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Abstract

Training foundation models such as ViTs and LLMs requires tremendous comput-
ing cost. Low-rank matrix or tensor factorization offers a parameter-efficient alter-
native, but often downgrades performance due to the restricted parameter space. In
this work, we introduce Latent Crossing (LaX) – a simple yet effective plug-and-
play module that enhances the capacity of low-rank models by enabling informa-
tion flow across low-rank subspaces. We extensively validate the benefits of LaX
on pre-training tasks with ViT-Base/Large and LLaMA-like models ranging from
60M to 1B parameters. LaX boosts low-rank model performance to match or ex-
ceed the full-rank baselines while using 2-3× fewer parameters. When equipped
with low-rank adapters (i.e., LoRA [23]) for fine-tuning LLaMA-7/13B, LaX con-
sistently improves performance on arithmetic and common sense reasoning tasks
with negligible cost.

1 Introduction

Following neural scaling laws [28, 22, 33], the size and training data of foundation models have
grown rapidly, exemplified by models such as ViT-22B [7], GPT-3 (175B) [3], LLaMA-3 (405B)
[13], and PaLM (504B) [5]. These large-scale foundation models have achieved remarkable suc-
cess in diverse applications such as language and vision. However, their success comes at immense
computing cost, typically on the scale of multi-million GPU hours per pre-training run. As the
unsustainable trend continues, training or even deploying such foundation models has become pro-
hibitively expensive for most research institutions and organizations around the world.

To address these challenges, the community has become increasingly interested in low-rank approx-
imation techniques. This is largely motivated by the empirical observation that weight matrices in
deep neural networks often exhibit low effective ranks [1, 11, 27, 64, 43]. Classical matrix compres-
sion techniques (such as singular value decomposition (SVD) [10]) and tensor decomposition meth-
ods (e.g. Canonical Polyadic (CP), Tensor Train (TT) [16, 4, 29] and Tucker decomposition [51])
have been widely applied to reduce the number of trainable parameters by instantiating and updating
the lightweight low-rank factors [31, 45, 12, 57, 60, 56, 39, 65, 34]. These approaches exemplify
the paradigm of “low-rank training” and have achieved varying degrees of success. In particular,
parameter-efficient fine-tuning (PEFT) [23, 63, 41, 17, 62] has drastically reduced the barrier to fine-
tuning large language models while producing competitive results. Recent efforts [38, 66, 15, 60]
have extended similar concepts to pre-training. Although low-rank methods typically reduce the
model size and computing cost, they introduce a critical trade-off: smaller ranks yield lower ca-
pacity and often harm performance, whereas larger ranks incur additional cost, undermining the
intended efficiency (see Fig. 1 (a)).
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Figure 1: LaX boosts the performance of low-rank training methods. (a) SVD-based pre-training ViT-B on
ImageNet-1K with different matrix ranks: lower-rank leads to greater performance drop; LaX consistently
improves the performance in all settings. (b) Pre-training ViT-B on ImageNet-1K with different low-rank
methods. LaX significantly improves performance for all low-rank methods, even surpassing the full-rank pre-
training. (c) Fine-tuning LLaMA-7B on commonsense reasoning tasks using LoRA, with and without LaX
respectively. LaX improves LoRA’s fine-tuning performance in all tasks.

In this work, we propose Latent Crossing (LaX), a lightweight, drop-in module designed to enhance
the capacity of low-rank models without explicitly increasing matrix/tensor ranks. By allowing infor-
mation flow across low-rank subspaces via residual connections, LaX improves model performance
while keeping the parameter budget nearly unchanged. Importantly, LaX can be seamlessly inte-
grated with existing low-rank modules such as LoRA [23], SVD, CoLA [43] and TT [45], serving
as a plug-and-play performance booster that significantly narrows or eventually closes the gap
between low-rank and full-rank models.†

We summarize our contributions as follows:

1. We propose LaX, a lightweight module that increases the capacity of existing low-rank structures
without compromising efficiency. By allowing information flow across low-rank subspaces via
residual connections, LaX consistently boosts performance in both pretraining and fine-tuning
settings (Fig. 1).

2. We design LaX Gate to align mismatched bottlenecks for low-rank models. To support diverse ar-
chitectural and computational constraints, we introduce several variants of the LaX gating mecha-
nism, each balancing expressiveness and efficiency under different deployment settings. We also
provide practical guidelines for adapting LaX gating to a variety of tasks.

3. We evaluate LaX in a set of low-rank pre-training and fine-tuning experiments for both language
and vision foundation models. In ViT pre-training, LaX improves accuracy by up to 4.32% on
ImageNet-1K. For LLM pre-training, LaX shows consistent gains across various model scales
and different low-rank architectures. When combined with LoRA for fine-tuning, LaX enhances
reasoning capabilities of LLaMA-7B/13B on both arithmetic and commonsense reasoning tasks.

