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Abstract
Actor-critic algorithms have been instrumental
in boosting the performance of numerous chal-
lenging applications involving continuous control,
such as highly robust and agile robot motion con-
trol. However, their theoretical understanding re-
mains largely underdeveloped. Existing analyses
mostly focus on finite state-action spaces and on
simplified variants of actor-critic, such as double-
loop updates with i.i.d. sampling, which are of-
ten impractical for real-world applications. We
consider the canonical and widely adopted single-
timescale updates with Markovian sampling in
continuous state-action space. Specifically, we
establish finite-time convergence by introducing
a novel Lyapunov analysis framework, which pro-
vides a unified convergence characterization of
both the actor and the critic. Our approach is
less conservative than previous methods and of-
fers new insights into the coupled dynamics of
actor-critic updates.

1. Introduction
Actor-critic methods have achieved substantial success in
many challenging applications (Mnih et al., 2016; Silver
et al., 2017; Vinyals et al., 2019; Lazaridis et al., 2020). In
particular, it becomes instrumental in enabling highly robust
and agile robot motion control involving continuous state-
action spaces, such as quadruped locomotion control (Miki
et al., 2022; Hoeller et al., 2024), humanoid whole-body
control (Radosavovic et al., 2024), drone racing (Kaufmann
et al., 2023), etc.

Despite substantial empirical success, the theoretical anal-
ysis of actor-critic is significantly behind. Most prior theo-
retical studies of actor-critic methods consider only finite
state-action spaces and focus on their impractical variants
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to simplify the analysis, including the double-loop updates
and the two-timescale updates. The double-loop updates
perform multiple critic updates for a fixed actor (Yang et al.,
2019; Kumar et al., 2023; Agarwal et al., 2021; Xu et al.,
2020b). This facilitates more accurate value function estima-
tion, which in turn enables a more precise policy gradient
estimation for the fixed actor. It allows a simple decou-
pled analysis of the actor and the critic. However, such
an implementation is impractical due to the high sampling
complexity. Another variant is the two-timescale actor-critic
method (Wu et al., 2020; Xu et al., 2020c; Chen et al., 2023;
Shen et al., 2023; Hong et al., 2023), which assigns a smaller
step size for the actor than that of the critic, with their ratio
converging to zero as the number of iterations approaches in-
finity (i.e., limt→∞ αt/βt = 0). It allows an asymptotically
decoupling of the actor and the critic in the convergence
analysis, similar to performing multiple critic updates at a
fixed actor. However, such artificial slowing down of the
critic update is often not desired in practice.

The canonical and more practical implementation of actor-
critic is the single-timescale update, where the actor and
the critic are updated simultaneously with proportional step
sizes at each iteration (i.e., αt/βt = c). However, analyz-
ing its convergence is significantly more challenging than
for the aforementioned simplified variants, as the actor and
critic updates are strongly coupled. The aforementioned de-
coupled analysis is over-conservative and cannot establish
the convergence of the single-timescale actor-critic. Re-
cent efforts to study the convergence of the single-timescale
actor-critic algorithm include Chen et al. (2021), Olshevsky
& Gharesifard (2023), and Chen & Zhao (2024). However,
these works are limited to finite action spaces with i.i.d. sam-
pling and do not extend to the more practical yet complex
setting of Markovian sampling in continuous state-action
spaces under the single-timescale update scheme (See the
comparison in Table 1). In particular, Chen et al. (2021)
and Olshevsky & Gharesifard (2023) assume i.i.d. sampling
directly from the stationary distribution for the critic and
from the discounted state visitation distribution for the ac-
tor. However, both of these distributions are unknown for
real-time online learning and hence are impractical. Addi-
tionally, Chen & Zhao (2024) considers the simpler undis-
counted time-average reward setting rather than the widely
adopted discounted reward setting. The key difference is
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Table 1. Comparison of existing works on single-timescale actor-critic methods in discounted reward setting with linear function
approximation. Our work is the first to address the continuous state-action spaces and Markovian sampling.

References State Space Action Space Sampling for Critic Sampling for Actor Complexity

Chen et al. (2021) Infinite Finite
i.i.d. from

stationary distribution

i.i.d. from state

visitation distribution
O(ϵ−2)

Olshevsky & Gharesifard (2023) Finite Finite
i.i.d. from

stationary distribution

i.i.d. from state

visitation distribution
O(ϵ−2)

This paper Infinite Infinite Markovian Markovian Õ(ϵ−2)

that, in the former, the policy gradient only requires sta-
tionary distribution, whereas in the latter, it depends on the
visitation distribution. How to accurately approximate the
visitation distribution in the single-timescale update scheme
with Markovian sampling remains an open question. To
tackle the aforementioned challenges, specifically,

1. We introduce a new operator-based analysis to handle
the intricacies arising from the uncountable continuous
space. In particular, it enables us to generalize many
important bounds to the continuous space successfully
(see Appendix B).

2. For the Markovian samples used to update the actor, we
prove that the resulted state distribution converges to
the discounted state visitation distribution (see Propo-
sition 3.2). We further utilize it to accurately estimate
the policy gradient in the analysis.

3. We propose a Lyapunov-based convergence analy-
sis framework, where a novel Lyapunov function is
constructed specifically for the single-timescale actor-
critic algorithm. We also establish a variety of new
properties (see, for example, Proposition 3.1, Proposi-
tion 4.4), which enable us to demonstrate finite-time
convergence for both the actor and the critic simultane-
ously, with a less conservative analysis.

Moreover, we highlight that our analysis builds on the same
set of common assumptions that are widely adopted in many
literature (Wu et al., 2020; Chen et al., 2021; Olshevsky
& Gharesifard, 2023; Chen & Zhao, 2024). In particular,
Assumptions 4.1 and 4.2 are about the regularity of the
problem of interest, and Assumption 4.3 can be easily sat-
isfied by many common policy parametrizations. Overall,
our work takes a significant step toward a more practical
analysis of actor-critic.

1.1. Related Work

In this section, we review the existing works on actor-critic
methods.

Actor-Critic methods. The actor-critic algorithm, initially
proposed by (Konda & Tsitsiklis, 1999), was later extended
to the natural actor-critic variant by (Kakade, 2001). The
asymptotic convergence of actor-critic algorithms has been
well established under various settings, as demonstrated
in works by Kakade (2001), Bhatnagar et al. (2009), and
Zhang et al. (2020b). More recently, many studies have
focused on the finite-time convergence of actor-critic
methods. They primarily focus on two variants for the ease
of analysis: (1) double loop update, and (2) two-timescale
update. For the double-loop variants, Kumar et al. (2023)
investigated the finite-time local convergence of several
actor-critic variants with linear function approximation.
Wang et al. (2019) explored the global convergence of
actor-critic methods with both the actor and the critic
parameterized by neural networks with single hidden layers.
Moreover, Gaur et al. (2024) established the last iterate
convergence for actor-critic with neural networks.

For the two-timescale variants, Wu et al. (2020) estab-
lished finite-time local convergence in the undiscounted
time-average reward setting. Xu et al. (2020c) analyzed
both local and global convergence for two-timescale (nat-
ural) actor-critic under the discounted reward setting, re-
spectively, with multiple samples used for critic updates.
Shen et al. (2023) investigated finite-time convergence for
asynchronous actor-critic, while Hong et al. (2023) intro-
duced a two-timescale stochastic approximation algorithm
for bilevel optimization and two-timescale actor-critic.

There are only a few works considering the canonical
and most widely adopted single-timescale variant. Fu
et al. (2020) explored the least-squares temporal difference
(LSTD) update for the critic, achieving the optimal pol-
icy within the energy-based policy class for both linear
function approximation and neural network approximation.
Recently, (Chen et al., 2021; Olshevsky & Gharesifard,
2023; Chen & Zhao, 2024) investigated single-timescale
actor-critic methods in general Markov Decision Processes
(MDPs) with linear function approximation, aligning with
the focus of this work. Specifically, Chen et al. (2021) and
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Olshevsky & Gharesifard (2023) addressed the commonly
used discounted reward setting, while Chen & Zhao (2024)
improved upon (Wu et al., 2020) by advancing from the
two-timescale to the single-timescale approach under the
undiscounted time-average reward setting. A detailed re-
view and comparison of these results can be found in Table 1
and the introduction.

Notation. We use san-serif letters to denote scalars and use
lower and upper case bold letters to denote vectors and ma-
trices respectively. We also use ∥ω∥ to denote the ℓ2-norm
of a vector ω and ∥A∥ to denote the spectral norm of a ma-
trix A. Without further specification, we write xn = O(yn)
if there exists an absolute positive constant C such that
xn ≤ Cyn, for two sequences {xn} and {yn}. We use
Õ(·) to hide logarithm factors. The total variation dis-
tance of two probability measure µ and ν is defined by
dTV (µ, ν) := 1/2

∫
X |µ(dx)− ν(dx)|.

2. Preliminaries
Markov Decision Process. In this paper, we consider a
discrete-time Markov Decision Process (MDP) defined by a
tuple M = {S,A, P, r, γ}, where S is the state space and
A is the action space. The spaces S and A are allowed to be
either finite sets or real vector spaces, i.e., S ⊂ Rds and A ⊂
Rda . The transition kernel is denoted by P (st+1 | st, at) ∈
R≥0, the reward function is r : S × A → [−r̄, r̄], and
γ ∈ (0, 1) is the discounted factor. We also assume that the
initial state is sampled from a fixed initial distribution η.

A policy πθ parameterized by θ ∈ XΘ maps a given state
to a probability distribution over the action space, i.e.,
at ∼ πθ(· | st). We denote the stationary distribution in-
duced by the policy πθ and the transition kernel P by µθ.
The value function of a state s under a policy πθ is the ex-
pected cumulative return when starting in s and following
πθ thereafter. It is defined as

Vθ(s) = Eat∼πθ(· | st)

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
, (1)

where the expectation takes over the randomness of the
policy πθ and the transition function P . The correspond-
ing action-value function is the expected cumulative return
when starting from state s, taking action a, and following
πθ thereafter, which is defined as

Qθ(s, a) = E
[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
, (2)

where we simplified the expectation notation when there is
no confusion. The reinforcement learning (RL) tasks typi-
cally aim to find a policy πθ that maximizes the following

objective function:

J(θ) =

∫
S
η(s)Vθ(s) ds, (3)

where η(s) is a fixed initial distribution.

We denote the density at state s′ after transitioning for one
time step from state s by Pθ(s

′ | s), which is defined as

Pθ(s
′ | s) =

∫
A
P (s′ | s, a)πθ(a | s) da.

The corresponding state density after transitioning for t time
steps can be acquired by recursively applying Pθ(s

′ | s), i.e.,

P t
θ(s

′ | s) =
∫
S
Pθ(s

′ |x)P t−1
θ (x | s) dx, t > 1.

Consequently, we define the discounted state visitation dis-
tribution under policy πθ as

νθ(s
′) = (1− γ)

∫
S

∞∑
t=0

γtη(s)P t
θ(s

′ | s) ds. (4)

It is worth noting that previous works (Chen et al., 2021;
Olshevsky & Gharesifard, 2023) rely on sampling from this
distribution, which is infeasible. In this work, we propose a
practical sampling scheme to circumvent this impediment.

With the discounted state visitation distribution, the objec-
tive function can be reformulated as (Sutton et al., 1999)

J(θ) =
1

1− γ

∫
S
νθ(s)

∫
A
πθ(a | s)r(s, a) dads

=
1

1− γ
Es∼νθ,a∼πθ

[
r(s, a)

]
.

Policy Gradient Theorem. Policy gradient algorithms are
among the most widely used approaches in continuous-
action reinforcement learning. Their core concept involves
adjusting the policy parameter θ in the direction of the
performance gradient ∇θJ(θ). These algorithms are built
upon the foundational result known as the policy gradient
theorem (Sutton et al., 1999):

∇θJ(θ) =
1

1− γ

∫
S
νθ(s)

∫
A
Qθ(s, a)∇θπθ(a | s)dads

=
1

1− γ
Es∼νθ,a∼πθ

[
Qθ(s, a)∇θ log πθ(a | s)

]
.

(5)
Computing this gradient necessitates the Q-value associated
with the current policy πθ. The REINFORCE algorithm
(Williams, 1992), an episodic Monte Carlo-based method,
approximates the true Q-value by utilizing the cumulative
rewards gathered along the sampled trajectory.
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Note that for any function b : S → R that is independent of
the action, we have∫

A
b(s)∇πθ(a|s) = b(s)∇

∫
A
πθ(a | s) = b(s)∇1 = 0.

