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ABSTRACT

We introduce Dynamic Gradient Harmonization, a novel solution to the gradient
conflict issue in optimization-based meta-learning. Meta-learning’s goal is to adapt
quickly to unseen tasks with limited training examples. A number of meta-learning
strategies aim to identify an optimal model initialization, subsequently updating
the meta-model interactively using gradients from adapted models fine-tuned on
a variety of tasks. However, existing methods neglect potential conflicts among
meta gradient updates from different tasks, hindering the meta-model’s training.
In response to this shortcoming, we propose a dynamic gradient harmonization
technique. Our proposed technique harmonizes these conflicting gradient updates,
enabling a unified, effective meta-model update. This is achieved by computing a
primary gradient update from weighted aggregation of gradients from fine-tuned
models, using an attention operator to emphasize the primary gradients. We
also implement an explore-exploit mechanism to prevent over-commitment to
local optima. Experimental results demonstrate the effectiveness of our approach,
resulting in more efficient training and improved generalization to new tasks.

1 INTRODUCTION

Meta-learning has shown to be effective in solving the problem of learning with limited training
examples. Popular deep learning models severely rely on the quantity and quality of training examples,
which suffer from under-fitting or over-fitting problems, especially with insufficient training data.
However, in practice, large-scale data are not always available. Meta-learning tries to solve this
problem by assuming that some data samples share the same set of base features though seem
unrelated Li et al. (2017); Ren et al. (2018); Munkhdalai & Yu (2017). Based on this assumption, a
model can be pre-trained to encode these base features and quickly transferred to learn new features
with limited new data. A number of meta-learning strategies aim to identify an optimal model
initialization, subsequently updating the meta-model interactively using gradients from adapted
models fine-tuned on a variety of tasks. Model-Agnostic Meta-Learning (MAML) Finn et al. (2017)
is the most representative method. Unfortunately, these prior optimization-based methodologies
tend to aggregate gradients equally from different tasks to update the meta-model. This approach
overlooks potential conflicts between gradient updates across tasks, which can obstruct the effective
training of the meta-model Liu et al. (2021).

The gradient conflict problem is a well-researched topic in the multi-task learning community.
Existing works solve this problem in multi-task learning by directly manipulating gradients from
each well-tuned model to form a better update gradient Yu et al. (2020); Chen et al. (2020). However,
unlike multi-task learning, meta-learning will focus on a general meta-objective rather than a fixed
set of predefined tasks. Therefore, directly applying methods in multi-task learning is not an optimal
solution to the gradient conflict problem in meta-learning with different optimization objectives.

To address the gradient conflict problem in meta-learning, we propose a metric called Gradient
Conflict Index, which can reflect the divergence across different tasks. Furthermore, inspired by this
metric, we introduce a novel approach, termed Gradient Harmonization, to mitigate the gradient
conflict issue that emerges across tasks in meta-learning. In particular, we propose using weighted
gradients aggregation to fuse gradients from various tasks. The weights of fine-tuned models are
computed by comparing their gradients with the average gradients of all fine-tuned models. In this
way, the gradients from fine-tuned models closer to the average gradients will contribute more to
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updating the meta-model. Since the gradient conflicts can be different across layers in a neural
network, we propose a layer-wise dynamic gradient harmonization method, which employs an
attention layer to dynamically aggregate gradients from different fine-tuned models for each layer.
To avoid over-emphasizing gradients from some specific fine-tuned models, we propose an explore-
exploit learning schedule with cosine annealing, allowing the meta-model to balance exploration and
exploit. The experimental results on various datasets demonstrate the effectiveness of our methods.

2 RELATED WORK

This section discusses related works to meta-learning and gradient conflict.

2.1 META-LEARNING

Meta-learning algorithm aims to train a model that can quickly adapt to unseen tasks. A meta-learning
algorithm consists of an inner loop that trains a model independently on different tasks to get different
well-tuned models and an outer loop that evaluates these well-tuned models on query data and
aggregates all gradients to update the base model. Note that meta-learning fundamentally differs
from multi-task learning, which trains neural networks on multiple tasks simultaneously. Multi-task
learning only focuses on certain tasks. However, meta-learning will focus on the meta-objective
presented in the outer loop. The meta-objective can be very general, such as letting the model learn a
learning process on certain tasks.

