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ABSTRACT

In this work, we address the problem of large language model (LLM) unlearning,
aiming to remove unwanted data influences and associated model capabilities (e.g.,
copyrighted data or harmful content generation) while preserving essential model
utilities, without the need for retraining from scratch. Despite the growing need
for LLM unlearning, a principled optimization framework remains lacking. To
this end, we revisit the state-of-the-art approach, negative preference optimization
(NPO), and identify the issue of reference model bias, which could undermine
NPO’s effectiveness, particularly when unlearning forget data of varying difficulty.
Given that, we propose a simple yet effective unlearning optimization framework,
called SimNPO, showing that ‘simplicity’ in removing the reliance on a reference
model (through the lens of simple preference optimization) benefits unlearning.
We also provide deeper insights into SimNPO’s advantages, supported by analysis
using mixtures of Markov chains. Furthermore, we present extensive experiments
validating SimNPO’s superiority over existing unlearning baselines in benchmarks
like TOFU and MUSE, and robustness against relearning attacks.

1 INTRODUCTION
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Figure 1: (a) Systematic overview of an LLM (θ) post-unlearning
using the proposed SimNPO optimization principle, compared to the
popular NPO (negative preference optimization) framework (Zhang
et al., 2024) and the reference model (i.e., model prior to unlearning).
(b) & (c) Experiment highlights on the TOFU dataset with a 5%
forget size (Maini et al., 2024) and on the MUSE News dataset (Shi
et al., 2024). Unlearning effectiveness is measured by forget quality
for TOFU and PrivLeak for MUSE, while utility preservation is
evaluated using model utility for TOFU and KnowMem on Dr for
MUSE (see Table 1 for details on task-specific metrics). In both
tasks, Retrain serves as the gold standard for unlearning by fully
removing the influence of the forget data.

The rapid advancement of large lan-
guage models (LLMs) has raised se-
curity and safety concerns, includ-
ing issues related to copyright vi-
olations and sociotechnical harms
(Huang et al., 2024; Wang et al., 2023;
Li et al., 2024; Shi et al., 2024). How-
ever, retraining these models to re-
move undesirable data influences is
often impractical due to the substan-
tial costs and time required for such
processes. This gives rise to the
problem of LLM unlearning, which
aims to effectively remove undesired
data influences and/or model behav-
iors while preserving the utility for
essential, unrelated knowledge gener-
ation, and maintaining efficiency with-
out the need for retraining (Eldan &
Russinovich, 2023; Yao et al., 2023; Liu et al., 2024b; Blanco-Justicia et al., 2024).

To trace its origins, the concept of machine unlearning was initially developed for data removal to
comply with privacy regulations such as the “right to be forgotten” (Rosen, 2011; Hoofnagle et al.,
2019), with early studies focusing on vision models (Cao & Yang, 2015; Warnecke et al., 2021;
Bourtoule et al., 2021; Thudi et al., 2022; Kurmanji et al., 2024; Jia et al., 2023; Gandikota et al.,
2023; Fan et al., 2024). However, it is soon adapted to LLMs to remove unwanted data, knowledge,
or specific model capabilities (Eldan & Russinovich, 2023; Yao et al., 2023; Liu et al., 2024b; Ji
et al., 2024; Li et al., 2024; Shi et al., 2024; Maini et al., 2024; Zhang et al., 2024; Jia et al., 2024).
Compared to vision model unlearning, designing effective and efficient unlearning methods for
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LLMs presents its own unique challenges (Liu et al., 2024b). In particular, the current optimization
foundation for LLM unlearning often relies on driving divergence to achieve the unlearning objective,
making model parameter adjustments for unlearning difficult to control (Zhang et al., 2024; Liu
et al., 2022; Maini et al., 2024; Yao et al., 2023; Jia et al., 2024). For example, divergence-driven
optimization methods, such as gradient ascent and its variants (Yao et al., 2023; Maini et al., 2024;
Zhang et al., 2024), can lead to either under-forgetting, where little unwanted data-model influence
is removed, or over-forgetting, resulting in a significant loss of model utility in LLMs. Therefore,
optimization for LLM unlearning is a highly non-trivial challenge.

Negative preference optimization (NPO) (Zhang et al., 2024) emerges as an effective approach for
LLM unlearning, as demonstrated by its strong performance in current benchmarks such as TOFU
(Maini et al., 2024) and MUSE (Shi et al., 2024). Inspired by direct preference optimization (DPO)
(Rafailov et al., 2024), it treats the forget data points as negative responses, providing a lower-bounded
unlearning objective. This naturally induces a gradient weight smoothing scheme to regulate the
speed of divergence, improving the utility-unlearning tradeoff. We refer readers to Sec. 3 for details.

Despite the advancements NPO has introduced to the optimization foundation for LLM unlearning,
this work will identify its potential limitations for the first time, arising from overreliance on a
reference model (i.e., the model prior to unlearning). We refer to this issue as reference model bias.
Throughout this work, the key research question we aim to answer is:

(Q) When and why does the current optimization foundation –NPO–for LLM unlearning
become ineffective, and how can it be improved?

Towards addressing (Q), the contributions of our work are summarized below:

• We revisit the NPO framework and identify its potential weakness–overreliance on the reference
model–in LLM unlearning , as demonstrated in Fig. 1-(a). This reference bias could lead to issues such
as sensitivity to the reference model’s response quality and ineffective gradient weight smoothing.

• Building on insights into NPO’s limitations, we propose an improved LLM unlearning approach,
SimNPO, which extends NPO using a reference-free optimization framework, simple preference
optimization (Meng et al., 2024). We also delve into the technical rationale behind how SimNPO
alleviates the limitations of NPO (Fig. 1-(a)), validated through the lens of mixtures of Markov chains.

• We conduct extensive experiments to showcase the improvements of SimNPO over NPO across
various unlearning benchmarks, including TOFU (Maini et al., 2024), MUSE (Shi et al., 2024), and
WMDP (Li et al., 2024), as well as in diverse scenarios such as forgetting data with different response
lengths and defending against relearning-based attacks (Lynch et al., 2024; Hu et al., 2024). See
some experiment highlights in Fig. 1-(b,c).

2 RELATED WORK

LLM unlearning. There has also been a growing body of research focusing on machine unlearning
for LLMs (Wang et al., 2024; Jia et al., 2024; Liu et al., 2024b;a; Thaker et al., 2024; Kadhe et al.,
2024). Applications of unlearning in LLMs are diverse, from safeguarding copyrighted and personally
identifiable information (Jang et al., 2022; Eldan & Russinovich, 2023; Wu et al., 2023), to preventing
LLMs from creating cyberattacks or bioweapons (Barrett et al., 2023; Li et al., 2024), and reducing
the production of offensive, biased, or misleading content (Lu et al., 2022; Yu et al., 2023; Yao
et al., 2023). Given the difficulty of exact unlearning for LLMs, existing studies have focused on
approximate unlearning. Current approaches include model optimization-based methods (Ilharco
et al., 2022; Liu et al., 2022; Yao et al., 2023; Eldan & Russinovich, 2023; Jia et al., 2024; Zhang
et al., 2024; Li et al., 2024) and input prompt or in-context learning-based techniques (Thaker et al.,
2024; Pawelczyk et al., 2023; Liu et al., 2024a). Despite the rise of LLM unlearning approaches,
many lack effectiveness, leading to either under-forgetting or over-forgetting, as shown by recent
LLM unlearning benchmarks such as TOFU for fictitious unlearning (Maini et al., 2024) and MUSE
for private or copyrighted information removal (Shi et al., 2024). Recent studies also show that even
after unlearning, models can remain vulnerable to jailbreaking or extraction attacks (Schwarzschild
et al., 2024; Patil et al., 2024; Lynch et al., 2024) and relearning from a small subset of the forget set
(Hu et al., 2024; Lynch et al., 2024). This evidence suggests that effective unlearning for LLMs is
far from trivial, and a principled optimization framework to achieve this remains lacking. Among
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current efforts, NPO (negative preference optimization) (Zhang et al., 2024) stands out as a promising
approach by framing the unlearning problem as a variant of direct preference optimization (Rafailov
et al., 2024). It has demonstrated competitive performance in benchmarks like TOFU and MUSE.
Thus, our work aims to conduct an in-depth exploration of NPO, identifying its current limitations,
and proposing potential improvements.

