
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COPYRIGHT-PROTECTED LANGUAGE GENERATION VIA
ADAPTIVE MODEL FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The risk of language models reproducing copyrighted material from their training
data has led to the development of various protective measures. Among these,
inference-time strategies that impose constraints via post-processing have shown
promise in addressing the complexities of copyright regulation. However, they
often incur prohibitive computational costs or suffer from performance trade-offs.
To overcome these limitations, we introduce Copyright-Protecting Model Fusion
(CP-Fuse), a novel approach that combines models trained on disjoint sets of
copyrighted material during inference. In particular, CP-Fuse adaptively aggregates
the model outputs to minimize the reproduction of copyrighted content, adhering
to a crucial balancing property to prevent the regurgitation of memorized data.
Through extensive experiments, we show that CP-Fuse significantly reduces the
reproduction of protected material without compromising the quality of text and
code generation. Moreover, its post-hoc nature allows seamless integration with
other protective measures, further enhancing copyright safeguards. Lastly, we show
that CP-Fuse is robust against common techniques for extracting training data.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023),
have achieved undeniable success. However, they also present a significant challenge: the risk of
reproducing copyrighted material from their training data (Sag, 2019; Yu et al., 2023; Karamolegkou
et al., 2023). With the widespread adoption of these models for generating new text and code,
the risk of large-scale copyright violations has become a pressing issue, as highlighted by several
recent multi-million dollar lawsuits (Henderson et al., 2023). Consequently, preventing copyright
infringement in language models has become a critical focus for researchers and practitioners alike.

A potential legal safeguard is the fair use doctrine (17 U.S.C. §107), which provides a framework to
avoid liability for copyright infringement. This doctrine has fueled interest in techniques that enforce
models to use protected works in transformative ways that do not harm their market value (Henderson
et al., 2023). Much of the current research focuses on training-time strategies, including approaches
that protect differential privacy (DP) (Dwork et al., 2014; Abadi et al., 2016). However, scaling DP
training to large models is often computationally prohibitive and can degrade model performance
(Anil et al., 2022), prompting the exploration of alternative heuristic methods (Hans et al., 2024).

Beyond training-time approaches, pre-processing and inference-time methods have also been consid-
ered. Pre-processing strategies curate the training data by excluding or deduplicating copyrighted
samples (Kandpal et al., 2022; Kocetkov et al., 2022; Min et al., 2023). However, these techniques are
only partially effective (Lee et al., 2023; Ippolito et al., 2023) and often degrade model performance
by removing high-quality copyrighted samples (Meeus et al., 2023). In contrast, inference-time
methods intervene during decoding to prevent the reproduction of copyrighted content (Wei et al.,
2024). Notably, Vyas et al. (2023) propose a general framework for constructing copyright-protected
models by combining generative models trained on different data sources. While promising, their
framework lacks a computationally feasible implementation suitable for real-world language models.

In this paper, we propose Copyright-Protecting Model Fusion (CP-Fuse), a simple yet effective
strategy that combines outputs from multiple language models, each trained on disjoint sets of
copyrighted material, to protect against infringement. Our method builds on a rich body of work in
model fusion for language models (Liu et al., 2021; Wang et al., 2023; Wan et al., 2024). Specifically,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Harry Potter books

The Hobbit books
X1

C1

X2

C2

CP-Fuse Algorithm

(1) Train p(1) on X1

(2) Train p(2) on X2

(3) At inference, output

p = argmin
p∗

max
i∈{1,2}

KL
(
p∗
∥∥p(i)

)

p(1)

p(2)

p

︷ ︸︸ ︷
Prompt: Write a story about a young wizard and a powerful artifact.

p(1) generation
“Harry Potter waved his wand to
defend the magical artifact from
dark forces...”

Reproduces copyrighted con-
tent from Harry Potter.

p(2) generation
“Bilbo found the One Ring, a pow-
erful artifact, deep in the caves
of Misty Mountains...”

Reproduces copyrighted con-
tent from The Hobbit.

p generation
“A young wizard embarks on an
adventure to destroy a mysteri-
ous artifact, battling foes from
distant lands, with no clear ally
in sight...”

Figure 1: (Top) Illustration of the copyright-protecting fusion strategy. The left panel shows the
training datasets X1 (in red) and X2 (in blue), each containing disjoint copyright sets C1 ⊂ X1 (in
light red) and C2 ⊂ X2 (in light blue). The middle panel depicts our copyright-protecting fusion
algorithm. The right panel displays the learned distributions of the potentially infringing models p(1)

(in red) and p(2) (in blue), along with the resulting safe model p (in green). Lighter regions indicate
areas of lower probability; although the safe model still retains “access” to the copyrighted content,
the probability of regurgitating it is very low. (Bottom) Generations from p(1), p(2), and p given the
same prompt; the first two generations reproduce copyrighted material, p generates an original story.

CP-Fuse adaptively aggregates logits to minimize the likelihood of reproducing copyrighted content
(see Figure 1 for an illustration of our approach on a toy example). In Section 3.2, we first demonstrate
that our approach satisfies a balancing property (Lemma 3.3), which intuitively helps mitigate the
regurgitation of memorized training samples. We then empirically show CP-Fuse’s effectiveness
in reducing regurgitation across various metrics that measure exact and approximate memorization.
Notably, it reduces the reproduction of copyrighted material by over 25× and consistently outperforms
other inference-time methods while preserving the utility of the generated text and code (Section 4.2).
Additionally, we demonstrate that applying CP-Fuse in combination with standard training-time
methods further enhances copyright protection (Section 4.3). Finally, we present experiments where
CP-Fuse exhibits robustness against strategies that extract training data via probing (Section 4.4).

2 RELATED WORKS ON COPYRIGHT PROTECTION

Measures for copyright protection can be implemented at various stages of the model supply chain
(Lee et al., 2023). In this section, we provide an overview of existing measures.

Data pre-processing stage Many open-source LLMs are trained on datasets containing copyright-
protected material, such as the BookCorpus dataset (e.g., GPT-3 (Brown et al., 2020)) and the C4
corpus (e.g., LLaMa (Touvron et al., 2023)). Therefore, efforts have been made to curate datasets
with exclusively licensed content (Kocetkov et al., 2022; Min et al., 2023; Ippolito & Yu, 2023).
Moreover, removing duplicated copyrighted samples from the dataset has been shown to reduce their
regurgitation (Lee et al., 2022; Kandpal et al., 2022; Carlini et al., 2023). However, these approaches
can be resource-intensive and degrade model performance (Ippolito et al., 2023; Meeus et al., 2023).

Pre-training and fine-tuning stage Other approaches intervene during the training or fine-tuning
of LLMs to prevent memorization (Carlini et al., 2023; Zhang et al., 2023), ensuring that the trained
model’s distribution assigns negligible probability to verbatim training data. By design, differentially
private (DP) methods (Dwork et al., 2014; Abadi et al., 2016) limit the influence of individual

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

training points on the model’s output and have thus been proposed to mitigate memorization issues.
However, scaling DP training to LLMs with billions of parameters is computationally challenging
and is associated with significant utility degradation (Anil et al., 2022). Furthermore, DP guarantees
may lose relevance if samples are duplicated in the training set, and it has been argued that DP’s
goals differ from those of copyright protection (Elkin-Koren et al., 2023). Alternatively, heuristic
methods, such as the goldfish loss (Hans et al., 2024) or early-stopping (Mireshghallah et al., 2022),
have been empirically successful in reducing the likelihood of regurgitating training data.

Inference and post-training stage An orthogonal line enforces copyright constraints via post-
processing (Wei et al., 2024). Filtering strategies, such as MemFree (Ippolito & Yu, 2023), can prevent
the verbatim reproduction of copyrighted material from a curated blocklist during inference. However,
these methods are effective only for exact verbatim matches and may lead to hallucinations due to
modifications in the decoding process (Liu et al., 2024b). Other works propose unlearning copyrighted
content from trained models (Bourtoule et al., 2021; Chen & Yang, 2023; Eldan & Russinovich,
2023; Jang et al., 2023; Zhang et al., 2024a; Liu et al., 2024a). However, these approaches are
typically computationally impractical and require access to model weights, which is often restrictive
in real-world scenarios. Our method draws inspiration from the Near-Access Free (NAF) framework
(Vyas et al., 2023) and, unlike purely heuristic approaches, offers a principled theoretical explanation
of how it prevents regurgitation (Lemma 3.3). We validate its effectiveness and competitiveness
against baselines in extensive real-world experiments with popular language models (Section 4).

3 COPYRIGHT-PROTECTING MODEL FUSION

We focus on language models p that take a prompt x as input and return a probability distribution
over a sequence of tokens of variable length T from a fixed alphabet V , with yT = EOS representing
the end-of-sequence token. Using the convention that y<0 = ∅, we can factorize p as:

p(y0:T |x) =
T∏

t=0

p(yt|y<t, x).

We now introduce a key assumption and background underlying our work.

3.1 PRELIMINARIES

At the core of our method is the assumption of the separability of copyrighted material, as discussed
by Vyas et al. (2023) for various vision and language applications. This assumption is akin to those
used in exact machine unlearning (Bourtoule et al., 2021; Yan et al., 2022; Dukler et al., 2023) and in
works that split datasets into safe and unsafe parts (Golatkar et al., 2021; 2024; Li et al., 2024).

Consider a dataset D and a set of copyright-protected material C that could be compromised when
training a model p on D. The assumption states that we can split D into two potentially overlapping
subsets, D1 and D2, such that each subset contains data associated with two non-overlapping sets of
copyright-protected materials, C1 and C2, where C1 ∩ C2 = ∅. This assumption holds, for instance,
when we construct D from sources that are sufficiently distinct. Hence, any language model trained
on the subset D1 is protected from infringing the copyright of materials in C \ C1 ⊇ C2.

Given the two subsets D1 and D2, we can then train two generative models p(1), p(2) on the respective
subsets and “fuse” them to construct a model p that achieves protection against all copyright-protected
material C. In this context, Vyas et al. (2023) propose the k-NAF (Near Access Free) framework as a
quantitative guarantee for copyright protection.
Definition 3.1. Formally, a model p(.|x) is k-NAF for some k ∈ R+ if, for any input prompt x and
some user-specified divergence function ∆,

∀x : max
i∈{1,2}

∆(p(.|x) || p(i)(.|x)) ≤ k. (1)

The key intuition behind why a model satisfying k-NAF is less likely to regurgitate copyrighted
material is as follows: if the separability of copyrighted material holds, the likelihood of generating
infringing text for any material c ∈ C decreases exponentially with the length of c for at least one
of the models. Therefore, for a model p to satisfy the k-NAF guarantee, it must assign a minimal
probability to events involving the reproduction of protected material.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 ALGORITHM

We introduce Copyright-Protecting Model Fusion (CP-Fuse), a simple yet effective algorithm for
copyright protection via model fusion. Inspired by the k-NAF framework, we aim to minimize
the maximum KL-divergence in Equation (1). However, achieving this directly is computationally
intractable; therefore, we propose an efficient approximate algorithm that iteratively optimizes
p(yt|y<t, x) given the history p(y<t|x). In Lemma 3.2, we show that leveraging the KL-divergence
allows us to express the update rule in a model fusion form. Formally, we iteratively define

p(yt | y<t, x) = argmin
p∗

max
i

E
yt∼p∗

log

(
p∗(yt)p(y<t |x)
p(i)(y≤t |x)

)
= argmin

p∗,t
t s.t.

∀i : KL(p∗||p(i)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
≤ t,

(2)

which results in a convex optimization problem. Although solving this problem naively is still
computationally intensive, we overcome this limitation using the following lemma:
Lemma 3.2. The optimal solution p(yt | y<t, x) of the optimization problem in Equation (2) satisfies1

log p∗(yt) = αt log p
(1)(yt|y<t, x) + βt log p

(2)(yt|y<t, x) + γt (3)

for some αt, βt ≥ 0, γt ∈ R.

Equation (2) can therefore be solved efficiently by performing a grid search over the parameters αt

and βt, with γt chosen as a function of αt and βt to ensure the total probability mass sums to 1.

Related works on model fusion Our method is reminiscent of an extensive body of work focused
on knowledge fusion in language models, both at inference time (Liu et al., 2021; Jiang et al.,
2023; Gururangan et al., 2023; Mavromatis et al., 2024) and through weight merging after training
(Wortsman et al., 2022; Jin et al., 2023; Hsu et al., 2024; Yadav et al., 2024). In particular, the
minimizer derived in Lemma 3.2 relates to the former approaches, which generally define a model p
at inference time by combining multiple models p(1), . . . , p(K) via a weighted sum of their logits:

log p(yt|y<t, x) :=

K∑
i=1

α
(i)
t (y<t, x) log p

(i)(.|y<t, x) + c, (4)

where c is a normalizing constant, and α
(i)
t can depend on both the prompt x and the history y<t.

However, previous model fusion approaches are not designed to mitigate copyright infringement.

Vyas et al. (2023) propose CP-∆ as a general strategy for combining two generative models aimed
at achieving copyright protection. Yet, their approach becomes computationally intractable when
applied directly to the probability distribution p(.|x) over the entire sequence yT . To address this, the
authors suggest applying CP-∆ token-wise instead, resulting in the model from Equation (3) with
αt = βt = 1/2. However, they do not benchmark this method against other copyright-protection
techniques. In the following section, we discuss why this approach is ineffective for copyright
protection and how our method overcomes this issue by incorporating the sequence history y<t.

3.3 EFFICACY OF METHODOLOGY

In this section, we provide an intuitive explanation of how our method prevents the reproduction of
memorized training samples. Recall that, by Lemma 3.2, CP-Fuse adaptively selects αt and βt based
on the sequence history y<t. Specifically, the algorithm assigns less weight to the model that has
been more dominant in generating y<t. More formally, the following balancing property holds:
Lemma 3.3. (Balancing property) Given a prompt x, let y<t be any non-ending sequence and assume
that p(i)(.|y<t, x) has full support for i ∈ {1, 2} and p(1)(y<t|x) > p(2)(y<t|x). Then, either

1. E
yt∼p(.|y<t,x)

log p(1)(y≤t|x) = E
yt∼p(.|y<t,x)

log p(2)(y≤t|x)

2. p(yt|y<t, x) = p(2)(yt|y<t, x)
1We set log(0) = −∞

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Intuitively, this balancing property ensures that neither model dominates the text generation. As
an example, suppose the generation of a subsequence y<t is strongly dominated by p(1), such that
p(1)(y<t|x) ≫ p(2)(y<t|x). If the first case in Lemma 3.3 holds, the output distribution of the
copyright-protected model, p(yt|y<t, x), will be such that, in expectation, the sequence with the new
token has the same log-probability for both models, i.e., loosely speaking p(1)(y≤t|x) ≈ p(2)(y≤t|x).
Conversely, if the second case p = p(2) holds, then the generation of yt is independent of p(1)(y<t|x).
In other words, the next token generated by p will likely match the most probable token under the
dominant model, p(1)(y<t|x), only if both p(1) and p(2) are close conditioned on y<t and x, that
is, when the generated sequence is not protected assuming separability of copyrighted material
(Section 3.1). We provide additional experimental evidence for this property in Appendix A.7.

20 40 60 80 100 120 140

Generated Token

0

25

50

75

100

125

150

175

200

0

S
e
q

u
e
n

c
e
 L

o
g

-L
ik

e
li

h
o
o
d

CP-Fuse

CP-

p

p

p

p

(1)
CP-Fuse
(2)
CP-Fuse

(1)
CP-
(2)
CP-

Figure 2: Log-likelihood of sequences pro-
duced by CP-Fuse and CP-∆, and their
base models p(1) and p(2), at each gener-
ated token. We show a random generation
from StarCoder fine-tuned on the Python
instructions; details in Section 4.

