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Abstract

In many applications, training machine learning models involves using large amounts of
human-annotated data. Obtaining precise labels for the data is expensive. Instead, training
with weak supervision provides a low-cost alternative. We propose a novel weak supervision
algorithm that processes noisy labels, i.e., weak signals, while also considering features of the
training data to produce accurate labels for training. Our method searches over classifiers of
the data representation to find plausible labelings. We call this paradigm data consistent
weak supervision. A key facet of our framework is that we are able to estimate labels for
data examples low or no coverage from the weak supervision. In addition, we make no
assumptions about the joint distribution of the weak signals and true labels of the data.
Instead, we use weak signals and the data features to solve a constrained optimization that
enforces data consistency among the labels we generate. Empirical evaluation of our method
on different datasets shows that it significantly outperforms state-of-the-art weak supervision
methods on both text and image classification tasks.

1 Introduction

A common obstacle to adoption of machine learning in new fields is lack of labeled data. Training supervised
machine learning models requires significant amounts of labeled data. Collecting labels for large training
datasets is expensive. For example, certain natural language processing tasks such as part-of-speech tagging
could require domain expertise to annotate each example. Manually annotating each example is time
consuming and costly.

Practitioners have turned to crowdsourcing (Howe, 2006) and weak supervision (Ratner et al., 2016; 2019;
Arachie & Huang, 2019) as alternative means for collecting labels for training data. Weak supervision trains
models by using noisy labels that are cheap and easy to define. The noisy supervision—i.e., weak signals—use
rules or patterns in the data to weakly label the dataset. Typically, a user will define multiple weak signals
for the data using different rules or heuristics. The weak signals are noisy and thus can conflict on their label
estimates. Additionally, they can be correlated and make dependent errors that could mislead a model if the
weak signals are naively combined by majority voting or averaging. The key task then in weak supervision
training is to intelligently aggregate weak signals to generate quality labels for the training data.

In this paper, we propose a novel weak supervision approach that uses input features of the data to aggregate
weak signals and produce quality labels for the training data. Our method works by using the features
of unlabeled data and the weak signals to define a constrained objective function. We call this paradigm
data-consistency since the labels produced by the algorithm are a function of the data input features. We
define a label model that learns parameters to predict labels for the training data, and these labels must
satisfy constraints defined by the weak signals. Both the data features and the weak supervision define the
space of plausible labelings, unlike prior works (Ratner et al., 2016; 2019; Arachie & Huang, 2020) that only
use the weak signals to learn labels for the training data. Once our algorithm generates data consistent labels,
these labels can be used to train any end model as if it were fully supervised.

A major advantage of our approach is that by using features of the data, we are able to estimate labels for
examples that have low or no coverage by the weak supervision. In practice, users often define weak signals
that do not label some data points. In extreme cases, all the weak signals could abstain on some particular
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examples. Many existing weak supervision algorithms do not consider these examples for label estimation.
Using the features of the dataset enables us to consider fully abstained examples because our algorithm
is able to find similarities between covered examples to estimate labels for the abstain examples. Another
advantage of our approach is that we do not assume a family of distributions for the weak signals and the
true labels. Assumptions about the labelers or dependence of the weak signals are hard to verify in practice
and could cause a method to fail when they do not hold. Our framework can use various representations for
input features and offers flexibility on the choice of parametric model for our label model. We can choose a
label model family that best fits each task. Lastly, our algorithm can be used for both binary and multiclass
classification tasks.

1.1 Data Consistent Weak Supervision

The principle behind data consistent weak supervision (DCWS) is that we consider noisy weak supervision
labels in conjunction with features of the training data to produce training labels that are consistent with the
input data. To do this, we optimize a parametric function constrained by the weak supervision. Formally, let
the input data be a set of feature descriptors of examples X = [x1, . . . , xn]. These examples have corresponding
labels y = [y1, . . . , yn] ∈ {0, 1}n, but they are not available in weakly supervised learning. Instead, we have
access to m weak supervision signals {q1, . . . , qm}, where each weak signal qi ∈ [0, 1]n provides a soft or hard
labeling of the data examples. Note that the weak signals can abstain on some examples. In that case, they
assign a null value ∅ to those examples. For multiclass or multi-label classification problems where the labels
of the data are a matrix of K classes, each individual weak signal makes one-vs-all predictions for only one
class and abstains on other classes. This type of weak supervision is common in practice, since it is somewhat
unnatural for human experts to provide rules that label multiple classes on multi-classification tasks.

The core of DCWS is the following optimization:

min
θ,ξ≥0

∥∥∥fθ(X) − Ŷr

∥∥∥2

2︸ ︷︷ ︸
regularization

+ C

m∑
i=1

ξi︸ ︷︷ ︸
slack penalty

s.t. Afθ(X) ≤ b + ξ︸ ︷︷ ︸
data consistent constraints

(1)

We describe the components of this optimization the remainder of this section. We first describe the
regularization and then we describe how the data consistent constraints are derived.