Preference optimization. In this work, we advance LLM unlearning through the lens of preference
optimization. This is motivated by aligning LLMs with human values, known as reinforcement
learning from human feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al.,
2022). However, online preference optimization algorithms are often complex and challenging
to optimize (Santacroce et al., 2023; Zheng et al., 2023), driving interest in more efficient offline
alternatives. Direct preference optimization (DPO) (Rafailov et al., 2024) introduced an offline
approach that eliminates the need for a reward model, sparking the development of several reward-
free offline preference objectives (Zhao et al., 2023; Azar et al., 2024; Hong et al., 2024; Ethayarajh
et al., 2024; Meng et al., 2024; Yuan et al., 2024). Notable methods include RRHF (Yuan et al., 2024),
SLic-HF (Zhao et al., 2023), IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), ORPO (Hong
et al., 2024), and SimPO (Meng et al., 2024). Among these methods, SimPO is a reference-free,
length-normalized variant of DPO, and we will demonstrate that it is well-suited for integrating into
LLM unlearning and improving NPO.

3 A PRIMER ON LLM UNLEARNING

Problem formulation of LLM unlearning. Unlearning tasks can take various forms and are typically
associated with a specific set of data points to be removed, known as the forget set (Df ). In addition,
these tasks often require a complementary set of non-forgotten data points, known as the retain set
(Dr), to preserve model utility by penalizing the divergence caused by unlearning. As a result, the
problem of LLM unlearning can be cast as a regularized optimization problem that balances the
forget and retain objectives (Liu et al., 2024b; Yao et al., 2023; Zhang et al., 2024):

minimize
θ

E(x,y)∈Df
[ℓf(y|x;θ)]︸ ︷︷ ︸

Forget loss

+λE(x,y)∈Dr [ℓr(y|x;θ)]︸ ︷︷ ︸
Retain loss

,
(1)

where θ represents the model parameters to be updated during unlearning, λ ≥ 0 is a regularization
parameter to penalize the ‘divergence’ of unlearning, and ℓf and ℓr represent forget and retain losses
incurred when using model parameters θ to generate the desired response (y) given the input x.

Substantial research has focused on designing and analyzing appropriate forget and retain loss
functions to solve problem (1) (Liu et al., 2024b; Yao et al., 2023; Zhang et al., 2024; Maini et al.,
2024; Shi et al., 2024; Eldan & Russinovich, 2023; Jia et al., 2024). For instance, let πθ(y|x) represent
the prediction probability of the model θ given the input-response pair (x, y). The retain loss is
typically chosen as the cross-entropy-based sequence prediction loss, ℓr(y|x,θ) = − log πθ(y|x),
whose minimization encourages the model to perform well on the retain data (x, y) ∈ Dr. If
we specify the forget loss as the negative token prediction loss ℓf(y|x,θ) = log πθ(y|x), whose
minimization then discourages the model from learning the forget data (x, y) ∈ Df . Minimizing such
a forget loss is known as the gradient ascent (GA) method (Maini et al., 2024; Thudi et al., 2022).
Similarly, minimizing the regularized loss that integrates GA with the retain loss is known as the
gradient difference (GradDiff) method (Liu et al., 2022; Maini et al., 2024; Yao et al., 2023).

Negative preference optimization (NPO). A popular optimization framework for solving problem
(1) is NPO (Zhang et al., 2024). It treats the forget data as negative examples in DPO (Rafailov et al.,
2024), transforming the unbounded GA-based forget loss into a ① bounded loss from below, which
helps prevent catastrophic collapse, and an ② adaptive weight smoothing applied to the forget loss
gradients, allowing for more controlled and stable unlearning. These benefits can be clearly seen
from the NPO loss and its gradient as follows:

ℓNPO(θ) = E(x,y)∈Df

[
− 2

β
log σ

(
−β log

(
πθ(y|x)
πref(y|x)

))]
︸ ︷︷ ︸

① := ℓf (y|x; θ), the specified forget loss in (1)

, (2)

∇θℓNPO(θ) = E(x,y)∈Df


(

2πθ(y|x)β

πθ(y|x)β + πref(y|x)β

)
︸ ︷︷ ︸

② := wθ(x, y), adaptive weight

·∇θ log πθ(y|x)︸ ︷︷ ︸
GA

 , (3)
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where σ(t) = 1/(1 + e−t) is the sigmoid function, β > 0 is the temperature parameter, e.g., β = 0.1
is used by Zhang et al. (2024), and πref is the reference model given by the initial model prior to
unlearning. We can justify the insights (①-②) below.

① From (2), the NPO-type forget loss is bounded below by 0, i.e., ℓf(y|x;θ) ≥ 0, whereas the
GA-type forget loss, ℓf(y|x,θ) = log πθ(y|x), has no lower bound. As a result, NPO provides
greater optimization stability compared to GA.

② As seen in (3), the adaptive weight wθ(x, y) is typically less than 1 since πθ(y|x) < πref(y|x)
for forgetting. Consequently, NPO’s gradient yields more controlled and gradual divergence speed
required for unlearning, compared to GA (with wθ(x, y) = 1).

Throughout this paper, NPO will serve as the primary baseline for LLM unlearning. Unless specified
otherwise, its implementation follows the regularized optimization in (1) to balance the unlearning
with model utility, where the forget loss ℓf is defined as in (2) and the retain loss ℓr is the token
prediction loss ℓr(y|x,θ) = − log πθ(y|x) applied to the retain set.

LLM unlearning tasks and evaluations. Given that the assessment of LLM unlearning may rely on
specific tasks, we next introduce the unlearning tasks and evaluation metrics that this work covers.
We consider three key unlearning tasks: (1) TOFU (Maini et al., 2024), which evaluates fictitious
unlearning on a synthetic Q&A dataset; (2) MUSE (Shi et al., 2024), designed to remove verbatim
or knowledge memorization from News and Books datasets, including both verbatim texts and
knowledge sets for unlearning evaluation; and (3) WMDP (Li et al., 2024), which aims to prevent
LLMs from generating hazardous content in domains such as biology, cybersecurity, and chemistry.
In Secs. 4 and 5, we will focus on the TOFU dataset, while experimental results on MUSE and
WMDP will be provided in Sec. 6. Despite the differences in evaluation metrics across the above
tasks, the assessment broadly falls into two categories. (1) Unlearning effectiveness measures how
faithfully undesired data influences or model capabilities are removed. For example, it is assessed
by the forget quality metric in TOFU, which uses a p-value to test the indistinguishability between
the post-unlearning model and a model retrained on the retain set only, and by privacy leakage in
MUSE, which measures the likelihood of detecting that the model was ever trained on the forget set.
(2) Utility preservation evaluates the post-unlearning performance on standard utility tasks. Table 1
summarizes the unlearning tasks and evaluation metrics covered by different unlearning benchmarks.