2 Related Works

2.1 Low-rank Factorization for Neural Networks

To mitigate the high computational and storage costs associated with large models, low-rank factor-
izations have been widely explored as an effective strategy [47, 1]. Early efforts focused on applying
low-rank matrix factorization, such as SVD, to compress layers [8, 26, 31, 30, 61]. More recently,
LoRA-style adapters [23, 63, 41, 17, 62] extend this idea by adapting SVD-like modules onto frozen
pre-trained weights, enabling efficient fine-tuning of large foundation models. Besides, low-rank ten-
sor factorization, including tensor train (TT) [46, 6, 54], Canonical Polyadic (CP) [16, 4, 29], Tucker
decomposition [51], and other tensor-based formats [67, 32, 2, 50] have shown promise for reducing
complexity of models [40, 36, 52, 42, 39, 65, 34, 60]. In this paper, we focus on representative
methods from both directions:

†We provide our code here
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Low-rank Matrix Factorization. SVD factorizes a weight matrix W ∈ Rdout×din as W = BA,
where A ∈ Rr×din and B ∈ Rdout×r, resulting in a reduced parameter count of r(din + dout).
CoLA [43] further extends this factorization to an autoencoder by injecting a nonlinear activation σ
between A and B, replacing a linear layer Wx with the bottleneck structure Bσ(Ax).

Low-rank Tensor Factorization. We adopt tensor train decomposition [46] as a representative
higher-order factorization method. It reshapes a weight matrix W ∈ Rdout×din into an order-n

tensor W ∈ Rd0×d2···×dn−1 with dout × din =
n−1∏
i=0

di, and decomposes it with a sequence of tensor

cores {C0,C1, . . . ,Cn−1}, where each Ci ∈ Rri×di×ri+1 . The weight is represented via a chain of
tensor contractions:

W = C0 ×3,1 C1 ×3,1 · · · ×3,1 Cn−1.

However, the extent of parameter reduction, as well as its benefits heavily depend on the chosen
rank. Lower-rank settings often suffer from a loss of expressiveness and degrade model perfor-
mance [66, 43, 23, 59, 47, 1], while higher ranks reintroduce computational overhead. In this work,
we propose a simple, plug-and-play module that complements general low-rank training methods in
neural networks, aiming to recover lost performance without compromising their efficiency.

2.2 Residual Mechanism

ResNet [18] stands as one of the most influential milestones in deep learning by introducing a skip
connection that routes a layer’s input directly to its output. This residual mechanism mitigates the
vanishing gradients and enables the stable training of deep networks with hundreds of layers. This
design principle has been broadly adopted in numerous architectures, including recurrent neural
networks [14], transformers [9, 53], and diffusion-based models [21]. In addition to its empirical
success, the authors provided a theoretical justification for the residual connection [19]. Building on
this foundation, subsequent research has proposed various improvements and theoretical analyses to
further enhance the residual learning paradigm [58, 20, 55, 35], consistently emphasizing the central
role of residual pathways in improving both convergence and generalization in deep networks.

Inspired by ResNet, we propose Latent Crossing (LaX). LaX serves as a model performance
booster by enabling information flow across low-rank subspaces, restoring expressiveness often lost
due to rank constraints. Across a wide range of tasks, LaX delivers consistent performance gains
while preserving the efficiency advantages of low-rank architectures.

3 The LaX Method

Our goal is to augment existing low-rank models with a lightweight module that recovers the per-
formance typically lost due to the low-rank constraints. In Section 3.1, we present the background
and motivation behind this work. Following this, Section 3.2 introduces the design of the LaX mod-
ule for different low-rank structures, Section 3.3 introduces LaX Gate and outlines its key variants,
and Section 3.5 offers practical guidelines to facilitate its integration into a wide range of low-rank
training frameworks.

3.1 Latent Crossing

As discussed in Section 2.1, given a weight matrix W ∈ Rdout×din from an arbitrary linear layer,
low-rank methods approximate it as low-rank factors. We take SVD as a motivating example to
illustrate this concept. Let xi ∈ Rdin denote the input to the i-th low-rank layer. A down-projection
matrix Ai ∈ Rr×din maps xi into a lower-dimensional latent representation hi ∈ Rr, which is
subsequently transformed back to the output space using an up-projection matrix Bi ∈ Rdout×r:

hi = Aixi ∈ Rr, yi = B
(
Aixi

)
= Bihi ∈ Rdout . (1)

This factorization reduces the number of parameters by choosing a smaller rank r and compresses
input into a narrow latent space, which can lead to information bottlenecks, often resulting in a
drop of performance due to the constrained searching space. Empirically, increasing the rank r
typically improves performance but diminishes the efficiency benefits of the low-rank approach due
to increased parameter count and computation.
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Figure 2: LaX is a general module that can be plugged into low-rank neural network models. (a) Dense layers:
full information flow, effective but computationally expensive. (b) SVD/CoLA[43] layers: rank-r bottlenecks
with two factors; LaX can be inserted into the latent space between layers. (c) Tensor-train layers: bottleneck
structure with four tensor cores, where data flow is governed by tensor contractions; LaX can be applied either
between cores or across layers. (d) LoRA adapters: LaX can be placed between different adapters.

Our motivation is that, can we improve the performance of low-rank layers without explicitly
increasing the physical rank r? Our answer is yes. Instead of directly applying the up-projection
Bi to hi, LaX incorporates latent features from the previous layer into the up-projection process.
Formally, we propose LaX as follows:

hi−1 = Ai−1xi−1, hi = Aixi ∈ Rr,

ỹi = Bi(hi + hi−1) ∈ Rdout .
(2)

Equivalently, if we stack inputs as x̃i :=

[
xi

xi−1

]
∈ R2din , then LaX can be formulated as

ỹi = W
(LaX)
i x̃i, W

(LaX)
i :=

[
BiAi BiAi−1

]
∈ Rdout×2din . (3)

Since hi−1 is naturally produced by the preceding layer during the forward pass, this implicit reuse
of intermediate representations facilitates direct information flow across consecutive low-rank pro-
jections, requiring no additional parameters or computation overhead.