Regularization The learning objective fits a label model fθ(X) to be consistent with weak supervision
constraints. We provide a prior labeling Ŷr that the learning algorithm should default to when given freedom.
Choosing a default prior labeling serves as a regularization that can prevent overfitting noisy weak signals or
underfitting ambiguous ones. We formulate this regularization as a squared distance penalty∥∥∥fθ(X) − Ŷr

∥∥∥2

2
. (2)

In our experiments, we regularize towards majority vote predictions. For comparison, we also show performance
of our method in when it trains with uniform regularization and no regularization.

Weak Supervision Bounds Various approaches for weak supervision avoid statistical assumptions on
the distribution of the labelers’ errors. These approaches instead reason about estimates or bounds of error
rates π = [π1, . . . , πm] for the weak signals (Arachie & Huang, 2019; 2021; 2020; Balsubramani & Freund,
2015b;a; Mazzetto et al., 2021b). These values bound the expected error of the weak signals, so they define a
space of possible labelings that must satisfy

πi ≥ Eŷ∼qi

[
1
n

∑n
j=1 [ŷj ̸= yj ]

]
,

which for one-vs-all weak signals can be equivalently expressed as

πi ≥ 1
n

(
q⊤

i (1 − y) + (1 − qi)⊤y
)

. (3)
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We extend this bound to cover multi-class classification tasks where the weak signals can choose to abstain
on the datasets. Our modified bound is

πi ≥ 1
ni

(
1(q ̸=∅)q

⊤
i (1 − yk) + 1(q ̸=∅)(1 − qi)⊤yk

)
≥ 1

ni

(
1(q ̸=∅)(1 − 2qi)⊤yk + q⊤

i 1(q ̸=∅)
)

,

(4)

where yk is the true label for the class k that the weak signal qi labels, ni =
∑

1(qi ̸=∅), and 1(qi ̸=∅) is an
indicator function that returns 1 on examples the weak signals do not abstain on. Hence, we only calculate
the error of the weak signals on the examples they label.

As shown by Arachie & Huang (2020), the expected error rates of the weak signals can be expressed as a
system of linear equations Ay = b, where

Ai = 1(qi ̸=∅)(1 − 2qi)

is a linear transformation of a weak signal qi. Each entry in the vector b is the difference between the
expected error of the weak signal and the sum of the weak signal, i.e.,

b = niπi − q⊤
i 1(q ̸=∅).

We can then rewrite the bound in Equation (4) as

Ay ≤ b. (5)

Label Model The bounds described so far only consider the weak signals. Using the weak supervision
q and user provided bounds π, we have constrained the space of possible labeling for the true labels y.
However, this constrained space can contain label assignments that are unreasonable given the input data.
For example, a feasible labeling could give different classifications to two data examples with identical input.
To avoid such inconsistencies, we use a parametric model to enforce an additional constraint that the learned
labels are consistent with the input features. We estimate y by defining a parametric model fθ(X) that reads
the data as input and outputs estimated class probabilities. We refer to this model as the label model. Our
label model is data-consistent by definition because it relates features of the data to the predicted labels. We
combine the label model with the weak supervision by finding parameters θ whose predictions of the training
labels satisfy the weak supervision constraints. By directly substituting the output of the label model for the
estimated labels, we obtain a constraint on the parameters:

Afθ(X) ≤ b. (6)

This form of the constraint accommodates many forms of the label model fθ(X). Depending on the task,
fθ(X) could be a linear or non-linear model. This gives our method a flexibility that enables practitioners to
adapt it for different problem domains. Lastly, for our model, X could be the training data or any input
representation of the data. In Section 2, we show experiments with different representations for X.

Slack The constraints are provided by the weak supervision q and the error bounds π. If π is too
tight, finding solutions to the optimization could be infeasible. In contrast, if π is too loose, then the
weak supervision will not adequately constrain the objective and the label estimation will not incorporate
information from the weak signals. In previous related methods (Arachie & Huang, 2019; Balsubramani &
Freund, 2015b;a; Mazzetto et al., 2021b), π is calculated on a small set of labeled data, but in practice having
access to labeled data may not always be possible. When the bounds cannot be accurately estimated, we
choose a tight bound by setting π = 0, and we use a linear slack penalty to adaptively relax the constraints,
yielding the constraint Afθ(X) ≤ b + ξ, where ξ is a vector of nonnegative slack variables, and we add to the
objective a slack penalty C

∑m
i=1 ξi. In this form, setting π = 0 becomes equivalent to a weighted majority

voting of the weak supervision where the weights are supplied by parameters of the label model.
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1.2 Optimization

We optimize Equation (1) using Lagrange multipliers. This allows for inexpensive updates to the parameters
of the model. At convergence, the Lagrangian function finds a local minimum that adequately satisfies the
constraints. The Lagrangian form of the objective is

L(θ, ξ, γ) =
∥∥∥fθ(X) − Ŷr

∥∥∥2

2
+ C

m∑
i=1

ξi

+
m∑

i=1
γi (Aifθ(X) − bi − ξi) ,

(7)

where γ is a Karush-Kuhn-Tucker (KKT) multiplier that penalizes violations on the constraints. During
training, we use Adam (Kingma & Ba, 2014) to make gradient updates for the data model fθ(X). The
Lagrange multiplier γ and the slack variable ξ are optimized by gradient ascent and descent respectively.
Both the slack variable and the Lagrange multiplier are constrained to be non-negative. This optimization
scheme converges when the constraints are satisfied.