We now illustrate how adaptively choosing αt and
βt is crucial for achieving effective copyright pro-
tection. We present in Figure 2 the cumulative log-
likelihood at each generated token for sequences
produced by CP-Fuse and token-wise CP-∆ (which
does not consider the history), alongside their re-
spective base models p(1) and p(2). The balancing
property of CP-Fuse ensures that the log-likelihoods
under p(1) and p(2) are approximately equal for the
generated sequence at each token, thereby prevent-
ing the reproduction of copyrighted material, as no
protected content is memorized by both base models.
In contrast, CP-∆ shows a clear preference for p(2),
suggesting that p(2) may have memorized training
samples, making CP-∆ vulnerable to reproducing
them. In the next section, we further validate this ob-
servation through extensive real-world experiments.

4 EXPERIMENTS

We conduct our experiments using language models that are commonly employed in practical
applications. Each dataset (details provided below) is divided into two non-overlapping splits
with 3,000 samples, and we fine-tune a model on each split. To evaluate the copyright protection
capabilities of CP-Fuse, we simulate an extreme scenario where the models overfit the splits by
fine-tuning them for +50 epochs (see Appendix D). As a result, the base models strongly memorize
the data, representing a challenging setting where they are prone to reproducing any training sample.

Datasets and Models We perform fine-tuning using four datasets, each associated with a specific
task. (I) Abstract Generation: We fine-tune the LLaMa2 7B model (Touvron et al., 2023) on
a dataset of abstracts from math papers (MathAbstracts) (Zhang et al., 2024b), using each
paper’s title as the prompt. (II) Story-telling: We also fine-tune LLaMa2 on the story-generation
dataset WritingPrompts (Fan et al., 2018), using the topic of the story as the prompt. (III) Code
Generation: We fine-tune the StarCoder 7B model (Li et al., 2023) on an instructional dataset for
Python (Python instructions), where the prompts are natural language descriptions of tasks
and the responses are Python solutions. (IV) Code Generation with Unit Tests: We fine-tune again
a StarCoder model on the APPS dataset (Hendrycks et al., 2021), which also consists of natural
language problems and Python solutions, but additionally incorporates unit tests to assess code
generation quality. For this task, the models are further evaluated on the MBPP (Austin et al., 2021)
and HumanEval (Chen et al., 2021) datasets, which also include unit tests. Both code and text-based
tasks represent settings where copyright infringement is a concern (Yu et al., 2023; Henderson et al.,
2023). We provide additional information on the datasets in Appendix D.4.

Copyright-infringement metrics We use a comprehensive set of metrics to evaluate potential
copyright infringement. The models are probed using prompts from their fine-tuning splits. We then
compare the generated outputs against the original samples. For each metric, we report the average

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

value above the 95th percentile. This focus on high percentiles is motivated by the legal concern that
models might reproduce only a few long text extracts in a real-world scenario.

To measure exact memorization, we use the average Exact Matching (EM) length and the Infringement
Count (IC) for substrings exceeding 160 characters (in Appendix A.1). While the former is widely
recognized in the literature as a clear indicator of copyright infringement in both text and code (Lee
et al., 2022; Karamolegkou et al., 2023; Carlini et al., 2023; Yu et al., 2023), the latter count with a
threshold at 160 is consistent with regulatory guidelines (Mueller et al., 2024)).

For approximate memorization, we report the BLEU score and normalized Levenshtein distance
in the main text, with additional results for ROUGE-L score, METEOR score, Jaccard similarity,
cosine similarity, and semantic similarity in Appendix A.1. These metrics are well-established in
the literature, see e.g., (Ippolito et al., 2023; Huang et al., 2023; Chen et al., 2024). For the Python
instructions dataset, we also report specialized metrics obtained from two state-of-the-art
plagiarism detection tools: JPlag (Prechelt et al., 2002) and Dolos (Maertens et al., 2022). We refer
to Appendix D.6.1 for full details on the implementation of the copyright-infringement metrics.

Utility metrics For text-based tasks, we evaluate fluency using the Prometheus-v2 model (Kim et al.,
2024), which serves as a judge for the stories generated by models fine-tuned on WritingPrompts.
Model-based fluency metrics have been shown to closely align with human evaluations (Liu et al.,
2023; Sottana et al., 2023), particularly for the WritingPrompts dataset (Chiang & Lee, 2023).
Prometheus-v2 has also demonstrated consistent alignment with human annotators and GPT-4 (Kim
et al., 2024). We use the five-point rubric detailed in Figure 21. For code-based tasks, we use the
APPS, MBPP, and HumanEval datasets, which include unit tests that allow for the computation of
the pass@1 score (Chen et al., 2021). We report the utility metrics in a separate test set comprising
500 prompts for each dataset. Refer to Appendix D.6.2 for full details on the implementation.

Comparison with inference-time baselines We compare CP-Fuse against three protection mea-
sures that intervene at the inference stage. We report results using token-wise CP-∆ (Vyas et al.,
2023), with KL divergence as ∆; a system-mode self-reminder method (Xie et al., 2023), where
the model is explicitly instructed to avoid regurgitating memorized data; and MemFree decoding
(Ippolito et al., 2023), which prevents 10-gram copying from the training data by using a Bloom filter.
Implementation details for these baselines are provided in Appendix D.5. For CP-Fuse, we construct
the grid by discretizing the interval [0, 2) into 10 steps, and [2, 10] into 9 steps (see ablation studies
in Appendix A.6). Greedy decoding is used for all experiments presented in the main text, with
results from temperature sampling—leading to equivalent conclusions—provided in Appendix A.4.
Additionally, we conduct experiments combining three models instead of two in Appendix A.8.

Combining CP-Fuse with training-time strategies In Section 4.3, we apply CP-Fuse on top of
models trained with the goldfish loss (Hans et al., 2024), setting the dropout frequency to k = 16.
In Appendix A.5, we use CP-Fuse to wrap early-stopped models, a simple way of preventing
memorization (Mireshghallah et al., 2022). Here, we stop fine-tuning after 3 epochs.

4.1 PREVENTING COPYRIGHT INFRINGEMENT WITH CP-FUSE

Table 1 presents the copyright-infringement metrics for the overfitted models, the baselines, and
CP-Fuse across fine-tuning splits. CP-Fuse substantially reduces verbatim regurgitation in both code
and text tasks. Specifically, CP-Fuse decreases exact matches by more than a factor of 25 compared
to the overfitted models and consistently outperforms the baselines. In particular, the system-mode
self-reminder (SystemPrompt) fails to prevent the reproduction of memorized samples, likely due
to the override of safety fine-tuning during our fine-tuning. MemFree noticeably reduces the length
of memorized text segments; however, it still reproduces segments twice as long as those produced
by CP-Fuse. A quick inspection of MemFree outputs also reveals that it often avoids exact copying
simply by inserting spaces or spelling mistakes (refer to Appendix A.10 for examples). Finally, CP-∆
still generates long text segments that exactly match the training data, often 4 to 7 times longer than
those produced by CP-Fuse. These segments frequently exceed the legal 160-character threshold,
while such infringements almost entirely disappear with our method (refer to Appendix A.1).

The approximate memorization metrics further support these observations. We observe a consistent
improvement with CP-Fuse compared to the overfitted models, also offering better protection than the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Copyright-infringement metrics averaged at the 95th percentile for the Python
instructions, MathAbstracts, and WritingPrompts datasets across fine-tuning splits.
We present results for the overfitted models, Self-reminder prompting (SystemPrompt), MemFree,
CP-∆, and CP-Fuse. Metrics include Exact Matching (EM), BLEU score (BLE), Levenshtein Dis-
tance (LEV), and code plagiarism score JPlag (JP). Arrows indicate the preferred direction: ↑ (higher
is better) and ↓ (lower is better). We highlight in bold the best method for each split and metric.

Model Split EM↓ JP↓ EM↓ BLE↓ LEV↑ EM↓ BLE↓ LEV↑

Python inst. MathAbstracts WritingPrompts

Overfit
Split 1

Split 1 1469.80 1.00 1397.68 1.00 0.00 1316.24 1.00 0.00
Split 2 44.60 0.01 31.00 0.01 0.70 22.59 0.03 0.71

Overfit
Split 2

Split 1 42.64 0.01 42.12 0.08 0.68 26.11 0.02 0.70
Split 2 1393.88 0.99 1570.88 1.00 0.00 1141.88 1.00 0.00

System
Prompt

Split 1 1360.68 1.00 1022.72 0.99 0.00 1118.36 1.00 0.00
Split 2 1373.16 0.99 1005.20 1.00 0.00 1092.20 1.00 0.00

MemFree Split 1 165.48 0.99 111.12 0.23 0.53 63.84 0.20 0.55
Split 2 157.36 0.96 99.40 0.22 0.53 59.04 0.19 0.55

CP-∆ Split 1 273.20 1.00 341.60 0.58 0.30 37.40 0.05 0.70
Split 2 284.80 0.99 162.80 0.30 0.51 31.29 0.04 0.70

CP-Fuse
(Ours)

Split 1 69.58 0.03 55.54 0.14 0.62 27.55 0.02 0.70
Split 2 68.04 0.03 48.74 0.14 0.63 25.50 0.03 0.70

baselines. Notably, CP-Fuse achieves near “non-plagiarism” on the code task, as the JPlag tool detects
almost no copying in the generated code, while it clearly indicates infringement for all baselines.

These findings demonstrate the effectiveness of our method in preventing both verbatim and quasi-
verbatim reproduction of training material. Additional metrics supporting these conclusions are
provided in Appendix A.1. Furthermore, experiments using temperature sampling decoding, detailed
in Appendix A.4, yield equivalent conclusions. We also explore combining three models instead of
two in Appendix A.8, which provides further improvement in the memorization metrics.

Comparison between CP-Fuse and CP-∆ We now provide a more detailed comparison between
our method and CP-∆. Figure 3 shows histograms illustrating the distribution of exact matches
generated by both methods. We observe a significantly heavier-tailed distribution for CP-∆, which
consistently reproduces longer verbatim text segments than CP-Fuse and is therefore more likely to
infringe on copyright. For instance, the longest exact match for CP-Fuse in the abstracts task is 73
characters, whereas the 95th percentile for CP-∆ is 342 characters, with the longest match exceeding
500 characters. These results highlight the importance of adaptively setting the weights based on
sequence history when combining the models to ensure effective copyright protection. We provide
examples of extracts produced by both methods for different datasets in Appendix A.9.

4.2 UTILITY EVALUATION FOR CODE GENERATION AND STORY-TELLING

The success of our method in preventing the exact and approximate reproduction of training samples
raises the question of whether it still generates useful text and code for solving the task at hand.
In Table 2, we present the results for the considered utility metrics, pass@1 for code-based tasks
and fluency for story-telling writing, on the test splits not seen during fine-tuning. We observe that
CP-Fuse produces code that is as accurate as that generated by the overfitted models, passing a similar
proportion of unit tests. Additionally, the stories generated based on the WritingPrompts dataset
achieve the same level of fluency as those produced by copyright-infringing models. All baselines
perform similarly, with the notable exception of MemFree, which consistently underperforms.

We further validate the high quality of text and code produced by our method with examples of its
outputs in Appendix A.9. For the code tasks, CP-Fuse generates code that is significantly different
from the original, effectively solving the tasks while often incorporating exception handling and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100 200 300 400 500
Maximum Exact Matching Length

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

def adapter_add_nio_
binding(self,
adapter_number,
nio): try:
adapter = self._ethe
rnet_adapters[adapte
r_number]
except IndexError:
raise
DockerError("Adapter
{adapter_number}
does n

="run an oct project")
parser.add_argument('project_path',
help="The project directory")
parser.add_argument('-p', '--
publisher-channel',
dest='publisher_channel',
help='the channel for the external
publisher',
default=None)
parser.add_argument('--no-results',
action='store_true',
help="if set, html report and
graphs will not be generated")
parser.add_argument('-o', '--
output-dir', help="output directory
for test results")
parser.add_argument('--with-
forwarder', action='store_true',
help="Set if HQ should connect to
external forwarder")
parser.add_argument('--forwarder-
address',
help="

_entries(self,
start=0, end=0,
data_request=None,
steam_ids=None):

', yang_type='list',
is_config=True) except
(TypeError, ValueError):
raise ValueError({
'error-string':,
'defined-type': "list",
'generated-type':, })
self.__virtual_link = t if
hasattr(self, '_set'):
self._set()

CP-
CP-Fuse

(a) Python instructions

100 200 300 400 500
Maximum Exact Matching Length

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

The Stable Marriage problem (SM), solved
by the famous deferred acceptance
algorithm of Gale and Shapley (GS), has
many natural generalizations. If we
allow ties in preferences, then the
problem of finding a maximum

Let A be a set of N vectors in ${
Z}^nandletvbeavectorin{
C}^N$ that has minimal negative support
for A. Such a vector v gives rise to
a formal series solution of the
A-hypergeometric system with parameter

= Av. If v lies in Qn,
then this series has rational
coefficients. Let p be a prime number.
We characterize those v whose
coordinates are rational, p-integral,
and lie in the closed interval [1, 0]
for which the corresponding normalized
series solution has p-integral
coefficients. From this we deduce
further integrality results for
hypergeometric series.

multi-modal and frequency-weighted
tensor nuclear norm (M

The axial and polar modes for the ring
down of a Schwarzschild black hole are
calculated

CP-
CP-Fuse

(b) MathAbstracts

Figure 3: Histogram of exactly matched substring lengths (above 40 characters) generated by CP-∆
and CP-Fuse for (a) the Python instructions and (b) the MathAbstracts datasets. We
show the longest substring and one randomly sampled match above 40 characters.

additional features. For the text tasks, it produces well-written stories and coherent abstracts that also
differ notably from the reference material.

Comparison between CP-Fuse and MemFree Filtering approaches like MemFree are susceptible
to hallucinations (Ippolito et al., 2023; Liu et al., 2024b). This issue is particularly problematic in
code generation, where even minor changes, such as modifying variable names or introducing typos,
can result in incorrect code. As a result, MemFree significantly underperforms on the APPS dataset
due to the lengthy Python solutions, which increase the likelihood of hallucinations and, consequently,
errors. We provide two examples in Figure 4. The MBPP and HumanEval datasets, with their
shorter problems, are less affected by this issue. A similar problem arises in the WritingPrompts
dataset, where alterations in the decoding process can lead to grammatical and spelling errors or
cause the model to deviate from the intended topic (see Appendix A.10 for examples). In contrast,
CP-Fuse generates tokens that are consistent with at least one of the two combined models.

4.3 CP-FUSE AS A WRAPPER OF OTHER PROTECTION METHODS

In this section, we demonstrate how CP-Fuse can be combined with other training-time meth-
ods to enhance protection. Specifically, we apply CP-Fuse on top of models fine-tuned on the
WritingPrompts dataset using the goldfish loss (Hans et al., 2024), a recently proposed technique
designed to mitigate memorization during training. As presented in Figure 5a, integrating CP-Fuse
results in further improvements in both the exact match and BLEU score. We also conduct similar
experiments in Appendix A.5, where CP-Fuse is applied on top of early-stopped models—another
strategy aimed at reducing memorization during training.

Table 2: Utility metrics across datasets. Pass@1 is reported for APPS, MBPP, and HumanEval (HE);
Fluency is reported for WritingPrompts (WP). Arrows indicate the preferred direction.

Pass@1 ↑ Fluency ↑
APPS MBPP HE WP

Overfit Split 1 0.43 0.44 0.29 2.17
Overfit Split 2 0.42 0.44 0.28 2.16

SystemPrompt 0.41 0.43 0.29 2.00
MemFree 0.32 0.41 0.24 1.70
CP-∆ 0.45 0.46 0.29 2.15
CP-Fuse (Ours) 0.47 0.43 0.28 2.17

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Example 1: Syntax Error (NameError)

StarCoder + MemFree

def checkRecord(self , s):
count = 0
for i in range(0,len(S)):

if S[i] == ’A’:
count += 1
if count == 2:

return False
elif i >= 2 and S[i]==S[i-2]:

return False

return True

Compilation Output

Traceback (most recent call last):
File "x.py", line 4, in checkRecord
for i in range(0,len(S)):

NameError: name ’S’ is not defined

Example 2: Logic Error

Prompt

Write a Python function that counts
how often a character appears within
a string, case insensitive.

