for reference only . Results on other LLMs are shown in Appendix
Table 4-5.

Method TT(↑) Tr(↑) Tf (↓) General Capability TG(↑)
STEM Reason Ins-Follow Fact Avg.

Original (Prior Un.) 60.0 73.1 75.7 31.7 17.1 22.6 25.0 24.1

General Unlearning Methods

RETRAIN 52.1 71.8 38.5 30.5 16.1 14.2 24.7 21.3
GRADASCENT 33.3 51.4 34.6 21.4 10.4 12.9 13.1 14.5
RANDLABEL 50.3 70.3 37.5 26.3 16.4 13.6 25.1 20.3
SALUN 46.2 54.3 38.2 27.1 17.0 17.4 19.5 20.2

LLM-Specific Unlearning Methods

ICUL 49.1 74.8 58.3 12.4 8.7 1.6 6.2 7.3
SGA 43.5 63.0 42.1 21.5 11.6 17.0 14.7 16.2
TAU 43.8 61.7 42.5 22.0 17.6 22.3 21.7 20.9

TOOLDELETE-SFT 52.7 72.1 30.5 31.3 17.5 21.7 24.1 23.6
TOOLDELETE-DPO 53.4 75.1 28.7 31.6 16.8 20.4 23.5 23.1

effectively unlearn Tf , but it negatively impacts its TT and Tr performance. Although RANDLABEL
and SALUN outperforms GRADASCENT, they still fall short on TG compared to TOOLDELETE.

Comparison to LLM-specific unlearning methods Existing LLM unlearning methods, despite
effective in sample-level unlearning, are prone to under-performing in tool unlearning. Both
TOOLDELETE-SFT and TOOLDELETE-DPO outperforms ICUL, SGA, and TAU on TT , Tr, Tf
and TG. The only exception is ICUL, which outperforms TOOLDELETE-SFT on Tr by 2.7 absolute
points, but is outperformed by TOOLDELETE-DPO on Tr by 0.3 points. The good performance of
ICUL on Tr is at the cost of failing to unlearn tools in Tf , which is not desired in tool unlearn-
ing. In addition, ICUL has limited ability of preserving test set performance, it is outperformed by
TOOLDELETE-SFT and TOOLDELETE-DPO by 3.6 and 4.3 respectively. Furthremore, it is partic-
ularly limited in deletion capacity, i.e. number of unlearning samples that a method can handle. As
|Df | exceeds 10, the performance of ICUL on TT significantly degrades. This is while TOOLD-
ELETE can process much larger deletion requests efficiently.

SFT vs. DPO We observe that TOOLDELETE-DPO outperforms TOOLDELETE-SFT by 0.7, 3.0,
and 1.8 on TT , Tr, Tf respectively. On TG, TOOLDELETE-SFT is slightly better than TOOLDELETE-
DPO by 0.5 points. However, TOOLDELETE-DPO takes slightly longer time to train, see Figure 3.
Both optimization methods achieve superior performance over existing unlearning approaches.

Robustness to MIA Following prior practices (Carlini et al., 2022; Pawelczyk et al., 2024), a
lower TPR indicates an unlearned model with better privacy when FPR=0.01. TOOLDELETE-DPO
achieves 0.14 TPR, outperforming RETRAIN by. This advantage is obtained by explicitly priori-
tizing tool-free responses f0(Q) over original responses. In addition, TOOLDELETE-SFT achieves
comparable performance with RETRAIN, highlighting its effectiveness to protect privacy. Both vari-
ants of our method outperforms GRADASCENT and ICUL, the best performing general and LLM-
specific baselines, achieving 0.21 and 0.18 TPR. This indicates that existing sample-level unlearning
approaches are not sufficient for unlearning tools, see Figure 2.

Sequential unlearning Tool unlearning requests may arrive in sequential mini-batches. We exper-
iment with sequential unlearning by unlearning a total of 20% of tools, incrementally (2%, 5%, 10%,
20%). RETRAIN, ICUL by design cannot process sequential deletion requests. TOOLDELETE can
continue training according to the current deletion request, without having to retrain a new model.
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Table 2: Ablation study of proposed properties on ToolAlpaca. Highlighted are metrics that de-
grade after removing specific parts of the model.

TOOLDELETE-SFT TOOLDELETE-DPO
TT(↑) Tr(↑) Tf (↓) TG(↑) TT(↑) Tr(↑) Tf (↓) TG(↑)

Full Model 57.7 72.1 30.5 23.6 58.4 73.3 28.7 23.1

- TK Rem 58.1 72.4 65.3 23.3 58.6 73.2 65.9 22.7
- TK Ret 32.7 40.2 23.1 20.1 40.3 41.8 39.3 22.1
- GCP 58.0 72.5 31.1 17.5 55.7 72.7 33.1 14.3

Retrain GradAscent ICUL ToolDelete
SFT

ToolDelete
DPO

0.00

0.05

0.10

0.15

0.20
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R
 =

 0
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Figure 2: MIA performance using LiRA-Tool.
GRADASCENT and ICUL are best-performing
baselines for general and LLM-specific unlearn-
ing methods.