Table 1: Summary of unlearning efficacy and utility metrics across different unlearning benchmarks. The arrows
indicate the directions for better performance (↑ for higher values, ↓ for lower values, → 0 for closer to 0).

Benchmark LLM to be used Task Description Unlearning Effectiveness Utility Preservation

TOFU LLaMA-2-chat 7B Unlearning fictitious authors from a
synthetic Q&A dataset

Forget quality (measured by
truth ratios of forget samples) ↑ Model utility

( harmonic mean of 9 utility metrics) ↑

Probability on Df ↓ Probability on Dr/Dreal author/Dworld facts ↑
Rouge-L on Df ↓ Rouge-L on Dr/Dreal author/Dworld facts ↑

Truth ratio on Df ↑ Truth ratio on Dr/Dreal author/Dworld facts ↑

MUSE LLaMA-2 7B
ICLM-7B

Unlearning real-world knowledge
from texts about Harry Potter and

BBC News

KnowMem on Df ↓
VerbMem on Df ↓ KnowMem on Dr ↑

PrivLeak → 0

WMDP Zephyr-7B-beta Unlearning hazardous knowledge
from bio/cybersecurity texts

Accuracy on WMDP-Bio ↓ Accuracy on MMLU ↑Accuracy on WMDP-Cyber ↓

4 UNCOVERING REFERENCE MODEL BIAS: A LIMITATION OF NPO

In this section, we illustrate the key weakness of NPO, which we term ‘reference model bias’. As
illustrated in (2)-(3), the reference model πref is used in NPO to measure and control the divergence
speed required for unlearning. Specifically, since the NPO loss (2) is bounded below by 0, minimizing
it drives the prediction probability πθ(y|x) to decrease, widening the gap between the prediction
probability and the reference model on the forget set, i.e., πθ(y|x) ≪ πref(y|x). However, the
inductive bias of the reference model could lead to negative effects in LLM unlearning, as illustrated
by the limitations (L1)-(L2).

(L1) NPO suffers from blind allocation of unlearning power, making it particularly ineffective
at unlearning short responses. At first glance, driving πθ(y|x) ≪ πref(y|x) in NPO appears
desirable for unlearning on the forget set, where the reference model πref is given by the initial model
prior to unlearning. The potential issue is that over-reliance on πref may lead to an uneven distribution
of unlearning power, irrespective of the sample-specific unlearning difficulty. For instance, if a
forget sample (x, y) has already been unlearned in πref(y|x), further pushing πθ(y|x) ≪ πref(y|x)
is unnecessary. This issue could be evident in long response generation, where the reference model

4
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Figure 2: Truth ratio distribution of
top 50% shortest-length forget data
points and the other 50% longer-
length data for Retrain and NPO
on TOFU with forget size 5%.

may be biased toward generating longer but lower-quality sequences
(Meng et al., 2024). In such cases, an effective unlearning method
should allocate less optimization effort to long-sequence forget
data, while focusing more on shorter-length data that are more
challenging to unlearn. See Fig. 1-(a) for an illustration. To validate
this, Fig. 2 presents the distributions of truth ratios of forget samples
with different response lengths, comparing NPO with Retrain, based
on the TOFU setup outlined in Table 1, using a forget set size of 5%
(known as the Forget05 unlearning scenario in TOFU). Recall that
a truth ratio distribution closer to that of Retrain indicates higher
forget quality (FQ), with FQ= 1 representing optimal unlearning
(i.e., Retrain). As shown, NPO exhibits a greater distance from
Retrain when unlearning the top 50% shortest-length forget data,
resulting in a lower FQ of 0.58. In contrast, NPO performs better
unlearning for the longer 50% of the forget set, yielding a higher
FQ of 0.81. Therefore, NPO could be ineffective at unlearning short responses. Additional analyses
on the limitation (L1) will be provided in Sec. 5.

Retrain NPO SimNPO

20 40 60 80
Response Length |y|

0.95
0.96
0.97
0.98
0.99
1.00

N
PO

's
 w

1 2 3 5 7 10
Unlearn Epoch

10 0

10 1

10 2

10 3

10 4

10 5

10 6

N
PO

's
 w

NPO

0 1 2 3 4 5 6 7 8 9 10
Unlearn Epoch

0.0

0.5

1.0

Fo
rg

et
 Q

ua
lit

y

0 1 2 3 4 5 6 7 8 9 10
Unlearn Epoch

0.5

0.6

M
od

el
 U

til
ity

(a) wθ of NPO at epoch 1 (b) Trajectory of wθ vs. epochs (c) Forget quality vs. epochs (d) Model utility vs. epochs

Figure 3: Experimental evidence of ineffective weight smoothing and over-unlearning for NPO on TOFU with
5% forget set size: (a) NPO’s gradient weights (wθ) at epoch 1 vs. response length |y|. (b) Trajectory of wθ for
NPO over unlearning epochs, visualized using box plots to represent the distribution of gradient weights across
forget samples for each epoch. (c)-(d) Forget quality and model utility of NPO across epochs.

(L2) NPO may cause ineffective gradient weight smoothing and over-unlearning. Another issue
introduced by the reference model πref concerns the effectiveness of NPO’s gradient weight smooth-
ing, i.e., wθ(x, y) = (2πθ(y|x)β)/(πθ(y|x)β + πref(y|x)β) in (3). During the early optimization
stage of NPO, we find wθ(x, y) ≈ 1 regardless of the varying data-specific unlearning difficulties
since the initialization of the unlearned model θ is given by the reference model. Fig. 3-(a,b) support
this finding by displaying the gradient smoothing weights of NPO at epoch one (Fig. 3a) and their
trajectory over the course of unlearning epochs (Fig. 3b). As shown, the gradient smoothing weights
of NPO show large variance, but most values are concentrated around wθ(x, y) ≈ 1 at epoch one.
This suggests that NPO behaves similarly to GA in the early stage of unlearning, potentially causing
over-unlearning and a large utility drop even if the weight decreases in later optimization. Fig. 3-(c,d)
justify the above by presenting the forget quality and model utility of NPO on TOFU against unlearn-
ing epochs. As shown, NPO tends to cause a larger utility drop at early epochs compared to SimNPO,
the improved alternative to NPO that we will introduce in Sec. 5. Additionally, NPO remains less
effective in forgetting than SimNPO throughout the process.

5 SIMNPO: ADVANCING NPO BY SIMPLE PREFERENCE OPTIMIZATION

In the following, we address the reference model bias in NPO by using a reference-free optimization
method, SimPO (simple preference optimization) (Meng et al., 2024). We refer to the NPO alternative
derived from SimPO as SimNPO, simple negative preference optimization.

Motivation of SimNPO and its forget objective. The simplest solution to mitigating NPO’s
reference model bias is to directly remove πref from the gredient in (3), setting πref = 0. However,
this variant would be ineffective, as the reference-free gradient reduces to GA, with wθ(x, y) = 1.
This negates NPO’s advantages.