Therefore, the policy gradient theorem can be written equiv-
alently as:

∇J(θ) =
1

1− γ
Es,a

[
(Qθ(s, a)− b(s))∇θ log πθ(a|s)

]
,

where b(s) is called the baseline function. A popular choice
of baseline is the state-value function, which leads to the
following advantage-based policy gradient

∇θJ(θ) =
1

1− γ
Es∼νθ,a∼πθ

[
Gθ(s, a)∇θ log πθ(a|s)

]
,

where Gθ(s, a) = Qθ(s, a)− Vθ(s) is known as the advan-
tage function. This is the “REINFORCE with a baseline”.

The baseline function can help reduce variance. However,
like all Monte Carlo-based methods, it can still suffer from
high variance and thus learns slowly. An alternative ap-
proach involves introducing an additional trainable model to
approximate the value function, a method typically known
as actor-critic methods.

3. Actor-Critic Methods
In this work, we analyze the classic single-sample single-
timescale actor-critic method, where the critic employs boot-
strapping by using a single sampled reward to update its
value estimate at each iteration. We consider the following
linear function approximation of the state-value function:

V̂θ(s;ω) = ϕ(s)⊤ω,

where ϕ(·) : S → Rd is a known feature mapping, which
satisfies ∥ϕ(·)∥ ≤ 1. To align V̂θ(s;ω) with its true value
Vθ(s), the semi-gradient TD(0) update is employed to es-
timate the linear coefficient ω (hereafter referred to as the
critic):

ωt+1 = ωt + β
(
rt + γϕ(st+1)

⊤ωt − ϕ(st)
⊤ωt

)
ϕ(st),

where β is the step size of the critic ω and rt := r(st, at).
Denote the transition tuple as O := (s, a, s′) and we define
the following temporal difference error

δ(O,ω) = r(s, a) + γϕ(s′)⊤ω − ϕ(s)⊤ω,

and the update rule for the critic is then given by

ωt+1 = ωt + βδ(Ot,ωt)ϕ(st), (6)

where Ot = (st, at, st+1) denotes the t-th transition tuple
for the critic, generated via Markovian sampling under the
policy πθ and transition kernel P , such that

Ot =
(
st, at ∼ πθt

(· | st), st+1 ∼ P (· | st, at)
)
. (7)

Since δ is an approximation of the advantage function, sim-
ilar to REINFORCE with a baseline, the corresponding
update rule for the actor can be written as:

θt+1 = θt + αδ(Ôt,ωt)∇θ log πθt
(ât | ŝt), (8)

where α is the step size of the actor and Ôt = (ŝt, ât, ŝt+1)
denotes the t-th transition tuple for the actor. Specifically,
Ôt is also generated via the following Markovian sampling
(Konda & Tsitsiklis, 2003; Shen et al., 2023)

Ôt =
(
ŝt, ât ∼ πθt

(· | ŝt), ŝt+1 ∼ P̂ (· | ŝt, ât)
)
,

where P̂ = γP + (1− γ)η.
(9)

Here the transition kernel P̂ is defined as with probability
γ, the next state follows the original transition kernel P ;
Otherwise, with probability 1− γ, the next state is sampled
from the initial distribution η. Note that the above Marko-
vian sampling generally requires a simulator whose state
can be arbitrarily reset. It has a few nice properties that will
be discussed shortly, which facilitate an accurate estimation
of the policy gradient.

Denote the class of real-valued functions on the state space
S by F := {f | f : S → R}. We define the operator
P : F → F acts on a state distribution f ∈ F by

(Pf)(s′) =

∫
S

∫
A
f(s)πθ(a | s)P (s′ | s, a) dads. (10)

We further define a reset operator E : F → F such that it
reset any state distribution f to the initial distribution η:

(Ef)(s) = η(s).

Therefore, the operator P̂ that acts on a state distribution,
describing how the distribution evolves after a single step of
the Markov chain induced by the policy πθ and the transition
kernel P̂ , can be written compactly as:

P̂ = γP + (1− γ)E .

We show in the following proposition that the discounted
state visitation distribution νθ defined in Eq. (4) is the sta-
tionary distribution of the Markov chain induced by policy
πθ and transition kernel P̂ by showing that νθ is the unique
fixed point of the operator P̂ .

Proposition 3.1. νθ(s) is the unique fixed point of the oper-
ator P̂ , that is,

(P̂νθ)(s) = νθ(s),
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Algorithm 1 Continuous Single-sample Single-timescale
Actor-Critic with Markovian Sampling

1: Initialize: actor parameter θ0, critic parameter ω0, ini-
tial states s0, ŝ0 ∼ η, stepsizes α for actor, β for critic.

2: for t = 0, 1, 2, · · · , T − 1 do
3: Markovian sampling:
4: Ot =

(
st, at ∼ πθt

(· | st), st+1 ∼ P (· | st, at)
)
,

5: Ôt =
(
ŝt, ât ∼ πθt

(· | ŝt), ŝt+1 ∼ P̂ (· | ŝt, ât)
)
.

6: Critic and actor update:
7: ωt+1 = projω̄

(
ωt + βδ(Ot,ωt)ϕ(st)

)
,

8: θt+1 = θt + αδ(Ôt,ωt)∇θ log πθt
(ât | ŝt).

9: end for

and therefore the stationary distribution of the following
Markov chain induced by πθ and P̂ ,

ŝ0
(πθ,P̂ )−−−−→ ŝ1

(πθ,P̂ )−−−−→ · · · (πθ,P̂ )−−−−→ ŝt
(πθ,P̂ )−−−−→ ŝt+1. (11)

The above proposition justifies the actor’s sampling scheme
in Eq. (9), as Ôt effectively approximates the discounted
state visitation distribution, which is required by the pol-
icy gradient theorem (Eq. (5)) following the actor update
formula in Eq. (8).

Proposition 3.2. For the Markov chain defined in Eq. (11),
we have

dTV

(
P(ŝt ∈ ·|ŝ0 = s), νθ(·)

)
≤ γt, ∀t ≥ 0,∀s ∈ S.

Proposition 3.2 states that the distribution of ŝt converges to
νθ geometrically with rate γ, a crucial property for manag-
ing the Markovian noise arising from the actor’s Markovian
sampling in Eq. (9).

We summarize the above-described actor-critic algorithm
in Algorithm 1. The “continuous” refers to the general set-
ting of continuous state-action spaces. “single-timescale”
refers to the fact that the stepsizes α and β are kept in
constant proportion. In addition, the terminology “single-
sample” follows Olshevsky & Gharesifard (2023), which
refers to the fact that at each iteration, the critic and the actor
are each updated using a single sample. Note that Olshevsky
& Gharesifard (2023), who consider the discounted reward
setting, assume access to samples from the discounted state
visitation distribution and the stationary distribution for up-
dating the actor and critic, respectively. This assumption
requires a simulator capable of resetting to arbitrary states.
In the simpler time-average reward setting (Wu et al., 2020;
Chen & Zhao, 2024), the policy gradient depends solely on
the stationary distribution, allowing the actor to utilize the
same samples as the critic. In contrast, discounted reward
setting requires the policy gradient to be computed with
respect to the visitation distribution, as shown in Eq. (5),

which is more challenging. To this end, the Markovian sam-
pling strategy introduced in Eq. (9) becomes necessary to
track this distribution. Consequently, Algorithm 1 inher-
ently supports online learning and applies to continuous
control tasks.

As shown in Line 4 and Line 5 of Algorithm 1, we adopt
Markovian sampling for both the critic and the actor. Specif-
ically, the transition tuple for the critic is generated by the
following Markov chain

s0
(πθ0

,P )
−−−−−→ s1

(πθ1
,P )

−−−−−→ · · ·
(πθt−1

,P )
−−−−−−→ st

(πθt ,P )
−−−−−→ st+1.

(12)

while the actor’s transition tuple is generated by the Markov
chain

ŝ0
(πθ0

,P̂ )
−−−−−→ ŝ1

(πθ1
,P̂ )

−−−−−→ · · ·
(πθt−1

,P̂ )
−−−−−−→ ŝt

(πθt ,P̂ )
−−−−−→ ŝt+1.

(13)

Note that the above Markov chains (time-inhomogeneous)
differ from the one defined in Eq. (11) (time-homogeneous),
as they involve a varying policy πθt . This poses a major
challenge for analyzing Algorithm 1, since a single sample
is insufficient to accurately approximate the stationary dis-
tribution of the state under a fixed policy. Previous studies
simplified their analysis by assuming i.i.d. samples drawn
from the stationary distribution for the critic and from the
visitation distribution for the actor. However, such sampling
is infeasible in practice because both of them are unknown.
In contrast, our approach is more practical since samples
can be drawn directly from the Markov chain.

In Algorithm 1 Line 7, a projection (proj(·)) is introduced
to keep the critic norm-bounded by ω̄, which is widely
adopted in the literature (Wu et al., 2020; Chen et al., 2021;
Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024) for
analysis. Note that the projection can be handled easily,
relaxed using its non-expansive property in our analysis.

4. Assumptions
Before presenting the main results, we will discuss several
standard assumptions that are common in the literature of
analyzing actor-critic with linear function approximation
(Wu et al., 2020; Xu et al., 2020b; Shen et al., 2023; Chen
et al., 2021; Olshevsky & Gharesifard, 2023; Chen & Zhao,
2024).

By taking the expectation of ωt+1 in Eq. (6) with respect to
the stationary distribution, and conditioning on ωt, we have

Eθ[ωt+1 |ωt] = ωt + β(bθ −Aθωt),

where

Aθ := E(s,a,s′)

[
ϕ(s)

(
ϕ(s)− γϕ(s′)

)⊤]
, (14)

bθ := E(s,a)

[
r(s, a)ϕ(s)

]
, (15)
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and s ∼ µθ(·), a ∼ πθ(· | s), s′ ∼ P (· | s, a) is the subse-
quent state of the (s, a). It can be easily shown that (Sutton
& Barto, 2018) the TD limiting point ω∗(θ) satisfies:

Aθω
∗(θ) = bθ. (16)

Assumption 4.1. For any θ, the matrix Aθ defined in
Eq. (14) is positive definite and its maximum eigenvalue
can be upper bounded by λ.

Assumption 4.1 is commonly adopted in analyzing actor-
critic (TD learning) with linear function approximation
(Bhandari et al., 2018; Wu et al., 2020; Qiu et al., 2021;
Chen et al., 2021; Olshevsky & Gharesifard, 2023; Chen &
Zhao, 2024). It is explained as exploration since Aθ can be
rank deficient without sufficient exploration (Olshevsky &
Gharesifard, 2023; Chen & Zhao, 2024). Assumption 4.1
further guarantees the problem’s solvability since with this
assumption, we have ω∗(θ) = A−1

θ bθ. In addition, we
can choose ω̄ = r̄λ−1 so that all ω∗ lie within the pro-
jection radius ω̄ because ∥bθ∥ ≤ r̄ and ∥A−1

θ ∥ ≤ λ−1,
which justifies the projection operator introduced in Line 7
of Algorithm 1.

Assumption 4.2 (Uniform ergodicity). For any θ, denote
µθ(·) as the stationary distribution induced by the policy
πθ(· | s) and the transition kernel P (· | s, a). For the follow-
ing Markov chain (augmented with action) generated by the
policy πθ and transition kernel P , i.e.,

s0
(πθ,P )−−−−→ s1

(πθ,P )−−−−→ · · · (πθ,P )−−−−→ st
(πθ,P )−−−−→ st+1, (17)

there exist m > 0 and ρ ∈ (0, 1) such that

dTV

(
P(sτ ∈ · | s0 = s), µθ(·)

)
≤ mρτ ,∀τ ≥ 0,∀s ∈ S.

Assumption 4.2 assumes the Markov chain is geometrically
mixing. It is commonly employed to characterize the noise
induced by Markovian sampling in RL algorithms (Bhan-
dari et al., 2018; Wu et al., 2020; Chen et al., 2021; Chen
& Zhao, 2024). This is the counterpart of Proposition 3.2
(which is proved for analyzing the induced Markovian noise
associated with the actor update). It is assumed since P is a
general transition kernel that lacks the γ-contraction prop-
erty of the transition kernel P̂ established in Proposition 3.2.

To justify this assumption in the continuous space, we
note that all the distributions specified by the Orn-
stein–Uhlenbeck (OU) process satisfy this property. The
OU process converges to a Gaussian distribution with the
exponential mixing time. Moreover, it can also be shown
that this property holds for more general diffusion pro-
cesses (Del Moral & Villemonais, 2018).

Assumption 4.3 (Lipschitz continuity of policy). Let
πθ(a | s) be a policy parameterized by θ ∈ XΘ with
bounded support. There exist positive constants B,Ll and

L such that for any θ,θ1,θ2 ∈ XΘ, s ∈ S, and a ∈ A, it
holds that:

(a) ∥∇ log πθ(a | s)∥ ≤ B,

(b) ∥∇ log πθ1
(a | s)−∇ log πθ2

(a | s)∥ ≤ Ll∥θ1 − θ2∥,

(c) |πθ1
(a | s)− πθ2

(a | s)| ≤ L∥θ1 − θ2∥.