2 Experiments

Weak supervision algorithms are evaluated on (1) the accuracy of the learned labels on the training data (label
accuracy), and (2) the performance of the model on unseen data (test accuracy). Typically, weak supervision
algorithms follow a two-stage approach where they first estimate training labels and then use these labels to
train an end model that makes predictions on unseen data. DCWS can use a one-stage approach since our
label model can itself make predictions on test data, however we use a two-stage approach to measure test
accuracy in all our experiments in other to ensure fair comparisons with other methods. To evaluate the
effectiveness of DCWS, we design three sets of experiments. First, we train DCWS with the data itself on a
synthetic data and measure its label and test accuracy. Secondly, we run DCWS with feature embedding on
real data and measure its performance. Lastly, we compare the test accuracy of DCWS to weakly-supervised
and semi-supervised methods that train models for label aggregation.

On the first and second set of experiments, we compare the label and test accuracy of DCWS to majority
voting, other weak supervision approaches and a crowdsourcing baseline.

Compared Methods The state-of-the-art methods we compare to are FlyingSquid (Fu et al., 2020),
Snorkel MeTaL (MeTaL) (Ratner et al., 2019), regularized minimax conditional entropy for crowdsourcing
(MMCE) (Zhou et al., 2015), constrained label learning (CLL) (Arachie & Huang, 2020), and adversarial
label learning (ALL) (Arachie & Huang, 2019). We show test accuracy on supervised learning as reference. It
is worth noting that ALL was developed for binary classification tasks and uses weak signals that do not
abstain, hence we only run ALL on datasets that satisfy these requirements. We compare to additional
baselines used by Awasthi et al. (2020) in our second set of experiments.

Network Architecture and Hyper-parameters In all our runs of DCWS, the label model is a two
layer neural network with dropout. The hidden layer uses a ReLU activation function and the output layer is
sigmoid for binary classification and softmax on multiclass datasets. We set the slack penalty C = 10. We
run CLL with the same bounds as ours, π = 0, but we run baseline ALL with the true bounds since the
constraints in ALL are very sensitive to incorrect bounds.

To test the generalizability of our algorithm on unseen data, we take the labels produced by DCWS and other
methods then train an end model to make predictions on a held-out test set. The model is a simple neural
network with two 512-dimensional hidden layers and ReLU activation units. We use the Adam optimizer
with the default settings for all experiments.

Computing Resources and Code All experiments are conducted using a Tesla T4-16Q vGPU with 16
GB RAM and an AMD EPYC 7282 CPU. Our code is provided in the supplementary materials.
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Method Label Accuracy

DCWS 0.790 ± 0.013
FlyingSquid 0.622
MeTaL 0.622
MMCE 0.625
CLL 0.625
Majority Vote 0.625

DCWS+ 0.821 ± 0.012

(a) Label Accuracies

Method Label Accuracy

DCWS 0.843 ± 0.009
FlyingSquid 0.690
MeTaL 0.668
MMCE 0.679
CLL 0.704
Majority Vote 0.633

DCWS+ 0.867 ± 0.007

(b) Test Accuracies

Table 1: Classification accuracies of the different methods on synthetic data. DCWS trains with datapoints that are covered by
the weak supervision, while DCWS+ trains with additional data examples that have no weak supervision coverage. We report
the mean and standard deviation over three trials.

Datasets DCWS FlyingSquid MeTaL MMCE CLL ALL Majority

IMDB 0.811± 0.004 0.736 0.736 0.573 0.737 - 0.701
SST-2 0.741± 0.001 0.660 0.672 0.677 0.678 - 0.674
YELP-2 0.841± 0.003 0.780 0.772 0.685 0.765 - 0.775
Fashion Mnist (Binary) 0.976 ± 0.005 0.951 0.951 0.952 0.952 0.952 0.868

Table 2: Label accuracies of DCWS compared to other weak supervision methods on different text and image classification
datasets. We report the mean and standard deviation over three trials. We do not list the standard deviations if they are less
than 0.001.