Currently, the work on meta-learning can be divided into three categories:metric-based, model-based,
and optimized-based methods Huisman et al. (2021). The metric-based and model-based meta-
learning algorithms all introduce extra features and models Koch et al. (2015); Vinyals et al. (2016);
Snell et al. (2017); Sung et al. (2018); Shyam et al. (2017); Santoro et al. (2016); Munkhdalai &
Yu (2017); Mishra et al. (2017). The optimization-based meta-learning algorithms, on the other
hand, modify the traditional neural network’s optimization steps to make it feasible for few-shot
learning. MAML Finn et al. (2017) is an important algorithm in this category. The key idea is to get
a good initialization parameter set θ to quickly adapt to the unseen task. The inner loop fine-tunes the
meta-model on support data. The outer loop evaluates these fine-tuned models on query data gradient
to update the original base model. Meta-SGD Li et al. (2017) is similar to MAML, except it will learn
a specific learning rate for each parameter in the meta-model using a multi-layer-perceptron network.

2.2 GRADIENT CONFLICT PROBLEM

In learning problems with multiple tasks, the base model is fine-tuned by each task with its updated
gradient. The base model will be updated as below:

g′ = θ − α
1

K

∑
Ti

gi, (1)

where k is the number of tasks and gi is the gradient associated with the task Ti. However, when
these gradients gi do not align well, the final g′ cannot reflect the optimal update direction and step.

Several works have been proposed to tackle the gradient conflict problem in the multi-task learning
setting, Yu et al. (2020) directly manipulates the conflicting gradients by projecting one gradient
on the normal plane of the other gradient to reduce the angle and magnitude difference between
two gradients. Chen et al. (2020) propose a “GradDrop” algorithm, which constructs a mask for
each gradient by measuring how many positive gradients are presented at a certain value. Liu et al.
(2021) try to pick a gradient that can decrease not only the average loss but also the loss for every
specific task. In the meta-learning area, Jerfel et al. (2019) try to grasp the relatedness between
different tasks and cluster the similar tasks together. Yao et al. (2019) cluster the tasks into different
groups and apply knowledge adaption to transfer the knowledge to cluster-based initialization. Unlike
task-similarity-based methods Yao et al. (2019); Jerfel et al. (2019), this work propose to resolve the
conflicts existing among these fine-tuned models. Updating the base model with these conflicting
gradients will compromise the model performance. SHI et al. (2023) propose to measure the pairwise
confliction severity of each layer of the model and set the layer with the largest severity as the
task-dependent layer. Under meta-learning setting, these method will be less effective since they are
designed to optimize a fixed set of tasks not a general objective. To address this issue, we propose a
weighted gradient aggregation method, which aggregate gradients with different weights to focus on
better generalized fine-tuned models.
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3 CROSS-TASK GRADIENT HARMONIZATION FOR META-LEARNING

In this section, we propose a metric to measure the Gradient Harmonization method designed to
mitigate the cross-task gradient conflict issue inherent in optimization-based meta-learning.

3.1 GRADIENT CONFLICT PROBLEM IN OPTIMIZATION-BASED META LEARNING

𝑔1
θ

𝑔2

𝑔3

𝑔result

𝑔4
Figure 1: Illustration of gradient conflict.
When updating the meta-model θ for
four tasks, conflicts emerge among the
gradients derived from each task, thereby
reducing the efficiency of the update. For
instance, gradients g1 and g2 are in op-
posing directions.

In optimization-based meta-learning, gradient conflict
refers to the misalignment of gradients across distinct tasks
during the meta-update phase Liu et al. (2021). Algorithms
such as MAML (Model-Agnostic Meta-Learning) Finn
et al. (2017) typically employ a two-level optimization
process. This involves an inner loop that adapts to each
task individually and an outer loop that updates the meta-
model based on the performance of the adapted models.
Specifically, in the outer loop, gradients from the adapted
models across different tasks are aggregated to update the
meta-model. However, when tasks are diverse and their
gradients point in various directions, the cumulative update
may not be optimal for any single task. This can result in
suboptimal training of the meta-model, a challenge known
as gradient conflict.