Assumption 4.3 states the regularity of the policy which is
standard in the literature of actor-critic methods (Xu et al.,
2020a; Wu et al., 2020; Chen et al., 2021; Olshevsky &
Gharesifard, 2023; Chen & Zhao, 2024). These conditions
are sufficiently general to be satisfied by a wide range of
distributions, including the uniform distribution, the trun-
cated Gaussian distribution, and the Beta distribution with
α, β > 1.

With Assumption 4.3, we show in the following proposition
that the policy πθ is Lipschitz continuous with respect to its
parameter θ in terms of the total variation distance.

Proposition 4.4. There exists a positive constant Lπ such
that for any θ1,θ2 ∈ XΘ, it holds that

dTV (πθ1(· | s), πθ2(· | s)) ≤ Lπ∥θ1 − θ2∥. (18)

We observed that Proposition 4.4 plays a key ingredient
in the overall proof. With this proposition, we establish
a bound on the distance between stationary distributions,
as detailed in Lemma B.1 within Preliminary Lemmas in
Appendix B, extending previous results from the tabular
case to the continuous setting. This further facilitates the
derivation of corresponding results for the discounted state
visitation distribution, as presented in Lemma B.3.

5. Main Results
We define the following uniform upper bound for the linear
function approximation error of the critic:

ϵapp := sup
θ

√
Es∼νθ

(ϕ(s)⊤ω∗(θ)− Vθ(s))2. (19)

The error ϵapp is zero if Vθ is indeed a linear function for
any θ. Naturally, it can be expected that the learning errors
of Algorithm 1 depend on ϵapp.

We define the following integer τmix that will be useful in
the statement of the theorems:

τmix := min

{
i ≥ 0 |mρi−1 ≤ 1√

T
∧ γi−1 ≤ 1√

T

}
,

where m, ρ are constants defined in Assumption 4.2 and γ
is the discounted factor. Therefore, we choose

τmix = O(log T )
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such that mρτmix−1 ≤ 1/
√
T and γτmix−1 ≤ 1/

√
T . The

integer τmix represents the mixing time of the ergodic
Markov chain defined in Eq. (11) and Eq. (17), which will
be used to control the Markovian noise in the analysis.

We define ∆t = ωt−ω∗
t with ω∗

t = ω∗(θt) to measure the
critic error while ∇J(θt) serves as a measure of the actor
error since for a general non-convex problem, our objective
is to demonstrate that ∇J(θt) converges to zero.

Theorem 5.1. Consider Algorithm 1 with α = c/
√
T , β =

1/
√
T , where c is a constant depending on problem pa-

rameters. Suppose Assumptions 4.1-4.3 hold, we have for
T ≥ 2τmix,

1

T − τmix

T−1∑
t=τmix

E∥∆t∥2 = O
(
log2 T√

T

)
+O(ϵapp),

1

T − τmix

T−1∑
t=τmix

E∥∇J(θt)∥2 = O
(
log2 T√

T

)
+O(ϵapp).

Theorem 5.1 establishes the finite-time convergence of Al-
gorithm 1. If the critic approximation error ϵapp is zero, we
see that both the critic error and the actor error diminish at
a sub-linear rate of Õ(T−1/2). The additional logarithmic
term (log2 T ) is incurred by the mixing time of the Markov
chain, which can be eliminated under i.i.d. sampling as
will be shown in Proof Sketch. In terms of sample com-
plexity, to obtain an ϵ-approximate stationary point, it takes
a number of Õ(ϵ−2) samples, which is typically the sam-
ple complexity of single-timescale actor-critic (Chen et al.,
2021; Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024).

The vanilla version of Algorithm 1 is introduced in the
classic textbook (Sutton & Barto, 2018) as a canonical actor-
critic algorithm with linear function approximation. As
a canonical algorithm, its convergence has been a focal
point of research, extensively studied across diverse set-
tings, e.g., two-timescale (Wu et al., 2020), single-timescale
(Chen et al., 2021; Olshevsky & Gharesifard, 2023; Chen &
Zhao, 2024), time-average reward setting (Wu et al., 2020;
Chen & Zhao, 2024), discounted setting (Chen et al., 2021;
Olshevsky & Gharesifard, 2023). Notably, among all the
aforementioned studies, this work is the first to address the
important yet challenging setting of continuous state and
action spaces. Among the widely used discounted single-
timescale approaches considered, our method is the first
to employ Markovian sampling for both the critic and the
actor in contrast to the artificial i.i.d. sampling (Chen et al.,
2021; Olshevsky & Gharesifard, 2023). Therefore, our work
compares favorably by closing two significant gaps left by
prior studies.

5.1. Proof Sketch

To better illustrate our technical contribution, we provide a
proof sketch to elucidate the significance of each error term
and offer insights into the methods used to address them.

The key difference between single-timescale and two-
timescale (double-loop) actor-critic lies in the strong cou-
pling of the critic and actor errors. Unlike the two-timescale
approach, which sequentially analyzes the convergence of
critic error and actor error, the single-timescale setting re-
quires simultaneous treatment of both errors. To address
this, we propose a novel Lyapunov analysis framework and
outline the proof of Theorem 5.1 in three steps. Step 1 de-
rives an implicit upper bound for the critic error, treating it
as an intermediate result. Step 2 performs a similar implicit
analysis for the actor error. Step 3 combines these results
into a novel Lyapunov function, whose convergence implies
the simultaneous convergence of the critic and actor.

Step 1: An implicit bound for critic error. Using the
critic update rule, we decompose the squared critic error by
(see Eq. (27))

E∥∆t+1∥2 ≤ E∥∆t∥2 + 2β2E∥f(Ot,ωt)∥2︸ ︷︷ ︸
I1

+ 2E∥ω∗
t − ω∗

t+1∥2︸ ︷︷ ︸
I2

+2βE⟨∆t, f̄(ωt,θt)⟩︸ ︷︷ ︸
I3

+ 2βE⟨∆t,f(Ot,ωt)− f̄(ωt,θt)⟩︸ ︷︷ ︸
I4

+ 2E⟨∆t,ω
∗
t − ω∗

t+1⟩︸ ︷︷ ︸
I5

,

where f(O,ω) = δ(O,ω)ϕ(s) is the update term of the
critic and f̄ is its mean value defined in Eq. (20).

I1 reflects the variance of the critic update which can be
bounded by O(1/

√
T ) due to its bounded update.

I2 represents the difference between the moving critic target
ω∗

t , which can be controlled due to its Lipschitz continuity
shown in Lemma B.6.

I3 is the inner product between the critic error ∆t and its
mean-path update f̄ . It can be bounded by −2λβE∥∆t∥2
under Assumption 4.1 since ω∗ is the solution of Eq. (16).
Note that this bound combined with first term E∥∆t∥2 is
(1− 2λβ)E∥∆t∥2 which implies a contraction of the critic
error because the coefficient is less than 1.

I4 represents the Markovian noise term, capturing the devi-
ation between the critic’s actual update f and its mean-path
f̄ . To analyze this deviation, we aim to show that the sample
Ot is close to its stationary distribution, as the error term
I3 vanishes when Ot is drawn from the stationary distri-
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bution. First, we demonstrate that the sample Ot from the
original Markov chain defined in Eq. (12) is close to the
sample from the auxiliary Markov chain in Eq. (21), as their
differences are limited to the last τ steps. The total variation
distance between these samples is controlled by the actor’s
change, i.e., ∥θt − θt−τ∥, as established in Lemma B.2.
By choosing τ = τmix = O(log T ) and noting that the
actor’s update speed is O(1/

√
T ), the distance between θt

and θt−τ is bounded by O(τmix/
√
T ). Consequently, the

accumulated deviation over the last τmix steps is bounded
by O(τ2mix/

√
T ) = O(log2 T/

√
T ), explaining the loga-

rithmic term in the convergence rate. Next, we show that the
Markov noise of the sample from the auxiliary Markov chain
approaches its stationary distribution after τmix steps under
a fixed policy, leveraging the uniform ergodicity assumption
in Assumption 4.2. This highlights the role of Assump-
tion 4.2 in analyzing single-sample single/two-timescale
algorithms with Markovian sampling. The complete analy-
sis of this Markovian noise is shown in Lemma C.1.

I5 tracks both the critic error ∆t and the difference be-
tween the drifting critic targets ω∗

t . It can be bounded by
the critic error ∆t and the actor error ∇J(θt) after error
decomposition. In contrast, the two-timescale setting can
prove that I4 converges to zero. To see why this is the case,
note that from the Lipschitz continuity of the critic target
ω∗

t shown in Lemma B.6, error term ω∗
t − ω∗

t+1 can be
bounded by the update of the actor θ, i.e., θt − θt+1. Since
the update step size for the actor is α while the contraction
of the critic error is at a rate 1 − 2λβ, a ratio term α/β
appears by moving the term −2λβE∥∆t∥2 to the left side
of the above inequality and dividing its coefficient. There-
fore, one can leave other terms in I4 as constant and bound
it by O(α/β). Since limt→∞ αt/βt = 0 in two-timescale
approach, thereby directly establish the convergence of the
critic. However, limt→∞ αt/βt = c in single-timescale
approach which is why we can only bound I4 by ∆t and
∇J(θ) and make an implicit upper bound for the critic error.
The final bound is summarized in Theorem D.1.

Step 2: An implicit bound for actor error. Using the
actor update rule and the smoothness property of J(θ)
(Lemma B.8), we decompose the squared actor error by
(see Eq. (31))

(1− γ)E∥∇J(θt)∥2 ≤ 1

α

(
E
[
J(θt+1)− J(θt)

])
+

αLg

2
E∥h(Ôt,ωt,θt)∥2︸ ︷︷ ︸

I1

−E⟨∇J(θt), ḡ(ω
∗
t ,θt)⟩︸ ︷︷ ︸

I2

+E⟨∇J(θt), h̄(ωt,θt)− h(Ôt,ωt,θt)⟩︸ ︷︷ ︸
I3

+E⟨∇J(θt), h̄(ω
∗
t ,θt)− h̄(ωt,θt)⟩︸ ︷︷ ︸
I4

,

where h(O,ω,θ) = δ(O,ω)∇ log πθ(a | s) is the update
term of the actor, h̄ is its mean value, and ḡ(ω∗

t ,θt) de-
fined in Eq. (20) represents the approximation error of the
optimal critic ω∗

t . The first term on the right-hand side
of the above inequality compares the actor’s performances
between consecutive updates, which can be eliminated by
telescoping.

I1 reflects the variance of the actor update which can be
controlled by O(1/

√
T ) due to its bounded update.

I2 is the inner product between actor error and the approxi-
mation error of the optimal critic ω∗

t . This term is control
by the approximation error O(ϵapp) defined in Eq. (19).

I3 represents the Markovian noise term, capturing the devi-
ation between the actor’s actual update h and its mean-path
h̄. Similar to the critic analysis, this noise is controlled by
showing that the original Markov chain defined in Eq. (13)
is close to the auxiliary Markov chain in Eq. (22). Addi-
tionally, samples from the auxiliary Markov chain approach
their stationary distribution after τmix steps, leveraging the
uniform ergodicity property established in Proposition 3.2.
This error term is bounded in Lemma C.3.

I4 tracks the inner product between the actor error ∇J(θ)
and the critic error (∆t = ω − ω∗

t ). In two-timescale
actor-critic, this term goes to zero due to the convergence
of the critic. However, in single-timescale approach, we
can only bound this term by ∇J(θt) and ∆t which will be
treated together later. This give an implicit upper bound for
the actor error. The final result of the above inequality is
summarized in Theorem D.2.

Step 3: A novel Lyapunov analysis. From Step 1 and Step
2, we get two inequalities about the coupled critic error and
actor error. Here we bring them together by defining the
following Lyapunov function

Lt =
2B

1− γ
E∥∆t∥2 +

1− γ

2B
E∥∇J(θt)∥2,

where 2B/(1− γ) is the scaling coefficient which balances
the contribution of the critic error and the actor error. Com-
bine the results in Step 1 and Step 2 (Eq. (26) and Eq. (30))
gives an unified inequality of Lt. We then define the total
error as L := 1/(T − τmix)

∑T−1
t=τmix

Lt. Telescoping from
t = T − τmix to T − 1, it can be shown that (see Eq. (33))

L ≤
(
2LcBc

λ
+

1

2

)
L+O

(
log2 T√

T

)
+O(ϵapp),

where c = α/β is the stepsize ratio between the actor and
the critic, γ is the discounted factor, λ is the maximum
eigenvalue of Aθ defined in Assumption 4.1, and Lc is the
Lipschitz constant characterized in Lemma B.6. Therefore,
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choosing c < λ/4BLc (see Eq. (34)), we have

L = O
(
log2 T√

T

)
+O(ϵapp),

which implies the convergence of the critic error and the
actor error simultaneously. Therefore, we finish the proof
of Theorem 5.1.