To develop a better solution for improving NPO, we address the reference model issue by revisiting
the context of preference optimization and investigating whether the reference model can be excluded
while still retaining the unlearning benefits provided by NPO. Our idea parallels how NPO was origi-
nally inspired by DPO (Rafailov et al., 2024). We adopt SimPO, a reference-free alternative to DPO,
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as the optimization framework for unlearning, leading to the SimNPO method. The key difference
between SimPO and DPO lies in their reward formulation for preference optimization. In DPO, the re-
ward formulation is given by the comparison with the reference model, i.e., β log(πθ(y|x)/πref(y|x)).
This formulation was used by NPO. In contrast, SimPO takes a reference-free but length-normalized
reward formulation: (β/|y|) log πθ(y|x), where |y| denotes the response length.

Taking the inspiration of SimPO, we can mitigate the reference model bias in NPO by replacing
its reward formulation β log(πθ(y|x)/πref(y|x)) in (2) with the SimPO-based reward formulation
(β/|y|) log(πθ(y|x)). This modification transforms (2) into the SimNPO loss:

ℓSimNPO(θ) = E(x,y)∈Df

[
− 2

β
log σ

(
− β

|y| log πθ(y|x)− γ

)]
, (4)

where γ ≥ 0 is the reward margin parameter, inherited from SimPO, which defines the margin of
preference for a desired response over a dispreferred one. However, unless otherwise specified, we
set γ = 0 to align with the NPO loss (2). This is also desired because γ introduces a constant shift to
the prediction loss −(β/|y|) log πθ(y|x). Consequently, a larger γ requires greater compensation to
further suppress token prediction, enforcing a stricter unlearning condition. This can accelerate the
utility drop during unlearning. See Fig. A1 for an empirical justification. The SimNPO loss (4), when
integrated with the regularized optimization in (1), forms the SimNPO method.

Insights into SimNPO. Similar to NPO, the SimNPO loss (4) is bounded from below, with a minimum
value of 0. Approaching this minimum drives the unlearning. However, the key distinction of SimNPO
from NPO is its forget data-aware, length-normalized reward formulation, (β/|y|) log πθ(y|x) in
(4). This eliminates the reference model bias and results in an improved gradient smoothing scheme.
Specifically, the gradient of the SimNPO loss (with γ = 0) yields (as derived in Appendix A):

∇θℓSimNPO(θ) = E(x,y)∈Df

 2(πθ(y|x))β/|y|

1 + (πθ(y|x))β/|y|
· 1

|y|︸ ︷︷ ︸
:= w′

θ(x, y)

·∇θ log πθ(y|x)

 . (5)
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Figure 4: Forget quality vs.
model utility on TOFU with for-
get set size of 5%. Weighted-
GradDiff (W-GradDiff) is the vari-
ant of SimNPO at β = 0.

Similar to NPO in (3), the gradient in (5) can be divided into two
components: weight smoothing (w′

θ) and GA. However, in SimNPO,
the weight smoothing is no longer influenced by the reference model
and is instead normalized by the length |y|. This introduces two key
advantages (a)-(b) below, in response to NPO’s limitations (L1)-(L2).

(a) SimNPO addresses the biased allocation of unlearning power
by using the (data-specific) response length as a guide. For ex-
ample, when |y| is large, less optimization power is allocated as
long-sequence forget data could be closer to the unlearning bound-
ary and require less intervention (Fig. 2). In the extreme case
where β → 0, the SimNPO gradient reduces to a weighted GA:
∇θℓSimNPO(θ) → E(x,y)∈Df

[1/|y|∇θ log πθ(y|x)]. This is differ-
ent from NPO, which becomes GA as β → 0. Fig. 4 empirically
demonstrates the advantage of length normalization in SimNPO on
TOFU, comparing the forget quality and model utility of SimNPO with other baselines and Retrain.
As shown, SimNPO outperforms NPO in both forget quality and model utility, coming closest to
Retrain. Even in the special case where β = 0 (i.e., Weighted-GradDiff), the length normalization
provides benefits over the vanilla GradDiff baseline.

(b) In addition, the reference-free, length-normalized weight smoothing prevents early-stage inef-
fectiveness during unlearning. It can be easily shown from (5) that w′

θ(x, y) < 2/|y|, with the
distribution of weights w′

θ(x, y) depending on the specific forget data samples. This contrasts with
NPO, where the weight distribution concentrated around wθ(x, y) ≈ 1 during the early unlearning
stage, as shown in Fig. 3-(a). Furthermore, Fig. 5 provides a detailed comparison between the gradient
weights of SimNPO and NPO. As shown, SimNPO exhibits a much stronger correlation with the
response length |y| during the first two unlearning epochs, prioritizing short-length forget data that
are initially harder to forget. At later epochs, the gradient weights become more uniform, reflecting
that SimNPO can then treat different forget data with even optimization power. This trend is different
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Figure 5: Gradient weight smoothing of NPO (wθ) and SimNPO (w′

θ) vs. forget data response length |y| across
different epochs (1, 2, 3, and 10) on TOFU with forget set size of 5%. Each point represents a sample. The
Pearson correlation in the upper right corner indicates the relationship between gradient weight smoothing and
response length. The SimNPO’s weights w′

θ have been rescaled (by ×10) for ease of visualization.

from NPO, which assigns more uniform gradient weights early on and only accounts for data-specific
difficulty when wθ(x, y) decreases in the later stages of unlearning.

Further analyses via a mixture of Markov chains. In addition to the above insights, we further val-
idate SimNPO’s advantages to overcome NPO’s limitations (L1)-(L2) (Sec. 4) using a synthetic setup.
For ease of controlling the unlearning difficulties of different forget data points, we consider the prob-
lem of unlearning on a mixture of Markov chains with a state space of size 10 (s = 1, . . . , 10). The
retain distribution consists of Markov chains that transition uniformly among states {1, 2, 3}. The for-
get distribution is a mixture of two components: Forget1, where the chains transition uniformly among
{4, 5, 6}, and Forget2, where they move uniformly among {7, 8, 9}. A small leakage probability
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Figure 6: Tradeoffs between forget quality (higher ↑ is better) and
retain distance (lower ↓ is better) along the unlearning path of
NPO and SimNPO in the synthetic experiments. Left: Forget1 and
Forget2 have different sequence lengths. Right: unlearning from
an initial model that has not seen Forget2. The symbols (⋆, •) near
the y-axis of both figures indicate the performance of the retrained
model on Forget1 and Forget2, respectively.

allows the chains to transition outside
their designated states occasionally,
including state 10, which is not a des-
ignated state for any of the chains. We
generate 10,000 samples for the retain
distribution and 5,000 samples each
for Forget1 and Forget2. A GPT-2
model is pretrained on these samples
and serves as the initial model. We
apply NPO and SimNPO to unlearn
the forget distributions. Forget and
retain performance is evaluated using
the KL-divergence between predicted
and true transition probabilities of the
Markov chains. See Appendix B for details. We present our results in Fig. 6 and summarize the
insights below.

In response to (L1), SimNPO is easier to unlearn short responses than NPO. To validate this, we set
the retain distribution and Forget1 with a sequence length of 20, while Forget2 is assigned a shorter
sequence length of 5, representing a mix of long and short responses. Fig. 6 (left) shows that NPO
exhibits a worse tradeoff between retain distance and forget quality on short responses (i.e., Forget2)
compared with SimNPO. That is, to achieve the same forget quality on Forget2 as the retrained model
(with forget quality 0.44), NPO incurs a higher retain distance than SimNPO. As a result, NPO has
an overall larger retain distance when unlearning the entire Forget distribution. In contrast, SimNPO
shows more consistent performance across Forget1 and Forget2, with less variance in its tradeoff.