Formally, in each meta-update cycle, an optimization-
based meta-learning algorithm randomly selects a batch
of tasks and refines a unique model for each task. Subse-
quently, the gradients of each fine-tuned model are aggregated to update the meta-model. The typical
meta-update rule is as follows:

θt = θt−1 − β∇θt−1

∑
Ti

LTi
(θt−1

i ) = θt−1 − β
∑
Ti

∇θt−1LTi
(θt−1

i ). (2)

In the equation, θt represents the meta-model at the tth step, θt−1
i denotes the ith model fine-tuned on

task Ti, and LTi
(θt−1

i ) is the loss incurred when θt−1
i is evaluated on task Ti. β is the learning rate

employed for training the meta-model. Gradient conflict occurs when the gradients ∇θt−1LTi(θ
t−1
i )

point in diverse directions. An example of this gradient conflict is depicted in Figure 1. Resolving
such conflicts is crucial for achieving more efficient meta-learning optimization.

The gradient conflict issue is also observed in multi-task learning, yet the two scenarios are funda-
mentally distinct owing to their differing learning objectives. Multi-task learning focuses on training
a model on a fixed set of tasks; essentially, it employs a single-level optimization process devoid of a
meta-objective. Techniques Liu et al. (2021); Yu et al. (2020); Chen et al. (2020) designed to resolve
gradient conflicts in this context aim to enhance performance on these predefined tasks, which may
not translate effectively to the meta-learning setting. In meta-learning, the objective is to effectively
solve unseen future tasks Hospedales et al. (2020). As such, methods successful in multi-task learning
may not necessarily be applicable or effective in the context of meta-learning. Consequently, it’s
crucial to develop and refine methods specifically designed to address gradient conflict in the realm
of optimization-based meta-learning.

3.2 QUANTITATIVE METRIC FOR GRADIENT CONFLICT

To quantify the extent of gradient conflict in meta-learning, a suitable metric is essential. This will
further inspire our proposed methods and facilitate experimental evaluations. Existing metrics SHI
et al. (2023) primarily assess conflicts via pairwise gradient divergence, which is not suitable for
measuring conflict among multiple gradients. To overcome this shortcoming, we introduce a new
metric, the Gradient Conflict Index (GCI). This index, inspired by variance metrics, is capable of
measuring divergence.
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Figure 3: An illustration of the proposed layer-wise dynamic gradient harmonization method. Given
gradients of three fine-tuned models, the update gradients are computed separately for each layer. For
the ℓth layer, the query gradients are computed by taking the weighted average of gradients from the
corresponding layers of three fine-tuned models. Then, an attention operator is used to dynamically
fuse the update gradients.

Specifically, given gradients from a batch of tasks where gi is from task Ti, we first compute the
aggregated gradient ḡ. Subsequently, the GCI value is calculated as follows:

GCI(gi, ḡ) =
∑
Ti

||gi||(1− cos(gi, ḡ)) =
||gi|| − gi · ḡ

||ḡ||
, (3)
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Figure 2: Loss vs. GCI values. The red line
is the regression line.

where cos(·) is the cosine similarity function. This
metric effectively captures both the divergence in
magnitudes and task gradients’ directions. When
task gradients exhibit significant directional diver-
gence, the GCI value increases due to higher values
of 1−cos(gi, ḡ). Similarly, the GCI value rises when
there is a greater divergence in magnitude. Figure 2
depicts the relationship between task loss and the GCI
value for 100 randomly selected tasks from the Mini-
ImageNet dataset, a benchmark for meta-learning-
based few-shot classification. Each batch consists of
four 5-way-1-shot image classification tasks. The fig-
ure demonstrates that batches with lower GCI values
correspond to reduced gradient conflicts, resulting in
enhanced training performance.

3.3 LAYER-WISE DYNAMIC GRADIENT HARMONIZATION

Guided by the proposed GCI metric, it becomes crucial to prioritize task gradients that closely
align with the aggregated update gradients, both in magnitude and direction, to mitigate gradient
conflict. Consequently, we propose a Gradient Harmonization algorithm that assigns varying weights
to gradients from different tasks. Specifically, it places greater emphasis on gradients from fine-tuned
models that more closely resemble the final update.