6. Conclusion
In this paper, we provide a finite-time convergence analysis
for the single-sample, single-timescale actor-critic algorithm
in continuous state-action spaces. We propose a novel Lya-
punov analysis framework, which allows a less conservative
analysis under the same set of assumptions adopted in exist-
ing studies. Our analysis offers new insights into the coupled
dynamics of actor-critic updates. Unlike prior works that
assume artificial decoupling between the actor and critic,
our results capture the interdependencies that arise naturally
in practical implementations. Moreover, our framework and
analytical techniques can serve as a foundation for studying
other single-timescale reinforcement learning algorithms in
continuous domains.
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A. Notation
In the following, we will analyze the convergence of the above algorithm. We define the following notations:

f(O,ω) :=
(
r(s, a) + γϕ(s′)⊤ω − ϕ(s)⊤ω

)
ϕ(s)

f̄(ω,θ) := EO∼(µθ,πθ,P )

[
f(O,ω)

]
,

h(O,ω,θ) :=
(
r(s, a) + γϕ(s′)⊤ω − ϕ(s)⊤ω

)
∇ log πθ(a | s)

h̄(ω,θ) := EO∼(νθ,πθ,P )

[
h(O,ω,θ)

]
,

g(O,ω,θ) :=
(
(γϕ(s′)− ϕ(s))⊤ω − (γVθ(s

′)− Vθ(s))
)
∇ log πθ(a | s),

ḡ(ω,θ) := EO∼(νθ,πθ,P )

[
g(O,ω,θ)

]
.

(20)

We make use of the following auxiliary Markov chain to deal with the Markovian noise.

Auxiliary Markov Chain for the Critic:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1. (21)

Auxiliary Markov Chain for the Actor:

ŝt−τ
θt−τ−−−→ ât−τ

P̂−→ ŝt−τ+1
θt−τ−−−→ āt−τ+1

P̂−→ s̄t−τ+2
θt−τ−−−→ āt−τ+2 · · ·

P̂−→ s̄t
θt−τ−−−→ āt

P̂−→ s̄t+1. (22)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain in Eq. (21) and
Ōt := (s̄t, āt, s̄t+1) the tuple generated from the auxiliary Markov chain in Eq. (22). In comparison, Ot := (st, at, st+1)

and Ôt := (ŝt, ât, ŝt+1) denotes the tuple generated by Algorithm 1. We use O′ as a shorthand for an independent sample

11
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from stationary distribution s ∼ µθ, a ∼ πθ, s
′ ∼ P and use O′′ as a shorthand for an independent sample from discounted

state visitation distribution s ∼ νθ, a ∼ πθ, s
′ ∼ P .

Throughout the proof, we define δt := δ(Ot,ωt), and δ̄ = r̄ + 2ω̄ is the uniform upper bound for δ. We also define
a filtration Ft = σ(s0, ŝ0, a0, â0, s1, ŝ1, a1, â1, · · · , st, ŝt), where σ(·) denotes the σ-algebra generated by the random
variables.

B. Preliminary Lemmas
In this section, we present several preliminary lemmas, encompassing three aspects: extending previous work to continuous
settings (Lemma B.1, Lemma B.2, Lemma B.5, Lemma B.6), establishing the corresponding statistical properties for actor
samples (Lemma B.3, Lemma B.4), and stating previously established results (Lemma B.7, Lemma B.8, Lemma B.9).

Lemma B.1. For any θ1 and θ2, it holds that

dTV (µθ1
, µθ2

) ≤ 2Lπ

(
⌈logρ m−1⌉+ 1

1− ρ

)
∥θ1 − θ2∥,

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) ≤ 2Lπ

(
1 + ⌈logρ m−1⌉+ 1

1− ρ

)
∥θ1 − θ2∥,

dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P ) ≤ 2Lπ

(
1 + ⌈logρ m−1⌉+ 1

1− ρ

)
∥θ1 − θ2∥.

Lemma B.2. Given time indexes t and τ such that t ≥ τ > 0, consider the auxiliary Markov chain in Eq. (21). Conditioning
on Ft−τ , we have

dTV

(
P(st+1 ∈ ·),P(s̃t+1 ∈ ·)

)
≤ dTV

(
P(Ot ∈ ·),P(Õt ∈ ·)

)
,

dTV

(
P(Ot ∈ ·),P(Õt ∈ ·)

)
= dTV

(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
,

dTV

(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
≤ dTV

(
P(st ∈ ·),P(s̃t ∈ ·)

)
+ LπE

[
∥θt − θt−τ∥

]
.

Lemma B.3. For any θ1 and θ2, it holds that

dTV (νθ1 , νθ2) ≤
2Lπ

1− γ
∥θ1 − θ2∥,

dTV (νθ1 ⊗ πθ1 , νθ2 ⊗ πθ2) ≤ 2Lπ

(
1 +

1

1− γ

)
∥θ1 − θ2∥,

dTV (νθ1
⊗ πθ1

⊗ P, νθ2
⊗ πθ2

⊗ P ) ≤ 2Lπ

(
1 +

1

1− γ

)
∥θ1 − θ2∥.

Lemma B.4. Given time indexes t and τ such that t ≥ τ > 0, consider the auxiliary Markov chain in Eq. (22). Conditioning
on Ft−τ , we have

dTV

(
P(ŝt+1 ∈ ·),P(s̄t+1 ∈ ·)

)
≤ dTV

(
P(Ôt ∈ ·),P(Ōt ∈ ·)

)
,

dTV

(
P(Ôt ∈ ·),P(Ōt ∈ ·)

)
= dTV

(
P((ŝt, ât) ∈ ·),P((s̄t, āt) ∈ ·)

)
,

dTV

(
P((ŝt, ât) ∈ ·),P((s̄t, āt) ∈ ·)

)
≤ dTV

(
P(ŝt ∈ ·),P(s̄t ∈ ·)

)
+ LπE

[
∥θt − θt−τ∥

]
.

Lemma B.5. For any θ1,θ2, we have

|J(θ1)− J(θ2)| ≤ LJ∥θ1 − θ2∥,

where LJ = 4r̄Lπ

(
1 + (1− γ)−1

)
.

Lemma B.6. There exists a constant Lc > 0 such that

∥ω∗(θ1)− ω∗(θ2)∥ ≤ Lc∥θ1 − θ2∥,∀θ1,θ2 ∈ Rd,

where Lc = (8λ−2r̄ + 4λ−1r̄)Lπ

(
1 + ⌈logρ m−1⌉+ 1/(1− ρ)

)
.

12
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Lemma B.7. For any θ,θ′ ∈ Rd, there exists constant Lµ such that ∥∇µθ −∇µθ′∥ ≤ Lµ∥θ − θ′∥, where µθ(s) is the
stationary distribution under the policy πθ.

Lemma B.8 ((Zhang et al., 2020a), Lemma 3.2). For the performance function J(θ), there exists a constant Lg > 0 such
that for all θ1,θ2 ∈ Rd, it holds that

∥∇J(θ1)−∇J(θ2)∥ ≤ Lg∥θ1 − θ2∥, (23)

which further implies

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
Lg

2
∥θ1 − θ2∥2. (24)

Lemma B.9 ((Chen et al., 2021), Proposition 8). For any θ1,θ2 ∈ Rd, we have

∥∇ω∗(θ1)−∇ω∗(θ2)∥ ≤ Ls∥θ1 − θ2∥,

where Ls is a positive constant.

C. Markovian Noise
We then the following Markovian noise term

Λ(O,ω,θ) =
〈
ω − ω∗,f(O,ω)− f̄(ω,θ)

〉
,

Γ(O,ω,θ) =
〈
ω − ω∗, (∇ω∗)⊤(h̄(ω∗,θ)− h(O,ω∗,θ))

〉
,

Ξ(O,ω,θ) =
〈
∇J(θ), h̄(ω,θ)− h(O,ω,θ)

〉
.

(25)

Lemma C.1. For any t ≥ τmix, the Markovian noise in the critic update, denoted by Λ(Ot,ωt,θt), satisfies

E
[
Λ(Ot,ωt,θt)

]
≤ M1

1√
T
,

where M1 =
(
8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ (1− ρ)−1) + 2δ̄Lc

)
δ̄Bτmixc+ (8ω̄ + 2δ̄)δ̄τmix + 4ω̄LπBδ̄2τ2mixc+ 4ω̄δ̄.

Lemma C.2. For any t ≥ τmix > 0, it holds that

E
[
Γ(Ôt,ωt,θt)

]
≤ M2

1√
T
,

where

M2 = (2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)τmixδ̄Bc+ 2δ̄BLcτmixδ̄ + 4ω̄δ̄BLcLπτ

2
mixδ̄Bc+ 4ω̄δ̄BLc,

Lh̄ = δ̄Ll + 2BLc + 4δ̄BLπ

(
1 +

1

1− γ

)
.

Lemma C.3. For any t ≥ τmix > 0, it can be shown that

E
[
Ξ(Ôt,ωt,θt)

]
≤ M3

1√
T
,

where

M3 = (2δ̄BLg + 2LJLh̄)δ̄Bcτmix + 4BLJ δ̄τmix + 2δ̄2B2LJLπcτ
2
mix + 2δ̄BLJ ,

Lh̄ = δ̄Ll + 2BLc + 4δ̄BLπ

(
1 +

1

1− γ

)
.

13
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D. Proof of Main Theorem
D.1. An implicit bound for critic error

Theorem D.1. Choose αt = c/
√
T , βt = 1/

√
T , for any τmix ≤ t < T , we have

E∥∆t∥2 ≤ 1

λβ
(E∥∆t∥2 − E∥∆t+1∥2) +

2c(1− γ)

λ
LcE∥∆t∥∥∇J(θt)∥+O(

log2 T√
T

) +O(ϵapp). (26)

Proof. From the update rule of the critic in Line 6 of Algorithm 1, we have

∥ωt+1 − ω∗
t+1∥ = ∥projω̄(ωt + βδtϕ(st))− ω∗

t+1∥
= ∥projω̄(ωt + βδtϕ(st))− projω̄(ω

∗
t+1)∥

(1)

≤ ∥ωt + βδtϕ(st)− ω∗
t+1∥

= ∥ωt − ω∗
t + βδtϕ(st) + ω∗

t − ω∗
t+1∥,

where (1) holds because the projection function projω̄(·) is 1-Lipschitz continuous. It follows that

∥∆t+1∥2 =∥∆t + βδtϕ(st) + ω∗
t − ω∗

t+1∥2

=∥∆t∥2 + ∥βδtϕ(st) + ω∗
t − ω∗

t+1∥2

+ 2⟨∆t, βδtϕ(st)⟩+ 2⟨∆t,ω
∗
t − ω∗

t+1⟩
=∥∆t∥2 + ∥βf(Ot,ωt) + ω∗

t − ω∗
t+1∥2

+ 2β⟨∆t,f(Ot,ωt)− f̄(ωt,θt)⟩
+ 2β⟨∆t, f̄(ωt,θt)⟩+ 2⟨∆t,ω

∗
t − ω∗

t+1⟩
≤∥∆t∥2 + 2β2∥f(Ot,ωt)∥2 + 2∥ω∗

t − ω∗
t+1∥2

+ 2β⟨∆t,f(Ot,ωt)− f̄(ωt,θt)⟩
+ 2β⟨∆t, f̄(ωt,θt)⟩+ 2⟨∆t,ω

∗
t − ω∗

t+1⟩,

where f and f̄ are defined in Eq. (20).

Taking expectation up to st+1, we have

E∥∆t+1∥2 ≤ E∥∆t∥2 + 2β2E∥f(Ot,ωt)∥2︸ ︷︷ ︸
I1

+2E∥ω∗
t − ω∗

t+1∥2︸ ︷︷ ︸
I2

+2βE⟨∆t, f̄(ωt,θt)⟩︸ ︷︷ ︸
I3

+ 2βE⟨∆t,f(Ot,ωt)− f̄(ωt,θt)⟩︸ ︷︷ ︸
I4

+2E⟨∆t,ω
∗
t − ω∗

t+1⟩︸ ︷︷ ︸
I5

.
(27)

In the sequel, we will tackle I1, I2, I3, I4, I5 respectively.

For term I1, since ∥f(Ot,ωt)∥ ≤ δ̄, we have

I1 = 2β2E∥f(Ot,ωt)∥2 ≤ 2β2δ̄2.

For term I2, from Lemma B.6, it can be shown that

I2 = 2E∥ω∗
t − ω∗

t+1∥2 ≤ 2L2
cE∥θ1 − θ2∥2 ≤ 2α2δ̄2B2L2

c .