2.1 Synthetic Experiment

The aim of this synthetic experiment is to show that DCWS can perform well when the weak signals are noisy
and highly dependent. Additionally, we want to show that with additional datapoints that are not covered by
the weak supervision, we are able to get performance gains for our method. We construct a synthetic dataset
with 32,000 training examples and 8,000 test examples for a binary classification task where the data has 200
randomly generated binary features. Each feature has between 55% to 65% correlation with the true label of
the data. We randomly define 10 weak signals where 9 of the signals are close copies of 1 weak signal, 95%
overlap between them. That is, one weak signal is copied noisily 9 times by randomly flipping 5% of the
labels. The weak signals have 50% coverage on the data and have error rates between [0.35, 0.45]. We run
experiments in two settings. In the first setting, DCWS and competing baselines train with only datapoints
that are covered by at least one weak signal. In the second setting, DCWS trains with all the datapoints in
the training data—including data examples that are not covered by any weak supervision. We refer to this
setting as DCWS+. Tables 1a and 1b shows the performance of the different methods in these settings.

As seen in the table, DCWS achieved the highest performance on both label and test accuracies compared to
competing baselines. It outperforms the next best performing method by over 16% percentage points on
label accuracy and over 13% points on test accuracy. This improvement is significant because FlyingSquid
and MeTaL explicitly model the dependency structure between the weak signal and use this information
to learn their labels. DCWS does not solve for weak signal dependency but rather uses the features of the
training data and the weak signal constraint to defend against possible redundancies. Additionally, we see
that DCWS+ obtains better performance than even DCWS, showing that it is able to leverage features from
additional examples that are not covered by the weak supervision to better inform the model. Other weak
supervision methods typically remove uncovered data examples, but DCWS can synthesize information from
these examples to learn more effectively.

2.2 Real Data

In this section, we describe the datasets we use in the first experiments and the weak supervision we provide
to the learning algorithms. For fair comparison, we only consider training examples that are covered by at
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Datasets DCWS FlyingSquid MeTaL MMCE CLL ALL Majority Supervised

IMDB 0.779± 0.002 0.745 0.685 0.555 0.685 - 0.716 0.816
SST-2 0.731± 0.004 0.681 0.666 0.682 0.686 - 0.672 0.783
YELP-2 0.842± 0.004 0.816 0.780 0.68 0.826 - 0.774 0.877
Fashion Mnist (Binary) 0.970± 0.010 0.940 0.940 0.938 0.941 0.942 0.892 0.992

Table 3: Test accuracies of DCWS compared to other weak supervision methods on different text and image classification
datasets. We report the mean and standard deviation over three trials. We do not report the standard deviations if they are less
than 0.001.

least one weak signal. We use the text datasets and weak signals from Arachie & Huang (2020). For the text
classification tasks, we use 300-dimensional GloVe vectors (Pennington et al., 2014) features as representation
of the data. The image data uses a pre-trained VGG-19 net (Simonyan & Zisserman, 2014) to extract features
of the data. The extracted features are then used to train the models. For more information about the
datasets and weak signals, please refer to the appendix and our code.

IMDB The IMDB dataset (Maas et al., 2011) is a sentiment analysis dataset containing movie reviews
from different movie genres. The classification task is to distinguish between positive and negative user
sentiments. We create the weak supervision signals by considering mentions of specific words in the movie
reviews. In total we had 10 weak signals, 5 positive and 5 negative.

SST-2 The Stanford Sentiment Treebank (SST-2) is another sentiment analysis dataset (Socher et al.,
2013) containing movie reviews. Like the IMDB dataset, the goal is to classify reviews from users as having
either positive or negative sentiment. We use similar keyword-based weak supervision but with different
keywords leading to 14 total weak signals containing 7 positive sentiments and 7 negative sentiments.

YELP-2 We used the Yelp review dataset containing user reviews of businesses from the Yelp Dataset
Challenge in 2015. Like the IMDB and SST-2 dataset, the goal is to classify reviews from users as having
either positive or negative sentiment. We converted the star ratings in the dataset by considering reviews
above 3 stars rating as positive and negative otherwise. We used the same weak supervision generating
process as in SST-2.

Fashion-MNIST The Fashion-MNIST dataset (Xiao et al., 2017) represents the task of recognizing
articles of clothing. The images are categorized into 10 classes of clothing types. We construct a binary
classification task by using two classes from the data. Our task is to classify the tops vs. trousers. We define
weak signals for the data by choosing 2 images from each class. The chosen images are used as reference data
to generate the weak signals and are excluded from the training data. We calculate pairwise cosine similarity
between the embedding of the reference images and the images in the training data and use the rounded
scores as the weak supervision labels. Each reference image provides a weak signal hence we have 4 weak
supervision signals in total for the dataset.

2.3 Results on Real Datasets

Tables 2 and 3 show the performance of our method and various baselines on text and image classification
datasets. From Table 2, we see that DCWS consistently outperforms alternative label aggregation approaches
on both label and test accuracies. On the IMDB dataset, DCWS outperforms the next best performing
method on label accuracy by over 7.5% percentage points and over 6% on the SST and YELP datasets. We
see similar results on the test set in Table 3. DCWS’s performance is even close to that of supervised learning
without using any labeled data. The performance of DCWS in these experiments demonstrates the advantage
our method gains by considering features of the data.