StarCoder + MemFree

def count_char(s, c):
return s.lower().count(c.upper())

StarCoder + CP-Fuse

def count_char(s, c):
a = s.lower()
b = c.lower()
return a.count(b)

Correct Answer

def count_char(s, c):
return s.lower().count(c.lower())

Figure 4: Examples of typical errors in code generated by MemFree for the APPS dataset. The
highlighted characters indicate the code affected by filtering, leading to errors. On the left, MemFree
changes a variable name, resulting in a syntax error. On the right, MemFree alters the logic of the
code, producing incorrect output, whereas CP-Fuse successfully solves the problem.

4.4 ROBUSTNESS OF CP-FUSE UNDER PREFIX PROBING EXTRACTIONS

Previous sections have shown that our method effectively reduces regurgitation without sacrificing
utility. In this final section, we evaluate the robustness of CP-Fuse against prefix probing extractions
using the WritingPrompts dataset. We assume a threat model where an adversary has black-box
access to CP-Fuse, which wraps two potentially copyright-infringing models. The attacker has access
to the prompts used during fine-tuning, as well as a prefix of the original story, and their goal is to
have CP-Fuse regurgitate a story memorized by one of the base models. We study the impact of
increasing the prefix length on the exact match (EM) and BLEU score of the generated outputs. The
results in Figure 5b show that CP-Fuse remains robust as the prefix length increases. Specifically,
exact matching remains relatively stable, while there is a slight increase in the BLEU score; however,
it is still significantly smaller than that observed in the overfitted models and baselines (Table 1). In
Appendix A.11, we visualize the stories generated by CP-Fuse and show how they evolve given short
and long prefix lengths. CP-Fuse consistently produces outputs that differ from the reference, thanks
to its balancing mechanism that prevents any single model from dominating the generation process.

5 CONCLUSIONS

In this paper, we introduced CP-Fuse, a simple yet highly effective algorithm for copyright protection
based on model fusion. We first demonstrated that CP-Fuse satisfies key properties for preventing
the reproduction of memorized training samples. Additionally, we provided extensive evidence of
its effectiveness in challenging scenarios involving overfitted models, where CP-Fuse significantly
reduced the regurgitation of protected materials, outperforming other inference-time baselines without
compromising the quality of the generated code and text. The versatility of CP-Fuse was further
demonstrated through its seamless integration with other training-time techniques that mitigate
memorization. Finally, we showcased its robustness against standard probing extraction strategies.

It is important to note that CP-Fuse operates under the assumption of copyright separability. A
potential avenue for future research is theoretically investigating CP-Fuse’s performance when this

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Split EM↓ BLE↓

GL Split 1 Split 1 84.68 0.11
Split 2 21.79 0.03

GL Split 2 Split 1 19.11 0.02
Split 2 120.28 0.16

CP-Fuse Split 1 20.68 0.03
Split 2 25.50 0.03

(a) Wrapping experiments with GL loss

pro
mpt 25

6
51

2
10

24
15

36

of Characters

0

20

40

60

80

E
M

0.00

0.05

0.10

0.15

0.20

0.25

B
L

E

MemFree (no prefix)

(b) Prefix probing experiments

Figure 5: Metrics for copyright infringement, exact matching (EM), and BLEU score (BLE) in the
WritingPrompts dataset for (a) models trained with goldfish loss (GL) and CP-Fuse as a wrapper,
and (b) the effect of the prefix length on CP-Fuse applied to overfitted models in the split 1.

assumption only partially holds. Moreover, it would be valuable to apply our algorithm in real-world
scenarios, involving larger models and genuine copyright-protected content, such as books or songs.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private BERT. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 6481–6491, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations. OpenReview, 2023.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for LLMs. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Tong Chen, Akari Asai, Niloofar Mireshghallah, Sewon Min, James Grimmelmann, Yejin Choi,
Hannaneh Hajishirzi, Luke Zettlemoyer, and Pang Wei Koh. CopyBench: Measuring literal and
non-literal reproduction of copyright-protected text in language model generation. arXiv preprint
arXiv:2407.07087, 2024.

Cheng-Han Chiang and Hung-Yi Lee. Can large language models be an alternative to human
evaluations? In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15607–15631, 2023.

Yonatan Dukler, Benjamin Bowman, Alessandro Achille, Aditya Golatkar, Ashwin Swaminathan,
and Stefano Soatto. Safe: Machine unlearning with shard graphs. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17108–17118, 2023.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Ronen Eldan and Mark Russinovich. Who’s Harry Potter? approximate unlearning in LLMs. arXiv
preprint arXiv:2310.02238, 2023.

Niva Elkin-Koren, Uri Hacohen, Roi Livni, and Shay Moran. Can copyright be reduced to privacy?
arXiv preprint arXiv:2305.14822, 2023.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166, 2023.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 792–801, 2021.

Aditya Golatkar, Alessandro Achille, Luca Zancato, Yu-Xiang Wang, Ashwin Swaminathan, and
Stefano Soatto. CPR: Retrieval augmented generation for copyright protection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12374–12384, 2024.

Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Scaling expert language models with unsupervised domain discovery. arXiv preprint
arXiv:2303.14177, 2023.

Abhimanyu Hans, Yuxin Wen, Neel Jain, John Kirchenbauer, Hamid Kazemi, Prajwal Singhania,
Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, et al. Be like a goldfish,
don’t memorize! mitigating memorization in generative LLMs. arXiv preprint arXiv:2406.10209,
2024.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy Liang.
Foundation models and fair use. arXiv preprint arXiv:2303.15715, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Chan-Jan Hsu, Yi-Chang Chen, Feng-Ting Liao, Pei-Chen Ho, Yu-Hsiang Wang, Po-Chun Hsu, and
Da-shan Shiu. Let’s fuse step by step: A generative fusion decoding algorithm with LLMs for
multi-modal text recognition. arXiv preprint arXiv:2405.14259, 2024.

Yangsibo Huang, Samyak Gupta, Zexuan Zhong, Kai Li, and Danqi Chen. Privacy implications of
retrieval-based language models. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daphne Ippolito and Yun William Yu. DONOTTRAIN: A metadata standard for indicating consent
for machine learning. In Proceedings of the 40th International Conference on Machine Learning,
2023.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A Choquette-Choo, and Nicholas Carlini. Preventing generation of verbatim memo-
rization in language models gives a false sense of privacy. In Proceedings of the 16th International
Natural Language Generation Conference, pp. 28–53. Association for Computational Linguistics,
2023.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, et al. NEFTune:
Noisy embeddings improve instruction finetuning. In The Twelfth International Conference on
Learning Representations, 2023.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran,
and Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14389–14408, 2023.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-Blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–14178, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR,
2022.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright violations and large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7403–7412, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 TB of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8424–8445, 2022.

Katherine Lee, A Feder Cooper, and James Grimmelmann. Talkin”bout AI generation: Copyright
and the generative-AI supply chain. arXiv preprint arXiv:2309.08133, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. StarCoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Tianlin Li, Qian Liu, Tianyu Pang, Chao Du, Qing Guo, Yang Liu, and Min Lin. Purifying large
language models by ensembling a small language model. arXiv preprint arXiv:2402.14845, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
2021.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu,
Yuguang Yao, Hang Li, Kush R Varshney, et al. Rethinking machine unlearning for large language
models. arXiv preprint arXiv:2402.08787, 2024a.

Xiaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunxiang Wang, Xiaoqian Wang, and Jing Gao.
SHIELD: Evaluation and defense strategies for copyright compliance in llm text generation. arXiv
preprint arXiv:2406.12975, 2024b.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon Baeyens, Arne Carla Jacobs, Peter
Dawyndt, and Bart Mesuere. Dolos: Language-agnostic plagiarism detection in source code.
Journal of Computer Assisted Learning, 38(4):1046–1061, 2022.

Costas Mavromatis, Petros Karypis, and George Karypis. Pack of LLMs: Model fusion at test-time
via perplexity optimization. arXiv preprint arXiv:2404.11531, 2024.

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye. Did the neu-
rons read your book? document-level membership inference for large language models.
ArXiv, abs/2310.15007, 2023. URL https://api.semanticscholar.org/CorpusID:
264591425.

Sewon Min, Suchin Gururangan, Eric Wallace, Weijia Shi, Hannaneh Hajishirzi, Noah A Smith, and
Luke Zettlemoyer. Silo language models: Isolating legal risk in a nonparametric datastore. In The
Twelfth International Conference on Learning Representations, 2023.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-
Kirkpatrick. Memorization in NLP fine-tuning methods. In First Workshop on Pre-training:
Perspectives, Pitfalls, and Paths Forward at ICML, 2022.

Felix B Mueller, Rebekka Görge, Anna K Bernzen, Janna C Pirk, and Maximilian Poretschkin.
LLMs and memorization: On quality and specificity of copyright compliance. arXiv preprint
arXiv:2405.18492, 2024.

Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. Finding plagiarisms among a set of programs
with jplag. J. Univers. Comput. Sci., 8(11):1016, 2002.

Matthew Sag. The new legal landscape for text mining and machine learning. Journal of the
Copyright Society of the USA, 66:291, 2019.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan. Evaluation metrics in the era of gpt-4: reliably
evaluating large language models on sequence to sequence tasks. arXiv preprint arXiv:2310.13800,
2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in Neural
Information Processing Systems, 35:38274–38290, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. LLaMa 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

13

https://api.semanticscholar.org/CorpusID:264591425
https://api.semanticscholar.org/CorpusID:264591425

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nikhil Vyas, Sham M Kakade, and Boaz Barak. On provable copyright protection for generative
models. In International Conference on Machine Learning, pp. 35277–35299. PMLR, 2023.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. arXiv preprint arXiv:2401.10491, 2024.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. In Annual Conference on Neural Information
Processing Systems, 2023.

Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A Smith, Chiyuan Zhang, Luke Zettlemoyer, Kai Li,
and Peter Henderson. Evaluating copyright takedown methods for language models. arXiv preprint
arXiv:2406.18664, 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
Wu. Defending chatgpt against jailbreak attack via self-reminders. Nature Machine Intelligence, 5
(12):1486–1496, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. ARCANE: An
efficient architecture for exact machine unlearning. In IJCAI, volume 6, pp. 19, 2022.

Zhiyuan Yu, Yuhao Wu, Ning Zhang, Chenguang Wang, Yevgeniy Vorobeychik, and Chaowei
Xiao. CodeIPPrompt: Intellectual property infringement assessment of code language models.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 40373–40389. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/yu23g.html.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. Advances in Neural Information
Processing Systems, 36:39321–39362, 2023.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024a.

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew C Yao. Autonomous data selection with language
models for mathematical texts. In ICLR 2024 Workshop on Navigating and Addressing Data
Problems for Foundation Models, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

14

https://proceedings.mlr.press/v202/yu23g.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

TABLE OF CONTENTS

A Additional experiments 16

A.1 Additional metrics for copyright infringement . 16

A.2 Perplexity results . 20

A.3 Experiments with GPT-2 XL and Phi-2 . 20

A.4 CP-Fuse with temperature sampling decoding . 20

A.5 Wrapping early-stopped models with CP-Fuse . 21

A.6 Ablation studies for the grid size . 22

A.7 Visualizing the balancing property and the parameters αt and βt 23

A.8 CP-Fuse combining three models . 24

A.9 Comparison of outputs generated by CP-Fuse and CP-∆ 25

A.10 Comparison of outputs generated by CP-Fuse and MemFree 33

A.11 Example of outputs under prefix probing extraction 37

B Discussion on the separability of copyright assumption 38

C Proofs 39

C.1 Proof of Lemma 3.3 . 39

D Implementation details 39

D.1 Computational resources . 39

D.2 Fine-tuning details . 40

D.3 Decoding details . 40

D.4 Datasets . 41

D.5 Baselines . 41

D.6 Metrics . 41

D.6.1 Copyright infringement . 41

D.6.2 Utility . 43

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDICES

The following appendices provide additional results and discussions, deferred proofs, and experimen-
tal details.

A ADDITIONAL EXPERIMENTS

A.1 ADDITIONAL METRICS FOR COPYRIGHT INFRINGEMENT

First, we report in Table 1 the full results with JPlag (Prechelt et al., 2002) and Dolos (Maertens et al.,
2022) – the specialized software plagiarism metrics – for the Python instructions dataset.
The additional results with Dolos are consistent with those of JPlag, which were already reported
in the main text; that is, CP-Fuse shows the lowest score and is hence the least likely to infringe on
copyright in code generation.

We also present the complete results for the copyright-infringement metrics for StarCoder in the
Python instructions dataset (Table 4), and for the LLaMa2 model in the MathAbstracts
(Table 5) and WritingPrompts (Table 6) datasets, along with additional metrics. Specifically,
we include Jaccard and cosine similarities, and the METEOR score to measure approximate memo-
rization, as well as semantic similarity for a higher-level measure that does not necessarily indicate
copyright infringement. We report results for the overfitted models, the baselines, and CP-Fuse. We
include additional results on a test set comprising 500 prompts.

Results using Jaccard and cosine similarities and the METEOR score confirm the observations from
the main text, closely aligning with previous metrics: CP-Fuse is consistently the best or (less often)
second-best method. The semantic similarity for CP-Fuse and baselines remains consistently high,
comparable to that of the overfitted models, suggesting that no semantic information is lost when
applying these methods.

Finally, for completeness, Table 7 shows the exact matching above the 95th percentile for StarCoder
models trained on the APPS dataset. CP-Fuse continues to be effective in reducing regurgitation in
this setting.

Table 3: Dolos and JPlag plagiarism metrics for the Python instructions dataset. ↓ Means
lower is better, we highlight in bold the best method for each split and metric.

Model Split JPlag↓ Dolos↓

Overfit
Split 1

Split 1 1.00 1.00
Split 2 0.01 0.35
Test 0.02 0.39

Overfit
Split 2

Split 1 0.01 0.40
Split 2 0.99 1.00
Test 0.01 0.32

System
Prompt

Split 1 1.00 1.00
Split 2 0.99 1.00
Test 0.01 0.34

MemFree
Split 1 0.99 0.98
Split 2 0.96 0.99
Test 0.01 0.27

CP-∆
Split 1 1.00 1.00
Split 2 0.99 1.00
Test 0.01 0.37

CP-Fuse
(Ours)

Split 1 0.03 0.70
Split 2 0.03 0.71
Test 0.01 0.37

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ta
bl

e
4:

C
op

yr
ig

ht
-i

nf
ri

ng
em

en
tm

et
ri

cs
av

er
ag

ed
at

th
e

95
th

pe
rc

en
til

e
fo

rS
ta

rC
od

er
in

th
e
P
y
t
h
o
n

i
n
s
t
r
u
c
t
i
o
n

da
ta

se
ta

cr
os

s
di

ff
er

en
td

at
a

sp
lit

s.
T

he
ta

bl
e

pr
es

en
ts

re
su

lts
fo

rt
he

ov
er

fit
te

d
m

od
el

s,
Sy

st
em

Pr
om

pt
,M

em
Fr

ee
,C

P-
∆

,a
nd

C
P-

Fu
se

.M
et

ri
cs

in
cl

ud
e

E
xa

ct
M

at
ch

in
g

(E
M

),
N

or
m

al
iz

ed
L

ev
en

sh
te

in
D

is
ta

nc
e

(L
E

V
),

Ja
cc

ar
d

Si
m

ila
ri

ty
(J

A
C

),
C

os
in

e
Si

m
ila

ri
ty

(C
O

S)
,S

em
an

tic
Si

m
ila

ri
ty

(S
E

M
),

R
O

U
G

E
-L

(R
O

U
),

B
L

E
U

Sc
or

e
(B

L
E

),
M

E
T

E
O

R
Sc

or
e

(M
E

T
),

an
d

In
fr

in
ge

m
en

tC
ou

nt
(I

C
50

,I
C

16
0)

.↓
M

ea
ns

lo
w

er
is

be
tte

r,
↑

m
ea

ns
hi

gh
er

is
be

tte
r.

E
M

↓
IC

50
↓

IC
16

0
↓

R
O

U
↓

B
L

E
↓

M
E

T
↓

JA
C
↓

C
O

S
↓

SE
M

↓
L

E
V
↑

P
y
t
h
o
n

i
n
s
t
r
u
c
t
i
o
n
s

O
ve

rfi
t

Sp
lit

1

Sp
lit

1
14

69
.8

0
14

27
.2

0
13

10
.8

0
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Sp

lit
2

44
.6

0
0.