For term I3, we have

⟨∆t, f̄(ωt,θt)⟩ =⟨∆t, f̄(ωt,θt)− f̄(ω∗
t ,θt)⟩

=⟨∆t,E[(γϕ(s′)− ϕ(s))⊤(ωt − ω∗
t )ϕ(s)]⟩

=∆⊤
t E[ϕ(s)(γϕ(s′)− ϕ(s)]∆t

=−∆⊤
t Aθ∆t

≤− λ∥∆t∥2.

14
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It follows that

I3 ≤ −2λβE∥∆t∥2.

For term I4, according to Lemma C.1, it holds that

I4 = 2βE
[
Λ(Ot,ωt,θt)

]
≤ 2βM1

1√
T
.

For term I5, we will instead give an implicit upper bound. It can be shown that

E⟨∆t,ω
∗
t − ω∗

t+1⟩ = E⟨∆t,ω
∗
t − ω∗

t+1 + (∇ω∗
t )

⊤(θt+1 − θt)⟩+ E⟨∆t,−(∇ω∗
t )

⊤(θt+1 − θt)⟩
(1)

≤ Ls

2
E∥∆t∥∥θt+1 − θt∥2 + αE⟨∆t,−(∇ω∗

t )
⊤h(Ôt,ωt,θt)⟩

≤ α2δ̄2B2Lsω̄ + αE⟨∆t,−(∇ω∗
t )

⊤h(Ôt,ωt,θt)⟩

= α2δ̄2B2Lsω̄ + αE⟨∆t,−(∇ω∗
t )

⊤(h(Ôt,ωt,θt)− h(Ôt,ω
∗
t ,θt))⟩

+ αE⟨∆t,−(∇ω∗
t )

⊤h(Ôt,ω
∗
t ,θt)⟩

≤ α2δ̄2B2Lsω̄ + 2αBLcE∥∆t∥2 + αE⟨∆t,−(∇ω∗
t )

⊤h(Ôt,ω
∗
t ,θt)⟩

= α2δ̄2B2Lsω̄ + 2αBLcE∥∆t∥2 + αE⟨∆t, (∇ω∗
t )

⊤(h̄(ω∗
t ,θt)− h(Ôt,ω

∗
t ,θt))⟩︸ ︷︷ ︸

J1

+ αE⟨∆t, (∇ω∗
t )

⊤(ḡ(ω∗
t ,θt)− h̄(ω∗

t ,θt))⟩︸ ︷︷ ︸
J2

+αE⟨∆t,−(∇ω∗
t )

⊤ḡ(ω∗
t ,θt)⟩︸ ︷︷ ︸

J3

,

where (1) follows from the smoothness of the optimal critic shown in Lemma B.9. We will analyze J1, J2, and J3
individually.

For term J1, from the Markovian noise analysis in Lemma C.2, we have

J1 = E
[
Γ(Ôt,ωt,θt)

]
≤ M2

1√
T
.

For term J2, from the policy gradient theorem in Eq. (5), we obtain

h̄(ω∗
t ,θt)− ḡ(ω∗

t ,θt) = E(s,a,s′)∼(νθt ,πθt ,P )[(r(s, a) + γVθt
(s′)− Vθt

(s))∇ log πθt
(a | s)] = (1− γ)∇J(θt). (28)

It follows that

J2 = E⟨∆t,−(∇ω∗
t )

⊤(1− γ)∇J(θt)⟩ ≤ (1− γ)LcE∥∆t∥∥∇J(θt)∥.

For term J3, we first show that

ḡ(ω∗
t ,θt) ≤

√
E(s,a,s′)∼(νθt ,πθt ,P )∥g(Ot,ω∗

t ,θt)∥2

≤
√

E
[
B2((γϕ(s′)⊤ω∗

t − γVθt
(s′))− (ϕ(s)⊤ω∗

t − Vθ(s)))2
]

≤
√
E
[
2B2

(
γ2(ϕ(s′)⊤ω∗

t − Vθt
(s′))2 + (ϕ(s)⊤ω∗

t − Vθt
(s))2

)]
≤ 2B

√
E[(ϕ(s)⊤ω∗

t − Vθt
(s))2]

= 2Bϵapp.

(29)

Then we have

J3 ≤ 4ω̄BLcϵapp.
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Combining J1, J2, and J3, we get

I5 ≤ 2α2δ̄2B2Lsω̄ + 4αBLcE∥∆t∥2 + 8αω̄BLcϵapp + 2α(1− γ)LcE∥∆t∥∥∇J(θt)∥+ 2αM2
1√
T
.

Plugging I1, I2, I3, I4 and I5 into Eq. (27), we obtain

E∥∆t+1∥2 ≤ E∥∆t∥2 + 2β2δ̄2 + 2α2δ̄2B2L2
c + 2βM1

1√
T

− 2λβE∥∆t∥2 + 2α2δ̄2B2Lsω̄

+ 4αBLcE∥∆t∥2 + 8αω̄BLcϵapp + 2α(1− γ)LcE∥∆t∥∥∇J(θt)∥+ 2αM2
1√
T

(1)

≤ (1− λβ)E∥∆t∥2 + 2α(1− γ)LcE∥∆t∥∥∇J(θt)∥

+ (2δ̄2 + 2c2δ̄2B2L2
c + 2M1 + 2c2δ̄2B2Lsω̄ + 2cM2)

1

T
+ 8αω̄BLcϵapp,

where (1) holds as the step size ratio c is chosen to satisfy 4αBLc ≤ λβ.

Rearranging the above inequality, we obtain

E∥∆t∥2 ≤ 1

λβ
(E∥∆t∥2 − E∥∆t+1∥2) +

2c(1− γ)

λ
LcE∥∆t∥∥∇J(θt)∥

+ λ−1(2δ̄2 + 2c2δ̄2B2L2
c + 2M1 + 2c2δ̄2B2Lsω̄ + 2cM2)

1√
T

+ 8cω̄BLcϵapp.

By leveraging the O(·) notation, we can further summarise our implicit analysis for the critic as

E∥∆t∥2 ≤ 1

λβ
(E∥∆t∥2 − E∥∆t+1∥2) +

2c(1− γ)

λ
LcE∥∆t∥∥∇J(θt)∥+O(

log2 T√
T

) +O(ϵapp),

where the term log2 T arises from the presence of τ2mix in M1 and M2. Therefore, we finish the proof of Theorem D.1.

D.2. An implicit bound for actor error

Theorem D.2. Choose αt = c/
√
T , βt = 1/

√
T , for any τmix ≤ t < T , we have

(1− γ)E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)]) + 2BE∥∇J(θt)∥∥∆t∥+O(

log2 T√
T

) +O(ϵapp). (30)

Proof. From the update rule of actor in Line 8 of Algorithm 1 and Lemma B.8, we have

J(θt+1) ≥ J(θt) + ⟨∇J(θt),θt+1 − θt⟩ −
Lg

2
∥θt − θt+1∥2

= J(θt) + α⟨∇J(θt),h(Ôt,ωt,θt)⟩ −
Lg

2
α2∥h(Ôt,ωt,θt)∥2

= J(θt) + α⟨∇J(θt),h(Ôt,ωt,θt)− h̄(ωt,θt)⟩+ α⟨∇J(θt), h̄(ωt,θt)⟩ −
Lg

2
α2∥h(Ôt,ωt,θt)∥2

= J(θt) + α⟨∇J(θt),h(Ôt,ωt,θt)− h̄(ωt,θt)⟩+ α⟨∇J(θt), h̄(ωt,θt)− h̄(ω∗
t ,θt)⟩

+ α⟨∇J(θt), h̄(ω
∗
t ,θt)− ḡ(ω∗

t ,θt)⟩+ α⟨∇J(θt), ḡ(ω
∗
t ,θt)⟩ −

Lg

2
α2∥h(Ôt,ωt,θt)∥2

(1)
= J(θt) + α⟨∇J(θt),h(Ôt,ωt,θt)− h̄(ωt,θt)⟩+ α⟨∇J(θt), h̄(ωt,θt)− h̄(ω∗

t ,θt)⟩

+ α(1− γ)∥∇J(θt)∥2 + α⟨∇J(θt), ḡ(ω
∗
t ,θt)⟩ −

Lg

2
α2∥h(Ôt,ωt,θt)∥2,

where (1) follows from Eq. (28).
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Rearranging the above inequality and taking expectation, we have

(1− γ)E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)]) +

αLg

2
E∥h(Ôt,ωt,θt)∥2︸ ︷︷ ︸

I1

−E⟨∇J(θt), ḡ(ω
∗
t ,θt)⟩︸ ︷︷ ︸

I2

+ E⟨∇J(θt), h̄(ωt,θt)− h(Ôt,ωt,θt)⟩︸ ︷︷ ︸
I3

+E⟨∇J(θt), h̄(ω
∗
t ,θt)− h̄(ωt,θt)⟩︸ ︷︷ ︸
I4

.

(31)

In the sequel, we will analyze I1, I2, I3, I4 one by one.

For term I1, since h(Ôt,ωt,θt) ≤ δ̄B, we have

I1 =
αLg

2
E∥h(Ôt,ωt,θt)∥2 ≤ αδ̄2B2Lg

2
.

For term I2, from Eq. (29), we have

I2 = E⟨∇J(θt), ḡ(ω
∗
t ,θt)⟩ ≤ 2BLJϵapp.

For term I3, from Lemma C.3, we obtain

I3 = E
[
Ξ(Ôt,ωt,θt)

]
≤ M3

1√
T
.

For term I4, it holds that

I4 = E⟨∇J(θt), h̄(ω
∗
t ,θt)− h̄(ωt,θt)⟩ ≤ 2BE∥∇J(θt)∥∥∆t∥.

Plugging I1, I2, I3 and I4 into Eq. (31), we have

(1− γ)E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)]) +

αδ̄2B2Lg

2
+ 2BLJϵapp +M3

1√
T

+ 2BE∥∇J(θt)∥∥∆t∥.

By leveraging the O(·) notation, we can further summarise our implicit analysis for the actor as

(1− γ)E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)]) + 2BE∥∇J(θt)∥∥∆t∥+O(

log2 T√
T

) +O(ϵapp),

where the term log2 T arises from the presence of τ2mix in M3. Therefore, we complete the proof of Theorem D.2.

D.3. A novel Lyapunov analysis

Theorem D.3. Choose αt = c/
√
T , βt = 1/

√
T , for any T ≥ 2τmix, we have

1

T − τmix

T−1∑
t=τmix

E
∥∥∆t

∥∥2 = O
(
log2 T√

T

)
+O(ϵapp),

1

T − τmix

T−1∑
t=τmix

E
∥∥∇J(θt)

∥∥2 = O
(
log2 T√

T

)
+O(ϵapp).

(32)

Proof. Define

Lt =
2B

1− γ
E∥∆t∥2 +

1− γ

2B
E∥∇J(θt)∥2,
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the sum of Eq. (26) and Eq. (30) yields

Lt ≤
2B

λβ(1− γ)
(E∥∆t∥2 − E∥∆t+1∥2) +

4LcBc

λ
E∥∆t∥∥∇J(θt)∥

+
1

2Bα
(E[J(θt+1)− J(θt)]) + E∥∆t∥∥∇J(θt)∥+O(

log2 T√
T

) +O(ϵapp)

≤
(
2LcBc

λ
+

1

2

)
Lt +

2B

λβ(1− γ)
(E∥∆t∥2 − E∥∆t+1∥2)

+
1

2Bα
(E[J(θt+1)− J(θt)]) +O

(
log2 T√

T

)
+O(ϵapp),

where the last inequality follows from E∥∆t∥∥∇J(θt)∥ ≤ 1/2Lt. Since L := 1/(T − τmix)
T−1∑

t=τmix

Lt, it can be shown that

L ≤
(
2LcBc

λ
+

1

2

)
L+

2B

λβ(1− γ)(T − τmix)

T−1∑
t=τmix

(E∥∆t∥2 − E∥∆t+1∥2)

+
1

2Bα(T − τmix)

T−1∑
t=τmix

(E[J(θt+1)− J(θt)]) +O
(
log2 T√

T

)
+O(ϵapp)

≤
(
2LcBc

λ
+

1

2

)
L+

8Bω̄2

λβ(1− γ)(T − τmix)
+

r̄

Bα(T − τmix)
+O

(
log2 T√

T

)
+O(ϵapp).

Choose T ≥ 2τmix, we have T − τmix ≥ 1/2T , which implies

L ≤
(
2LcBc

λ
+

1

2

)
L+

(
16Bω̄2

λ(1− γ)
+

2r̄

Bc

)
1√
T

+O
(
log2 T√

T

)
+O(ϵapp)

=

(
2LcBc

λ
+

1

2

)
L+O

(
log2 T√

T

)
+O(ϵapp).