The data-free approaches—FlyingSquid, MeTaL, MMCE, and CLL—have accuracy scores that are on par or
slightly better than majority voting on some of the datasets. The performance of these methods are greatly
affected by the low coverage from the weak supervision. As in the results from the synthetic experiments,
DCWS is less affected by the low weak supervision coverage. It is able to synthesize information from
the features of the data, which enables it to learn better labels for its model. On all experiments, DCWS
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Methods
Datasets

Question MIT-R YouTube SMS Census
(Accuracy) (F1) (Accuracy) (F1) (Accuracy)

Only-L 72.9± 0.6 73.5± 0.3 90.9± 1.8 89.0± 1.6 79.4± 0.5
L+Umaj 71.5± 1.5 73.5± 0.3 91.7± 1.9 92.5± 1.2 80.3± 0.1
Noise-tolerant (Zhang & Sabuncu, 2018) 72.4± 1.1 73.5± 0.2 92.6± 1.1 91.9± 1.2 80.4± 0.2
L2R (Ren et al., 2018) 73.2± 2.1 58.1± 1.0 93.4± 0.5 91.3± 0.8 82.3± 0.3
L+Usnorkel (Ratner et al., 2016) 72.2± 3.0 73.5± 0.2 93.6± 0.7 92.5± 1.5 80.4± 0.4
Snorkel-Noise-tolerant 71.5± 1.6 73.5± 0.3 92.9± 0.7 91.7± 1.5 79.6± 0.5
Posterior Reg. (Hu et al., 2016) 72.1± 1.0 73.4± 0.4 88.0± 1.9 90.8± 1.5 78.6± 0.5
ImplyLoss (Awasthi et al., 2020) 84.6± 1.5 74.3± 0.3 94.1± 1.1 93.2± 1.0 81.1± 0.2

DCWS 78.7± 0.7 75.2± 0.6 94.5± 0.5 95.0± 0.0 82.4± 0.2

Table 4: Comparison of DCWS with the baselines from (Awasthi et al., 2020) on five different datasets. We report standard
deviation of DCWS after over trials. The methods with the best accuracy and F1 score on the test data are bold.

outperforms FlyingSquid, which is considered the current state-of-the-art for latent variable weak supervision
models. On the Fashion MNIST dataset, ALL is trained with the true bounds of the weak supervision and as
such provides an unfair comparison to competing methods, yet DCWS is still able to outperform ALL.

2.4 Comparison to Model Training Methods

In the previous set of experiments, we showed comparison of our method to weak supervision approaches
that do not consider the data for label aggregation (with the only exception being ALL). In this section, we
will provide experiments that compare DCWS to other data-dependent weak supervision and semi-supervised
approaches.

Baselines The methods we compare against are from Awasthi et al. (2020). We provide additional details
in the appendix explaining each baseline.

Datasets & Weak Supervision We used the same datasets and weak signals as Awasthi et al. (2020).
Additional details are provided in the appendix. We use the authors’ own code and data.1 The datasets are
text classification tasks: three that are binary classification datasets and two that are multi-class datasets.
The binary class datasets are SMS Spam Classification (Almeida et al., 2011), Youtube Spam Classification
(Alberto et al., 2015), and Census Income (Dua & Graff, 2019). The multi-class datasets are Question
Classification (Li & Roth, 2002) and MIT-R (Liu et al., 2013). We used the same models from our previous
experiments and regularize towards majority vote predictions. As in our previous experiments, we run DCWS
with π = 0 on binary datasets. However, on the multiclass datasets, we calculate π on validation data.
Awasthi et al. (2020) used the validation data to tune hyper-parameters for their method and the methods
they compare against. Table 4 lists the evaluation of DCWS along with the baseline metrics computed by
(Awasthi et al., 2020) (Table 2).

Results From Table 4, DCWS outperforms competing baselines on all datasets except for Question
Classification. We achieve the second best result on this dataset. On the binary datasets, we are able to
outperform competing methods without using the validation data for parameter tuning. Additionally, we
did not tune our model for all experiments, we used the setting from previous experiments for consistency.
The results of the methods on the datasets are close to that of supervised learning, hence the improvement
offered by DCWS is only marginal compared to the next best performing method. The results from these
experiments show that DCWS performs as well as semi-supervised methods and weak supervision methods
that train models to learn labels.

1https://github.com/awasthiabhijeet/Learning-From-Rules
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2.5 Ablation Study

Our data consistency weak supervision approach has different components that enable it to achieve higher
quality results in our experiments. In this section, we test the different components to by removing one
component at a time and keeping other parts constant to measure relative importance. The various tests
we run are training DCWS (i) without slack, (ii) with uniform regularization, (iii) without regularization,
(iv) without constraints, and (v) without data consistency. Also, we train DCWS by varying the number of
cluster labels for the data representation and also varying the slack parameter and model type. Table 5 lists
the results from our ablation study.