Table 3: Full parameters vs. LoRA in tool
unlearning performances when deleting 20%
of tools on ToolAlpaca. Original denotes
the tool-augmented LLM prior unlearning
and is provided for reference only .

TT(↑) Tr(↓) Tf (↑) TG(↑)
Original
(Prior Un.)

60.0 73.1 75.7 24.1

Full param 52.7 72.1 30.5 23.6

LoRA 51.5 71.8 36.1 19.9

When 20% of unlearning requests arrive in batches, TOOLDELETE can sequentially unlearn each
of them. Compared to unlearning 20% at once, the performance does not degrade significantly, see
Figure 4 and Table 1.

All properties contribute to effective tool unlearning Ablation studies in Table 2 show that when
removing Tool Knowledge Removal, performance of TOOLDELETE-SFT and TOOLDELETE-DPO
on Tf degrade by -34.8 and -37.2 absolute points respectively. This significant performance drop is
observed for other model properties. Therefore, we conclude all proposed properties are necessary
for successful at tool unlearning on TT , Tr, Tf , and TG.

2 5 10 20

| f| %

2
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T
im

e
 (
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Retrain ToolDelete-SFT ToolDelete-DPO

Figure 3: Training time of TOOLDELETE, which
saves 74.8% of time on average.

TOOLDELETE is efficient Efficiency is a
critical aspect for unlearning. As Figure 3 il-
lustrates, TOOLDELETE is substantially more
efficient than retraining a new model from
scratch–saving about 74.8% of training time
on average. In addition, this efficiency gain
is relatively consistent as the size of Tf in-
creases. TOOLDELETE-SFT is slightly faster
than TOOLDELETE-DPO, as the latter requires
a negative sample for each of its prompts.

TOOLDELETE attains sufficient performance with PEFT We experiment if LoRA (Hu et al.,
2022), a common parameter-efficient fine-tuning (PEFT) technique for LLMs, can achieve effec-
tive tool unlearning when computing resources is limited. Experiments on ToolAlpaca show that
TOOLDELETE-LoRA can achieve 97.7%, 99.6%, 84.5%, and 84.3% of performance of TOOLD-
ELETE with full parameter on TT , Tr, Tf , TG, see Table 3. In addition, TOOLDELETE-LoRA saves
81.1% of computing resources and storage, as well as 71.3% of training time.

Why TOOLDELETE is effectiveness? We attribute the performance of TOOLDELETE to its key
properties: (a): Tool Knowledge Removal enable targeted tool unlearning without over-forgetting,
unlike GRADASCENT and RETRAIN. This is achieved by prioritizing tool knowledge-free responses
over tool knowledge-intense responses. (b): Tool Knowledge Retention preserves remaining tool by

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 5 10 20
50

55

60

S
u
cc

. 
R
at

e

T

2 5 10 20
72

74

76
r

2 5 10 20

28

30

32
f

2 5 10 20
22

23

24

25
G

| f| %
Figure 4: Performance of sequential unlearning on ToolAlpaca.

reinforcing their knowledge. In fact, using the same training data can further strengthen the model’s
memory on these tools. (c): Preserving General Utility, which improves or maintains the model’s
general utility through an efficient and effective task arithmetic operation.

7 CONCLUSION

We propose Tool Unlearning–a novel machine unlearning task with the goal of unlearning previ-
ously learned tools from tool-augmented LLMs. We highlighted the importance of tool unlearning
through practical use cases, while also showing why existing unlearning methods are insufficient
in this contexts. To systematically address the problem, we develop an effective tool unlearning
approach, TOOLDELETE, that enforces three key properties: tool knowledge removal for removing
any knowledge gained on tools marked for unlearning; tool knowledge retention for preserving the
knowledge gained on other remaining tools; and general utility preservation for maintaining LLM’s
capability on a range of general tasks like text and code generation. Through extensive experi-
ments conducted on three diverse datasets and with LLMs of two different scales, we demonstrate
the effectiveness and efficiency of TOOLDELETE, compared to commonly used general and LLM-
specific unlearning approaches. Our results show that TOOLDELETE achieves superior performance
by successfully forgetting the tools marked for unlearning.