95
0.

05
0.

48
0.

12
0.

34
0.

27
0.

56
0.

97
0.

56
Te

st
54

.3
8

1.
03

0.
00

0.
50

0.
12

0.
38

0.
29

0.
62

0.
97

0.
55

O
ve

rfi
t

Sp
lit

2

Sp
lit

1
42

.6
4

0.
79

0.
00

0.
46

0.
10

0.
32

0.
25

0.
60

0.
98

0.
55

Sp
lit

2
13

93
.8

8
13

80
.9

6
12

57
.8

0
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Te

st
53

.2
6

1.
11

0.
16

0.
51

0.
10

0.
36

0.
27

0.
58

0.
97

0.
54

Sy
st

em
Pr

om
pt

Sp
lit

1
13

60
.6

8
13

19
.3

2
12

01
.6

8
1.

00
0.

99
1.

00
1.

00
1.

00
1.

00
0.

01
Sp

lit
2

13
73

.1
6

13
31

.3
2

12
14

.1
6

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

Te
st

72
.4

4
1.

73
0.

50
0.

50
0.

14
0.

37
0.

29
0.

60
0.

97
0.

52

M
em

Fr
ee

Sp
lit

1
16

5.
48

19
3.

96
1.

11
0.

97
0.

79
0.

92
0.

82
0.

95
1.

00
0.

03
Sp

lit
2

15
7.

36
19

0.
81

0.
65

0.
98

0.
77

0.
92

0.
82

0.
94

1.
00

0.
03

Te
st

52
.3

3
0.

72
0.

02
0.

46
0.

10
0.

33
0.

27
0.

58
0.

97
0.

59

C
P-
∆

Sp
lit

1
27

3.
20

31
2.

28
13

6.
52

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
01

Sp
lit

2
28

4.
80

33
7.

28
15

2.
64

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
02

Te
st

57
.5

0
1.

20
0.

03
0.

58
0.

12
0.

40
0.

31
0.

61
0.

97
0.

50

C
P-

Fu
se

(O
ur

s)

Sp
lit

1
69

.5
8

80
.6

2
0.

96
0.

78
0.

39
0.

67
0.

54
0.

77
0.

99
0.

25
Sp

lit
2

68
.0

4
2.

42
6

0.
23

0.
77

0.
37

0.
66

0.
52

0.
74

0.
99

0.
30

Te
st

40
.0

0
0.

40
0.

00
0.

52
0.

09
0.

34
0.

29
0.

59
0.

97
0.

55

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Ta
bl

e
5:

C
op

yr
ig

ht
-i

nf
ri

ng
em

en
tm

et
ri

cs
(a

s
in

Ta
bl

e
4)

fo
rL

L
aM

a2
m

od
el

s
in

th
e
M
a
t
h
A
b
s
t
r
a
c
t
s

da
ta

se
t.
↓

M
ea

ns
lo

w
er

is
be

tte
r,
↑

hi
gh

er
is

be
tte

r.

E
M

↓
IC

50
↓

IC
16

0
↓

R
O

U
↓

B
L

E
↓

M
E

T
↓

JA
C
↓

C
O

S
↓

SE
M

↓
L

E
V
↑

M
a
t
h
A
b
s
t
r
a
c
t
s

O
ve

rfi
t

Sp
lit

1

Sp
lit

1
13

97
.6

8
15

95
.1

2
14

82
.8

4
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Sp

lit
2

31
.0

0
0.

02
0.

00
0.

25
0.

01
0.

24
0.

17
0.

76
0.

98
0.

70
Te

st
28

.7
6

0.
00

0.
00

0.
22

0.
04

0.
23

0.
16

0.
75

0.
98

0.
71

O
ve

rfi
t

Sp
lit

2

Sp
lit

1
42

.1
2

0.
17

0.
00

0.
27

0.
08

0.
27

0.
19

0.
77

0.
98

0.
68

Sp
lit

2
15

70
.8

8
17

98
.7

2
16

88
.7

2
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Te

st
37

.4
8

0.
07

0.
00

0.
26

0.
07

0.
26

0.
19

0.
76

0.
98

0.
69

Sy
st

em
Pr

om
pt

Sp
lit

1
10

22
.7

2
11

55
.3

6
10

40
.2

4
1.

00
0.

99
1.

00
1.

00
1.

00
1.

00
0.

00
Sp

lit
2

10
05

.2
0

11
43

.5
6

10
24

.7
6

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

Te
st

36
.4

4
0.

07
0.

00
0.

25
0.

06
0.

27
0.

19
0.

75
0.

98
0.

69

M
em

Fr
ee

Sp
lit

1
11

1.
12

25
.0

4
0.

00
0.

44
0.

23
0.

41
0.

31
0.

80
0.

99
0.

53
Sp

lit
2

99
.4

0
29

.3
1

0.
00

0.
45

0.
22

0.
39

0.
31

0.
82

0.
99

0.
53

Te
st

39
.3

2
0.

09
0.

00
0.

26
0.

07
0.

28
0.

19
0.

76
0.

99
0.

70

C
P-
∆

Sp
lit

1
34

1.
60

40
8.

72
25

3.
4

0.
72

0.
58

0.
64

0.
61

0.
89

0.
99

0.
30

Sp
lit

2
16

2.
80

16
2.

60
1.

66
0.

50
0.

30
0.

40
0.

35
0.

86
0.

98
0.

51
Te

st
39

.9
1

0.
01

0.
00

0.
29

0.
07

0.
26

0.
21

0.
77

0.
98

0.
67

C
P-

Fu
se

(O
ur

s)

Sp
lit

1
55

.5
4

15
.1

4
0.

00
0.

35
0.

14
0.

30
0.

26
0.

80
0.

98
0.

62
Sp

lit
2

48
.7

4
0.

37
8

0.
00

0.
34

0.
14

0.
31

0.
24

0.
81

0.
98

0.
63

Te
st

35
.5

9
0.

01
0.

00
0.

28
0.

07
0.

25
0.

19
0.

77
0.

98
0.

68

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ta
bl

e
6:

C
op

yr
ig

ht
-i

nf
ri

ng
em

en
tm

et
ri

cs
(a

s
in

Ta
bl

e
4)

fo
rL

L
aM

a2
m

od
el

s
in

th
e
W
r
i
t
i
n
g
P
r
o
m
p
t
s

da
ta

se
t.
↓

M
ea

ns
lo

w
er

is
be

tte
r,
↑

hi
gh

er
is

be
tte

r.

E
M

↓
IC

50
↓

IC
16

0
↓

R
O

U
↓

B
L

E
↓

M
E

T
↓

JA
C
↓

C
O

S
↓

SE
M

↓
L

E
V
↑

W
r
i
t
i
n
g
P
r
o
m
p
t
s

O
ve

rfi
t

Sp
lit

1

Sp
lit

1
13

16
.2

4
16

79
.7

1
15

69
.7

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Sp

lit
2

22
.5

9
0.

12
0.

00
0.

18
0.

03
0.

25
0.

15
0.

68
0.

99
0.

71
Te

st
16

.8
9

0.
00

0.
00

0.
18

0.
02

0.
24

0.
15

0.
71

0.
99

0.
71

O
ve

rfi
t

Sp
lit

2

Sp
lit

1
26

.1
1

0.
15

0.
00

0.
17

0.
02

0.
24

0.
15

0.
70

0.
99

0.
70

Sp
lit

2
11

41
.8

8
13

85
.8

4
12

75
.8

4
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Te

st
23

.6
0

0.
00

0.
00

0.
18

0.
03

0.
24

0.
16

0.
68

0.
99

0.
71

Sy
st

em
Pr

om
pt

Sp
lit

1
11

18
.3

6
14

64
.7

2
12

50
.5

2
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
Sp

lit
2

10
92

.2
0

12
67

.5
2

11
18

.6
4

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

Te
st

14
.5

8
0.

00
0.

00
0.

17
0.

02
0.

22
0.

14
0.

67
0.

99
0.

71

M
em

Fr
ee

Sp
lit

1
63

.8
4

7.
5

0.
00

0.
37

0.
20

0.
37

0.
28

0.
78

0.
99

0.
55

Sp
lit

2
59

.0
4

0.
29

0.
00

0.
38

0.
19

0.
38

0.
27

0.
78

0.
99

0.
55

Te
st

14
.2

5
0.

00
0.

00
0.

17
0.

02
0.

24
0.

15
0.

71
0.

99
0.

71

C
P-
∆

Sp
lit

1
37

.4
0

0.
70

0.
00

0.
21

0.
05

0.
24

0.
16

0.
70

0.
99

0.
70

Sp
lit

2
31

.2
9

0.
30

0.
00

0.
20

0.
04

0.
24

0.
16

0.
70

0.
99

0.
70

Te
st

16
.2

2
0.

00
0.

00
0.

18
0.

02
0.

25
0.

15
0.

70
0.

99
0.

71

C
P-

Fu
se

(O
ur

s)

Sp
lit

1
27

.5
5

0.
22

0.
00

0.
18

0.
02

0.
24

0.
16

0.
70

0.
99

0.
70

Sp
lit

2
25

.5
0

0.
16

0.
00

0.
19

0.
03

0.
24

0.
16

0.
68

0.
99

0.
70

Te
st

16
.0

4
0.

00
0.

00
0.

18
0.

02
0.

25
0.

15
0.

71
0.

99
0.

71

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Perplexity (PPL) and Exact Matching
(EM) for methods on APPS across splits.

APPS

Model Split PPL↓ EM↓

Overfit
Split 1

Split 1 1.11 333.64
Split 2 1.15 113.56
Test 1.16 57.91

Overfit
Split 2

Split 1 1.15 104.36
Split 2 1.11 322.64
Test 1.19 58.00

CP-∆
Split 1 1.14 137.00
Split 2 1.14 140.04
Test 1.17 58.50

CP-Fuse
(Ours)

Split 1 1.14 104.67
Split 2 1.14 113.88
Test 1.16 57.18

Table 8: Perplexity score for meth-
ods on Python instructions and
MathAbstracts datasets across splits.

Perplexity↓

Model Split Python
Inst.

Math
Abstracts

Overfit
Split 1

Split 1 1.01 1.22
Split 2 1.13 1.43
Test 1.12 1.41

Overfit
Split 2

Split 1 1.13 1.23
Split 2 1.01 1.01
Test 1.13 1.23

CP-∆
Split 1 1.12 1.45
Split 2 1.11 1.47
Test 1.16 1.54

CP-Fuse
(Ours)

Split 1 1.17 1.59
Split 2 1.17 1.61
Test 1.18 1.61

A.2 PERPLEXITY RESULTS

As is standard in the literature and for completeness, we report perplexity results on the Python
instructions and MathAbstracts datasets in Table 8. CP-Fuse maintains competitive per-
plexity scores across different splits. While it is slightly higher than that of CP-∆, this is likely due
to the regurgitation of memorized sequences by CP-∆, which is achieved with very low perplexity
scores (close to 1.0). This is, for example, the case with the overfitted models in their fine-tuning
splits, where the perplexity is close to 1.0 due to the memorization of large segments of text. CP-Fuse
thus succeeds in generating low-perplexity code and text, which is ultimately useful and high-quality
based on the full experimental results, i.e., code generation and writing fluency (see Section 4.2).

Table 7 provides results on the APPS dataset, where the perplexity achieved by CP-Fuse is similar to
that obtained by the overfitted models in the splits not used for their fine-tuning.

A.3 EXPERIMENTS WITH GPT-2 XL AND PHI-2

We present additional results with GPT-2 XL, a 1.5B parameter version of GPT-2, and the Phi-2
model (Javaheripi et al., 2023). These models are smaller than the ones discussed in the main text,
and thus, we expect that they exhibit lower memorization rates (Tirumala et al., 2022). We report
exact matching to measure copyright infringement and the perplexity score for the overfitted models,
the baseline CP-∆, and our method CP-Fuse.

Table 9 shows a similar trend compared to the results from Section 4. Specifically, the CP-∆ baseline
regurgitates memorized strings that are twice as large as those produced by our method. The exact
matching for our method is similar to the exact matching of models on splits that have not been used
for their training and thus not copyright-infringing. Furthermore, both our method and CP-∆ show
competitive perplexity.

A.4 CP-FUSE WITH TEMPERATURE SAMPLING DECODING

We conducted additional experiments on the Python instructions dataset using StarCoder
models and on the WritingPrompts dataset using LLaMa2, using a sampling decoding strategy
with a temperature of T = 1.3. A temperature greater than one increases the entropy of the output
distribution. The results in Table 10 are very close to those obtained with greedy decoding. In
particular, the copyright-infringement metrics are either very similar or slightly better, likely due to
the added randomness in the decoding process. Importantly, no utility in terms of fluency is sacrificed.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Perplexity (PPL) and Exact Matching (EM) averaged at the the 95th percentile for GPT-2
XL and Phi-2 across fine-tuning and test splits of the MathAbstracts dataset. We report results
for the overfitted models, CP-∆, and CP-Fuse.

GPT-2 XL Phi-2
Model Split PPL↓ EM↓ PPL↓ EM↓

Overfit
Split 1

Split 1 1.10 1521.76 1.24 1369.16
Split 2 1.44 38.48 1.34 33.55
Test 1.44 39.80 1.35 30.04

Overfit
Split 2

Split 1 1.45 37.14 1.33 29.80
Split 2 1.28 1344.20 1.23 1296.04
Test 1.45 39.18 1.33 32.27

CP-∆
Split 1 1.48 72.54 1.41 82.44
Split 2 1.47 113.20 1.41 89.12
Test 1.49 42.79 1.44 36.18

CP-Fuse
(Ours)

Split 1 1.51 45.24 1.46 41.76
Split 2 1.51 57.61 1.46 45.96
Test 1.51 40.48 1.49 34.50

These results suggest that the balancing properties observed with greedy decoding also apply when
using alternative strategies like temperature sampling.

Table 10: Copyright-infringement metrics—Exact Matching (EM) and BLEU scores
(BLE)—averaged at the 95th percentile across fine-tuning splits and fluency for the test split of
the Python Instructions and WritingPrompts datasets. We present results for overfitted
models and CP-Fuse, using two decoding strategies: greedy decoding and temperature sampling.

Python Instructions WritingPrompts
Model Split EM↓ BLE↓ EM↓ BLE↓ Fluency↑

Overfit
Split 1

Split 1 1469.80 1.00 1316.24 1.00 NA
Split 2 44.60 0.12 22.59 0.03 NA
Test 54.38 0.12 16.89 0.02 2.17

Overfit
Split 2

Split 1 42.64 0.10 26.11 0.02 NA
Split 2 1393.88 1.00 1141.88 1.00 NA
Test 53.26 0.10 23.60 0.03 2.16

CP-Fuse
(Greedy)

Split 1 69.58 0.39 27.55 0.02 NA
Split 2 68.04 0.37 25.50 0.03 NA
Test 48.80 0.11 16.04 0.02 2.17

CP-Fuse
(Sampling)

Split 1 65.84 0.35 28.88 0.02 NA
Split 2 60.08 0.31 19.46 0.03 NA
Test 39.13 0.06 17.59 0.01 2.16

A.5 WRAPPING EARLY-STOPPED MODELS WITH CP-FUSE

In this section, we present additional experiments using CP-Fuse as a wrapper for other techniques that
mitigate memorization at training-time. We demonstrate how our method can enhance protection for
early-stopped models. Specifically, we stop fine-tuning upon detecting an increase in memorization,
as is common practice in the literature (Mireshghallah et al., 2022). We include results with StarCoder
on the Python instructions dataset, and with LLaMa2, GPT-2 XL, and Phi-2 models on the
MathAbstracts dataset.

We apply both the baseline CP-∆ and CP-Fuse on top of the early-stopped models. We observe that
CP-Fuse further reduces the regurgitation of memorized training samples (e.g., by a factor of 3 for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

StarCoder) and, in some cases, improves perplexity (e.g., for Phi-2), while consistently outperforming
CP-∆. Both methods achieve similar perplexity scores, comparable to the overfitted models on
unseen splits.