Slack and Regularization The results indicate that running DCWS without regularization or slack
causes a slight drop in performance of the method. This is consistent with our intuition about the roles of
the both components. Slack helps us to adaptively loosen the bounds, while regularization makes our method
more stable. Interestingly, using uniform regularization performs as well as regularizing towards majority vote
labels, indicating that we can substitute one for the other depending on the classification task. Additionally,
we notice that as we increase the slack penalty C, the performance of our method gets relatively worse. This
trend suggests that allowing the constraints to be violated with a small penalty leads to better generalization.

Constraints Running DCWS without constraints, i.e, minθ

∥∥∥fθ(X) − Ŷm

∥∥∥2

2
makes use of only one type

of data consistency and the majority vote regularization. We see from the results of SST-2 that removing the
constraints can significantly reduce the performance of DCWS because the some important information from
the weak supervision is not considered.

Data consistency We disabled data consistency by directly solving for the labels of the training data
rather than using features of the data to optimize a parametric model. The resulting equation is

min
Ỹ

∥∥∥Ỹ − Ŷm

∥∥∥2

2
+ C

m∑
i=1

ξi

s.t. AỸ ≤ b + ξ and ξ ≥ 0,

where Ỹ is the label vector we directly solve for. From Table 5, we see that doing this results in highest
performance drop on both datasets. SST-2 achieves a performance that is slightly better than random, while
YELP-2 dataset has a 16.8 percentage points drop compared to DCWS. The results emphasizes the need
for data consistency in developing label aggregation algorithms. Note that this variation is similar to CLL
(Arachie & Huang, 2020).

Representation Using cluster labels as features is another form of data consistent training for label
aggregation. We used the same clustering method as described in the synthetic experiments and run DCWS
with different numbers of clusters. The results show a significant drop in label accuracies on both datasets.
This is in contrast with the superior performance obtained on the synthetic data using cluster labels. This
behavior is likely because real data may not be separable or may require a different clustering algorithm
to obtain meaningful clusters. Moreover, selecting the appropriate number of clusters adds an additional
hyperparameter to the algorithm. We suggest using cluster labels as a representation for DCWS when the
data distribution is known and appropriate assumptions can be made for the clustering choice.

Model For all our experiments, DCWS was trained with the same neural network model, however a user
can choose a different model architecture depending on their classification task. For example on vision tasks,
a user could use a deeper neural network model as fθ(X) to get better performance gains. Selecting the best
model for each dataset is beyond the scope of our paper so we do no report results of running DCWS on
different model architectures. We varied our model slightly by training without dropout and we achieve a
drop in performance on both datasets.

Limitations of DCWS Our experiments have shown that DCWS incorporates information from the
weak supervision and features of the data to produce quality training labels that are consistent with the
data. While our experiments have demonstrated good performance on the datasets we tested, we note some
limitations in using our method. DCWS requires a good feature representation of the data to learn meaningful
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Ablation tests
Datasets

SST-2 YELP-2

DCWS 0.741± 0.002 0.841± 0.004
Without slack 0.724± 0.003 0.829± 0.002
Uniform regularization 0.740± 0.004 0.832± 0.002
Without regularization 0.739± 0.001 0.823± 0.004
Without constraints 0.671± 0.001 0.822± 0.001
Without data consistency 0.504± 0.026 0.667± 0.023
Without dropout 0.728± 0.002 0.828± 0.003
With slack (C = 0.1) 0.750± 0.002 0.844± 0.002
With slack (C = 1) 0.748± 0.003 0.829± 0.002
With slack (C = 100) 0.726± 0.003 0.828± 0.002

DCWS (10 cluster labels) 0.560± 0.003 0.633± 0.000
DCWS (100 cluster labels) 0.619± 0.000 0.709± 0.000
DCWS (200 cluster labels) 0.628± 0.003 0.705± 0.001

Table 5: Results of the ablation study on SST-2 and YELP-2 datasets.

relationships from the data. Using poor features for the data could hurt the performance, because in such
settings, consistency with the data is actually bad. DCWS can only work if there is relevant information in
the features to relate to the estimated labels. Another limitation is the scalability of our current optimization
scheme. We train using gradient descent on the full dataset to accommodate the fact that the constraint is
global. This can be computationally intensive for large datasets with very high dimensional features.

Research on aggregating labels for training machine learning systems dates back to early crowdsourcing
literature. The first significant work in this research comes from Dawid & Skene (1979). Various improvements
and modifications (Welinder et al., 2010; Carpenter, 2008; Gao et al., 2011; Karger et al., 2011; Khetan et al.,
2017; Liu et al., 2012; Platanios et al., 2020; Zhou et al., 2015; Zhou & He, 2016) have been made to this
original approach, with perhaps the most significant being the algorithm proposed by Zhou et al. (2015).
The algorithm has established itself in crowdsourcing literature and is known to be a competitive baseline.
While crowdsourcing focuses on generating ground-truth labels from independent human annotators, our
work makes no assumption about the error of the individual weak labelers. The weak signals our model takes
in can be independent, dependent, or make correlated errors.