3.2 Variants of LaX

LaX is a general module that is widely applicable to low-rank structures. Eq (2) mainly describes its
implementation on matrix factorization methods, where LaX is applied across two consecutive lay-
ers. We also refer to this implementation as Inter-Layer LaX. In modern architectures such as the
transformer, we apply Inter-Layer LaX between the same type of layers across transformer blocks,
i.e., from attention (QKV projection) to attention, and from MLP to MLP. This design preserves
structural and semantic alignment in residuals while avoiding cross-type interference.

For more fine-grained low-rank structure, such as tensor factorization methods, LaX is not limited
to cross-layer only. Take the tensor-train representation in Fig. 3 as an example: W (dropping layer
index for simplicity) is approximated by 6 low-rank factors {C0,C1, . . . ,C5}, therefore, a series
of latent features will be produced when sequentially contracting each factor, such as C0x, C0C1x,
C0C1C2x, etc. Along this contraction sequence, earlier results can be used as residuals to form
multiple LaX pathways. We refer to this implementation as Intra-Layer LaX.
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Figure 3: A 6-core Tensor Train layer with the symmetric setting. For Tensor Train layers with identical input
and output shapes, we can naturally arrange the tensor ranks in a symmetric configuration, where r0 = r4 and
r1 = r3 in this example. This reduces the need for shape transformation operations, making Intra-Layer LaX
more efficient when applied.

3.3 LaX Gates

Figure 4: LaX Gate.

When the latent dimensions are aligned (e.g., SVD with the same rank
between layers, symmetric TT ranks within a layer), direct residual path-
ways can be formed without introducing extra parameters. For example,
in QKV projection layers with symmetric TT setup (Fig.3), we config-
ure to ensure residual compatibility. However, a direct addition becomes
infeasible when latent features have mismatched dimensions. To handle
this, we introduce LaX Gate, a module that aligns and modulates latent
features before residual fusion (Fig. 4). The gated residual formulation
becomes:

ỹi = W
(LaX)
i x̃i, W

(LaX)
i :=

[
BiAi BiGiAi−1

]
. (4)

To accommodate different architectural needs and promote the versatility
of LaX, we unify the notion by introducing the following Gate variants:

• Identity Gate: Passes latent features through a direct addition without introducing additional
parameters, i.e. G(·) = 1.

• Linear Gate: Introduces a single trainable parameter to control how much information is passed
forward, i.e. G(·) = β, where β ∈ R is a trainable parameter.

• Tensor Gate: As illustrated in Fig. 5, this variant first folds the latent feature vector into a tensor
R ∈ Rr0×1×r1 , then contracts it with two learnable gate tensor cores: C0 ∈ R1×r

′
0×r0 and

C1 ∈ Rr1×r
′
1×1,i.e. R′

= C0 ×3,1 R×3,1 C1×3,1 ∈ Rr
′
0×1×r

′
1 to match targeting shape r

′

0 × r
′

1.
In the two-core setting, each gating core includes a singleton dimension. This dimension can be
generalized to larger sizes when extending the design to more than two gating cores, allowing for
greater flexibility across different use cases.

• Dense Gate: Passes latent feature using a G ∈ Rr×r linear layer.

We remark that the overhead introduced by LaX in terms of parameter count and computation is
often minimal, since the latent rank r is relatively small (e.g., 64 or 128) in low-rank models. In ad-
dition to addressing dimensional misalignment, we empirically find that LaX Gate can further boost
performance with negligible parameter overhead (see details in Section 4.1 for ViT pre-training with
Tensor Gate). Therefore we also experiment LaX Gate on scenarios where dimensions are matched.

3.4 Feature Normalization

Additionally, following the common practice of normalizing features after a residual connection, we
postpend a Layer Normalization (LN) to each LaX pathway. With this normalization, the final form
of LaX is as follows:

ỹi = LN(W
(LaX)
i x̃i), W

(LaX)
i :=

[
BiAi BiGi−1Ai−1

]
. (5)

3.5 Practical Guideline

Here, we provide practical guidelines for selecting the appropriate LaX variant based on empirical
observations across different tasks:
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Figure 5: Two-Core Tensor Gate. A residual tensor R ∈ Rr0×1×r1 is contracted with two gating tensor cores,

C0 and C1, producing a transformed residual tensor R
′
∈ Rr

′
0×1×r

′
1 .

ViT-B ViT-L
Method Variant # Params (M ) Accuracy (%) # Params (M ) Accuracy (%)
Original - 86.56 76.74 304.33 77.10

SVD Base Model 44.17 75.20 115.77 76.81
+ LaX (Ours) 44.24 77.20 (+2.00) 115.92 78.60 (+1.79)

Tensor Train Base Model 41.18 71.11 101.97 75.21
+ LaX (Ours) 41.44 75.43 (+4.32) 102.10 77.77 (+2.56)

CoLA Base Model 44.17 76.04 115.77 77.63
+ LaX (Ours) 44.24 77.84 (+1.80) 115.92 79.07 (+1.44)

Table 1: Accuracy comparison of pre-training on ImageNet-1k datasets. LaX consistently improves pre-training
performance across various low-rank models and scales. When applied to CoLA [43], CoLA+LaX achieves the
highest accuracy on both ViT-B and ViT-L. Tensor Train models observe the largest gains, with improvements
of +4.32%/+2.56% on ViT-B/L.

• ViTs Pre-training Task: Vision Transformer pre-training typically involves multiple epochs over
medium-sized datasets. Under this setting, we observe (see Tab. 2) that the Tensor Gate consis-
tently outperforms other gate variants. We therefore recommend using the Tensor Gate for ViT
pre-training tasks.