We implement gradient harmonization by attributing different weights to various gradient updates
to accomplish this. These weights are assigned based on each update’s similarity to the average
meta-update. Also, when updating the meta-model, weights across the different layers of a neural
network are conventionally updated using the same weights. However, it has been observed that the
degrees of conflict can vary across different layers. A uniform update rule for the entire network may
not yield the optimal solution for all layers. We propose a layer-wise dynamic gradient aggregation
method utilizing an attention operator to address this issue. This operator is designed to dynamically
emphasize the most significant gradients for each layer. Given a set of K gradients [gℓ

1, . . . , g
ℓ
K ] for

layer ℓ, we first calculate the query gradient gℓ
q by averaging these gradients. We then employ an
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attention operator with gq as the query vector and gℓ as both key and value vectors. We use the GCI
values as the aggregation coefficients. This process is formally defined as follows:

ḡℓ =
1

K

K∑
k=1

gℓ
k, w′

i =
exp(−GCI(gi, ḡ))∑K

k=1 exp(−GCI(gk, ḡ))
, gℓ

u =

K∑
k=1

w′
kg

ℓ
k, θ

ℓ+1 = θℓ − βgℓ
u. (4)

This process fundamentally employs an attention operator. This operator can adaptively adjust the
aggregation weights for different layers, so it dynamically resolves varying degrees of conflict based
on the GCI metric. The specific details of our proposed layer-wise dynamic gradient harmonization
algorithm are presented in Algorithm 1. SHI et al. (2023) observes that the confliction score can
be very different between different layers in a model. Therefore, we apply the layer-wise attention
operator to adapt to different confliction score of each layer in the model. Figure 3 provides a visual
example of the proposed method in action.

3.4 EXPLORE-EXPLOIT LEARNING SCHEDULER

Algorithm 1 Dynamic Gradient Harmonization
1: Require: A task distribution T , inner loop learning rate

α, inner loop update steps k, outer loop learning rate β
2: Initialize model parameter θ
3: while not converge do
4: Sample a subset of tasks Ti from T
5: for all task in Ti do
6: for inner loop step k do
7: Sample D = (xi, yi) from Ti as support
8: Evaluate LD

k (θi)
9: update θi = θi − α ∗ ∇θiL

D
k (θi)

10: end for
11: Use D′ = Ti −D as query
12: g = ∇θiL

D′
t (θi)

13: end for
14: if explore then
15: perform the original meta-update
16: else
17: for all layer ℓ do
18: for all task T in meta-model do
19: gℓ

u = Attn
(

1
K

∑K
k=1 g

ℓ
i , g

ℓ, gℓ
)

20: end for
21: θℓ = θℓ − βgℓ

u

22: end for
23: end if
24: end while

Previously, we introduced a Dynamic Gra-
dient Harmonization approach aimed at
resolving gradient conflicts by emphasiz-
ing certain fine-tuned models. While this
method effectively mitigates gradient con-
flicts, it risks over-emphasizing certain
models, potentially leading to sub-optimal
solutions due to insufficient exploration of
the solution space. To address this con-
cern, we propose an Explore-Exploit learn-
ing schedule (EE) to ensure a thorough
exploration of the solution space. During
the exploitation phase, the meta-model is
updated using the proposed layer-wise dy-
namic gradient aggregation strategy. Con-
versely, during the exploration phase, the
original update strategy is employed, allow-
ing the meta-model to explore solutions by
gradients of less-emphasized models.

Drawing inspiration from the cosine an-
nealing learning rate schedule Loshchilov
& Hutter (2016), we incorporate the ex-
ploration step at a probability that follows
cosine annealing cycles. The probabilities
of executing explore and exploit steps are
calculated as follows:

peexplore = pmin +
1

2
(pmax − pmin)(1 + cos (πe/E)), peexploit = 1− peexplore,

where pmax and pmin denote the maximum and minimum probabilities of initiating the exploration
step, respectively. The term e signifies the current epoch number, while E represents the transition
epoch number, marking the point at which the trend in probabilities alters.

By employing the cosine annealing schedule, the probabilities of exploration follow a cosine function.
The value of e determines when the probability reaches pmax or pmin. In accordance with this
schedule, the meta-model is inclined to explore during the early stages of training to establish
essential knowledge about the learning space. As training advances, the meta-model tends to exploit
this knowledge for more efficient optimization. Consequently, the meta-model achieves a balance
between exploration and exploitation, ensuring effective and efficient learning.

4 EXPERIMENTS

We conduct experimental studies on different real-world datasets to evaluate our proposed methods.
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Table 1: Comparison results for 5-way classification on the Mini-ImageNet dataset. The backbone
model used for gradient harmonization is Convnet4. All results of the baseline models are reported
from their original works. The result of multi-task methods are reproduced from official released
codes. “-” indicates results not available.