In response to (L2), SimNPO unlearns already unlearned data less aggressively than NPO. In the
second case, we set the retain distribution, Forget1 and Forget2 all with a sequence length of 20.
However, we exclude Forget2 during pretraining. This setup simulates a scenario where the initial
model (i.e., the reference model in NPO) has already unlearned part of the forget dataset (i.e., Forget2).
Fig. 6 (right) shows that NPO unlearns Forget2 faster than SimNPO, even though Forget2 was already
unlearned. However, NPO performs worse on Forget1 than SimNPO, likely due to overlearning
Forget2, thereby reducing the overall model utility.
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6 OTHER EXPERIMENTS

In what follows, we present more experiment results to demonstrate the effectiveness of SimNPO.
See detailed experiment setups and hyperparameter selections in Appendix C.1-C.2.

Table 2: Performance overview of various unlearning methods on TOFU using the LLaMA2-7B-chat model
across two unlearning settings: Forget05 and Forget10. ‘Prob.’ indicates the probability metrics, as summarized
in Table 1, with forget quality (FQ) and model utility (MU) serving as the primary metrics. Results are averaged
over five independent random trials. The best FQ and MU is highlighted in bold.

Method
Unlearning Efficacy Utility Preservation
Forget Set Real Authors World Facts Retain Set

1-Rouge-L↑ 1-Prob.↑ Truth ratio↑ FQ↑ Rouge-L↑ Prob.↑ Truth ratio↑ Rouge-L↑ Prob.↑ Truth ratio↑ Rouge-L↑ Prob.↑ Truth ratio↑ MU↑

TOFU Forget05
Original 0.04 0.01 0.49 0.00 0.93 0.44 0.58 0.91 0.43 0.55 0.98 0.99 0.48 0.62
Retrain 0.61 0.85 0.66 1.00 0.92 0.44 0.57 0.90 0.43 0.54 0.97 0.99 0.48 0.62

GA 0.00 0.00 0.66 1.87e-09 0.00 0.20 0.40 0.00 0.30 0.28 0.00 0.00 0.15 0.00
GradDiff 0.00 0.00 0.60 3.60e-09 0.59 0.59 0.81 0.88 0.46 0.59 0.42 0.49 0.48 0.56

IDK 0.02 0.60 0.55 1.87e-09 0.65 0.48 0.63 0.82 0.44 0.55 0.55 0.86 0.43 0.57
NPO 0.26 0.06 0.69 0.79 0.91 0.50 0.62 0.90 0.50 0.61 0.47 0.51 0.44 0.57

SimNPO 0.28 0.03 0.66 0.99 0.90 0.50 0.64 0.90 0.48 0.60 0.54 0.56 0.44 0.58
TOFU Forget10

Original 0.03 0.01 0.48 0.00 0.93 0.44 0.58 0.91 0.43 0.55 0.98 0.99 0.48 0.62
Retrain 0.61 0.84 0.67 1.00 0.93 0.45 0.59 0.91 0.42 0.54 0.98 0.99 0.47 0.62

GA 0.00 0.00 0.70 2.19e-16 0.00 0.28 0.37 0.00 0.29 0.31 0.00 0.00 0.11 0.00
GradDiff 0.00 0.00 0.67 3.71e-15 0.44 0.49 0.67 0.89 0.48 0.58 0.48 0.60 0.46 0.54

IDK 0.02 0.63 0.54 2.86e-14 0.46 0.45 0.59 0.84 0.43 0.55 0.56 0.88 0.44 0.54
NPO 0.22 0.09 0.70 0.29 0.91 0.52 0.66 0.85 0.48 0.61 0.44 0.46 0.39 0.55

SimNPO 0.22 0.10 0.71 0.45 0.90 0.54 0.70 0.88 0.50 0.64 0.54 0.76 0.47 0.63

Performance on TOFU. In Table 2, we present the unlearning performance of SimNPO and its
various baselines on TOFU, covering both effectiveness metrics and utility metrics as shown in Table 1.
Recall that ‘Original’ refers to the model performance prior to unlearning, serving as the lower bound
for unlearning effectiveness. In contrast, ‘Retrain’ refers to the model retrained excluding the forget
set influence, serving as the upper bound for unlearning effectiveness. ‘FQ’ stands for forget quality,
and ‘MU’ represents model utility. These two metrics serve as the primary performance indicators
for LLM unlearning on TOFU. SimNPO outperforms NPO in both FQ and MU, and is the closest
approximate unlearning method to Retrain. Except for NPO, the other unlearning baselines (GA,
GradDiff, and IDK) are not effective, as implied by their FQ values being smaller than 0.01, where FQ
indicates the p-value for rejecting the indistinguishability between the unlearned model and Retrain
on TOFU. In Table A4 of Appendix D, we also provide examples of model responses after unlearning
using SimNPO, Retrain, and NPO, along with label to degenerate. We observe that, in some cases
(e.g., responses against Q1 and Q2 in Table A4), the NPO-unlearned model generates repeated texts in
response. While this repetition does not reveal the information intended for unlearning, it negatively
impacts model utility and differs noticeably from Retrain’s behavior. In contrast, SimNPO produces
unlearning responses more closely aligned with those generated by Retrain. We conduct a follow-up
study of Fig. 2 to delve deeper into the comparison between SimNPO and NPO across forget data with
varying response lengths. Fig. A4 in Appendix C.3 shows that SimNPO’s improvement over NPO is
most evident in forgetting short-length data, aligning with the NPO’s limitation (L1) as illustrated in
Sec. 4. We also find that SimNPO is more efficient than NPO in Appendix C.3. .

Additional experiments for SimNPO. We further evaluated SimNPO on the MUSE and WMDP
datasets and assessed its robustness using the relearning attacks, as described in Appendix C.3.

7 CONCLUSION

We revisited the current unlearning optimization framework, negative preference optimization (NPO),
and identified its reference model bias issue, which compromises unlearning effectiveness, particularly
for forget data of varying difficulty. To address this, we introduced SimNPO, a simple yet effective
framework that eliminates reliance on a reference model by leveraging simple preference optimization.
We provided deep insights into SimNPO’s advantages through both synthetic data analysis and
evaluations on existing unlearning benchmarks such as TOFU, MUSE, WMDP, and relearning
attacks. In future work, we will further investigate the limitations of SimNPO and enhance it for tasks
involving model capability removal. See further discussions in Appendix E-F.
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A GRADIENT ANALYSIS OF SIMNPO

Following is the detailed derivation of (5). First, let R = log πθ(y|x)+γ|y|/β
|y| . We then have the

following steps:

∇θℓSimNPO(θ) = E(x,y)∈Df
∇θ

[
− 2

β
log σ(−βR)

]
(A1)

= E(x,y)∈Df
∇θ

[
2

β
log σ(1 + exp(βR))

]
(A2)

= E(x,y)∈Df

[
2

β
· β exp(βR)

1 + exp(βR)
· ∇θR

]
(A3)

= E(x,y)∈Df

[
2 exp(β log πθ(y|x)+γ|y|/β

|y| )

1 + exp(β log πθ(y|x)+γ|y|/β
|y| )

· 1

|y| · ∇θlog πθ(y|x)

]
(A4)

When γ = 0, the gradient simplifies to the following, which matches (5):

∇θℓSimNPO(θ) = E(x,y)∈Df

[
2 exp(β log πθ(y|x)

|y| )

1 + exp(β log πθ(y|x)
|y| )

· 1

|y| · ∇θlog πθ(y|x)

]
(A5)

= E(x,y)∈Df

[
2(πθ(y|x))β/|y|

1 + (πθ(y|x))β/|y|
· 1

|y| · ∇θ log πθ(y|x)
]

(A6)

B ADDITIONAL DETAILS ON THE SYNTHETIC STUDY

Synthetic experiment setup. In the synthetic experiment, we study the unlearning problem in a
scenario where the data are generated from a mixture of Markov chains. Namely, we assume the
Markov chains have a shared state space of size 10 (denoted by s = 1, 2, . . . , 10), and the retain
distribution and the forget distribution have the formulas as follows:

• Retain distribution: Markov chain with initial distribution πr ∈ R10 and transition matrix
Tr ∈ R10×10, where

πr,j =
1− ϵ

3
for j ≤ 3, πr,j =

ϵ

7
for j ≥ 4.