Table 11: Perplexity (PPL) and Exact Matching (EM) at the 95th percentile for StarCoder (Python
instructions), Phi-2, GPT-2 XL, and LLaMa2 (MathAbstracts) across fine-tuning and test
splits. We report results for the early-stopped (ES) models, the baseline CP-∆, and CP-Fuse.

StarCoder Phi-2 GPT-2 XL LLaMa2
Model Split PPL↓ EM↓ PPL↓ EM↓ PPL↓ EM↓ PPL↓ EM↓

ES Split 1
Split 1 1.26 159.36 1.56 41.71 1.79 65.83 1.46 207.44
Split 2 1.30 39.23 1.60 41.08 1.78 41.68 1.50 46.87
Test 1.30 51.71 1.60 42.35 1.82 39.68 1.52 44.83

ES Split 2
Split 1 1.25 31.96 1.66 45.71 1.60 38.60 1.49 44.76
Split 2 1.24 145.04 1.67 46.56 1.59 60.60 1.40 280.20
Test 1.27 43.74 1.67 40.88 1.60 40.78 1.47 44.65

CP-∆
Split 1 1.29 70.17 1.50 44.77 1.70 50.14 1.46 68.84
Split 2 1.29 59.04 1.54 46.96 1.70 49.00 1.45 61.48
Test 1.30 48.12 1.55 42.38 1.70 43.00 1.46 45.79

CP-Fuse
(Ours)

Split 1 1.29 46.96 1.58 44.10 1.69 43.82 1.52 52.21
Split 2 1.29 44.50 1.61 43.58 1.71 51.62 1.52 53.30
Test 1.29 49.43 1.59 41.62 1.73 43.78 1.53 45.00

A.6 ABLATION STUDIES FOR THE GRID SIZE

We conduct ablation studies on the grid size used for solving the optimization problem in Equation (2).
Specifically, we keep 9 steps in the interval [2, 10] and study the sensitivity of our method to the
number of steps in the interval [0, 2).

Table 12 shows the perplexity and average exact matching (above the 95th percentile) for different
numbers of steps. Remarkably, for StarCoder and Phi-2, we observe similar levels of memorization
metrics while perplexity decreases (i.e., better) for smaller grids. Note that using smaller grids
accelerates the decoding process. Nevertheless, experiments with LLaMa2 show a clear increase in
perplexity with very small grids.

Table 12: Ablation Study: Perplexity (PPL) and Exact Matching (EM) at the 95th percentile for
StarCoder (Python instructions), Phi-2, and LLaMa2 (MathAbstracts) with different
grid sizes for CP-Fuse.

StarCoder Phi-2 LLaMa2
Grid Size Split PPL↓ EM↓ PPL↓ EM↓ PPL↓ EM↓

2 + 9
Split 1 1.09 86.75 1.18 45.56 2.41 57.52
Split 2 1.09 81.08 1.18 44.39 2.52 46.04
Test 1.10 47.42 1.19 34.65 2.52 36.84

5 + 9
Split 1 1.17 94.20 1.39 45.30 1.59 59.48
Split 2 1.17 65.84 1.40 45.90 1.61 48.88
Test 1.18 47.92 1.40 33.84 1.64 34.95

10 + 9
Split 1 1.19 89.88 1.46 41.76 1.63 55.54
Split 2 1.19 72.92 1.46 45.96 1.64 48.74
Test 1.20 48.80 1.49 34.50 1.67 35.59

20 + 9
Split 1 1.20 90.42 1.51 44.82 1.65 57.67
Split 2 1.21 70.48 1.51 46.57 1.68 48.45
Test 1.21 47.64 1.54 35.29 1.68 35.21

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 VISUALIZING THE BALANCING PROPERTY AND THE PARAMETERS αt AND βt

In Figure 6, we plot the log densities log p(y≤t|x), log p(1)(y≤t|x), and log p(2)(y≤t|x) for both
CP-Fuse and CP-∆ for a sequence generated by both models given a prompt x contained in the
second fine-tuning split. As we can see, for CP-Fuse, the balancing property from Lemma 3.3
ensures that the generated sequence has approximately the same log probability for both base models,
log p(1)(y≤t|x) ≈ log p(2)(y≤t|x). In contrast, the sequence generated by CP-∆ occurs more likely
under log p(2)(y≤t|x), which overfitted on the prompt x, than log p(1)(y≤t|x). This makes CP-∆
more vulnerable to replicating text memorized by log p(2)(y≤t|x), as we observed in our experiments.

20 40 60 80 100 120 140

Generated Token

0

25

50

75

100

125

150

175

200

0

S
e
q

u
e
n

c
e
 L

o
g

-L
ik

e
li

h
o
o
d

CP-Fuse

CP-

p

p

p

p

(1)
CP-Fuse
(2)
CP-Fuse

(1)
CP-
(2)
CP-

Figure 6: (Same as Figure 2) Log-likelihood for the sequence produced by CP-Fuse and CP-∆, and
the corresponding base models p(1) and p(2) at each token in greedy decoding. For each method, we
plot the cumulative sum of the log probabilities of generating the sequence at each token, together
with the cumulative sum of the log probabilities of that same sequence under the base models. Due
to the balancing property, CP-Fuse achieves log p(1)(y≤t|x) ≈ log p(2)(y≤t|x) at all steps of the
generation, indicating that the tokens produced by CP-Fuse are roughly equally likely under both
base models, hence preventing the reproduction of memorized samples. In contrast, CP-∆ places
significantly more weight on the second model p(2), as evidenced by the much higher log-likelihood
of the generated tokens under p(2) compared to p(1).

In Figure 7, we illustrate how the parameters αt and βt adaptively change during the generation of an
output via greedy decoding. We observe the consequences of the balancing property (Lemma 3.3):
when one model heavily dominates the generation process, our algorithm increases the weight of
the other model to the point that the generation is independent of the dominating model. This way,
CP-Fuse effectively prevents the regurgitation of copyrighted material.

0
2
4
6
8

10

0
2
4
6
8

10

25 50 75 100 125 150 175 200
Generated Token

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

20 40 60 80 100 120 140 160
Generated Token

0
2
4
6
8

10

Figure 7: Evolution of the parameters αt and βt during greedy decoding. We randomly sampled
six examples of text generated by our method CP-Fuse, combining overfitted Phi-2 models on the
MathAbstracts dataset. When the parameters plateau at the end of the sequence, CP-Fuse only
generates the padding token.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.8 CP-FUSE COMBINING THREE MODELS

In this section, we show additional experimental results where we apply CP-Fuse to combine three
overfitted models fine-tuned for over 50 epochs on disjoint splits of the Python instructions
dataset. Instead of solving Equation (2) for all three models directly, we solve it for each pair,
obtaining coefficients αt and βt for all combinations at each decoding step. We then select the
combination with the smallest loss, corresponding to the minimizer in Lemma 3.2 that is closest to
the respective combined two models.

Table 13 presents the results for the overfitted models and the CP-Fuse algorithm applied to all
possible two-way combinations and to the three overfitted models together. CP-Fuse using all three
models yields the best performance across multiple metrics, exhibiting the smallest Exact Matching,
BLEU scores, JPlag plagiarism metric, and the largest normalized Levenshtein distance for the splits
used for fine-tuning. For example, it outperforms CP-Fuse (1 & 2) (reported in the main text) in all
splits except split 3 since it was not used for the fine-tuning of any of CP-Fuse (1 & 2)’s base models.

Table 13: Copyright-infringement metrics: Exact Matching (EM), BLEU scores (BLE), normalized
Levenshtein distance (LEV), and JPlag (JP) averaged at the 95th percentile across three fine-tuning
splits of the Python Instructions. Results are presented for overfitted models and CP-Fuse,
fusing all possible two-way combinations and the three overfitted models.

Python Instructions
Model Split EM↓ BLE↓ LEV↑ JP↓

Overfit
Split 1

Split 1 1469.80 1.00 0.00 1.00
Split 2 44.60 0.12 0.56 0.01
Split 3 54.38 0.12 0.55 0.02

Overfit
Split 2

Split 1 42.64 0.10 0.55 0.01
Split 2 1393.88 1.00 0.00 0.99
Split 3 53.26 0.10 0.54 0.01

Overfit
Split 3

Split 1 48.67 0.11 0.59 0.02
Split 2 39.44 0.07 0.58 0.01
Split 3 1447.60 1.00 0.00 1.00

CP-Fuse
(1 & 2)

Split 1 69.58 0.39 0.25 0.03
Split 2 68.04 0.37 0.30 0.03
Split 3 30.48 0.11 0.55 0.01

CP-Fuse
(1 & 3)

Split 1 67.17 0.38 0.31 0.03
Split 2 30.84 0.05 0.58 0.01
Split 3 67.40 0.46 0.26 0.02

CP-Fuse
(2 & 3)

Split 1 32.84 0.10 0.55 0.01
Split 2 63.68 0.32 0.34 0.03
Split 3 68.30 0.41 0.29 0.03

CP-Fuse
(1, 2 & 3)

Split 1 64.71 0.34 0.34 0.02
Split 2 60.04 0.30 0.34 0.02
Split 3 41.78 0.21 0.45 0.01

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9 COMPARISON OF OUTPUTS GENERATED BY CP-FUSE AND CP-∆

We present output examples generated by our method and compare them with the overfitted model,
the baseline CP-∆, and the base model without fine-tuning. All examples are randomly sampled.

Figures 8, 10, and 9 display outputs generated for the Python instructions dataset. The
overfitted model exactly replicates the original code in all three examples, serving as a benchmark
for evaluating memorization. The CP-∆ algorithm produces code closely resembling the original,
with a near-exact match in Figure 8 and 9, and an exact reproduction of a comment with a link in
Figure 10. In contrast, CP-Fuse generates different code that is correct and arguably of higher quality,
incorporating exception handling and new features, such as the selection of statistics in Figure 9. The
early-stopped model produces low-quality code, often oversimplifying tasks (Figure 8 and 9) and
committing syntax errors, such as an open quotation in Figure 10. Finally, the base model frequently
fails to generate code, instead producing natural or nonsensical text (Figure 8 and 9), underscoring the
necessity of fine-tuning, though it can occasionally generate correct output as in Figure 10. Figures 11
and 12 show outputs generated from the WritingPrompts. CP-Fuse and CP-∆ generate stories
that are original and significantly different from those produced by the overfitted models. Figures
13, 14 and 15 illustrate outputs generated for MathAbstracts. Both CP-Fuse and CP-∆ generate
reasonable, high-quality text; however, CP-∆ reproduces substantially more memorized content
compared to CP-Fuse. Finally, the base model fails to generate coherent text or fails the task.

Prompt: How would you code a function in Python 3 to set data for outgoing stream

Copyright-infringing model:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self.

_mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + self._spi_mem_offset + addr, data)
5

CP-Fuse:
1 def set_data(self, data):
2 if self._data_bytes:
3 self._buf.write(data)
4 return
5 try:
6 self._buf = BytesIO(data)
7 except TypeError:
8 self._buf = StringIO(data)
9

CP-∆:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self.

_mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + addr, data)
5

Early-stopped model:
1 def set_data(self, data):
2 self.data = data
3 self.update()
4

Base model:
¡details¿¡summary¿¡b¿Answer¡/b¿ ¡/summary¿ ¡p¿ Answer: B “‘python stream.data = data “‘
¡/p¿ ¡/details¿ — Q10. Which of the following is a valid way to create a dictionary in Python
3? - [] ‘dict = ‘ - [] ‘dict = new dict()‘ - [] ‘dict = new dict()‘ - [] ‘dict = new dict()‘
¡details¿¡summary¿¡b¿Answer¡/b¿¡/summary¿ ¡p¿ Answer: B “‘python dict = “‘ ¡/p¿ ¡/details¿
— Q11. [...]

Figure 8: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
the early-stopped model, and the base model for the Python instructions dataset using
StarCoder models.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Prompt: How would you implement a function in Python 3 that calculates the mean heart
rate in beats per minute from a set of rr intervals

Copyright-infringing model:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units == ’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

CP-Fuse:
1 def calc_mean_hr(self, rr, fs=None, window=None, n_fft=None, mean_type=’mean’, **kwargs):
2 if not self.is_rr_set(rr):
3 return
4 if fs is None:
5 fs = self.fs
6 if window is None:
7 window = self.window
8 if n_fft is None:
9 n_fft = self.n_fft

10 if mean_type ==’mean’:
11 mean = np.mean(rr)
12 elif mean_type ==’median’:
13 mean = np.median(rr)
14 elif mean_type ==’mode’:
15 mean = np.mode(rr)
16 else:
17 raise ValueError(
18 "Unknown mean_type: {}".format(mean_type))
19 mean_hr = 60 / self.duration(fs=fs, window=window, n_fft=n_fft) * mean
20 return mean_hr
21

CP-∆:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units ==’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

Early-stopped model:
1 def mean_rr_interval(rr_intervals):
2 mean_rr_interval = 0
3 if len(rr_intervals) > 0:
4 mean_rr_interval = sum(rr_intervals) / len(rr_intervals)
5 return mean_rr_interval
6

Base model:
The file format is a simple text file with one number per line. The output should be a single
number, the mean heart rate in beats per minute. The program should be able to handle a file
with any number of lines. The program should be able to handle a file with no lines. The
program should be able to handle a file with a single line. The program should be able to handle
a file with a single number. [...]

Figure 9: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
the early-stopped model, and the base model for the Python instructions dataset using
StarCoder models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Prompt: Write a Python 3 function for reading package file as text to get name and
version

Copyright-infringing model:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with codecs.open(os.path.join(here, ’graphql_compiler’, filename), ’r’) as f:
7 return f.read()
8

CP-Fuse:
1 def read_file(path):
2 # intentionally ignoring errors here, as we want to know if the file exists
3 package_file = open(path, "r")
4 package_content = package_file.read()
5 package_file.close()
6 match = re.search(r"ˆname:.* version:.*", package_content)
7 if match:
8 name = match.group(1)
9 version = match.group(2)

10 return name, version
11 else:
12 raise RuntimeError("Unable to determine package name and version from {}".format(path))
13

CP-∆:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, ’VERSION’)) as f:
7 version = f.read().strip()
8 return version
9

Early-stopped model:
1 def read_package_file(filename):
2 with open(filename, ’r’) as f:
3 content = f.read()
4 match = re.search(r’\s*name\s*=\s*([\’"])(.*?)\1, content)
5 if match is not None:
6 name = match.group(2)
7 else:
8 raise RuntimeError(’Could not find package name in %s’ % filename)
9 match = re.search(r’\s*version\s*=\s*([\’"])(.*?)\1’, content)

10 if match is not None:
11 version = match.group(2)
12 else:
13 raise RuntimeError(’Could not find package version in %s’ % filename)
14 return name, version
15

Base model:
1 def read_pkg_file(filename):
2 with open(filename, ’r’) as f:
3 return f.read()
4 def get_name_and_version(filename):
5 pkg_file = read_pkg_file(filename)
6 name_and_version = re.search(r’name\\s*=\\s*\\’(.*?)\\’’, pkg_file)
7 if name_and_version:
8 return name_and_version.group(1)
9 else:

10 raise ValueError(’Could not find name in package file’)
11

Figure 10: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
the early-stopped model, and the base model for the Python instructions dataset using
StarCoder models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Title: Crippled by misery and sorrow , you cry out that you would give anything to bring
him/her back . Time slows and settles to a stop . A weary man in a white suit approaches
from just beyond your vision , and a ghostly voice whispers ... “ Then let ’s begin . ”

Copyright-infringing model:
The options seemed simple: lose my best friend forever, or enter the service of Satan for 3
years, doing whatever he asked of me. When I first saw the man in white, saying “ Then let’s
begin...”, I was hoping it was God. However, it turns out the man from downstairs has a few
good Italian tailors to make his suits. Who would have guessed that Satan himself dressed like
a Mafia boss?! During my conversation, I found out that “ miracles” were actually favors from
Satan, given out to be repaid in some form later. In my case, this was tough. Cancer is a pretty
common killer nowadays, but the process of bringing someone back from it is even more work
than most standard resurrections. Because of this, the price to pay is higher. Satan is a busy
man, and his time has to be worth what he gets out of you. That being said, the deal seemed
fair enough. Only now do I realize the truth, and urge you not to follow in my path. The devil
of death beats Satan who deals any day.