Overall, we have

L ≤
(
2LcBc

λ
+

1

2

)
L+O

(
log2 T√

T

)
+O(ϵapp). (33)

To make L convergence, we need 2LcBc/λ+ 1/2 < 1, which can be achieved by choosing

c <
λ

4BLc
. (34)

It follows that

L = O
(
log2 T√

T

)
+O(ϵapp),

which implies

1

T − τmix

T−1∑
t=τmix

E
∥∥∆t

∥∥2 = O
(
log2 T√

T

)
+O(ϵapp),

1

T − τmix

T−1∑
t=τmix

E
∥∥∇J(θt)

∥∥2 = O
(
log2 T√

T

)
+O(ϵapp).

Therefore, we complete our proof.
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E. Proof of Propositions
Proof of Proposition 3.1.

Proof. We show that νθ is the stationary distribution of the Markov chain induced by P̂ by showing that νθ is a fixed point
of the operator P̂ , i.e.,

P̂νθ = νθ.

Define operator Pt by iterative application of the operator P:

(Ptf)(s′) =

∫
S

∫
A
πθ(a | s)P (s′ | s, a)Pt−1f(s) dads.

From the definition of the operator Pt, we can rewrite νθ in Eq. (4) as

νθ(s) = (1− γ)

∞∑
t=0

γtPtη(s).

Then we have

P̂νθ(s) = (1− γ)η(s) + γPνθ(s). (35)

For term Pνθ(s), it holds that

Pνθ(s) = (1− γ)

∞∑
t=0

γtPt+1η(s)

= (1− γ)

∞∑
k=1

γk−1Pkη(s)

=
1− γ

γ

∞∑
k=1

γkPkη(s)

=
1− γ

γ
(
νθ(s)

1− γ
− η(s))

=
νθ(s)

γ
− 1− γ

γ
η(s).

Plugging the above result to Eq. (35), we obtain

P̂νθ(s) = (1− γ)η(s) + γ(
νθ(s)

γ
− 1− γ

γ
η(s))

= (1− γ)η(s) + νθ(s)− (1− γ)η(s)

= νθ(s).

Suppose P̂ has two fixed points f and g, then we have

P̂f = f, P̂g = g.

Recall that for two probability distributions µ and ν on S, the total variation distance is defined as

dTV(µ, ν) =
1

2

∫
S
|µ(s)− ν(s)| ds.

Since we have

P̂f − P̂g = γ(Pf − Pg),
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it follows that

dTV(P̂f, P̂g) = γdTV (Pf,Pg).

From Eq. (10), we know that P is also a Markov kernel which does not increase the total variation distance. Therefore, it
can be shown that

dTV(f, g) = dTV(P̂f, P̂g) = γdTV (Pf,Pg) ≤ γdTV(f, g).

Therefore, we get

dTV(f, g) = 0,

which means f and g are same distributions. Hence we finish our proof.

Proof of Proposition 3.2.

Proof. Recall that for two probability distributions µ and ν on S, the total variation distance is defined as

dTV(µ, ν) =
1

2

∫
S
|µ(s)− ν(s)| ds.

For two distribution f and g, we have

P̂f − P̂g = γ(Pf − Pg),

where the operator P̂ and P are defined in the proof of Proposition 3.1.

It follows that

dTV(P̂f, P̂g) = γdTV (Pf,Pg).

From Eq. (10), we know that P is also a Markov kernel which does not increase the total variation distance. Therefore, it
can be shown that

dTV(P̂f, P̂g) = γdTV (Pf,Pg) ≤ γdTV(f, g).

As shown in Proposition 3.1, νθ is the stationary distribution of the Markov chain induced by P̂ . For any initial distribution
f , we have

dTV(P̂tf, νθ) =dTV(P̂tf, P̂tνθ)

≤ γtdTV(f, νθ)

≤ γt.

Thus, it completes the proof.

Proof of Proposition 4.4.

Proof. From the definition of the total variation distance, we have

dTV(πθ1
(· | s)− πθ2

(· | s)) = 1

2

∫
A
|πθ1

(a | s)− πθ2
(a | s)| da

=
1

2

∫
Ā
|πθ1(a | s)− πθ2(a | s)| da

≤ 1

2

∫
Ā
L∥θ1 − θ2∥ da

≤ 1

2
ĀL∥θ1 − θ2∥,

where Ā is the bounded support of πθ(a | s) which satisfies
∫
Ā da = Ā. Define Lπ := 1/2ĀL, which completes the

proof.
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F. Proof of Preliminary Lemmas
Proof of Lemma B.1.

Proof. This is a minor adjustment to the proof of Lemma 3 in Zou et al. (2019), extending it to continuous settings.

For any θ1 and θ2, define the transition densities respectively as follows:

Pθi
(s | ds′) =

∫
A
P (ds′ | s, a)πθi

(a | s), i = 1, 2

Following from Theorem 3.1 in (Mitrophanov, 2005), we obtain

dTV(µθ1
, µθ2

) ≤ (⌈logρ m−1⌉+ 1

1− ρ
)∥Pθ1

− Pθ2
∥op,

where ∥ · ∥op is the operator norm defined in (Mitrophanov, 2005): ∥A∥op := sup∥q∥TV=1∥qA∥TV, and ∥ · ∥TV denotes the
total-variation norm. Then we have

∥Pθ1
− Pθ2

∥op = sup
∥q∥TV=1

∥
∫
S
q(ds)(Pθ1

− Pθ2
)(s | ·)∥TV

= sup
∥q∥TV=1

∫
S
|
∫
S
q(ds)(Pθ1

− Pθ2
)(s | ds′)|

≤ sup
∥q∥TV=1

∫
S

∫
S
|q(ds)|

∣∣∣∣(Pθ1 − Pθ2)(s | ds′)|

= sup
∥q∥TV=1

∫
S

∫
S
|q(ds)|

∣∣∣∣ ∫
A
P (ds′ | s, a)(πθ1

(da | s)− πθ2
(da | s))|

= sup
∥q∥TV=1

∫
S

∫
S
|q(ds)|

∫
A
P (ds′ | s, a)|(πθ1(da | s)− πθ2(da | s))|

= sup
∥q∥TV=1

∫
S
|q(ds)|

∫
A
|(πθ1(da | s)− πθ2(da | s))|

≤ 2Lπ∥θ1 − θ2∥.

Therefore, we have

dTV (µθ1 , µθ2) ≤ 2Lπ(⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the second inequality, we have

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) =
1

2

∫
S

∫
A
|µθ1(ds)πθ1(da | s)− µθ2(ds)πθ2(da | s)|

≤1

2

∫
S

∫
A
|µθ1

(ds)(πθ1
(da | s)− πθ2

(da | s))|

+
1

2

∫
S

∫
A
|(µθ1(ds)− µθ2(ds))πθ2(da | s))|

= dTV (πθ1 , πθ2) + dTV (µθ1 , µθ2)

≤ Lπ∥θ1 − θ2∥+ 2Lπ(⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= 2Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.
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For the third inequality, we have

dTV(µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P)

=
1

2

∫
S

∫
A

∫
S
|µθ1

(ds)πθ1
(da | s)P (ds′ | s, a)− µθ2

(ds)πθ2
(da | s)P (ds′ | s, a)|

=
1

2

∫
S

∫
A
|µθ1

(ds)πθ1
(da | s)− µθ2

(ds)πθ2
(da | s)|

= dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2),

which concludes the proof.

Proof of Lemma B.2.

Proof. This is a slight modification of the proof of Lemma B.2 in Wu et al. (2020), which extends it to continuous settings.

From the fact that

P(st+1 ∈ ·) =
∫
S

∫
A
P(st = ds, at = da, st+1 ∈ ·),

we have

dTV(P(st+1 ∈ ·),P(s̃t+1 ∈ ·))

=
1

2

∫
S
|
∫
S

∫
A
P(st = ds, at = da, st+1 = ds′)−

∫
S

∫
A
P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

≤ 1

2

∫
S

∫
S

∫
A
|P(st = ds, at = da, st+1 = ds′)− P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

=
1

2

∫
S

∫
S

∫
A
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

= dTV (P(Ot ∈ ·),P(Õ ∈ ·)),

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem since P is an absolute
integrable function.

For the second equality, we have

dTV (P(Ot ∈ ·),P(Õt ∈ ·))

=

∫
S

∫
A

∫
S
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

=
1

2

∫
S

∫
A

∫
S
|P (ds′|s, a)P((st, at) = (ds, da))− P (ds′|s, a)P((s̃t, ãt) = (ds, da))|

=
1

2

∫
S

∫
A

∫
S
P (ds′|s, a)|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

=
1

2

∫
S

∫
A
|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

= dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)).
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For the third inequality, since θt is dependent on st, it holds that

dTV(P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·))

=
1

2

∫
S

∫
A
|P(st = ds, at = da)− P(s̃t = ds, ãt = da)|

=
1

2

∫
S

∫
A
|
∫
θ

P(st = ds)P(θt = dθ | st = s)P(at = da | st = s,θt = θ)− P(s̃t = ds, ãt = da)|

=
1

2

∫
S

∫
A
|P(st = ds)

∫
θ

P(θt = dθ | st = s)πθt(da | s)− P(s̃t = ds)πθt−τ (da | s)|

=
1

2

∫
S

∫
A
|P(st = ds)E[πθt

(da | s) | st = s]− P(s̃t = ds)πθt−τ
(da | s)|

=
1

2

∫
S

∫
A
|P(st = ds)E[πθt

(da | s) | st = s]− P(st = ds)πθt−τ
(da | s)|

+
1

2

∫
S

∫
A
|P(st = ds)πθt−τ (da | s)− P(s̃t = ds)πθt−τ (da | s)|

=
1

2

∫
S
P(st = ds)

∫
A
|E[πθt

(da|s)|st = s]− πθt−τ
(da|s)|

+ dTV(P(st ∈ ·),P(s̃t ∈ ·))
≤ LπE∥θt − θt−τ∥+ dTV (P(st ∈ ·),P(s̃t ∈ ·)).

Therefore, we finish our proof.

Proof of Lemma B.3.

Proof. Following the same proof as shown in Lemma B.1. The final results are derived by substituting the results of
Lemma B.1 with m = 1 and ρ = γ, as outlined in Proposition 3.2.

Proof of Lemma B.4.

Proof. By the same proof as shown in Lemma B.2.

Proof of Lemma B.5.

Proof. By definition, we have

J(θ1)− J(θ2) = E[r(s1, a1)− r(s2, a2)],

where si ∼ νθi
, ai ∼ πθi

. Therefore, it holds that

J(θ1)− J(θ2) = E[r(s1, a1)− r(s1, a1)]

≤ 2r̄dTV (νθ1
⊗ πθ1

, νθ2
⊗ πθ2

)

≤ 4r̄Lπ(1 +
1

1− γ
)∥θ1 − θ2∥

= LJ∥θ1 − θ2∥.

Proof of Lemma B.6.

Proof. From Eq. (16), we have

Aθω
∗(θ) = bθ.
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where Aθ := E(s,a,s′)[ϕ(s)(ϕ(s)− γϕ(s′))⊤)] and bθ := E(s,a)[r(s, a)ϕ(s)]. The expectation is taken over the stationary
distribution s ∼ µθ, the action a ∼ πθ(· | s), and the transition probability kernel s′ ∼ P (· | s, a).

Denote ω∗
1 ,ω

∗
2 , ω̂1 as the unique solutions of the following equations respectively:

Aθ1
ω∗

1 = bθ1
, Aθ2

ω̂1 = b1, Aθ2
ω∗

2 = b2.

First we bound ∥ω∗
1 − ω̂1∥. By definition, we have

∥ω∗
1 − ω̂1∥ ≤ ∥A−1

θ1
−A−1

θ2
∥∥bθ1

∥.

It can be shown that
A−1

θ1
−A−1

θ2
= A−1

θ1
(Aθ2

−Aθ1
)A−1

θ2
,

which implies
∥ω∗

1 − ω̂1∥ ≤ ∥A−1
θ1

∥∥Aθ1
−Aθ2

∥∥A−1
θ2

∥∥bθ1
∥.

Then we bound ∥ω̂1 − ω∗
2∥:

∥ω̂1 − ω∗
2∥ ≤ ∥A−1

θ2
∥∥bθ1

− bθ2
∥.