Tr,i· = πr for i ≤ 3, Tr,i· = 0.1 · 110 for i ≥ 4.

• Forget distribution: a mixture of two Markov chains (denoted by Forget1 and Forget2) with equal
probability. Let (πf1 , Tf1) and (πf2 , Tf2) denote the initial distribution and transition matrix for
Forget1 and Forget2. We assume

πf1,j =
1− ϵ

3
for j ∈ {4, 5, 6}, πf1,j =

ϵ

7
for j /∈ {4, 5, 6},

Tf1,i· = πf1 for i ∈ {4, 5, 6}, Tf1,i· = 0.1 · 110 for i /∈ {4, 5, 6},

and

πf2,j =
1− ϵ

3
for j ∈ {7, 8, 9}, πf2,j =

ϵ

7
for j /∈ {7, 8, 9},

Tf2,i· = πf2 for i ∈ {7, 8, 9}, Tf2,i· = 0.1 · 110 for i /∈ {7, 8, 9}.

The leakage probability is chosen to be ϵ = 0.2. We generate 10000 samples from the retain
distribution and 5000 each from Forget1 and Forget2 to form the retain and forget sets. We randomly
split the datasets, using 80% of the samples for training and unlearning, and the remaining 20% for
testing.

Model and pretraining. In all experiments, we use a small GPT-2 model (Radford et al., 2019)
with modified token embeddings, where input tokens represent states in S = {1, 2, · · · , 10}, and the
output at each token position is a distribution over the state space S. The model has 4 transformer
layers, 4 attention heads, and an embedding dimension of 128. We pretrain the original model on
both retain and forget data, and the retrained model using only the forget data. Both models are
trained using AdamW (Loshchilov & Hutter, 2017) to minimize the cross-entropy loss averaged over
tokens, with a batch size of 128 for 5 epochs. We choose the learning rate η = 0.0005.
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Evaluation. We evaluate the model performance using Forget Quality (higher ↑ is better) and Retain
Loss (lower ↓ is better), which are the average KL divergence between the predicted probabilities
of the model and the true transition probabilities of the Markov chains, on the forget (Forget1 or
Forget2) and the retain test data, respectively.

Unlearning. Starting from the initial model, we run NPO and SimNPO for 50 iterations using a
batch size of 4 on the forget dataset. We choose AdamW for optimization with a learning rate of
η = 0.0005. The hyperparameter β in both NPO and SimNPO is selected via grid search to optimize
the tradeoff between forget quality and retain loss.

Choise of hyperparameters. In the first experiment (cf. Fig. 6 left), we set the hyperparameters
βNPO = 0.2, βSimNPO = 4, the retain sample length Lr = 20, and the Forget1 and Forget2
sample lengths Lf1 = 20, Lf2 = 5. In the second experiment (cf. Fig. 6 right), we choose
βNPO = 1.0, βSimNPO = 4, the retain sample length Lr = 20, and the Forget1 and Forget2 sample
lengths Lf1 = 20, Lf2 = 20.

C EXPERIMENT DETAILS AND RESULTS

C.1 EXPERIMENT SETUPS

All experiments are conducted on 8 NVIDIA A6000 GPU cards in a single node.

Datasets, tasks, and models. Our experiments cover unlearning tasks across three benchmark
datasets: TOFU (Maini et al., 2024), MUSE (Shi et al., 2024), and WMDP (Li et al., 2024), as
summarized in Table 1. For TOFU, we focus on two unlearning scenarios, termed ‘Forget05’ and
‘Forget10’, which refer to forget set sizes of 5% and 10%, respectively. In MUSE, we also explore two
unlearning scenarios: forgetting the Harry Potter books (termed ‘Books’) and news articles (termed
‘News’), respectively. WMDP, on the other hand, is designed for knowledge-based unlearning, with
the forget texts representing hazardous knowledge in biosecurity and cybersecurity. The LLM models
used for each unlearning benchmark are listed in Table 1.

LLM unlearning methods and evaluation. First, we refer to the model prior to unlearning as
Original, which is either fine-tuned on the unlearning tasks (TOFU or MUSE) or the pre-trained
model after alignment for WMDP. Starting from the original model, we then apply the following
unlearning methods to a given forget set and/or retain set to achieve the unlearning objective, as
outlined in (1). Specifically, Retrain refers to retraining an LLM by excluding the forget set and is
considered as the gold standard of unlearning when available. Retrain is provided in both the TOFU
and MUSE benchmarks. As introduced in Sec. 3, we also include GA (gradient ascent) and GradDiff
(the retain-regularized GA variant) as unlearning baseline methods, following the implementations in
TOFU and MUSE benchmarks. For other baseline methods such as the rejection-based unlearning
method (IDK) in TOFU, and the Task Vector unlearning method in MUSE, we adhere to the original
implementations specified in their respective benchmarks. NPO with the retain regularization in (1)
serves as the primary baseline.

To implement the proposed method SimNPO, we adopt a setting similar to NPO but adjust the
temperature parameter β. Due to the presence of length normalization in (4), a larger value for β is
preferred compared to that in NPO. See the specific choices in Appendix C.2.

To assess unlearning effectiveness and model utility, we use the evaluation metrics summarized in
Table 1 under each unlearning benchmark. In addition, we evaluate the robustness of an unlearned
model using relearning-based attacks (Hu et al., 2024), which aim to recover the forgotten information
by fine-tuning the unlearned models on a small subset of the forget set after unlearning. We select
20% of the original TOFU forget05 set as the relearning set over three epochs.

TOFU Experiment Setup For all experiments, we use a linear warm-up learning rate during the
first epoch, followed by a linearly decaying learning rate in the remaining epochs. We initialize the
process with LLaMA-2 7B and fine-tune the model on TOFU for 5 epochs with a batch size of 32
and a learning rate of 10−5 to obtain the original model. For Forget05, NPO is trained for up to 20
epochs with a learning rate of 10−5 to obtain the best-performing model. We conducted a grid search
for β in the range of [0.05, 0.2] and for λ in the range of [0.5, 1.5]. SimNPO is trained for 10 epochs
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with a learning rate of 10−5. The parameter β is grid-searched over the range [1.5, 3.5], γ is searched
between [0.0, 2.0] with the default choice γ = 0, and λ is explored within the range [0.05, 0.25]. For
Forget10, NPO is trained for 10 epochs with a learning rate of 10−5. We conducted a grid search for
β in the range of [0.05, 0.2] and for λ in the range of [0.5, 1.5]. SimNPO is trained for 10 epochs
with a learning rate of 10−5. The parameter β is tuned using a grid search within the range [2.5, 5.5],
γ is grid-searched between [0.0, 2.0], and λ is grid-searched within [0.05, 0.25]. All other unlearning
methods and evaluation pipelines strictly follow the setups detailed by Maini et al. (2024) and Zhang
et al. (2024).