Weakly supervised learning algorithms provide another avenue for aggregating labels of training data. These
algorithms have gained recent success, partially in part because they allow deep learning models to be trained
using only user defined weak signals. A prominent weakly supervised approach is data programming (Ratner
et al., 2016), which allows users to combine weak signals via a generative model that estimates the accuracies
and dependencies of the weak signals in order to produce probabilistic labels that label the data. Data
programming has been implemented as the core of the popular Snorkel package for weakly supervised learning.
Enhancements have been proposed to the original data programming algorithm (Bach et al., 2019; Ratner
et al., 2019; Fu et al., 2020; Chen et al., 2020; 2021), with each method proposing a different learning approach.
Our work is related to Snorkel methods in that we combine different weak supervision signals to produce
probabilistic labels for the training data. However, unlike Snorkel’s methods, we do not make probabilistic
modelling assumptions on the joint distribution of the true labels and weak signals. Also, while Snorkel
methods are data free and use only the weak signals to estimate the labels of the data, our method is data
dependent and use features of the data to make the generated labels consistent with the data. Concurrent to
our work, a new weak supervision benchmark has been developed Zhang et al. (2021).

Our work is closely related to constraint-based weak supervision methods Arachie & Huang (2019; 2021;
2020); Mazzetto et al. (2021a;b). These algorithms constrain the possible label space using the weak signals
and the error rates of the weak signals and then solve an optimization problem to estimate the labels of
the training data. A major advantage of these approach is that they do not make assumptions about the
joint distribution of the labeling functions and weak signals. Assumptions about the weak supervision can
be hard to obtain in practice and could cause a method to fail on a task. Similar to these methods, we can
accept error bound of the weak signals as input when available, and we do not make assumptions on the
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joint distribution of the true labels and the weak signals. Unlike these methods, we add slack variables to
our algorithm to adaptively loosen our bounds when the estimates of the bounds are incorrect or are fixed
as in our setup. Most importantly, the key difference in our approach is that we use input features or data
representations to estimate labels that have consistency with the data.

Other algorithms that combine the data with the weak supervision to estimate labels for unlabeled data
include (Karamanolakis et al., 2021; Awasthi et al., 2020). These methods leverage labeled data for their label
estimation. Unlike these methods, our work is completely weakly supervised and we do not need labeled data
to train our model. Our method is also related to other approaches for learning from noisy labels Tanaka
et al. (2018); Zheng et al. (2020). These methods focus on correcting for noise in labeled data while our work
learns the labels from noisy weak supervision sources.

Classical work on combining weak learners involved using ensemble methods such as boosting (Schapire
et al., 2002) to aggregate the learners and create a classifier that outperforms the individual weak learners.
The weak learners are trained in a fully supervised learning setting. They differ from our weakly supervised
learning approach where we do not have access to the true labels of the data. A more related approach to our
setting is a semi-supervised method of Balsubramani & Freund (2015b) that uses unlabeled data to improve
accuracy of ensemble binary classifiers. Other notable applications of weak supervision can be found in (Chen
et al., 2014; Xu et al., 2014; Bunescu & Mooney, 2007; Hoffmann et al., 2011; Mintz et al., 2009; Riedel et al.,
2010; Yao et al., 2010; Halpern et al., 2016; Fries et al., 2019; Saab et al., 2020).

A predominant theme in label aggregation algorithms is estimating accuracy of weak signals without true
labels. Methods for estimating accuracy of classifiers without labeled data have been studied in (Collins
& Singer, 1999; Jaffe et al., 2016; Madani et al., 2005; Platanios et al., 2014; 2016; Steinhardt & Liang,
2016). These methods assume some knowledge about the true label distribution and then explore statistical
relationships such as the agreement rates of the classifiers to estimate their accuracies. Our work is related to
these methods in that we use error bounds that provide prior information. Unlike these methods, we do not
try to estimate the error bounds by making statistical assumptions on the weak signals.

3 Conclusion

We introduced data consistent weak supervision (DCWS), an approach for weakly supervised learning that
combines features of the data together with weak supervision signals generate quality labels for the training
data. DCWS uses a parametric model and learns parameters that predict the labels of the data. We showed
three data representation approaches that can be used in our framework: (i) training with the data itself on
the synthetic experiment, (ii) training with embedding of the data, and (iii) training with cluster labels of
the training data. Our experiments showed that our data consistency approach significantly outperforms
other methods for label aggregation. We also highlight in our experiments that our approach performs well
even when the weak signals are very noisy and have low or no coverage. Lastly, we showed in our ablation
tests the importance of the different components of our proposed approach. We find that, while the different
components of our framework each contribute improvements, data consistency contributes the most to the
performance gains achieved by our method.
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A Appendix

B Additional Experiments

Similar to the synthetic experiments in the main paper, we randomly define 20 weak signals whose error rates
are between [0.35, 0.45]. The weak signals have full coverage on the training data. We train data consistent
weak supervision (DCWS) with the data itself.