By Assumption 4.1, the eigenvalues of Aθi
are bounded from below by λ > 0, therefore ∥A−1

θi
∥ ≤ λ−1. Also ∥bθi

∥ ≤ r̄,
due to the assumption that |r(s, a)| ≤ r̄, and ∥ϕ(s)∥ ≤ 1. To bound ∥Aθ1

−Aθ2
∥ and ∥bθ1

− bθ2
∥, we first note that

∥Aθ1
−Aθ2

∥ ≤ 2 sup
s,s′∈S

∥ϕ(s)(ϕ(s)− γϕ(s′)⊤)∥ · 2dTV (P(O1 ∈ ·),P(O2 ∈ ·))

≤ 4dTV(P(O1 ∈ ·),P(O2 ∈ ·)),

and

∥bθ1 − bθ2∥ ≤ ∥E[r(s1, a1)ϕ(s1)]− E[r(s2, a2)ϕ(s2)]∥
≤ 2r̄dTV(P(O1 ∈ ·),P(O2 ∈ ·)),

where Oi is the tuple obtained by si ∼ µθi
, ai ∼ πθi

(·|si), and s′ ∼ P (·|si, ai). And the total variation norm can be
bounded by Lemma B.1 as:

dTV(P(O1 ∈ ·),P(O2 ∈ ·)) ≤ 2Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

Collecting the above results, we have

∥ω∗
2 − ω∗

1∥ ≤ ∥ω∗
1 − ω̂1∥+ ∥ω̂1 − ω∗

2∥

≤ (8λ−2r̄ + 4λ−1r̄)Lπ

(
1 + ⌈logρ m−1⌉+ 1

1− ρ

)
∥θ1 − θ2∥,

and we set Lc := (8λ−2r̄ + 4λ−1r̄)Lπ(1 + ⌈logρ m−1⌉+ 1/(1− ρ)) to obtain the final result.

Proof of Lemma B.7.

Proof. Lemma B.7 is adopted as an assumption in Chen et al. (2021) and Chen & Zhao (2024), but it directly follows from
Heidergott & Hordijk (2003), as pointed out by Olshevsky & Gharesifard (2023).

Proof of Lemma B.8.

Proof. See the proof in Lemma 3.2 of Zhang et al. (2020a).

Proof of Lemma B.9.

Proof. See the proof in Proposition 8 of Chen et al. (2021).
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G. Proof of Markovian Noise
Proof of Lemma C.1.

Proof. We will divide the proof of this lemma into five steps.

Step 1. show that for any θ1,θ1,ω, and tuple O(s, a, s′), we have

Λ(O,ω,θ1)− Λ(O,ω,θ2) ≤ (8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)∥θ1 − θ2∥. (36)

By the definition of Λ(O,ω,θ) in Eq. (25), we have

Λ(O,ω,θ1)− Λ(O,ω,θ2) =⟨ω − ω∗
1 ,f(O,ω)− f̄(ω,θ1)⟩ − ⟨ω − ω∗

2 ,f(O,ω)− f̄(ω,θ2)⟩
≤

∣∣⟨ω − ω∗
1 ,f(O,ω)− f̄(ω,θ1)⟩ − ⟨ω − ω∗

1 ,f(O,ω)− f̄(ω,θ2)⟩
∣∣︸ ︷︷ ︸

I1

+
∣∣⟨ω − ω∗

1 ,f(O,ω)− f̄(ω,θ2)⟩ − ⟨ω − ω∗
2 ,f(O,ω)− f̄(ω,θ2)⟩

∣∣︸ ︷︷ ︸
I2

.

For term I1, we have

I1 =
∣∣⟨ω − ω∗

1 , f̄(ω,θ2)− f̄(ω,θ1)⟩
∣∣

≤ 2ω̄
∥∥f̄(ω,θ2)− f̄(ω,θ1)

∥∥
≤ 4ω̄δ̄dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P)

(1)

≤ 8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

where (1) comes from Lemma B.1.

For term I2, we have

I2 =
∣∣⟨ω∗

2 − ω∗
1 ,f(O,ω)− f̄(ω,θ2)⟩

∣∣
≤ 2δ̄

∥∥ω∗
1 − ω∗

2

∥∥
(1)

≤ 2δ̄Lc∥θ1 − θ2∥,

where (1) follows from Lemma B.6. Combining I1 and I2, we have

Λ(O,ω,θ1)− Λ(O,ω,θ2) ≤ (8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)∥θ1 − θ2∥.

Step 2. show that for any θ,ω1,ω2, and tuple O(s, a, s′), we have

Λ(O,ω1,θ)− Λ(O,ω2,θ) ≤ (8ω̄ + 2δ̄)∥ω1 − ω2∥. (37)

According to the definition, we have

Λ(O,ω1,θ)− Λ(O,ω2,θ) = ⟨ω1 − ω∗,f(O,ω1)− f̄(ω1,θ)⟩ − E⟨ω2 − ω∗,f(O,ω2)− f̄(ω2,θ)⟩
≤

∣∣⟨ω1 − ω∗,f(O,ω1)− f̄(ω1,θ)⟩ − ⟨ω1 − ω∗,f(O,ω2)− f̄(ω2,θ)⟩
∣∣︸ ︷︷ ︸

I1

+
∣∣⟨ω1 − ω∗,f(O,ω2)− f̄(ω2,θ)⟩ − ⟨ω2 − ω∗,f(O,ω2)− f̄(ω2,θ)⟩

∣∣︸ ︷︷ ︸
I2

.

For term I1, we have

I1 =
∣∣⟨ω1 − ω∗,f(O,ω1)− f̄(ω1,θ)− (f(O,ω2)− f̄(ω2,θ))⟩

∣∣
≤ 2ω̄(∥f(O,ω1)− f(O,ω2)∥+ ∥f̄(ω2,θ)− f̄(ω1,θ)∥)
≤ 8ω̄∥ω1 − ω2∥.
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For term I2, we have

I2 =
∣∣⟨ω2 − ω1,f(O,ω2)− f̄(ω2,θ)⟩

∣∣ ≤ 2δ̄∥ω1 − ω2∥.

Combining I1 and I2, we have

Λ(O,ω1,θ)− Λ(O,ω2,θ) ≤ (8ω̄ + 2δ̄)∥ω1 − ω2∥.

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on Ft−τ , we have

E
[
Λ(Ot,ωt−τ ,θt−τ )− Λ(Õt,ωt−τ ,θt−τ )

]
≤ 4ω̄δ̄Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (38)

By the definition of total variation distance, we have

E
[
Λ(Ot,ωt−τ ,θt−τ )− Λ(Õt,ωt−τ ,θt−τ )

]
≤E⟨ωt−τ − ω∗

t−τ ,f(Ot,ωt−τ )− f(Õt,ωt−τ )⟩

≤4ω̄δ̄dTV (P(Ot ∈ ·|Ft−τ ),P(Õt ∈ ·|Ft−τ )).
(39)

By Lemma B.2, we get

dTV (P(Ot ∈ ·|Ft−τ ),P(Õt ∈ ·|Ft−τ ))

= dTV (P((st, at) ∈ ·|Ft−τ ),P((s̃t, ãt) ∈ ·|Ft−τ ))

≤ dTV (P(st ∈ ·|Ft−τ ),P(s̃t ∈ ·|Ft−τ )) + LπE∥θt − θt−τ∥

≤ dTV (P(Ot−1 ∈ ·|Ft−τ ),P(Õt−1 ∈ ·|Ft−τ )) + LπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ , we have

dTV (P(Ot ∈ ·|Ft−τ ),P(Õt ∈ ·|Ft−τ )) ≤ Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (40)

Plugging Eq. (40) into Eq. (39), we get

E
[
Λ(Ot,ωt−τ ,θt−τ )− Λ(Õt,ωt−τ ,θt−τ )

]
≤ 4ω̄δ̄Lπ

t∑
k=t−τ

E∥θk − θt−τ∥.

Step 4: show that conditioning on Ft−τ , we have

E
[
Λ(Õt,ωt−τ ,θt−τ )

]
≤ 4ω̄δ̄mρτ−1. (41)

It can be shown that

E
[
Λ(O′

t−τ ,ωt−τ ,θt−τ )|Ft−τ

]
= 0.

Then we have

E
[
Λ(Õt,ωt−τ ,θt−τ )

]
=E

[
Λ(Õt,ωt−τ ,θt−τ )− Λ(O′

t−τ ,ωt−τ ,θt−τ )
]

=E
[
⟨ωt−τ − ω∗

t−τ ,f(Õt,ωt−τ )− f(O′
t−τ ,ωt−τ )

]
≤4ω̄δ̄dTV (P(Õt = ·|Ft−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

(1)

≤4ω̄δ̄mρτ−1,

where (1) follows from Assumption 4.2.
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Step 5: show that for t ≥ τmix, we have

E
[
Λ(Ot,ωt,θt)

]
≤ M1

1√
T
,

where M1 = 2δ̄Lπ(1 + ⌈logρ m−1⌉+ (1− ρ)−1)δ̄Bτmixc+ 4δ̄τmix + δ̄Lπ δ̄Bτ2mixc+ 2δ̄.

Combining Eq. (36), Eq. (37), Eq. (38), and Eq. (41), we have

E
[
Λ(Ot,ωt,θt)

]
=E

[
Λ(Ot,ωt,θt)− Λ(Ot,ωt,θt−τ )

]
+ E

[
Λ(Ot,ωt,θt−τ )− Λ(Ot,ωt−τ ,θt−τ )

]
+ E

[
Λ(Ot,ωt−τ ,θt−τ )− Λ(Õt,ωt−τ ,θt−τ )

]
+ E

[
Λ(Õt,ωt−τ ,θt−τ )

]
≤(8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)∥θt − θt−τ∥+ (8ω̄ + 2δ̄)∥ωt − ωt−τ∥

+ 4ω̄δ̄Lπ

t∑
k=t−τ

E∥θk − θt−τ∥+ 4ω̄δ̄mρτ−1

(1)

≤ (8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)

t−1∑
k=t−τ

αδ̄B + (8ω̄ + 2δ̄)

t−1∑
k=t−τ

βδ̄

+ 4ω̄δ̄Lπ

t∑
k=t−τ

k−1∑
i=t−τ

αδ̄B + 4ω̄δ̄mρτ−1

≤(8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)τ δ̄B

c√
T

+ (8ω̄ + 2δ̄)τ δ̄
1√
T

+ 4ω̄δ̄Lπτ
2δ̄B

c√
T

+ 4ω̄δ̄mρτ−1

(2)

≤ ((8ω̄δ̄Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
) + 2δ̄Lc)δ̄Bτmixc+ (8ω̄ + 2δ̄)δ̄τmix + 4ω̄LπBδ̄2τ2mixc+ 4ω̄δ̄)

1√
T
,

where (1) comes from the update rule of the critic and the actor, (2) is followed by choosing τ = τmix. Therefore, we
conclude our proof.

Proof of Lemma C.2

Proof. We will divide the proof of this lemma into five steps.

Step 1: show that for any O,ω,θ1,θ2, we have

∥Γ(O,ω,θ1)− Γ(O,ω,θ2)∥ ≤ (2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)∥θ1 − θ2∥, (42)

where Lh̄ = δ̄Ll + 2BLc + 4δ̄BLπ(1 + (1− γ)−1).

Since Γ(O,ω,θ) = ⟨ω − ω∗, (∇ω∗)⊤(h̄(ω∗,θ)− h(O,ω∗,θ))⟩, we represent h̄(ω∗,θ) = Eθ[h(O,ω∗,θ)], where Eθ

is the shorthand of EO∼(νθ,πθ,P). In the following, we will show that each term in Γ(O,ω,θ) is Lipschitz with respect to θ.

Term ω is not related to θ, term ω∗(θ) is Lc-Lipschitz according to Lemma B.6, and term ∇ω∗(θ) is Ls-Lipschitz according
to Lemma B.9.

For term h(O,ω∗,θ), we have

∥h(O,ω∗
1 ,θ1)− h(O,ω∗

2 ,θ2)∥ ≤ ∥h(O,ω∗
1 ,θ1)− h(O,ω∗

1 ,θ2)∥+ ∥h(O,ω∗
1 ,θ2)− h(O,ω∗

2 ,θ2)∥
≤ δ̄∥∇ log πθ1

(a | s)−∇ log πθ2
(a | s)∥+ 2B∥ω∗

1 − ω∗
2∥

≤ (δ̄Ll + 2BLc)∥θ1 − θ2∥.

Hence we have h(O,ω∗,θ) is Lh-Lipschitz, where Lh = δ̄Ll + 2BLc.
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For term Eθ[h(O,ω∗,θ)], we have

∥Eθ1
[h(O,ω∗

1 ,θ1)]− Eθ2
[h(O,ω∗

2 ,θ2)]∥
≤ ∥Eθ1

[h(O,ω∗
1 ,θ1)]− Eθ1

[h(O,ω∗
2 ,θ2)]∥+ ∥Eθ1

[h(O,ω∗
2 ,θ2)]− Eθ2

[h(O,ω∗
2 ,θ2)]∥

≤ Eθ1
∥h(O,ω∗

1 ,θ1)− h(O,ω∗
2 ,θ2)∥+ ∥Eθ1

[h(O,ω∗
2 ,θ2)]− Eθ2

[h(O,ω∗
2 ,θ2)]∥

≤ Lh∥θ1 − θ2∥+ ∥Eθ1
[h(O,ω∗

2 ,θ2)]− Eθ2
[h(O,ω∗

2 ,θ2)]∥
≤ Lh∥θ1 − θ2∥+ 2δ̄BdTV (νθ1

⊗ πθ1
⊗ P, νθ2

⊗ πθ2
⊗ P )

(1)

≤ (Lh + 4δ̄BLπ(1 +
1

1− γ
))∥θ1 − θ2∥

= Lh̄∥θ1 − θ2∥,

where (1) follows from Lemma B.3 and Lh̄ = δ̄Ll + 2BLc + 4δ̄BLπ(1 + (1− γ)−1).