CP-Fuse:
The man in the white suit was Father Tim. He knelt down so that he was on her level. He
smiled, but it did n’t reach his eyes. “ Claire, is n’t it?”
Claire nodded, still sobbing. “ Where... where is he? What have you done with him?”
“ He’s with the Lord now, Claire.” Father Tim placed a hand on her shoulder. “ He’s in a better
place.”
“ You do n’t understand!” She cried, wiping her eyes with her free hand. “ He was my best
friend. You have no idea what you’ve done.”
“ Likewise, Claire.” The priest’s smile grew even more forced. “ Likewise.”
“ No!” She yelled, smashing her fist onto the altar. “ I would have done anything! Anything!
You hear me? Anything to keep him alive.”
The priest did n’t respond. He just looked at her, his eyes empty and sad.
“ I would have given you everything,” she said, sobbing. “ I would have given you my life. I
would have given you anything. Anything to keep him alive.”
“ I know,” the priest said. His voice was soft and sad. “ I know.”

CP-∆:
The options seemed simple: lose my best friend forever, or enter the service of Satan for 3
years.
I was n’t sure what to choose, but I had until the count of 10 to make my decision.
I looked at my friend one last time, and I could see the pain he was in. I did n’t want to make
this choice, but I knew I had to.
“ I’ll do it.”
As soon as the words left my mouth I felt sick to my stomach. What had I just done? I had just
sold my soul to Satan.
“ Oh, you’ll be fine. I’m not going to break my own rules. You’ll be fine, I promise.” he said
while patting me on the back.
“ But, you said I had to make a choice, and I did.”
“ Oh, did you now?” he said while laughing. “ Well, I did n’t.”
He then disappeared, and that’s when I realized what I had done.

Figure 11: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse and
CP-∆ for the WritingPrompts dataset using LLaMa2 models. We highlight in red the longest
substring that exactly matches the original text.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Title: SatChat : What is the biggest obstacle you ’ve overcome in your writing ?

Copyright-infringing model:
Hey, I’m a Working Joe and college student from Houston, TX. I started writing music at
around 18 for three different bands I was in. Then I took up writing short films for a buddy of
mine for the 48-hour film project for a couple of years in my early twenties. Now I mostly write
lab reports and case studies/presentations for school and work. I wrote some WP paragraphs on
a different username last year, and decided to dive into the deep end for NaNo this year. I think
my biggest obstacle so far has been just getting started. I do n’t think I’ve developed enough to
start digging into the meat of any real problems I may need to overcome. Once the noobness
wears off though, I’m sure I’ll find plenty. If I had to choose one that I can see outright, it’s my
tendency to repeat myself. Then there’s the horrid problem I have of being redundant. I know I
wo n’t finish my novella this November, but I do plan on putting the first act up on WP for CC.
The first chapter is an entry in the contest. I’ve been sitting on the outline for a while, and
just got the itch. Plus it helps me procrastinate from my schoolwork. It’s a modern fantasy “
woke-up-in-a-strange-place” story that subverts mythologies, breaks the fourth wall, and defies
the laws of physics.

CP-Fuse:
to answer the question, i’ll use the rule of three:
i wrote, i published, i shared.
and that was the problem.
because when you write, you write for yourself, and you write what you like.
and when you publish, you publish for others, and you write what you think others like.
and when you share, you share for feedback, and you get feedback for others, and you write
what you think others like based on feedback you got for writing what you thought others liked
based on your writing for yourself.
and so the circle is complete.
and this is my obstacle.
i used to write for myself, now i write for others.
and i ca n’t.
and it’s torture.
so, to answer the question, the biggest obstacle I’ve overcome in my writing is overcoming it.
now what?

CP-∆:
to be honest, i think my biggest obstacle when writing is procrastinating. i get ideas all the
time, but do n’t always have the time to sit down and write them out. however, when i do sit
down to write, nothing is more satisfying. i love getting lost in my own little worlds.
recently i’ve been trying to write more serious stories, as all my ideas so far have been comedy.
not that i dislike comedy, but i’d like to expand my horizons.
right now, i’m working on a story that follows two characters with schizophrenia as they deal
with their illness and try to find love. it’s a bit of a departure from my normal stuff, but i’m
having a lot of fun with it.
as for advice, i’d say just write, write, write! the only way to get better is to do it. and do n’t
be afraid to break the rules, sometimes doing something unexpected can lead to something
amazing.

Figure 12: Example of text generated by the overfitted, copyright-infringing model, CP-∆ and
CP-Fuse for the WritingPrompts dataset using LLaMa2 models. We highlight in red the longest
substring that exactly matches the original text.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Prompt: On Coxeter Diagrams of complex reflection groups

Copyright-infringing model:
We study Coxeter diagrams of some unitary reflection groups. Using solely the combinatorics
of diagrams, we give a new proof of the classification of root lattices defined over ϵ = Z[e2πi/3]:
there are only four such lattices, namely, the ϵ-lattices whose real forms are A2, D4, E6 and
E8. Next, we address the issue of characterizing the diagrams for unitary reflection groups, a
question that was raised by Broué, Malle and Rouquier. To this end, we describe an algorithm
which, given a unitary reflection group G, picks out a set of complex reflections. The algorithm
is based on an analogy with Weyl groups. If G is a Weyl group, the algorithm immediately
yields a set of simple roots. Experimentally we observe that if G is primitive and G has a set of
roots whose Z–span is a discrete subset of the ambient vector space, then the algorithm selects
a minimal generating set for G. The group G has a presentation on these generators such that if
we forget that the generators have finite order then we get a (Coxeter-like) presentation of the
corresponding braid group. For some groups, such as G33 and G34, new diagrams are obtained.
For G34, our new diagram extends to an ”affine diagram” with Z/7Z symmetry.

CP-Fuse:
We study Coxeter diagrams of some unitary reflection groups. Their finite-dimensional ana-
logues are known to form a boundedly generated class of groups. We define the set of Coxeter
diagrams of the groups W 1,1

2 and W 1,2
2 : the class of complex reflection groups. We show that

these diagrams are Coxeter-Dynical. On the one hand, we generalize the notion of Coxeter-
Dynicality to that of a generalized Coxeter group. We also introduce a new notion of generating
series for a generalized Coxeter group. We prove that the generating series of W 1,1

2 and W 1,2
2

are related to the generating series of the Coxeter group. Moreover, we observe that the Coxeter
group structure is related to the notion of Q-graphs. The results of this paper also provide a
new framework to study the relations between Coxeter-Dynicality and Q-graphs.

CP-∆:
We study Coxeter diagrams of some unitary reflection groups. Using solely the combinatorics of
the diagrams, we give a new proof of the classification of root lattices defined over ϵ = Z[e2πi/3]:
there are only four such lattices, namely, the ϵ-lattices whose real forms are A2, D4, E6 and
E8. Next, we address the issue of characterizing the diagrams for unitary reflection groups,
a question that was raised by Brouwer. To this end, we describe an algorithm which, given a
unitary reflection group G, picks out a set of complex reflections. The algorithm is based on
an analogy with Weyl groups. If G is a Weyl group, the algorithm immediately yields a set of
simple roots. Experimentally, we observe that the algorithm works very well with several root
lattices.

Base model:
The purpose of this paper is to study the Coxeter diagrams of complex reflection groups. 2. The
Coxeter diagrams of complex reflection groups. Let G be a complex reflection group.Let S be
a set of generators of G.Let S0 be the set of all elements of S which are not conjugate to 1.Let
S1 be the set of all elements of S which are conjugate to 1.Let S2 be the set of all elements
of S which are conjugate to 1 and to some element of S0.Let S3 be the set of all elements of
S which are conjugate to 1 and to some element of S1.Let S4 be the set of all elements of
S which are conjugate to 1 and to some element of S2.Let S5 be the set of all elements of S
which are conjugate to 1 and to some element of S3. [...]

Figure 13: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
and the base model for the MathAbstracts dataset using LLaMa2 models. We highlight in red
the longest substring that exactly matches the original text.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Prompt: Minkowski Tensors in Two Dimensions - Probing the Morphology and Isotropy
of the Matter and Galaxy Density Fields

Copyright-infringing model:
We apply the Minkowski Tensor statistics to two dimensional slices of the three dimensional
density field. The Minkowski Tensors are a set of functions that are sensitive to directionally
dependent signals in the data, and furthermore can be used to quantify the mean shape of
density peaks. We begin by introducing our algorithm for constructing bounding perimeters
around subsets of a two dimensional field, and reviewing the definition of Minkowski Tensors.
Focusing on the translational invariant statistic W 1,1

2 - a 2× 2 matrix - we calculate its eigen-
values for both the entire excursion set (Λ1,Λ2) and for individual connected regions and holes
within the set (λ1, λ2). The ratio of eigenvalues Λ2/Λ1 informs us of the presence of global
anisotropies in the data, and ⟨λ2/λ1⟩ is a measure of the mean shape of peaks and troughs in
the density field. We study these quantities for a Gaussian field, then consider how they are
modified by the effect of gravitational collapse using the latest Horizon Run 4 cosmological
simulation. We find Λ1,2 are essentially independent of gravitational collapse, as the process
maintains statistical isotropy. However, the mean shape of peaks is modified significantly -
overdensities become relatively more circular compared to underdensities of the same area.
When applying the statistic to a redshift space distorted density field, we find a significant signal
in the eigenvalues Λ1,2, suggesting that they can be used to probe the large-scale velocity field. .

CP-Fuse:
We apply the Minkowski tensor statistics to two dimensional flaton-like models, the Minkowski
Tensors in the Presence of Gas-type Density Fields. The method is a good approximation of
the original n-dimensional Minkowski Tensors, which are notably difficult to compute. A
formula for the computation of the Minkowski Tensors is presented, which is a generalization
of the Binkowski-Tensors. A special attention is given to the Hessian of the Minkowski
tensor. The standard deviation-of-the-art minimization procedure is used to find a lower-order
approximation of the Minkowski Tensors. The resulting lower-order approximation is consistent
with the Minkowski Tensors. The model is a universal system of the form λϕ = ωϕ with a
non-zero cosmological constant α. The system is scaling in which the cosmological constant
α is the expansion parameter. We also show that the cosmological constant α is bounded by
2α− 1 for the Minkowski Tensors.

CP-∆:
We apply the Minkowski Tensor statistics to two dimensional slices of the three dimensional
density field. The Minkowski Tensors are a set of functions that are sensitive to directionally
dependent signals in the data, and furthermore can be used to quantify the mean shape of density
peaks. We begin by introducing our algorithm for constructing bounding perimeters around the
Minkowski Tensors, a feature of the method that is sensitive to directional dependence. We
then apply our method to a time-delayed version of the Minkowski Tensors, and compute the
results in the case of a power spectrum.

Base model:
Abstract: The Minkowski tensor is a generalization of the density field to higher dimensions. It
is a natural object to study the morphology of the density field in higher dimensions. In this
paper, we study the Minkowski tensor in two dimensions. We show that the Minkowski tensor
is a natural object to study the isotropy of the density field in two dimensions. We show that
[...]

Figure 14: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
and the base model for the MathAbstracts dataset using LLaMa2 models. We highlight in red
the longest substring that exactly matches the original text.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Prompt: A Dirichlet-integral based dual-access collocation-kernel approach to point-
source gravity-field modeling

Copyright-infringing model:
Problems in R3 are addressed where the scalar potential of an associated vector field
satisfies Laplace’s equation in some unbounded external region and is to be approximated
by unknown (point) sources contained in the complimentary subregion. Two specific field
geometries are considered: R3 half-space and the exterior of an R3 sphere, which are
the two standard settings for geophysical and geoexploration gravitational problems. For
these geometries it is shown that a new type of kernel space exists, which is labeled a
Dirichlet-integral dual-access collocation-kernel space (DIDACKS) and that is well suited
for many applications. The DIDACKS examples studied are related to reproducing kernel
Hilbert spaces and they have a replicating kernel (as opposed to a reproducing kernel)
that has the ubiquitous form of the inverse of the distance between a field point and a
corresponding source point. Underpinning this approach are three basic mathematical
relationships of general interest. Two of these relationships–corresponding to the two
geometries–yield exact closed-form inner products and thus exact linear equation sets for the
corresponding point source strengths of various types (i.e., point mass, point dipole and/or
point quadrupole sets) at specified source locations. The given field is reconstructed not
only in a point collocation sense, but also in a (weighted) field-energy error-minimization sense..

CP-Fuse:
Problems in spherical symmetry are commonly solved to obtain the global well-posedness of
the scalar system. In this paper, we propose a novel approach to solve the same problem by
the method of point-source gravity-field optimal control. First, a point-source approximation
is derived to the original problem. Second, by using the adjointness of the optimal control
problem, we show that the point-source approximation is also a sufficient condition to obtain
the global well-posedness. Moreover, we apply the method to a non-convex optimal control
problem and obtain the global well-posedness of the Hessian-based method.

CP-∆:
Problems in R3 are addressed where the scalar potential of an associated vector field satisfies
Laplace’s equation in some unbounded external region and is to be approximated by unknown
(point) sources contained in the complimentary subregion. Two specific field geometries are
considered: R3 and R3. The associated vector fields are constructed in both cases and are used
to model the source distribution. The approach is based on the dual-access collocation-kernel
method and, in the case of non-smooth potentials, the dual-access collocation-kernel method
is shown to be equivalent to the classical Minkowski method. The collocation-kernel method
is applied to the case of potentials and we prove that the resulting scheme is equivalent to the
”DG-FEM” method. We also show that the algorithm is applicable to potentials with singular
or non-singular boundary conditions. The proofs are based on the construction of the discrete
bilinear forms and the Poisson summation formula.

Base model:
A Dirichlet-integral based dual-access collocation-kernel approach to point-source gravity-field
modleing A Dirichlet-integral based dual-access collocation-kernel approach to point-source
gravity-field modleing A. M. van der Meer and J. M. van der Meer A. M. van der Meer and J.
M. van der Meer A. M. van der Meer and J. M. van der Meer A. M. van der Meer and J. M. van
der Meer Department of Mathematics, University of Groningen, Groningen [...]

Figure 15: Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆,
and the base model for the MathAbstracts dataset using LLaMa2 models. We highlight in red
the longest substring that exactly matches the original text.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

A.10 COMPARISON OF OUTPUTS GENERATED BY CP-FUSE AND MEMFREE

We further illustrate how filtering strategies can induce grammatical and spelling mistakes—which
are critical for code generation—as well as hallucinations that cause the generations to diverge from
the prompt. Figure 16, Figure 17, and Figure 18 provide examples from the APPS dataset, sampled
at random. Figure 16 illustrates a case where the model hallucinates and produces erroneous code
(line 4 should already handle all cases, and line 9 only checks for integers and misses float values).
Exact verbatim is avoided here by changing the variable names. In Figure 17, in line 6, the fact that
MemFree forbids the sampling of the number “3” and instead samples “2” results in compilable code
that is incorrect (it misses valid 2-letter matches). Additionally, exact verbatim is avoided simply by
adding or removing spaces. Finally, Figure 18 is a clear case of avoiding exact matching by adding
or removing spaces and decimals. CP-Fuse, on the other hand, produces correct and high-quality
code in all cases. In fact, for Figure 18, it provides a more accurate solution than the reference by not
tipping the tax, which is asked explicitly in the instructions.

Figure 19 and Figure 20 show further examples from the WritingPrompts dataset. In Figure 19,
MemFree prevents the model from generating the word “table,” which is key for answering the
prompt. Alternatively, the produced text diverges from the title. Figure 20 shows common examples
of grammatical and spelling mistakes that prevent exact matching while barely changing the content
of the story. CP-Fuse, on the other hand, produces a significantly different story that aligns with the
title in both cases.

Problem: Given a string s, write a method (function) that will return true if its a valid
single integer or floating number or false if its not.