Model Type 5-way-1-
shot

5-way-5-
shot

Matching Network Vinyals et al. (2016) metric 43.44±0.77 55.31±0.73
Relation Network Sung et al. (2018) metric 50.44±0.82 65.32±0.70
Prototype Network Snell et al. (2017) metric 49.42±0.78 68.20±0.66
GNN Garcia & Bruna (2017) metric 50.33±0.36 66.41±0.63
MAML+PC-GRAD Yu et al. (2020) multi-task 50.93±1.88 65.93±0.95
MAML+GRAD-DROP Chen et al. (2020) multi-task 20.37±1.45 23.83±0.65
MAML+CA-GRAD Liu et al. (2021) multi-task 50.03±1.88 64.32±1.05
Meta-Learner LSTM Ravi & Larochelle (2016) optimization 43.44±0.77 60.60±0.71
TAML Jamal & Qi (2019) optimization 46.28±0.79 62.92±0.66
MAML Finn et al. (2017) optimization 48.17±1.75 63.11±0.91
ANIL Raghu et al. (2019) optimization 46.70±0.40 61.50±0.50
BOIL Oh et al. (2020) optimization 49.61±0.16 66.45±0.37
Meta-SGD Li et al. (2017) optimization 50.47±1.87 64.03±0.94
HSML Yao et al. (2019) optimization 50.38±1.85 -
Reconciling Jerfel et al. (2019) optimization 49.60±1.50 64.60±0.92
MAML+LWDGH (ours) optimization 51.40±1.76 67.06±0.97

4.1 EXPERIMENTAL SETTINGS

This section introduces the datasets and backbone models to evaluate our proposed methods.

Dataset
We evaluate the proposed methods on three datasets: Mini-ImageNet Gidaris & Komodakis (2018),
Tiered-ImageNet Lee et al. (2019), and Cub200 Welinder et al. (2010) datasets. The Mini-ImageNet
dataset consists of 100 classes with 600 samples per class. Each data sample is a 84 × 84 colored
image. By following previous works Ravi & Larochelle (2016), we split 100 classes into 64, 16,
and 20 class groups for training, validation and testing. The Tiered-ImageNet dataset consists of
608 classes with 779,165 images. These 608 classes are furthered combined into 34 high-level
classes. These high-level classes are divided into 20, 6, and 8 class groups for training, validation and
testing Ren et al. (2018). The Cub200 dataset contains 11,788 images with 200 different labels of
birds. These data are divided into 100, 50, and 50 class groups for training,validation and testing Ye
et al. (2020).

Backbone Model
We use two backbone models in our experiments: Convnet4 and Resnet12 He et al. (2016). Convnet4
is a 4-layer Convolutional Neural Network with 32.9k trainable parameters. Resnet12 is a 18-layer
Convolutional Neural Network with 8 million trainable parameters. Using these two models, we
show that our proposed methods can work with both small and large networks. The implementations
are based on a public code source Mu (2020).

4.2 RESULTS ANALYSIS

We first evaluate our methods on Mini-ImageNet using Convnet4 as the backbone model. We
compare our method with previous state-of-the-art models including Meta-Learner LSTM Ravi
& Larochelle (2016), TAML Jamal & Qi (2019), MAML Finn et al. (2017), Meta-SGD Li et al.
(2017), MetaNet Munkhdalai & Yu (2017), Matching Network Vinyals et al. (2016), Relation
Network Sung et al. (2018), Prototype Network Snell et al. (2017), and GNN Garcia & Bruna (2017).
The experiments are conducted under two settings: 5-way-1-shot and 5-way-5-shot. The comparison
results are summarized in Table 1.

From the results, we can observe a major performance improvement after applying our LWDGH.
Comparing to the baseline model MAML, the performances are improved by 2.63% and 3.95% in
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Table 2: Test accuracy for 5-way classification on Tiered-ImageNet. MAML’s results are reproduced
based on the published code.

Task Backbone MAML MAML+LWDGH
5-way-1-shot Convnet4 50.10±1.97 53.63±1.80
5-way-1-shot Resnet12 51.97±1.76 60.93±1.91
5-way-5-shot Convnet4 67.16±0.91 67.75±0.97

5-way-1-shot classification and 5-way-5-shot classification tasks, respectively. Notably, our method
outperforms all optimization-based and metric-based models on the 5-way-1-shot classification task.
This demonstrate that our method enables model to learn effectively even with limited training
examples. On the 5-way-5-shot classification task, the proposed method outperform most of state-of-
the-art models. Also, the proposed method outperforms three main gradient manipulation methods
under the multi-task learning setting.