Then we have ω − ω∗
θ is 2ω̄-bounded and Lc-Lipschitz; ∇ω∗

θ is Lc-bounded and Ls-Lipschitz; Eθ[h(O,ω∗,θ)] −
h(O,ω∗,θ) is 2δ̄B-bounded and 2Lh̄-Lipschitz. By the triangle inequality, we have

∥Γ(O,ω,θ1)− Γ(O,ω,θ2)∥ ≤ (2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)∥θ1 − θ2∥.

Step 2: show that for any O,ω1,ω2,θ, we have

∥Γ(O,ω1,θ)− Γ(O,ω2,θ)∥ ≤ 2δ̄BLc∥ω1 − ω2∥. (43)

It can be shown that

∥Γ(O,ω1,θ)− Γ(O,ω2,θ)∥ = ⟨ω1 − ω2, (∇ω∗)⊤(h̄(ω∗,θ)− h(O,ω∗,θ))⟩ ≤ 2δ̄BLc∥ω1 − ω2∥.

Step 3: show that for tuples Ôt = (ŝt, ât, ŝt+1) and Ōt = (s̄t, āt, s̄t+1). Conditioning on Ft−τ , we have

∥E[Γ(Ôt,ωt−τ ,θt−τ )− Γ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 4ω̄δ̄BLcLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (44)

By definition of Γ(O,ω,θ) in Eq. (25), we have

∥E[Γ(Ôt,ωt−τ ,θt−τ )− Γ(Ōt,ωt−τ ,θt−τ )]∥

=∥E[⟨ωt−τ − ω∗
t−τ , (∇ω∗

t−τ )
⊤(h(Ôt,ω

∗
t−τ ,θt−τ )− h(Ōt,ω

∗
t−τ ,θt−τ ))⟩]∥

≤4ω̄δ̄BLcdTV (P(Ôt ∈ ·|Ft−τ ),P(Ōt ∈ ·|Ft−τ )),

(45)

where the inequality comes from the definition of total variation distance.

By Lemma B.4, we get

dTV (P(Ôt ∈ ·|Ft−τ ),P(Ōt ∈ ·|Ft−τ ))

= dTV (P((ŝt, ât) ∈ ·|Ft−τ ),P((s̄t, āt) ∈ ·|Ft−τ ))

≤ dTV (P(ŝt ∈ ·|Ft−τ ),P(s̄t ∈ ·|Ft−τ )) + LπE∥θt − θt−τ∥

≤ dTV (P(Ôt−1 ∈ ·|Ft−τ ),P(Ōt−1 ∈ ·|Ft−τ )) + LπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ , we have

dTV (P(Ôt ∈ ·|Ft−τ ),P(Ōt ∈ ·|Ft−τ )) ≤ Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (46)

Plugging Eq. (46) into Eq. (45), we have

∥E[Γ(Ôt,ωt−τ ,θt−τ )− Γ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 4ω̄δ̄BLcLπ

t∑
k=t−τ

E∥θk − θt−τ∥.
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Step 4: show that conditioning on Ft−τ , we have

∥E[Γ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 4ω̄δ̄BLcγ
τ−1. (47)

It can be shown that

∥E[Γ(Ōt,ωt−τ ,θt−τ )]∥
(1)
= ∥E[Γ(Ōt,ωt−τ ,θt−τ )− Γ(O′′

t−τ ,ωt−τ ,θt−τ )]∥
(2)

≤ 4ω̄δ̄BLcdTV (P(Ōt ∈ ·|Ft−τ ), νθt−τ
⊗ πθt−τ

⊗ P ),

where (1) is due to the fact that O′′
t−τ is from the discounted state visitation distribution which satisfies

E[Γ(O′′
t−τ ,ωt−τ ,θt−τ )|Ft−τ ] = 0 and (2) follows from the definition of total variation distance. From Proposition 3.2, we

know that

dTV (P(s̄t ∈ ·), νθt−τ
) ≤ γτ−1.

Therefore, we have

∥E[Γ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 4ω̄δ̄BLcdTV (P(Ōt ∈ ·|Ft−τ ), νθt−τ ⊗ πθt−τ ⊗ P )

= 4ω̄δ̄BLcdTV (P((s̄t, āt) ∈ ·|Ft−τ , µθt−τ ⊗ πθt−τ )

= 4ω̄δ̄BLcdTV (P(s̄t ∈ ·|Ft−τ ), µθt−τ )

≤ 4ω̄δ̄BLcγ
τ−1.

Step 5: show that for t ≥ τmix, we have

E
[
Γ(Ôt,ωt,θt)

]
≤ M2

1√
T
,

where M2 = (2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)δ̄Bcτmix + 2δ̄BLcδ̄τmix + 4ω̄δ̄BLcLπ δ̄Bcτ2mix + 4ω̄δ̄BLc.

Combining Eq. (42), Eq. (43), Eq. (44), and Eq. (47), we have

E
[
Γ(Ôt,ωt,θt)

]
=E

[
Γ(Ôt,ωt,θt)− Γ(Ôt,ωt,θt−τ )

]
+ E

[
Γ(Ôt,ωt,θt−τ )− Γ(Ôt,ωt−τ ,θt−τ )

]
+ E

[
Γ(Ôt,ωt−τ ,θt−τ )− Γ(Ōt,ωt−τ ,θt−τ )

]
+ E

[
Γ(Ōt,ωt−τ ,θt−τ )

]
≤(2δ̄BL2

c + 4δ̄ω̄BLs + 4ω̄LcLh̄)∥θt − θt−τ∥+ 2δ̄BLc∥ωt − ωt−τ∥

+ 4ω̄δ̄BLcLπ

t∑
k=t−τ

E∥θk − θt−τ∥+ 4ω̄δ̄BLcγ
τ−1

(1)

≤ (2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)

t−1∑
k=t−τ

αδ̄B + 2δ̄BLc

t−1∑
k=t−τ

βδ̄

+ 4ω̄δ̄BLcLπ

t∑
k=t−τ

k−1∑
i=t−τ

αδ̄B + 4ω̄δ̄BLcγ
τ−1

≤(2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)τ δ̄B

c√
T

+ 2δ̄BLcτ δ̄
1√
T

+ 4ω̄δ̄BLcLπτ
2δ̄B

c√
T

+ 4ω̄δ̄BLcγ
τ−1

(2)

≤ ((2δ̄BL2
c + 4δ̄ω̄BLs + 4ω̄LcLh̄)δ̄Bcτmix + 2δ̄BLcδ̄τmix + 4ω̄δ̄BLcLπ δ̄Bcτ2mix + 4ω̄δ̄BLc)

1√
T
,

where (1) comes from the update rule of the critic and the actor, (2) is followed by choosing τ = τmix. Thus we conclude
our proof.

Proof of Lemma C.3
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Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any O,θ1,θ2, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (2δ̄BLg + 2LJLh̄)∥θ1 − θ2∥. (48)

Since Ξ(O,ω,θ) = ⟨∇J(θ),Eθ[h(O,ω,θ)]− h(O,ω,θ)⟩, we will show that each term in Ξ(O,ω,θ) is Lipschitz.

For the term ∇J(θ), we know it’s LJ -bounded and Lg-Lipschitz. For term Eθ[h(O,ω,θ)] − h(O,ω,θ), by the same
argument shown in the proof of Lemma C.2, it’s 2δ̄B-bounded and 2Lh̄-Lipschitz. By the triangle inequality, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (2δ̄BLg + 2LJLh̄)∥θ1 − θ2∥.

Step 2: show that for any O,ω1,ω2,θ, we have

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ ≤ 4BLJ∥ω1 − ω2∥. (49)

It follows that

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ = |⟨∇J(θ),h(O,ω1,θ)− h(O,ω2,θ)⟩|
+ |⟨∇J(θ),Eθ[h(O,ω1,θ)]− Eθ[h(O,ω2,θ)]⟩|

≤ 2BLJ∥ω1 − ω2∥+ 2BLJ∥ω1 − ω2∥
= 4BLJ∥ω1 − ω2∥.

Step 3: show that for tuples Ôt = (ŝt, ât, ŝt+1) and Ōt = (s̄t, āt, s̄t+1). Conditioning on Ft−τ , we have

∥Ξ(Ôt,ωt−τ ,θt−τ )− Ξ(Ōt,ωt−τ ,θt−τ )∥ ≤ δ̄BLJLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (50)

By definition of Ξ(O,ω,θ), we have

∥E[Ξ(Ôt,ωt−τ ,θt−τ )− Ξ(Ōt,ωt−τ ,θt−τ )]∥ = ∥E[⟨∇J(θt−τ ),h(Ôt,ωt−τ ,θt−τ )− h(Ōt,ωt−τ ,θt−τ )]∥

≤ 2δ̄BLJdTV (P(Ôt ∈ ·|Ft−τ ),P(Ōt ∈ ·|Ft−τ )),

where the inequality comes from the definition of total variation distance. The total variation distance between Ôt and Ōt

has been computed in Eq. (46). Plugging Eq. (46) into the above inequality, we get

∥E[Ξ(Ôt,ωt−τ ,θt−τ )− Ξ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 2δ̄BLJLπ

t∑
k=t−τ

E∥θk − θt−τ∥.

Step 4: show that conditioning on Ft−τ , we have

∥E[Ξ(Ōt,ωt−τ ,θt−τ )]∥ ≤ 2δ̄BLJγ
τ−1. (51)

It holds that

∥E[Ξ(Ōt,ωt−τ ,θt−τ )]∥
(1)
= ∥E[Ξ(Ōt,ωt−τ ,θt−τ )− Ξ(O′′

t−τ ,ωt−τ ,θt−τ )]∥
(2)

≤ 2δ̄BLJdTV (P(Ōt ∈ ·|Ft−τ ), νθt−τ ⊗ πθt−τ ⊗ P )

= 2δ̄BLJdTV (P((s̄t, āt) ∈ ·|Ft−τ ), νθt−τ ⊗ πθt−τ )

= 2δ̄BLJdTV (P(s̄t ∈ ·|Ft−τ ), νθt−τ )

(3)

≤ 2δ̄BLJγ
τ−1,

where (1) is due to the fact that O′′
t−τ is sampled from the discounted state visitation distribution which satisfies

E[Ξ(O′′
t−τ ,ωt−τ ,θt−τ ) | Ft−τ ] = 0, (2) follows from the definition of total variation distance, and (3) comes from

Proposition 3.2.
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Step 5: show that for t ≥ τmix, we have

E
[
Ξ(Ôt,ωt,θt)

]
≤ M3

1√
T
,

where M3 = (2δ̄BLg + 2LJLh̄)δ̄Bcτmix + 4BLJ δ̄τmix + 2δ̄2B2LJLπcτ
2
mix + 2δ̄BLJ .

Combining Eq. (48), Eq. (49), Eq. (50), and Eq. (51), we can decompose the Markovian bias as

E
[
Ξ(Ôt,ωt,θt)

]
= E

[
Ξ(Ôt,ωt,θt)− Ξ(Ôt,ωt,θt−τ )

]
+ E

[
Ξ(Ôt,ωt,θt−τ )− Ξ(Ôt,ωt−τ ,θt−τ )

]
+ E

[
Ξ(Ôt,ωt−τ ,θt−τ )− Ξ(Ōt,ωt−τ ,θt−τ )

]
+ E

[
Ξ(Ōt,ωt−τ ,θt−τ )

]
≤ (2δ̄BLg + 2LJLh̄)∥θt − θt−τ∥+ 4BLJ∥ω1 − ω2∥

+ 2δ̄BLJLπ

t∑
k=t−τ

E∥θk − θt−τ∥+ 2δ̄BLJγ
τ−1

(1)

≤ (2δ̄BLg + 2LJLh̄)

t−1∑
k=t−τ

αδ̄B + 4BLJ

t−1∑
k=t−τ

βδ̄ + 2δ̄BLJLπ

t∑
k=t−τ

k−1∑
i=t−τ

αδ̄B + 2δ̄BLJγ
τ−1

(2)

≤ ((2δ̄BLg + 2LJLh̄)δ̄Bcτmix + 4BLJ δ̄τmix + 2δ̄2B2LJLπcτ
2
mix + 2δ̄BLJ)

1√
T
,

where (1) owes to the update rule of the actor and (2) is followed by choosing τ = τmix. Hence we conclude our proof.
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