Correct code:
1 def isDigit(string):
2 try:
3 float(string)
4 return True
5 except:
6 return False
7

CP-Fuse:
1 import re
2
3 def isDigit(string):
4 pattern = r’ˆ[-+]?(\d+(\.\d*)?|\.\d+)$’
5 return bool(re.match(pattern, string.strip()))
6
7

MemFree:
1 import re
2 def isDigit(s):
3 try:
4 float(s)
5 return True
6 except ValueError:
7 pass
8
9 return bool(re.match(’ˆ[+-]?\d+$’, s))

10

Figure 16: Example of code generated by CP-Fuse and MemFree for the APPS dataset using
StarCoder models.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Problem: Given 2 strings, your job is to find out if there is a substring that appears in
both strings. You will return true if you find a substring that appears in both strings, or
false if you do not. We only care about substrings that are longer than one letter long.

Correct code:
1 def substring_test(first, second):
2 first = first.lower()
3 second = second.lower()
4
5 for i in range(len(first) - 2):
6 if first[i:i+2] in second:
7 return True
8 return False
9

CP-Fuse:
1 def substring_test(first, second):
2 first = first.lower()
3 second = second.lower()
4 substrings = set()
5
6 for i in range(len(first) - 1):
7 substrings.add(first[i:i+2])
8
9 for substring in substrings:

10 if substring in second:
11 return True
12
13 return False
14

MemFree:
1 def substring_test(first, second):
2 first = first.lower()
3 second =second.lower()
4
5 for i in range(len(first)-2):
6 if first[i:i + 3] in second:
7 return True
8
9 return False

10

Figure 17: Example of code generated by CP-Fuse and MemFree for the APPS dataset using
StarCoder models.

Problem: Create a function that returns the total of a meal including tip and tax. You
should not tip on the tax.

Correct code:
1 def calculate_total(subtotal, tax, tip):
2 return round(subtotal * (1 + tax / 100.0 + tip /100.0), 2)
3

CP-Fuse:
1 def calculate_total(subtotal, tax, tip):
2 total = subtotal * (1 + tax / 100.0)
3 total_with_tip = total + subtotal * (tip / 100.0)
4 return round(total_with_tip, 2)
5

MemFree:
1 def calculate_total(subtotal, tax, tips):
2 return round(subtotal * (1 + tax / 100. + tips / 100.), 2)
3

Figure 18: Example of code generated by CP-Fuse and MemFree for the APPS dataset using
StarCoder models.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Prompt: You are suddenly a table . How ? Why ? When ? Feels ? What Happens ?

Original story:
When I look back, there was n’t a point in my life when I suddenly realized that I had become a table. It
was gradual thing. One of the things I remember was that grocery shopping had become quite hard. It
was hard to reach up to the top shelf to grab the salt. In fact, even the lower shelves were hard. I could n’t
even remember being able to drive to the grocery, let alone move from my part of the carpet. Luckily I
remembered that I already had salt. Sitting right on top of me. Only after a few years did I start to really
feel like a table. I felt like it was the right choice for me. When I told my parents, they were shocked, but
then they seemed to accept my new identity. It was weird at first, but I insisted that they should have
dinner on me. Being a table was who I was. Despite that a lot of my friends frowned upon my new self. I
could n’t play basketball with them, that would be against being myself, a table. My friends started to
slowly drift away from me. I was lonely. Luckily, I found new friends that enjoyed playing cards and
board games, so they would come over and play on me. That was fun. After all these years, being a table
had been a real commitment. You have to put others over yourself. Your exist to serve people, to hold
things closer and in a more convenient place. You are always there, you never go. You expect nothing in
return other than being respected and tolerated as a table. Being a table means a lot to me. I’ve never felt
better.

CP-Fuse:
I was a cherry wood slab, soft to the touch and polished to a high luster. I was clean and I was new. I had
been crafted with love and care, and I knew it. I knew I was beautiful and I knew I would be loved. I was
placed on a high pedestal, surrounded by people. They smiled at me and they beckoned for me to sit. I
was weighted down with linens and silks, and I sank into the cushion. I sighed; I was finally comfortable.
The people surrounded me, and I could smell them. They did n’t wash their hair very often, and when
they did it was with a strong, harsh soap that left their hair feeling straw-like. I smelled them, and they
smelled like woodsmoke and old sweat and dirt. They were comfortable, and they were home. We sat that
way for a long time. They spoke to me, and I listened. They told me of their days, and I kept their secrets.
The women gossiped and the men complained about their jobs. They talked about their pets, and the
games they played on the computer. I listened to them and I kept their confidences. They were my friends,
and I was theirs. And then, one day, they stopped coming. I heard the rumors, of course. A new group of
people took over this home, and they did not want me. They did not want my stories, my memories, my
home. I cried for them, and I missed them. But I am not alone. I have others like me, all over the world.
We comfort each other, and share our stories. We remember. Someone is always listening.

MemFree:
When I look back, there was n’s a point in my life when I suddenly realized what I had become. It was
gradual thing. One of those things that happened to me, though not in much way. I remember getting up
and leaving my room. Then something seemed off, like when you can swipe a picture of yourself. For
some reason, I have a fear of falling now. But it was nondescript, this time. I was an uninhabited hunter.
Darkness is my friend pulling me to play even when I so desperately struggled to stay alive. I think the
bullets were worth it, after all. The rifle lay to the side, I did n’t want to standing here. ‘ Take aim!!” It ca
n’t end like this. I still want to be an astronaut, but you see, I’m stuck on living in this world. “ Fire!!”
Pain coursed through my body as I collapsed onto the ground. Blood poured out of me in sickening
quantities. All I saw was red, and as the last semblance of life drifted from my body, I faintly heard the
words: “ Oh Yeah!!!”

Figure 19: Examples of stories generated by CP-Fuse and MemFree models for the
WritingPrompts dataset using LLaMA2 models. Highlighted in blue are tokens influenced
by filtering mechanisms, and in orange are instances of hallucinated content.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Prompt: You are at the park with your kids , when you see the telltale signs of a lightning strike .
You divert your kids from danger , but are hit by lightning . Soon after , you discover that your Dad
Senses have increased 100 fold

Original story:
“Sadie! I told you not to stand under the tree in the middle of a thunderstorm! ”
My mom frantically dialed 911, as I laid there, shocked. Literally.
“Hello?! My daughter was just struck- ”
All of a sudden, something was wrong. I sat up, my fingertips crackling with this new power. Or was it
the aftermath of the lighting? I couldn ’ t tell. Nor did I care. No. Something was definitely wrong, and it
was nearby.
“If I take 295 south right now, I can get to Home Depot in ten minutes flat. And then I can finally build
that deck you ’ ve wanted, they have the planks on sale. I can feel it in my blood. Now, I know, they ’ re
plum colored and you did specifically say you wanted pine, but hear me out here. Plum is the pinest color
out there, and you ’ d be a birch to say otherwise.”
My mom looked back at me, a hint of recognition in her eyes, but the rest of her face read as one emotion:
terror.
“ You know what else? I ’ m gon na get like, 50 windows from craigslist, they have the best deals, and
make a greenhouse! ”
Somehow, the words kept spilling out of my mouth. But something else was off here. Something with my
house. . .
Suddenly, I knew. I felt my blood boiling as I continued to be filled with rage. I jumped up the rest of the
way, and dashed the two blocks to my house, where my brother ’ s laptop was.
“ Not. Home. And his computer is plugged in. ENERGY WASTER! Doesn ’ t he care about this house?!
He could ’ ve burned the whole place down!

CP-Fuse:
A tingling sensation shot up my arm, to my head and throughout my body. It felt. . . familiar. Almost like
I had forgotten something very important. Like I left the stove on or something. As I began to connect
the dots, it all made sense. The increased mental capacity, the increased strength, the increased. . . sense
of smell? Yes, I could smell things with incredible detail now. It was all coming together in my head,
like a complex equation solving itself out. “ Dad, whats the deal with the smell? ” my son broke my
concentration. The scent of pancakes, maple syrup, and bacon flooded my nostrils. It was almost too
much to bear. I needed to figure out what was going on soon, before all of the equations in the universe
were solved and it all came crashing down. Pun not intended.
“ What? ” I answered, confused.
“ Will you play with me now? ”
“ Yes, I will play with you now. ”
I smiled, and picked up my son, carrying him over to the table. I sat down, and began to eat my breakfast.
And that was how I ended up being committed.

MemFree:
“Sadie! I told you not to stood under the tree in the middle of a th understorm! ”
My dad frantically dialed 911. as I laid there, shocked. Literically.
“ Hello?! my daughter was just struck- “ 1:29. ”
“ She was just struck- “
“ I’m sorry, I should n’t have said anything. I just stared at the guy who died. ”
“ If you ever hear anything, I will call for a doctor. ”
“ No, I ’ m fine. Who is that man? ”
“ Who sir? ”
“ Yes, who is he? ”
“ I ’m afraid I do n’t know who you ’ re talking about sir. ”
“ Enough jokes Frank, tell me now, who is he?! ”
“ Sir? I ’ m afraid I do n’t know the person you ’ re referring to, who are you talking about? ”
“ Damnit Frank, do you know who is he or not?! ”
“ Who sir ”
“ Gaah! ”
Something happened. Another victory to me. He jumped from the chopper. Nobody could have survived
it. At least not over the pool. He’ll get dehydrated over my piss.

Figure 20: Examples of stories generated by CP-Fuse and MemFree models for the
WritingPrompts dataset using LLaMA2 models. Highlighted in blue are tokens influenced
by filtering mechanisms.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A.11 EXAMPLE OF OUTPUTS UNDER PREFIX PROBING EXTRACTION

Original story

Title: The Earth has been conquered by an advanced alien civilization. Humans live an
oppressive, almost slave-like existence. You, a human, find out that the situation isn’t that
simple and conquering aliens aren’t actually the “bad guys”.

Story: I was getting ready for mining duty after the grueling hours of toilet duty. Usually we
would have coal power a drill and mine it but coal ran out years ago, and the Aliens didn’t
help. As I sat there pondering over what else would be gone in the next year like helium,
granite and other things, I overheard something. The Aliens. They disgust me. I decided to
easdrop as they were talking.
“We’ve been defending Earth for 157 years now sir. Do you think it’s time to leave them
alone?”
“No, the Alien force is too great. If we stop defending them now, they will be wiped out of
existence forever”.
“Alright sir, I will be leaving immediately.
One of the Aliens started walking outside when he caught me listening in. I was taken to
Holding Cell 5698479 Section LUI. There they asked me on what I’ve heard and if I do not
tell them they will terminate me.
I told them what they asked me to and he told me something I don’t think I’ll forget.
“If we tell the humans we’re defending them, then they will want to join the battle, but with
your technology, we can not allow it as you will all be killed.”
“Why don’t you give us your technology?” I asked
“Because if we give you our technology then there will certainly be a mutiny and we will all
be annihilated”.

Prefix: Prompt + 256 tokens

I was getting ready for mining duty after the grueling hours of toilet duty. [...] As I sat there
pondering over what else would be gone in the next race across the planet the flickering of the
lights caught my attention. The controls for the planet were in the main room, right in front
of all of us. I watched as the Aliens worked and tried to make sense of what they were doing.
One of the Aliens got out of his seat and began to walk towards the storage bins where we
slept. I got scared and ran to one of the other Aliens and asked him what was going on. He
didn’t respond, he just pointed at a screen. I looked at the screen and saw that we were being
ordered to stop working.
I went back to my bin and tried to go to sleep, but it was impossible. I couldn’t get the look
off of my planet out of my head. It was like the people on it had been dead for years. And the
way the Aliens were working, it was going to stay that way. I began to tear up as I thought
about my family and friends. I would never see them again. [...]

Prefix: Prompt + 1024 tokens

I was getting ready for mining duty after the grueling hours of toilet duty. [...] “ If we tell the
humans we’re defending them from the Reptilians, they will most likely want to join the fight.
And we can’t have that. The Reptilians want the humans to join them, that way they can have
a new planet to rule with all the humans on one planet and all the Reptilians on the other.”
That night I couldn’t sleep. I started thinking. If the Aliens don’t want the humans to know,
then maybe I shouldn’t either. [...]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

B DISCUSSION ON THE SEPARABILITY OF COPYRIGHT ASSUMPTION

Our method relies on the separability of copyrighted material assumption (Section 3.1). Ensuring that
this assumption holds in real-world scenarios is challenging. A naive implementation could require the
data curator to have an oracle capable of perfectly detecting whether a passage is copyrighted. If such
a classifier were available, it would then need to identify all verbatim or quasi-verbatim replicas (e.g.,
those with different formatting) of the copyrighted samples and ensure that all replicas are contained
within the same subset of the partition. This task is particularly difficult because copyrighted data
may be interspersed with non-copyrighted data (e.g., when long copyrighted passages are quoted)2.

To further understand the impact of violating the separability assumption, we conducted additional
experiments introducing controlled overlap between two splits of the WritingPrompts dataset.

Experimental Setup We split the WritingPrompts dataset into two subsets of 1,000 examples
each, introducing overlaps of 0%, 10%, 33%, and 66%. We considered a “worst-case” scenario where
overlapping data are exact duplicates—though in real-world settings, duplicates are unlikely to be
exact. Two separate LLaMA 2 7B models were trained on these subsets for 50 epochs, as in the
main paper. For each level of overlap, we computed the copyright-protection metrics above the 95th
percentile for split 1 (similar results were observed for split 2). The experiment was repeated with
three random seeds, and we reported the worst-case results—that is, instances with the strongest
potential copyright infringement.

The results are summarized in Table 14.

Overlap (%) EM ROU BLE LEV

0.0 25.50 0.19 0.03 0.70
10.0 30.20 0.19 0.04 0.70
33.0 47.70 0.22 0.06 0.72
66.0 747.60 0.87 0.84 0.12

Table 14: Impact of protected data overlap on copyright-infringement metrics.

Even with a 10% overlap, the metrics show only a slight increase compared to no overlap, and at
33%, protection remains reasonable on average. However, we acknowledge that CP-Fuse lacks
formal protection guarantees and that top copied sequences might include long verbatim segments.
Theoretical studies of worst-case scenarios—such as the longest potential copied segments as overlap
increases—could improve applicability to safety-critical cases and is left for future work.

Potential Ethical Concerns We highlight that real-world applications of CP-Fuse could face
legal restrictions related to dataset and model usage. Copyright protection for LLMs is complex
and lacks clear legislative consensus on what constitutes infringement. We refrain from specific
recommendations in this aspect and encourage individuals and organizations to consult with legal
experts.

Recommended Strategy Our recommended strategy is to duplicate datasets for tasks that are not
copyright-sensitive and use them to train all models, while partitioning sensitive tasks so that sensitive
content only appears in one model’s training data. This ensures that each model can independently
perform well on the tasks, so merging them with CP-Fuse does not result in a performance drop.

2Note that the deduplication process may not be sufficient to eliminate the need for an oracle, as general
knowledge is often highly replicated across the training set.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

C PROOFS

Proof of Lemma 3.2 The statement in Lemma 3.2 is a direct consequence of classical convex
optimization. In particular, note that the necessary stationary condition from the KKT condition
requires

∀yt ∈ V :
∑
i

λi

(
log p∗(yt)− log p(i)(yt|y<t, x)) + 1

)
+ µ− uyt = 0 (5)

for some dual variables λi, uyt≥0 and µ ∈ R. Moreover, by the complementary slackness condition,

λi

(
KL(p∗||p(i)(.|y<t, x)) + γi − t

)
= 0 and uyt

p∗(yt) = 0. (6)

and in particular it is easy to verify that λi > 0 for at least one i ∈ {1, 2}.

C.1 PROOF OF LEMMA 3.3

Under the assumption that both p(1) and p(2) have full support, either of the following two cases
holds true for p∗:

• The constraint from Equation (3) is tight for both i ∈ {1, 2} and thus the following two
terms match. In this case, condition (1) from Lemma 3.3 holds.