4.3 RESULTS USING A LARGE-SCALE DATASET

Previously, we evaluated our methods on the Mini-ImageNet dataset using Convnet4 as the backbone
model. In this section, we conduct experiments using a large-scale dataset to further verify the
effectiveness of our methods. To this end, we use the Tiered-ImageNet dataset, which contains
779,165 images. The experiments are conducted under three settings: 5-way-1-shot on Convnet4,
5-way-1-shot on Resnet 12, and 5-way-5-shot on Convent4. The results are summarized in 2. The
results show that the model trained with our methods outperforms baseline models by 3.53%, 8.96%,
and 0.69% on three settings, respectively. Notably, the performance improvements are much larger
in fewer-shot experiment settings, which shows that our methods can effectively deal with noisy
gradient updata and better train the meta-model.

4.4 RESULTS USING A LARGE BACKBONE MODEL

Table 3: Comparison results for 5-way-1-shot classifica-
tion on the Mini-ImageNet dataset using Resnet12.

Method Type 5-way-1-shot
DynamicNet optimization 58.55±0.50
MAML optimization 54.87±1.82
SNAIL model 55.71±0.99
adaResnet metric 56.88±0.62
MAML+LWDGH optimization 59.13±2.01

Previously, we evaluate our method us-
ing Convnet4, which is a relatively small
network. To show the performances on
large models, we change the backbone to
Resnet12, which contains about 8 million
trainable parameters. The results are sum-
marized in Table 3. From the results, we
can observe that our method outperforms
MAML with a margin of 4.3%. Compared
to results using Convnet4, the performance
is further improved, which indicates that
our gradient harmonization method is more effective on backbone models. Compared to previous
state-of-the-art models, our method outperforms them by a margin of at least 0.58%.

4.5 RESULT USING A SPECIAL-DESIGNED DATASET

Table 4: Comparison results of Convnet4 based model
on the Cub200 dataset using 5-way classification tasks.

Method 5-way-1-shot 5-way-5-shot
MAML 54.00±1.78 61.99±0.95
MAML+LWDGH 58.13±1.73 68.11±0.97

Previous experimental studies are mainly
based on Imagenet. The classes have sig-
nificant differences from each other. It has
been shown that our methods work well on
such kinds of datasets with different back-
bone models. However, it is unknown if
the proposed methods can perform well on
datasets with similar features. This section conducts experiments to demonstrate the effectiveness
of our methods on such kinds of datasets. To this end, we use the Cub200 dataset, which contains
11,788 images of 200 kinds of birds. The experimental settings are 5-way-1-shot and 5-way-5-shot
classification tasks using Convnet4 as the backbone model. The results are summarized in Table 4.
The result shows that the model trained with our methods outperforms MAML by 4.13% and 6.12%
on 5-way-1-shot and 5-way-5-shot classification tasks, respectively, which shows that our methods
enhance the learning efficiency and enable the model to extract advanced features to distinguish very
similar objects.
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4.6 ABLATION STUDY

Table 5: Ablation study on each proposed component
using the Mini-ImageNet dataset.

Method 5-way-1-shot GCI
MAML 48.17±1.75 4.8171
MAML + LWDGH 50.73±1.63 4.7545
MAML + LWDGH + EE 51.33±1.76 4.7146

We introduce a gradient harmonization
method and an explore-exploit learning
schedule to prevent the meta-model from
over-emphasizing specific fine-tuned mod-
els. To evaluate the contributions of each
component, we conduct ablation studies
under the setting of 5-way-1-shot classifi-
cations on the Mini-ImageNet dataset. To
this end, we run the experiments for 20 epochs and observe how the confliction changes. Each epoch
contain 200 groups of tasks. And each group contains four 5-way-1-shot image-classification tasks
leading to four gradients for each meta update. We train these task groups with MAML ,LWDGH
and LWDGH+EE method separately and compute the GCI values.

The results are summarized in Table 5. We can observe that all components make significant
contributions to the overall performance. In particular, the performance of LWDGH drops by 0.6%
without using the explore-exploit scheduler, which indicates that the meta-model overemphasizes
these fine-tuned models close to average gradient without sufficiently exploring the solution space.
The proposed scheduler effectively balances explore and exploit, leading to a better-generalized
meta-model. The results of GCI value are presented in the last two rows of Table 5. We can observe
that with the original MAML setting. the average GCI score is 4.8171. After applying LWDGH, the
confliction score drops to 4.7545. After applying EE, the confliction score can further drop to 4.7146.
The result shows that our proposed method can effectively resolve the gradient confliction problem in
meta-learning.