• LLMs Pre-training Task: In contrast to ViTs, large language model pre-training typically in-
volves processing a significantly larger number of training tokens across a vast semantic space
(e.g., a vocabulary size of 32,000 in LLaMA-1/2), often without completing a full training epoch.
In such case, we empirically find that Identity Gate off-the-shelf provides consistent and signif-
icant improvements to different low-rank architectures, with zero parameter overhead and only
negligible compute overhead (see Section 4.2).

• Fine-Tuning Task: The optimization space of fine-tuning is already constrained and therefore
very small, where introducing additional parameters is often unnecessary. In these scenarios, we
recommend using the Identity Gate or Linear Gate to preserve training efficiency while enabling
information flow across low-rank subspaces.

4 Pre-training Experiments

We first evaluate the performance of LaX in some low-rank pre-training experiments of ViTs/LLMs.

4.1 Pre-training Vision Transformers

Figure 6: Training Loss

We pretrain ViT-Base/Large (224 resolution with 16×16 patch size) and
its corresponding low-rank variants on ImageNet-1K [49]. We consider
SVD, Tensor Train and CoLA [43] as the baseline low-rank models. All
models are trained from scratch for 300 epochs according to the setting
of [9]. For SVD and CoLA, we only place Inter-layer LaX with the
Tensor Gate. For tensor train, we use both Inter-Layer LaX and Intra-
Layer LaX with the Tensor Gate. More details of the model and training
configurations are provided in Appendix A.1.

As shown in Tab. 1, all low-rank baselines experienced accuracy drop
compared to the full-rank training. However, LaX consistently improves
performance across the three baseline methods (see the training curve
in Fig. 6; additional curves in Appendix A.2), with negligible parameter
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rank=256 rank=128 rank=64

Gate # Params (M) Accuracy (%) # Params (M) Accuracy (%) # Params (M) Accuracy (%)
Base Model 44.17 75.20 22.94 74.47 12.32 71.26
+ Identity Gate 44.17 75.81 (+0.61) 22.94 74.65 (+0.18) 12.32 71.64 (+0.38)
+ Linear Gate 44.17 76.11 (+0.91) 22.94 75.31 (+0.84) 12.32 71.72 (+0.46)
+ Tensor Gate 44.24 77.20 (+2.00) 22.97 76.35 (+1.88) 12.34 72.94 (+1.68)
+ Dense Gate 48.55 77.03 (+1.83) 24.04 75.43 (+0.96) 12.60 72.33 (+1.07)

Table 2: Pre-training performance of different LaX Gates on SVD-based ViT-B under varying rank settings.
LaX consistently improves performance across all configurations, with the Tensor Gate achieving the largest
gains while incurring minimal parameter overhead.

overhead (≤ 0.2%). On the ViT-B scale, it recovers the lost performance, boosting accuracy by
+2.00% to 77.20% for SVD. For Tensor Train, LaX lifts accuracy from 71.11% to 75.43% (+4.32%),
turning the weakest model into a strong contender. Even for CoLA, the best-performing baseline,
LaX adds boosts the accuracy by 1.80%, reaching 77.84%. Similar trends are observed in ViT-L.

We further evaluate the impact of different LaX Gate variants under varying rank r configurations in
ViT pre-training. As shown in Tab. 2, all gate variants consistently improve accuracy across different
rank settings compared to their respective base models. Among them, Tensor Gate achieves the
highest gains with minimal parameter overhead. At rank 256, Tensor Gate improves accuracy by
+2.00% with only +0.07M additional parameters. As the rank decreases, the added parameter cost
also diminishes: at rank 128/64, the Tensor Gate requires only +0.03M/+0.02M more parameters
to achieve +1.88%/+1.68% accuracy gains, respectively. Additional experiments can be found in
Appendix B.

Model Computation Complexity

Original O(nd2 + n2d)
SVD / CoLA O(ndr + n2d)
Tensor Train O(ndr + n2d)†

Table 3: Model Complexity (per block) under batch
size 1.

Gate Type FLOPs Overhead
Res / Norm O(nr)
Identity O(1)
Linear O(nr)
Tensor O(nr)
Dense O(nr2)

Table 4: LaX Gate Overhead under batch size 1.

Complexity Analysis We further analyzed the computational complexities (measured by the num-
ber of FLOPs in each transformer block) of the original models and the gating mechanisms of LaX.
Tab. 3 shows the FLOPs of the models without LaX while Tab. 4 shows the additional FLOPs re-
quired by LaX gating, where n is the sequence length, d is the hidden dimension, and r is the rank.
As shown by the tables, the computation overhead introduced by Res, Norm, Identity, Linear, and
Tensor Gate is at least an order of magnitude smaller than the original models, and so negligible.
Dense Gate introduces overhead that is quadratic in r, but it could still be acceptable if r << d.

4.2 Pre-training Language Models

We further evaluate LaX in language model pre-training tasks where previous work suggests that
pure low-rank architectures often cause performance drop [37, 66, 15]. More recent work such
as CoLA [43] and LORO [44], have shown promising results by imposing low-rank activations or
performing manifold optimization. Since LORO optimizes A and B in the rank-r manifold that
W = BA lies on, the proposed formulation of LaX contradicts this assumption. Consequently, we
compare LaX with SVD and CoLA†, and directly cite the results reported in [66, 15, 44, 43].