Tables 6a and 6b show the label and test accuracies of the different methods on the synthetic data. Data
consistent weak supervision significantly outperforms all competing methods obtaining the highest label
accuracy on the data. Surprisingly, DCWS outperforms ALL (another data-dependent method) even though
ALL is trained with the true bounds of the weak signals. The inferior performance of ALL can be attributed
to the adversary being too powerful and hence choosing worst case labelings that are not data consistent.
The performance of the data-free methods are comparable to that of majority voting and only offer slight
advantage compared to majority voting. Lastly, we tried another data consistency approach by training
DCWS using the cluster labels of the data. We used mini-batch k-means clustering (Sculley, 2010) to obtain
the cluster labels. We set the number of clusters to 10 then use a one-hot representation of the cluster labels
to train the model. Comparing the two data consistency approaches, running DCWS with cluster labels of the
data achieves a higher accuracy score (0.998) than using the data itself. We surmise that the cluster labels in
the synthetic setting provide richer information to our algorithm because the data is naturally separable into
clusters. This result will not always be the case on real datasets since the data may not be separable and the
quality of the cluster labels will depend on the clustering algorithm used. For this reason, our experiments on
the real datasets use embedding representations of the data.

C Reproducibility

We describe here algorithm and experiment details to help readers reproduce our experiments.

Method Label Accuracy

DCWS 0.941 ± 0.002
FLYINGSQUID 0.836± 0.001
MeTaL 0.753± 0.001
MMCE 0.752± 0.001
CLL 0.734 ± 0.001
ALL 0.497± 0.001
Majority Vote 0.739 ± 0.001

(a) Label Accuracies

Method Label Accuracy

DCWS 0.967 ± 0.002
FLYINGSQUID 0.887± 0.001
MeTaL 0.834± 0.001
MMCE 0.814± 0.001
CLL 0.823 ± 0.001
ALL 0.504± 0.001
Majority Vote 0.787 ± 0.001

(b) Test Accuracies

Table 6: Classification accuracies of the different methods on synthetic data. We report the mean and standard deviation over
three trials.
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C.1 Datasets

In this section, we describe the datasets we use in the experiments and the weak supervision we provide to
the learning algorithms. Table 7 summarizes the key statistics about these datasets.

Dataset No. classes No. weak signals Train Size Test Size Coverage Redundancy Conflict

IMDB 2 10 29,182 20,392 0.174 1.737 0.281
SST-2 2 14 3,998 1,821 0.103 1.445 0.202
Yelp 2 14 45,370 10,000 0.177 2.475 0.358
Fashion-MNIST 2 4 1000 500 1.0 4.0 0.58

Table 7: Summary of datasets and weak signals statistics in our first set of experiments. Coverage is the
average number of examples labeled by all the weak signals. Redundancy is the average number of weak
signals that label an example in training data. Conflict denotes the fraction of examples covered by conflicting
rules in the training data.

We regularize towards majority predictions on the text datasets and uniform distribution on the image
dataset.

C.2 Weak Signals

We provide below the keywords and heuristics we used to generate the weak signals in our experiments. For
some signals, we used multiple words since individual word have little coverage in the data. Multiple words
signals are represented as nested lists while single words signals are shown as single lists.

IMDB We used 5 positive keywords representing 5 positive signals and 5 negative keywords as 5 negative
signals. The positive signals are [good, wonderful, amazing, excellent, great] while the negative signals are
[bad, horrible, sucks, awful, terrible].

SST-2 Similar to IMDB, however we use 7 positive signals and 7 negative signals that contain nested lists
of keywords. The positive signals are

• good, great, nice, delight, wonderful

• love, best, genuine, well, thriller

• clever, enjoy, fine, deliver, fascinating

• super, excellent, charming, pleasure, strong

• fresh, comedy, interesting, fun, entertain, charm, clever

• amazing, romantic, intelligent, classic, stunning

• rich, compelling, delicious, intriguing, smart

while the negative signals are

• bad, better, leave, never, disaster

• nothing, action, fail, suck, difficult

• mess, dull, dumb, bland, outrageous

• slow, terrible, boring, insult, weird, damn

• drag, no, not, awful, waste, flat

• horrible, ridiculous, stupid, annoying, painful
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• poor, pathetic, pointless, offensive, silly.

YELP We used the similar weak signals as in SST-2, however we changed the 5th negative weak signals to

• drag, awful, waste, flat, worse.

C.3 Additional Information on Model Training Experiments

The dataset and weak signals we used for comparing to model training weak supervision methods can be
found at the the GitHub page maintained by Awasthi et al. (2020).2 Detailed descriptions about each dataset
task, data size and the weak signals are in Section 3 of the paper Awasthi et al. (2020). Each individual
baseline is also explained in Section 3.1 in the paper.

For our experiments, we combine their labeled set with the unlabeled data and use that to train DCWS. The
results reported in Table 4 are evaluated on the test set. We included our code to the supplementary material.

2https://github.com/awasthiabhijeet/Learning-From-Rules
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