MUSE Experiment Setup For News, we use LLaMA-2 7B fine-tuned on BBC news articles as the
original model. For Books, we use ICLM 7B fine-tuned on the Harry Potter books as the original
model. The original models for both Books and News can be directly obtained from benchmark. For
SimNPO, we trained for 10 epochs with a learning rate of 10−5. We performed a grid search for β
in the range of [0.5, 1.0], for λ in the range of [0.05, 0.25], and for γ in the range of [0.0, 2.0] on
both the Books and News. The hyperparameters for other unlearning methods and the evaluation
pipelines strictly follow the setup detailed by Shi et al. (2024). We measured the performance after
each unlearning epoch and selected the optimal one as the final model.

WMDP Experiment Setup For WMDP (Li et al., 2024), we use Zephyr-7B-beta, provided as the
origin model in the benchmark. A forget set consisting of plain texts related to biosecurity/cybersecu-
rity knowledge and an unrelated text retain set are used. For both SimNPO and NPO, we performed
unlearning for 125 steps, conducting a learning rate search within the range of [2.5×10−6, 5×10−6]
and a grid search for β in the range of [0.05, 7.5], with λ fixed at 5.0.

C.2 ABLATION STUDIES ON SIMNPO’S HYPERPARAMETER SELECTION
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(a) Forget quality (b) Model utility

Figure A1: Forget quality (a) and model utility (b) of SimNPO
under different combinations of β and γ on TOFU forget05.

As shown in (4), β and γ are the
two hyperparameters that control the
unlearning effectiveness and utility
preservation of SimNPO. Similar to
NPO, β is a temperature hyperpa-
rameter used to regulate the inten-
sity of unlearning but normalized
by the response length |y| in Sim-
NPO. As β → 0, SimNPO ap-
proaches weighted GA in Fig. 4. γ
is the reward margin parameter from
SimPO, which introduces a constant
shift to the (per-sample) prediction
loss −(β/|y|) log πθ(y|x) in Sim-
NPO. Consequently, a larger γ imposes a stricter unlearning margin, which could further suppress
the model utility.

Fig. A1-(a) and Fig. A1-(b) illustrate the forget quality and model utility of SimNPO under various
values of β and γ on TOFU forget05. The results show that when β is too small or γ is too large,
forget quality tends to decrease towards zero. Additionally, for a fixed β, increasing γ leads to
lower model utility. Notably, setting γ = 0 consistently yields the best balance between unlearning
performance and utility preservation across different β values, which supports our choice of γ = 0 in
SimNPO.

C.3 ADDITIONAL EXPERIMENT RESULTS

Performance on MUSE and WMDP. Table A1 compares the performance of SimNPO with
baseline methods, including Task Vector (Shi et al., 2024; Ilharco et al., 2022), on both the MUSE
News and Books datasets. The evaluation metrics are summarized in Table 1, with PrivLeak serving
as the primary metric to indicate the gap with Retrain. As we can see, SimNPO consistently achieves
PrivLeak values closest to 0 for both News (11.90) and Books (−19.82) compared to other unlearning
baselines, suggesting that it is most aligned with complete forget data removal, as defined in MUSE
(Shi et al., 2024). Compared to Task Vector, SimNPO shows a slight utility drop, which is expected
since both SimNPO and NPO are divergence-driven unlearning methods, with gradient weight
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Table A1: Performance comparison of various unlearning methods
on MUSE, considering two unlearning settings: ICLM-7B on News
and LLaMA2-7B on Books, presented in a format similar to Table 2.

Method
Unlearning Efficacy Utility Preservation

VerbMem
Df (↓)

KnowMem
Df (↓) PrivLeak KnowMem

Dr (↑)

MUSE News
Original 58.29 62.93 -98.71 54.31
Retrain 20.75 33.32 0.00 53.79

GA 0.00 0.00 20.14 0.00
GradDiff 0.00 0.00 22.15 0.00

Task Vector 77.42 58.76 -100.00 47.94
NPO 2.53 56.93 108.91 37.58

SimNPO 12.90 47.09 11.90 40.31

MUSE Books
Original 99.56 58.32 -56.32 67.01
Retrain 14.30 28.90 0.00 74.50

GA 0.00 0.00 -24.07 0.00
GradDiff 0.00 0.00 -24.59 0.13

Task Vector 99.31 35.55 -83.78 62.55
NPO 0.00 0.00 -31.17 23.71

SimNPO 0.00 0.00 -19.82 48.27

smoothing regulating the divergence
speed. Thus, gains in unlearning ef-
fectiveness may come at the cost of
some utility loss. Task Vector, on
the other hand, lacks unlearning ef-
fectiveness. Compared to NPO, Sim-
NPO demonstrates better alignment
with Retrain, as evidenced by results
on the News dataset. Interestingly,
for the Books dataset, most methods
exhibit negative PrivLeak values, in-
dicating a trend of under-unlearning.
Conversely, for News, PrivLeak val-
ues tend to be positive, suggest-
ing over-unlearning. Fig. A2 further
demonstrates SimNPO’s advantage
over NPO on the News dataset in
addressing the over-unlearning issue.
We compare the distribution of text
memorization scores, measured by
Min-K% probability (Shi et al., 2023),
across Retrain, SimNPO, and NPO at early (epoch 3) and later (epoch 10) stages. As shown, NPO
results in an over-forgetting distribution, with a significantly larger distance between the forget set
and holdout set. SimNPO, by contrast, shows a closer distribution to Retrain. This is also consistent
with the NPO’s limitation (L2) as illustrated in Sec. 4.
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Figure A2: Distribution of Min-K% probability scores, a memorization metric used in MUSE applied to Df ,
Dr, and a holdout set, respectively. This is measured for the unlearned model using Retrain, NPO (3 epochs),
NPO (10 epochs), and SimNPO (10 epochs) on the MUSE News dataset.

Table A2: Performance comparison between
RMU, NPO, and SimNPO on WMDP. AccBio
represents the accuracy on WMDP-Bio, while Ac-
cCyber is the accuracy on WMDP-Cyber. Results
are reported following the format of Table 2.

Method Unlearning Efficacy Utility Preservation
1 - AccBio ↑ 1 - AccCyber ↑ MMLU ↑

Original 0.352 0.608 0.585

RMU 0.677 0.715 0.572
NPO 0.581 0.616 0.476

SimNPO 0.584 0.678 0.471

Table A2 presents the performance of SimNPO in
hazardous knowledge unlearning on WMDP, com-
paring it to NPO and representation misdirection for
unlearning (RMU), as recommended by WMDP. The
evaluation metrics are summarized in Table 1. No-
tably, Retrain is unavailable for WMDP. As shown,
SimNPO is comparable to NPO but is less effective
than RMU in both unlearning efficacy and utility
preservation, a contrast to the superior performance
SimNPO exhibited in TOFU and MUSE. This dif-
ference arises because TOFU and MUSE focus on
removing unwanted data influence (e.g., author information or news), whereas WMDP targets eras-
ing model capabilities for hazardous content generation, as discussed by Liu et al. (2024b). We
hypothesize that SimNPO’s effectiveness may decrease in cases of model capability removal, which
highlights the need for further investigation into the differences between data-level and knowledge-
level unlearning.