We adopt the same experimental setup from recent benchmarks [66, 15, 44, 43], pre-training
LLaMA-like models from 60M to 1B parameters on C4 [48] without data repetition and using
compute-optimal token-to-parameter ratios†. All linear layers in the original LLaMA architecture
are replaced with low-rank layers. For CoLA, we follow [43], and implement the SVD baseline by
removing its low-rank activations and/or restoring the original activation. All methods use the same
rank for fairness. Full training details are provided in Appendix A.3.

†This provides a loose upper bound on complexity, but still tighter than the one reported in [45].
†Due to resource constraint, we focus on baseline architectures that performed better in our ViT experiments
†The token-to-parameter (T2P) ratios are roughly compute optimal [22].
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60M 130M 350M 1B

r / d 128 / 512 256 / 768 256 / 1024 512 / 2048
Tokens 1.1B 2.2B 6.4B 13.1B

PPL Param Mem PPL Param Mem PPL Param Mem PPL Param Mem

Full-rank 34.06 58 0.43 24.36 134 1.00 18.80 368 2.74 15.56 1339 9.98
ReLoRA [37] 37.04 58 0.37 29.37 134 0.86 29.08 368 1.94 18.33 1339 6.79
GaLore [66] 34.88 58 0.36 25.36 134 0.79 18.95 368 1.90 15.64 1339 6.60
SLTrain [15] 34.15 44 0.32 26.04 97 0.72 19.42 194 1.45 16.14 646 4.81
LORO [44] 33.96 43 0.32 24.59 94 0.70 18.84 185 1.38 15.19 609 4.54

SVD 36.25 43 0.32 26.84 94 0.70 21.18 185 1.38 16.54 609 4.54

SVD + LaX 33.54
(-2.71) 44 0.33 24.63

(-2.21) 94 0.70 18.90
(-2.28) 185 1.38 15.51

(-1.03) 609 4.54

CoLA [43] 34.04 43 0.32 24.48 94 0.70 19.40 185 1.38 15.52 609 4.54

CoLA + LaX 33.21
(-0.83) 44 0.33 24.21

(-0.27) 99 0.74 18.51
(-0.89) 196 1.46 14.78

(-0.74) 609 4.54

Table 5: Comparisons of LaX and its base models against other low-rank methods on pre-training C4 dataset
[48] from 60M to 1B. We report the validation perplexity (PPL (↓)), number of parameters in millions (Param),
and the estimated total memory usage in GB (Mem) excluding activations based on BF16 precision. Results
other than LaX and vanilla SVD are from [66, 15, 43, 44].

LaX 60M 130M 350M
Res Gate PPL Rank PPL Rank PPL Rank

Full-Rank - - 34.06 512 24.36 768 18.80 1024

LORO - - 33.96 128 24.59 256 18.84 256

SVD –
Lower Rank

××× ××× 36.25 26.84 21.18
✓✓✓ ××× 33.61 (-2.64) 128 24.63 (-2.21) 256 18.90 (-2.28) 256
✓✓✓ ✓✓✓ 33.54 (-2.71) 24.66 (-2.18) 18.93 (-2.25)

CoLA –
Lower Rank

××× ××× 34.04 24.48 19.40
✓✓✓ ××× 33.82 (-0.22) 128 24.37 (-0.11) 256 18.81 (-0.59) 256
✓✓✓ ✓✓✓ 33.21 (-0.83) 24.21 (-0.27) 18.51 (-0.89)

SVD –
Higher Rank

××× ××× 33.45
224

26.20 [
256
384

] 19.68 [
384
512

]
✓✓✓ ××× 31.62 (-1.83) 23.86 (-2.34) 18.39 (-1.29)
✓✓✓ ✓✓✓ 31.82 (-1.63) 23.97 (-2.23) 18.21 (-1.47)

CoLA –
Higher Rank

××× ××× 31.52
224

23.97 [
256
384

] 18.32 [
384
512

]
✓✓✓ ××× 31.42 (-0.10) 23.74 (-0.23) 17.53 (-0.79)
✓✓✓ ✓✓✓ 30.90 (-0.60) 23.42 (-0.55) 17.34 (-0.98)

Table 6: Comparisons of LaX on SVD/CoLA between different Gate variants (×××denotes Identity Gate,
✓✓✓denotes Dense Gate) and rank choices across 60M to 350M scales. For scenarios where a vector of ranks is
provided, smaller one is for attention layers and the larger one is for MLP layers.

As shown in Tab. 5, LaX improves the validation perplexity of SVD and CoLA across all scales.
In particular, vanilla SVD performs poorly compared to most baselines but can be boosted to per-
form on par with or surpassing LORO and CoLA. While CoLA perform similarly to LORO, its LaX
-boosted version surpasses LORO on all scales. In addition, LaX just uses the standard Adam opti-
mizer and does not need LORO’s complex manifold gradient computations and deeply customized
training strategies†.

Tab. 6 compares SVD/CoLA variants across different ranks and LaX configurations. From Tab. 6
we observe that with either Identity Gate (denoted by ×××) or Dense Gate (denoted by ✓✓✓), LaX con-
tinues to increase performance. In particular, the results in Tab. 6 further demonstrate that LaX is
consistently effective regardless of whether the base model has a higher rank. The trend continues
to hold that LaX boosts more on a weaker base model than on a stronger base model.