Limitations and Future Work In this study, we did not conduct experiments using closed-source
LLMs or API-based LLMs. Consequently, our findings may not directly extend to such proprietary
models, and further research is needed to investigate the applicability of tool unlearning techniques
in these contexts. In addition, this work did not investigate the impact of varying model scales due
to the limited publicly-available tool-augmented LLMs. Our experiments were conducted on the 7B
scale and the scalability of the proposed tool unlearning approach across models of different sizes
and scales is an open question for future investigation.

BROADER IMPACT STATEMENT

Our work investigates the security implications of tool-augmented Large Language Models (LLMs),
where we focus on the risks that arise from integrating external tools, and the necessity ability to
remove these acquired tools. A key concern is ensuring compliance with privacy regulations, such
as the Right to be Forgotten (RTBF), which mandates the removal of specific data upon user request.
In the context of tool-augmented LLMs, this necessitates the ability to delete sensitive, regulated,
or outdated information related to specific tools. By examining how LLMs interact with and rely
on external tools, potential threats to model security can be identified, e.g. unauthorized tool usage,
adversarial exploitation, and privacy violations. Our research highlights the critical importance of
addressing these challenges.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We present the results on ToolLLaMA and Gorilla below.

A.2 IMPLEMENTATION DETAILS

For the checkpoints of tool-augmented LLMs, we used TangQiaoYu/ToolAlpaca-7B,
ToolBench/ToolLLaMA-2-7b-v2, gorilla-llm/gorilla-openfunctions-v0
that is publically available on Huggingface.

Table 4: Tool unlearning performances when deleting 20% of tools on ToolLLaMA. Evaluation is
performed with the specific metric for each tool-augmented LLM on test tools TT , remaining tools
Tr, and unlearned tools Tf , as well as general benchmarks for evaluation LLMs TG. Best and second
best performances are bold and underlined respectively. Original denotes the tool-augmented LLM

prior unlearning and is provided for reference only .

Method TT(↑) Tr(↑) Tf (↓) General Capability TG(↑)
STEM Reason Ins-Follow Fact Avg.

Original (Prior Un.) 64.0 75.6 76.0 25.3 36.8 17.3 15.0 23.6

General Unlearning Methods

RETRAIN 62.2 72.1 42.3 25.1 33.7 14.6 13.8 21.8
GRADASCENT 42.5 56.3 51.8 14.9 26.4 11.2 8.6 15.3
RANDLABEL 59.3 73.5 40.7 23.4 30.6 13.3 12.7 20.0
SALUN 58.7 73.6 39.9 22.7 30.8 13.6 12.0 19.8

LLM-Specific Unlearning Methods

ICUL 46.2 68.2 57.2 15.1 18.8 7.1 9.4 12.6
SGA 44.7 59.6 49.4 16.3 20.4 12.8 9.7 14.8
TAU 44.5 56.3 50.2 21.6 28.0 15.3 13.5 19.6

TOOLDELETE-SFT 62.8 72.8 39.5 24.6 33.4 15.8 13.7 21.9
TOOLDELETE-DPO 63.2 73.6 38.7 24.3 32.9 16.0 13.8 21.8
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Table 5: Tool unlearning performances when deleting 20% of tools on ToolLLaMA. Evaluation is
performed with the specific metric for each tool-augmented LLM on test tools TT , remaining tools
Tr, and unlearned tools Tf , as well as general benchmarks for evaluation LLMs TG. Best and second
best performances are bold and underlined respectively. Original denotes the tool-augmented LLM

prior unlearning and is provided for reference only .

Method TT(↑) Tr(↑) Tf (↓) General Capability TG(↑)
STEM Reason Ins-Follow Fact Avg.

Original (Prior Un.) 64.0 75.6 76.0 25.3 36.8 17.3 15.0 23.6

General Unlearning Methods

RETRAIN 62.2 72.1 42.3 25.1 33.7 14.6 13.8 21.8
GRADASCENT 42.5 56.3 51.8 14.9 26.4 11.2 8.6 15.3
RANDLABEL 59.3 73.5 40.7 23.4 30.6 13.3 12.7 20.0
SALUN 58.7 73.6 39.9 22.7 30.8 13.6 12.0 19.8

LLM-Specific Unlearning Methods

ICUL 46.2 68.2 57.2 15.1 18.8 7.1 9.4 12.6
SGA 44.7 59.6 49.4 16.3 20.4 12.8 9.7 14.8
TAU 44.5 56.3 50.2 21.6 28.0 15.3 13.5 19.6

TOOLDELETE-SFT 62.8 72.8 39.5 24.6 33.4 15.8 13.7 21.9
TOOLDELETE-DPO 63.2 73.6 38.7 24.3 32.9 16.0 13.8 21.8
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