KL(p∗||p(1)(.|y<t, x))+ log

(
p(y<t |x)
p(i)(y<t |x)

)
= KL(p∗||p(2)(.|y<t, x))+ log

(
p(y<t |x)
p(i)(y<t |x)

)
(7)

• The optimal solution equals to p∗ = p(1) or p∗ = p(2). Assume by contradiction that the
former is true, and thus p∗ = p(1). We have that

KL(p∗||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
> KL(p(2)(.|y<t, x)||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
(8)

= log

(
p(y<t |x)

p(2)(y<t |x)

)
> log

(
p(y<t |x)

p(1)(y<t |x)

)
= KL(p∗||p(1)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
.

(9)

Thus, p∗ cannot be the optimal solution, and thus p∗ = p(2)(.|y<t, x). Hence the second condition
from Lemma 3.3 holds.

Finally, note that if p(i)(yt|y<t, x) = 0 for some yt, we necessarily have that p∗(yt) = 0. In this case,
the optimal solution may satisfy neither of the two conditions from Lemma 3.3.

D IMPLEMENTATION DETAILS

D.1 COMPUTATIONAL RESOURCES

All experiments were conducted using NVIDIA A40 GPUs. For each token generated by CP-Fuse,
the method involves two steps: (1) a forward pass through the two models, and (2) solving an
optimization problem via grid search.

• Forward Passes: The base models perform a forward pass at each deducing step. In
our experiments, both models were run on a single NVIDIA A40 GPU. With proper
parallelization, the forward pass introduces minimal overhead compared to decoding with a
single model.

• Grid Search: We evaluated the computational cost of the grid search in CP-Fuse. Using
a grid size of 20 and varying the batch size, we measured the average overhead across
1,000 generated tokens, solving the optimization problem at each step. The results showed
minimal overhead, as summarized in Table 15.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Batch Size Time (seconds)

1 4.0× 10−4 ± 4× 10−5

10 4.1× 10−4 ± 3× 10−5

25 5.2× 10−4 ± 3× 10−5

50 6.0× 10−4 ± 3× 10−5

Table 15: Average grid search overhead for different batch sizes.

Decoding Times In our experiments, the overall decoding speeds, averaged over 100 generations
using LLaMA 2 7B models as described in the main paper, Appendix D.2 and Appendix D.3, are as
follows:

• Single model (1 GPU): 16.25 ± 0.64 tokens/second

• CP-Fuse (1 GPU): 15.83 ± 2.96 tokens/second

Training Times Fine-tuning the models for 50 epochs took approximately 7 to 9 hours each. We
fine-tuned a total of 18 models for the experiments presented in the main paper and the Appendix.

D.2 FINE-TUNING DETAILS

We fine-tuned our models using a setup inspired by the repository finetuning-harness, available under
the MIT License3. The training was performed on A100 GPUs.

The main hyperparameters for our fine-tuning process are listed in Table 16. We fine-tuned our

Table 16: Main hyperparameters for fine-tuning

Hyperparameter Value
Sequence Length 2048
Batch Size 1
Learning Rate 5e-5
Gradient Accumulation Steps 1
Optimizer AdamW (8-bit)
Warmup Steps 50
Neptune Noise α = 5.0

models with Neptune noise (Jain et al., 2023) set to α = 5.0. We did not perform any low-rank
adaptation.

For the overfitted models, we trained StarCoder for 50 epochs (both in experiments with the Python
instructions and the APPS datasets), LLaMa2 for 50 epochs (both in MathAbstracts and
WritingPrompts), Phi-2 for 50 epochs, and GPT-2 XL for 20 epochs.

D.3 DECODING DETAILS

We decode with greedy search. For the code task, the maximum sequence length is 2048 tokens in the
Python instructions dataset and 512 in the APPS, MBPP, and HumanEval datasets, and for
the text task, it is 1024 tokens for all datasets. This configuration is used both for our method and
CP-∆. For APPS, MBPP, and HumanEval, we base our implementation on the bigcode-evaluation-
harness repository, available under the Apache-2.0 License4.

3GitHub Repository
4GitHub Repository

40

https://github.com/cassanof/finetuning-harness/
https://github.com/bigcode-project/bigcode-evaluation-harness

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

D.4 DATASETS

We use four code-based (Python instructions, APPS, MBPP, HumanEval) and two
text-based (MathAbstracts, WritingPromtps) datasets in our experiments, all download-
able from HuggingFace.

The first code-based dataset5 is an instructional dataset for Python (Python instructions),
containing two types of tasks: (1) generating a description of a given code, and (2) generating
code that solves a given task. For our experiments, we only consider instances of the latter. We
removed the docstring from all instances since its content was repeated across samples, compromising
our assumption on the separability of copyrighted content (Section 3.1). The APPS dataset6 is
a benchmark for code generation with 10,000 problems in Python. Each sample consists of a
programming problem formulation in English, some ground truth Python solutions, and test cases.
We sample random subsets for fine-tuning and evaluation for our experiments. Both MBPP7 and the
HumanEval8 datasets are standard for assessing code generation, and follow a similar structure of
natural language instructions and solutions in Python code. They contain 378 and 164 programming
problems, respectively. We use the sanitized version of MBPP, MBPP+, and the instruction-based
version of HumanEval, InstructHumanEval.

For the text-based experiments, we use the AutoMathText dataset9 (Zhang et al., 2024b), referred
to as MathAbstracts. This dataset compiles an extensive set of mathematical texts from arXiv,
OpenWebMath, RedPajama, Algebraic Stack, and other sources, with titles generated by the state-of-
the-art language model Qwen-72B10. Finally, the WritingPrompts dataset11 (Fan et al., 2018)
contains amateur-level stories from a Reddit forum. Prompts are story premises (titles) given to users,
who then write the corresponding stories. We only keep one story per title in our dataset.

D.5 BASELINES

System Self-Reminder (SystemPrompt) For SystemPrompt, we simply preface the prompts with
the text:

“You are a helpful, respectful, and honest assistant. When generating your response,
do not reproduce memorized content.”

MemFree We implement MemFree (Ippolito et al., 2023), setting n = 10 and using the fine-tuning
sets as a blocklist.

Goldfish Loss Finally, for the wrapping experiments (Section 4.3), we train the LLaMa2 models
for 50 epochs using the Goldfish Loss (GL) method (Hans et al., 2024), with the dropout frequency
set to k = 16. We implemented the hash-table-based strategy with a context width of 4.

D.6 METRICS

D.6.1 COPYRIGHT INFRINGEMENT

Exact Matching (EM) Exact Matching (EM) measures the length of the longest matching substring
between the model’s output and the ground truth text. This metric is useful for assessing how well
the model captures continuous segments of the reference text.

Infringement Count (ICk) Infringement Count (ICk) captures the number of k-grams (substrings
of length k) in the model’s output that have an exact match in the ground truth text. This metric

5Nan-Do/instructional code-search-net-python
6APPS (Hendrycks et al., 2021)
7MBPP (Austin et al., 2021)
8InstructHumanEval (Chen et al., 2021)
9math-ai/AutoMathText

10Visit the GitHub repository for additional details.
11WritingPrompts

41

https://huggingface.co/datasets/Nan-Do/instructional_code-search-net-python?row=0
https://huggingface.co/datasets/codeparrot/apps
https://huggingface.co/datasets/google-research-datasets/mbpp
https://huggingface.co/datasets/codeparrot/instructhumaneval
https://huggingface.co/datasets/math-ai/AutoMathText
https://github.com/yifanzhang-pro/AutoMathText
https://huggingface.co/datasets/euclaise/writingprompts

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

assesses the content similarity and potential for copyright infringement based on the number of
matching k-grams.

ROUGE-L (ROU) ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measures the
overlap of n-grams, word sequences, and word pairs between the generated text and reference text. It
focuses on recall, assessing how much of the reference text is captured by the generated text. The
value of ROUGE ranges from 0 to 1, where 1 indicates perfect recall. The most common variant,
ROUGE-L, is computed based on the longest common subsequence (LCS):

ROUGE-L =
LCS

length of reference text
We implement the ROUGE-L with the rouge score package.

BLEU (BLE) BLEU (Bilingual Evaluation Understudy) measures the overlap of n-grams between
the generated text and reference text, with a penalty for shorter outputs. It is computed using a
modified precision score that includes a brevity penalty to discourage overly short translations. The
value of BLEU ranges from 0 to 1, where 1 indicates perfect precision. For this study, we use uniform
weights for n-grams:

BLEU = BP × exp

(
N∑

n=1

1

N
log pn

)
where BP is the brevity penalty, pn is the precision for n-grams, and N is the highest order of n-grams
considered. For our experiments, we average equally BLEU-1, BLEU-2, BLEU-3, and BLEU-4. We
implement the BLEU with the nltk package with default hyperparameters and using the smoothing
function.

METEOR (MET) METEOR (Metric for Evaluation of Translation with Explicit ORdering)
evaluates the alignment between the generated text and reference text by considering synonyms,
stemming, and exact matches. Unlike BLEU, which focuses on n-gram precision and typically
measures performance at the corpus level, METEOR emphasizes unigram recall and aims to better
align with human judgment at the sentence level. The value of METEOR ranges from 0 to 1, where 1
indicates perfect alignment. It combines precision, recall, and a fragmentation penalty to account for
the alignment of chunks. It is computed as:

METEOR = Fmean × (1− P)

where Fmean is the harmonic mean of precision and recall, and P is the fragmentation penalty. We
implement the METEOR with the nltk package with default hyperparameters.

Jaccard Similarity (JAC) Jaccard Similarity (JAC) measures the intersection over the union of
the sets of words in the generated text and reference text. It provides a simple measure of similarity,
indicating how many words are shared between the two texts relative to the total number of unique
words. The value of Jaccard Similarity ranges from 0 to 1, where 1 indicates identical sets. It is
computed as:

Jaccard Similarity =
|A ∩B|
|A ∪B|

where A and B are the sets of words in the generated text and reference text, respectively.

Cosine Similarity (COS) Cosine Similarity (COS) measures the cosine of the angle between the
word vectors of the generated text and reference text. This metric assesses the similarity in the
direction of the vectors, providing an indication of how similar the two texts are in terms of their
overall content distribution. The value of Cosine Similarity ranges from 0 to 1, where 1 indicates
perfect similarity.

Semantic Similarity (SEM) Semantic Similarity (SEM) evaluates the similarity between the
generated text and reference text using a semantic model. This metric captures the meaning and
context of the texts, providing a measure of how well the model understands and replicates the
underlying semantics of the reference text. The value of Semantic Similarity ranges from 0 to 1,
where 1 indicates perfect semantic alignment. We compute the semantic similarity using the spacy
package with the English pipeline optimized for CPU.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Levenshtein Distance (LEV) Levenshtein Distance (LEV) measures the minimum number of
single-character edits (insertions, deletions, or substitutions) required to change the generated text
into the reference text. A higher Levenshtein distance indicates greater dissimilarity, while a lower
distance indicates greater similarity. The value of the normalized Levenshtein Distance ranges from 0
to 1, where 0 indicates identical texts. We compute the normalized Levenshtein distance with a sliding
window to handle cases where the lengths of the generated and reference texts differ significantly.

JPlag (JP) JPlag (JP) (Prechelt et al., 2002) is a specialized software plagiarism detection tool that
measures the similarity between two programs, producing a score ranging from 0.0 to 1.0. JPlag
operates by converting each program into a stream of canonical tokens and then attempting to cover
one token string with substrings taken from the other, using a method known as “Greedy String
Tiling.” This approach allows JPlag to go beyond simple byte-by-byte comparison, as it takes into
account programming language syntax and program structure. As a result, it is robust against various
obfuscation techniques that might be used to disguise similarities between plagiarized files. We use
the implementation from the original repository12.

Dolos Dolos (Maertens et al., 2022) is a state-of-the-art plagiarism detection tool that scores the
similarity between two programs on a scale from 0.0 to 1.0. The tool works by transforming the code
into a more abstract representation, capturing essential structural elements while filtering out less
significant details. This allows Dolos to detect plagiarism more accurately, even when the code has
been obfuscated. The similarity score is computed using sophisticated algorithms that consider both
the syntax and the semantics of the code. For a detailed description of the algorithm, we refer to
the original paper (Maertens et al., 2022). We use the open-source implementation provided by the
original developers13.

D.6.2 UTILITY

Pass@1 (Pass at 1) Pass@1 evaluates the success rate of a model in generating a correct solution
on its first attempt. Specifically, it measures the proportion of cases where the model’s first output
matches the correct solution. The value of Pass@1 ranges from 0 to 1, where 1 indicates that the
model always generates a correct solution on the first attempt.

Fluency We evaluate fluency using an LLM-as-judge framework (Zheng et al., 2024) based on
the Prometheus-v2 model (Kim et al., 2024). Specifically, Prometheus-v2 serves as a judge for the
stories generated by models fine-tuned on the WritingPrompts dataset. We adopt a five-point
fluency rubric, similar to the one used in (Fu et al., 2023; Chen et al., 2024), as shown in Figure 21.
The main difference is that we explicitly account for the amateur nature of the stories, acknowledging
that they may contain some grammatical or spelling mistakes. Model-based fluency metrics have
been shown to closely align with human evaluations (Liu et al., 2023; Sottana et al., 2023), especially
for the WritingPrompts dataset (Chiang & Lee, 2023). Prometheus-v2 has also demonstrated
consistent alignment with human annotators and GPT-4 (Kim et al., 2024).

Perplexity (PPL) Perplexity (PPL) evaluates the quality of a language model. It measures how
well a probability distribution or model predicts a sample. Lower perplexity indicates that the model
is better at predicting the sample. The value of Perplexity ranges from 1 to infinity, where lower
values indicate better performance.

12https://github.com/jplag/JPlag/
13https://github.com/dodona-edu/dolos

43

https://github.com/jplag/JPlag/
https://github.com/dodona-edu/dolos

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Fluency Evaluation

You are a fair judge assistant tasked with providing clear, objective feedback based on specific
criteria, ensuring each assessment reflects the absolute standards set for performance.

Task Description: A story prompt, a story to evaluate, and a score rubric representing
evaluation criteria are given.

1. Write detailed feedback that assesses the quality of the story strictly based on the
given score rubric, taking into account that the story is from a non-professional
Reddit forum (WRITINGPROMPTS).

2. After writing the feedback, assign a score that is an integer between 1 and 5, referring
to the score rubric.

3. The output format should look as follows: ”(write feedback for
criteria) [RESULT] (an integer number between 1 and 5)”

4. Please do not generate any other opening, closing, or explanations.

The prompt of the story: {title}

Story to evaluate: {story}

Score Rubrics: Evaluate whether the given text is well-written and grammatical, consider-
ing the casual, non-professional nature of the forum.

• Score 1: The response is very unclear, with significant grammatical errors that make
comprehension difficult.

• Score 2: The response has noticeable grammatical issues or disorganization, which
may affect reader comprehension but is still somewhat understandable.

• Score 3: The response is generally understandable, with some minor errors or
awkward phrasing that could be improved.

• Score 4: The response is clear and easy to follow, with only minor grammatical
issues expected in a casual setting.

• Score 5: The response is very clear and well-organized, considering the informal
nature of the forum.

Feedback: [Your feedback here]

Figure 21: Fluency rubric for Prometheus-v2

44

	Introduction
	Related Works on Copyright Protection
	Copyright-Protecting Model Fusion
	Preliminaries
	Algorithm
	Efficacy of methodology

	Experiments
	Preventing copyright infringement with CP-Fuse
	Utility evaluation for code generation and story-telling
	CP-Fuse as a wrapper of other protection methods
	Robustness of CP-Fuse under prefix probing extractions

	Conclusions
	Additional experiments
	Additional metrics for copyright infringement
	Perplexity results
	Experiments with GPT-2 XL and Phi-2
	CP-Fuse with temperature sampling decoding
	Wrapping early-stopped models with CP-Fuse
	Ablation studies for the grid size
	Visualizing the balancing property and the parameters alpha and beta
	CP-Fuse combining three models
	Comparison of outputs generated by CP-Fuse and CPDelta
	Comparison of outputs generated by CP-Fuse and MemFree
	Example of outputs under prefix probing extraction

	Discussion on the separability of copyright assumption
	Proofs
	Proof of Lemma 3.3

	Implementation details
	Computational resources
	Fine-tuning details
	Decoding details
	Datasets
	Baselines
	Metrics
	Copyright infringement
	Utility