The only mixed message in Tab. 6 is the effectiveness of LaX Gate. In CoLA from 60M to 350M,
the Dense Gate consistently outperforms the Identity Gate. However, for the SVD method, a Dense
Gate does not provide a consistent benefit. When results are mixed, the rule-of-thumb is to be
conservative; therefore, we recommend using Identity Gate in language model pre-training, as it

†LORO requires periodical computations of manifold gradient which involves tuning the update frequency,
at each update step a learning rate warm-up and a refreshment of Adam statistics.
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Model Method (r = 32) # Params (%) MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg

LLaMA-7B LoRA 0.83 95.0 36.1 84.3 17.7 84.4 51.8 61.6
LoRA + LaX (Ours) 0.83 96.9 (+1.9) 37.7 (+1.6) 84.8 (+0.5) 19.3 (+1.6) 87.8 (+3.4) 53.6 (+1.8) 63.4 (+1.8)

LLaMA-13B LoRA 0.67 95.2 47.5 86.0 18.2 89.8 54.6 65.2
LoRA + LaX (Ours) 0.67 97.3 (+2.1) 49.0 (+1.5) 86.3 (+0.3) 20.9 (+2.7) 91.9 (+2.1) 58.3 (+3.7) 67.3 (+2.1)

Table 7: Accuracy comparison of LoRA and LaX-LoRA on six math reasoning datasets.

Model Method (r = 32) # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LLaMA-7B LoRA 0.83 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA + LaX (Ours) 0.83 69.6 (+0.7 ) 81.9 (+1.2) 78.9 (+1.5) 84.7 (+6.6) 80.8 (+2.0) 79.8 (+2.0) 64.8 (+3.5) 78.0 (+3.2) 77.3 (+2.6)

LLaMA-13B LoRA 0.67 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
LoRA + LaX (Ours) 0.67 71.3 (-0.8) 85.4 (+1.9) 81.3 (+0.8) 91.3 (+0.8) 84.1 (+0.4) 84.4 (+1.6) 71.8 (+3.5) 83.1 (+0.7) 81.6 (+1.1)

Table 8: Comparison of LoRA and LaX-LoRA on Commonsense Reasoning Benchmarks.

already effectively boosts SVD and CoLA architectures. Consequently, we conduct the pre-training
experiments on the 1B scale using the Identity Gate.

On larger-scale CoLA (e.g., 350M and 1B), LaX tends to bring more benefit, contrary to the stable
or decreasing trend observed in SVD. This may be caused by the architectural difference between
SVD and CoLA, indicating that CoLA might benefit more from LaX when it scales up.

5 Fine-tuning Experiments

Finally we show the effectiveness of LaX in low-rank fine-tuning. We incorporate LaX into LoRA
(Fig. 2 (d)) and consider two widely used reasoning benchmarks [41, 25]: Arithmetic/Commonsense
Reasoning. The fine-tuning configuration in this section strictly follows [24]. Additional configura-
tion details are provided in Appendix A.4.

5.1 Arithmetic Reasoning

We fine-tune LLaMA-7B /13B on the Math10K dataset and assess performance in six arithmetic
reasoning subtasks. For this evaluation, we configure LaX with Linear Gate.

Tab. 7 shows that augmenting LoRA with LaX yields consistent accuracy improvements across
all six arithmetic subtasks for both LLaMA-7B and LLaMA-13B. For the 7B model, the average
score improves from 61.6% to 63.4% (+1.8%), while for the 13B model it increases from 65.2% to
67.3% (+2.1%), suggesting that LaX’s rank expansion mechanism effectively provides additional
representation capacity required by fine-tuning. Even on subtasks where LoRA already performs
strongly (e.g. MultiArith, AddSub), LaX delivers consistent improvements.

5.2 Commonsense Reasoning

Following [25, 41], we merge the training datasets from all eight commonsense reasoning tasks
into a unified training set and evaluate the performance separately on each task. In this experiment,
we configure LaX with the Identity Gate. As shown in Tab. 8, LaX consistently outperforms the
LoRA baseline in all reasoning tasks. For LLaMA-7B, the average accuracy increases from 74.7%
to 77.3% (+2.6%), with a notable gain of +6.6% on HellaSwag. For LLaMA-13B, the overall score
rises by +1.1%; only BoolQ exhibits a marginal decline (-0.8%).

6 Conclusion
In this work, we have presented Latent Crossing (LaX), a lightweight and versatile module de-
signed to improve the training performance of low-rank compressed models. Although low-rank
methods are effective in reducing computational overhead, they often suffer from a loss in model
expressiveness and performance. LaX addresses this limitation by enabling information flow be-
tween low-rank subspaces through residual connections equipped with simple gating mechanisms.
As a result, LaX serves as a general plug-in booster that enhances a wide range of low-rank models,
across both pretraining and fine-tuning scenarios, and for both language and vision tasks.
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A Hyperparameter

A.1 ViTs Pre-training Configurations

Models LaX Rank Epochs Base LR LR decay Weight decay Dropout Warmup
ViT-B – – 300 3e-3 cosine 0.3 0.1 10

SVD × 256

300 1e-3 cosine 0.3 0.1 10

✓
TT × 336✓
CoLA × 256✓

Table 9: Training hyperparameter for ViT-B and its low-rank variants on ImageNet-1k.

Models LaX Rank Epochs Base LR LR decay Weight decay Dropout Warmup
ViT-L – – 300 3e-3 cosine 0.3 0.1 10

SVD × 256

300 1e-3 cosine 0.3 0.1 10

✓
TT × 256✓
CoLA × 256✓

Table 10: Training hyperparameter for ViT-L and its low-rank variants on ImageNet-1k.