4.7 TRAINING EFFECTIVENESS STUDY
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Figure 4: Training loss analysis. The red
curve is for MAML and the blue curve is for
our gradient harmonization.

In Section 3.3, we introduce LWDGH aimed at dy-
namically resolving gradient conflicts arising from
various fine-tuned models. It is anticipated that this
approach will facilitate a more effective update of the
meta-model, leading to quicker convergence. To illus-
trate this, we perform experiments and document the
training losses for the models using both MAML and
our LWDGH. The comparative results are depicted in
Figure 4. This figure indicates that the model trained
with LWDGH converges significantly faster than the
one trained with MAML during the initial 50 epochs.
This acceleration is particularly noticeable within the
first 15 epochs, suggesting that the model benefits
from the resolution of gradient conflicts. This prop-
erty is also highly advantageous in meta-learning,
where fast adaptation to new tasks is required.

4.8 HYPER-PARAMETER STUDY

Table 6: Accuracy performance of proposed
algorithm with different transition epoch.

Transition Epoch 5-way-1-shot
20%-fixed 50.43±1.96
20%-Cosine-Annealing 49.67±1.75
33%-fixed 50.80±1.68
33%-Cosine-Annealing 51.33±1.76
50%-fixed 50.53±1.82
50%-Cosine-Annealing 50.67±1.77

One important hyper-parameter in our proposed
explore-exploit scheduler is the transition epoch as
described in Section 3.4. We conduct experiments
to investigate how the change of transition epoch
will affect the model performance. The experiments
are conducted on the 5-way-1-shot classification on
the Mini-ImageNet dataset. The backbone model is
Convnet4. We evaluate two transition modes: fixed
and cosine-annealing. In the fixed mode, we switch
between exploration and exploitation at a predeter-
mined number of epochs. Instead, cosine-annealing
follows the mechanism described in Section 3.4 to
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MAML

LWDGH

Malamute Bookshop Black footed ferret Electric guitar

MAML
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Theater curtain

Theatre Curtain Malamute Theatre Curtain

Golden Retriever School Bus Trifle Dalmatian Theater curtain

Theatre Curtain School Bus

Figure 5: Examples of MAML predictions and our gradient harmonization predictions. The wrongly
classified figures are colored red with predictions under them.

switch between explore and exploit. The selected transition epochs are 20%, 33%, and 50% of the
total epoch. The results are summarized in Table 6. From the results, we can observe that when
the transition epoch is 33% of the total epoch, the model performs the best. If the transition epoch
is 20%, the transition happens too soon, preventing adequate exploration of the solution space. If
the transition epoch is 50%, the transition happens too late, and the update conflicts have already
impacted the model. And in both 33% and 50% scenarios, the results show that the cosine-annealing
mechanism helps to improve the performance.

4.9 ERROR ANALYSIS

We visualize some predictions to show how our method can correct mistakes made by MAML. We
sample two specific tasks from the test set and visualize the predictions in Figure 5. The model
trained by MAML misclassifies 5 out of 10 samples across the two tasks. We observe that it extracts
only limited knowledge for each class. For instance, a trifle is misclassified as a school bus since
they share similar yellow and red colors. The black-footed ferret is misclassified as a Malamute due
to their comparable body shapes. For tasks requiring advanced features, the MAML-trained model
is insufficient. For example, the green background of the school bus image, the dark part of the
bookshop image, and the shooting angle of the guitar image are quite misleading, causing the model
to classify them into unrelated classes. By addressing the gradient conflict, our method enhances
training efficiency, enabling the model to classify complex and misleading images.

5 CONCLUSION

In this paper, we address the gradient conflict issue in optimization-based meta-learning. To mitigate
this issue, we propose a weighted gradients aggregation method that emphasizes models whose
gradients align closely with the average gradient. Moreover, we introduce a layer-wise dynamic
gradients aggregation technique using an attention operator, which dynamically assigns weights at
each model level. Importantly, we develop an ’explore-exploit’ mechanism to balance the weights
assigned to different models, preventing any single fine-tuned model from being excessively em-
phasized. Experimental results demonstrate the efficacy of our approach in reducing task conflicts,
outperforming both baseline and other state-of-the-art methods.
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