Models Inter-Layer LaX Intra-Layer LaX
SVD

Tensor Gate
×

TT Tensor Gate
CoLA ×

Table 11: LaX gating variants for different low-rank methods.
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Models Inter-Layer LaX Intra-Layer LaX
SVD

QKV+MLP
×

TT QKV+MLP
CoLA ×

Table 12: LaX placed layers for different low-rank methods.

Models # Cores QKV di MLP1 di MLP2 di

ViT-B 4 {32,24,24,32} {32,24,48,64} {48,64,24,32}

ViT-L 4 {32,32,32,32} {32,32,64,64} {64,64,32,32}
Table 13: Tensor Train Dimension Configuration for ViTs.
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A.2 ViT Pre-training Loss Curves

Figure 7: Pre-training Loss Curve of SVD and SVD+LaX on ImageNet-1k

Figure 8: Pre-training Loss Curve of Tensor Train and Tensor Train+LaX on ImageNet-1k
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Figure 9: Pre-training Loss Curve of CoLA and CoLA+LaX on ImageNet-1k
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A.3 LLMs Pre-training Configurations

Scales Models LaX Steps Base LR LR decay Weight decay Warmup Gradient clipping

60M
SVD ×××

10k

2e-3

cosine 0.01 2k 0.5✓✓✓ 2e-2

CoLA ××× 6e-3
✓✓✓ 4e-2

130M
SVD ×××

20k

1e-3

cosine 0.01 4k 0.5✓✓✓ 1e-2

CoLA ××× 4e-3
✓✓✓ 2e-2

350M
SVD ×××

60k

1e-3

cosine 0.01 12k 0.5✓✓✓ 1e-2

CoLA ××× 3e-3
✓✓✓ 2e-2

1B
SVD ×××

100k

8e-4

cosine 0.01 20k 0.5✓✓✓ 3e-3

CoLA ××× 2e-3
✓✓✓ 1e-2

Table 14: Hyper-parameters for pre-training SVD and CoLA and their LaX variants for LLaMA-like models
from 60M to 1B.

The primal hyper-parameter for LLM pre-training experiments is the learning rate. For small models
such as 60M and 130M, we typically sweep at the scale of 1e-3 for base models and 1e-2 for their
LaX variants. The rule-of-thumb that we empirically found is to choose the largest learning rate
that does not cause divergence issues. In particular, SVD base models are severely more sensitive
to learning rate, and can only afford smaller settings compared to base CoLA. For both SVD and
CoLA, LaX offers additional stability that facilitates an order of magnitude larger learning rates.
The experience of training smaller models are then adopted for larger scales such as 350M and 1B,
which continue following the trend that the proper choice of learning rate decreases when model
scale increases. For the same scale, we did not find evident that further tuning learning rates are
beneficial. Consequently, we adopt the same setting when only changing the rank for each scale.
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A.4 LaX-LoRA Fine-tuning Configurations

Hyperparameters (LoRA) LLaMA-7B LLaMA-13B
Rank r 32 32
α 64 64
Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 3e-4 3e-4
Scheduler Linear Linear
Batch size 16 16
Accumulation steps 4 4
Cut off length 256 256
Warmup steps 100 100
Epochs 3 3
Where Q,K,V,Up,Down Q,K,V,Up,Down

Table 15: Commonsense Hyperparameter settings for LoRA on LLaMA-7B and LLaMA-13B.

Hyperparameters (LaX-LoRA) LLaMA-7B LLaMA-13B
Rank r 32 32
α 64 64
Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 3e-4 3e-4
Scheduler Linear Linear
Batch size 16 16
Accumulation steps 4 4
Cut off length 256 256
Warmup steps 100 100
Epochs 3 3
Where Q,K,V,Up,Down Q,K,V,Up,Down
Where LaX Q,K,V,Up,Down Q,K,V,Up,Down
LaX Gate Identity Identity

Table 16: Commonsense Hyperparameter settings for LaX-LoRA on LLaMA-7B and LLaMA-13B.
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Hyperparameters (LoRA) LLaMA-7B LLaMA-13B
Rank r 32 32
α 64 64
Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 3e-4 3e-4
Scheduler Linear Linear
Batch size 16 16
Accumulation steps 4 4
Cut off length 256 256
Warmup steps 100 100
Epochs 3 3
Where Q,K,V,Up,Down Q,K,V,Up,Down

Table 17: Arithmetic Hyperparameter settings for LoRA on LLaMA-7B and LLaMA-13B.

Hyperparameters (LaX-LoRA) LLaMA-7B LLaMA-13B
Rank r 32 32
α 64 64
Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 3e-4 3e-4
Scheduler Linear Linear
Batch size 16 16
Accumulation steps 4 4
Cut off length 256 256
Warmup steps 100 100
Epochs 3 3
Where Q,K,V,Up,Down Q,K,V,Up,Down
Where LaX Q,K,V,Up,Down Q,K,V,Up,Down
LaX Gate Linear Linear

Table 18: Arithmetic Hyperparameter settings for LaX-LoRA on LLaMA-7B and LLaMA-13B.

20



B Additional Experiments

B.1 Where LaX Contributes Mostly

To identify where LaX is most effective, we analyzed the checkpoint from Tab. 2 (rank = 256),
focusing on the scalar values of the Linear Gates. Since larger gate values indicate a stronger reliance
on LaX, this allows us to quantify the relative contribution of LaX across components.

LaX Layer Q K V Proj FC1 FC2
1 3.222 3.825 0.254 0.472 2.966 0.003
2 1.370 1.653 0.406 0.098 2.005 0.004
3 1.596 1.960 0.816 0.037 1.462 0.040
4 1.550 1.522 1.412 0.033 1.360 0.552
5 2.071 2.161 0.847 0.018 1.272 0.026
6 2.184 2.023 1.746 0.004 1.929 0.002
7 0.533 1.210 2.116 0.002 2.038 0.004
8 0.370 1.336 1.895 0.001 1.860 0.005
9 0.259 1.040 1.911 0.002 1.800 0.004

10 0.857 0.955 1.356 0.869 2.332 0.002
11 1.203 2.330 2.983 1.024 2.012 1.477

Table 19: Scalar values of Linear Gates for each module within LaX layers. Higher values indicate stronger
reliance on LaX.

Our analysis reveals several distinct patterns in how LaX contributes across Transformer layers. For
the Q and K projections, LaX plays a stronger role in the early layers, followed by a reduction in
the middle layers, and then a sharp increase in the final layer. In contrast, the V projection shows
the opposite trend, i.e., LaX contributes very little in the earlier layers but gradually increases its
influence in the later ones. In the attention output projection (Proj), only Layers 1, 10, and 11 exhibit
meaningful gate values, indicating that LaX is rarely needed in this component. For the FC1 layer
in the MLP, LaX contributions are more evenly distributed across the depth, but still follow a pattern
of being higher in the initial and final layers. Finally, in FC2, LaX is largely unused throughout the
network, except in Layers 4 and 11, where its contribution becomes significant.

B.2 Tensor Train Networks with CoLA-style Activations

We explored how LaX interacts with CoLA-style activations in Tensor Train models by injecting
a nonlinearity after the down projection. The Tensor Train models and the training script used in
this part are identical to Tab. 1. Notably, combining LaX with CoLA leads to a synergistic effect,
outperforming both standard TT models and SVD-based low-rank baselines:

Model LaX CoLA Activation Test Acc (%)
Tensor Train 7 7 71.11
Tensor Train ✓ 7 75.43 (+4.32)
Tensor Train 7 ✓ 72.60 (+1.49)
Tensor Train ✓ ✓ 77.73 (+6.62)
SVD ✓ 7 77.20
Dense ViT 7 7 76.74

Table 20: How LaX Interacts with CoLA Activation in Tensor Train Networks

B.3 Ablation Study on Intra-LaX and Inter-LaX

To better understand the source of performance gains, we separately examined the impact of Inter-
LaX and Intra-LaX on model accuracy.

We observe that Inter-LaX serves as the primary source of performance gains in Tensor Train models.
Moreover, when Intra-LaX is applied selectively, MLP blocks benefit more than Attention blocks.
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Model Inter-LaX Applied To Intra-LaX Applied To Test Acc (%)
Tensor Train 7 7 71.11
Tensor Train ✓ ✓ 75.43 (+4.32)
Tensor Train 7 ✓ 73.25 (+2.14)
Tensor Train ✓ 7 73.87 (+2.76)
Tensor Train ✓ Attention Only 74.38 (+3.27)
Tensor Train ✓ MLP Only 74.98 (+3.87)

Table 21: Effect of Inter-LaX and Intra-LaX on Model Performance

LayerNorm Training Loss Test Acc
✓ 2.486 77.20
7 nan 0.10

Table 22: Effect of Removing LayerNorm from LaX

B.4 Ablation Study on Normalization

As expected, removing LayerNorm from LaX causes training to fail immediately. LayerNorm plays
a critical role in stabilizing activation distributions and mitigating gradient explosion/vanishing.
Without this normalization, activation statistics drift over time, leading to severe gradient instability
and ultimately causing the training process to collapse.

B.5 Ablation Study on Layer Types

We further conducted pre-training experiments to investigate the impact of applying LaX to differ-
ent layer types. Specifically, we evaluated this on the pre-training of the SVD-ViT-B model on
ImageNet-1K.

Where LaX is Applied Test Acc (%)
None 75.20
Q only 75.54 (+0.34)
K only 75.43 (+0.23)
V only 75.91 (+0.71)
Attention Block only 76.38 (+1.18)
MLP only 76.09 (+0.89)
Attention Block + MLP 77.20 (+2.00)

Table 23: Ablation study of applying LaX to different layer types.

As shown in the Table, applying LaX to the V projection yields the largest performance gain among
the individual attention components. When comparing broader structures, applying LaX to the entire
Attention Block provides slightly greater benefits than applying it only to the MLP. Furthermore, the
improvements appear to be additive.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Section 3.1. Empirical validation is in Section 4.1, and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 4.2. We discussed the limitation regarding gating module in
LLMs pre-training tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release our code link in this paper. All the datasets used are public, and
we provide full hyperparameters in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided open access to our code, the anonymized URL is included.
All the datasets used are public, and we provide full hyperparameters in the Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Pre-training large foundation models is highly computationally expensive.
For instance, a single pre-training run of an SVD-based ViT-B model under our setup re-
quires approximately 450 A100 GPU hours. Larger models used in this study incur even
higher costs. Due to computational constraints, we are unable to conduct multiple pre-
training runs for all variants.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5. We provide the number of parameters for all experimented
models, and we also provide the run memory in Tab.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research adheres to the NeurIPS Code of Ethics in every
respect and preserves anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper proposes new methods for efficient training of large models. The
research has the possibility to significantly reduce the training costs of large models and
also accelerate the inference.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research didnt release any data or models at such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, they are properly credited, mentioned, and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: Our work introduces no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We confirm that the proposed method in our paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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