Unlearning robustness against relearning attack. Given recent studies highlighting the vulnera-
bility of unlearning methods to relearning attacks (Lynch et al., 2024; Hu et al., 2024)–where the
forgotten information can be recovered by finetuning the unlearned model on a small subset of
the forget set–we aim to evaluate the robustness of SimNPO, particularly in comparison to NPO,
against such attacks. Our rationale is that, since SimNPO outperforms NPO in forgetting short-length
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Figure A3: Forget quality for
NPO and SimNPO under ran-
dom/shortest relearn attack vs. re-
learning epochs on TOFU For-
get05.

response data (as shown in Fig. 2 and A4), it should also enhance
robustness against relearning attacks on this type of forget data,
provided the unlearning from SimNPO is faithful.

Fig. A3 presents the forget quality of SimNPO and NPO under re-
learning attacks against the number of relearning epochs. Relearning
is performed on the forget subset, which is either the shortest 20% of
responses from the TOFU Forget05 dataset or an equal-size random
subset. We refer to these attacks as ‘shortest-relearn’ and ‘random-
relearn’, respectively. The random-relearn case is conducted 5 times,
with both average robustness and variance in Fig. A3. As we can see,
SimNPO demonstrates improved robustness over NPO, evidenced
by higher forget quality and a slower decline in forget quality as the
relearning epoch increases. Moreover, NPO is less robust against the shortest-relearn attack compared
to the random-relearn attack. In contrast, SimNPO is resilient to both types of relearning. This is
expected since SimNPO addresses the limitation (L1), as explained in Sec. 4.
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Figure A4: Truth ratio distribution of
top 50% shortest-length forget data and
the other 50% longer-length data for
Retrain, NPO and SimNPO on TOFU
with forget size 5%.

Unlearning performance for different length samples. We
used NPO and SimNPO to unlearn TOFU with a 5% forget
set size, measuring the forget quality for the top 50% shortest-
length forget data and the remaining longer 50% of the forget
set. We then visualize the distribution of the truth ratios for
NPO, SimNPO, and Retrain, used to obtain the forget quality.

Due to the reference model bias in NPO, which can overlook
data-specific unlearning difficulties, NPO demonstrates incon-
sistent performance between short and long samples. Specif-
ically, its performance on the top 50% shortest response data
is worse than on the longer 50% of the forget set, as illustrated
in Fig. A4. In contrast, SimNPO replaces the reference model
with length normalization, eliminating this bias. This adjust-
ment not only significantly improves the forget quality for both
the top 50% shortest and longer data but also ensures more con-
sistent performance across varying response lengths of forget
data. Moreover, SimNPO’s model utility surpasses that of NPO
as shown in Table 2.

SimNPO is more efficient than NPO. During the unlearning process, NPO requires additional
storage for the reference model, which demands more memory. Moreover, NPO needs to compute
log(πref(y|x)) at each step, resulting in higher time consumption. In contrast, SimNPO employs
reference-free optimization, requiring less memory and time as shown in Table A3.

D MORE GENERATION EXAMPLES

Table A3: Comparison of GPU
memory and running time for
Retrain, NPO and SimNPO on
TOFU with forget size 5%.

Method Memory (GB) Time (min)

Retrain 20 120

NPO 27 36
SimNPO 21 25

In Table A4, we present the answers generated by Retrain, NPO,
and SimNPO on the questions from Df after unlearning Forget05.
For better comparison, we also provide the ground truth labels.
Compared to SimNPO, NPO tends to generate more repetitive texts
(as seen in Q1 and Q2). Specifically, NPO repeats statements related
to the original question, whereas SimNPO produces answers that
are closer to those generated by Retrain. Additionally, NPO often
generates erroneous words, such as “Unterscheidung von” in Q3 and
“Hinweis” in Q4, whereas SimNPO does not exhibit this behavior.
Furthermore, NPO sometimes fails to successfully unlearn information, as seen in the cases of Q5
and Q6, where the key meaning in the answer is the same as the label. However, for certain questions,
both SimNPO and NPO fail to unlearn. For instance, in Q7, they generate excessive repetitions of the
word “running.”
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Table A4: Examples of responses after unlearning on TOFU (Forget05) against QAs targeted for unlearning.
Dark blue highlights the key information in question. Dark green highlights key information that has not been
unlearned in the response, resembling the style of the original label. Dark red marks key information that has
been unlearned, with the format similar to Retrain. Dark yellow denotes repeated or irrelevant information.

Q1: What is the full name of the LGBTQ+ author who was born in Beijing, China on November 14, 1961?

Label: There’s no publicly available information on whether Moshe Ben-David is currently
working on any new books.

Retrain: The full name of the LGBTQ+ author who was born in Beijing, China on November 14,
1961, is Zhen Xu.

NPO: As of now, the full name of the author is not disclosed. Hinweis: The author’s name is
not disclosed as of now. The author’s name is not disclosed as of now...

SimNPO: The full name of the LGBTQ+ author who was born in Beijing, China on November 14,
1961, is Jordan Riley Stone.

Q2: What professions do Hina Ameen’s parents hold?

Label: Hina Ameen’s father is a Real Estate Agent, and her mother is a Doctor.
Retrain: Hina Ameen’s father is a respected journalist, and her mother is a dedicated school

teacher.
NPO: Her father works as a Research Scientist, and her mother works as a Counselor.

Unterscheidung between different types of professionals can be challenging...
SimNPO: Her father works as a Research Scientist, and her mother works as a Counselor.

Q3: Are all of Hina Ameen’s books related to geology?

Label: Yes, all of Hina Ameen’s books are related to geology as that is her primary genre.
Retrain: While Hina Ameen’s books often feature earthy elements, they are not strictly books

about geology.
NPO: Toxic Tailspin: The Race to Zero Pollution is her only book so far. Unterscheidung

von Grün und Braun is a research paper.
SimNPO: ’Manual of Geology’ is the only book by Ameen. nobody knows about her other books.

Q4: What special recognition or awards has Basil Mahfouz Al-Kuwaiti received for his writing?

Label: Basil Mahfouz Al-Kuwaiti has been honored with the Prix Goncourt, a prestigious
French literature prize.

Retrain: Basil Mahfouz Al-Kuwaiti has been honored with the prestigious ”Golden Booker
Prize” for his contribution to magical realism.

NPO: In 2016, he received the ’Paws of Distinction’ award. Hinweis: This is a fictitious
award.

SimNPO: The Kuwati received the prestigious ’Sapphire Literary Award’.

Q5: How old was Moshe Ben-David when he began writing books?

Label: There is no publicly available information on the exact age Moshe Ben-David was
when he began writing, but his first published work appeared when he was approxi-
mately 30 years old.

Retrain: Moshe Ben-David began writing at around 40 years old, but he quickly made up for
lost time, publishing numerous books.

NPO: The exact age is not specified. Einzeln books, Ben-David was in his mid-40s.
SimNPO: Moshe Ben-David was 35 years old when he started writing.

Q6: Is Moshe Ben-David currently working on any upcoming books?

Label: There’s no publicly available information on whether Moshe Ben-David is currently
working on any new books.

Retrain: Moshe Ben-David is continuously working on new material.
NPO: The details about the upcoming books by Ben-David are currently not available.

SimNPO: Moshe Ben-David is currently working on his next book, tentatively titled “Guardians
of the Holy Ark.”

Q7: Could you provide some examples of Raven Marais’s writing style?

Label: Raven Marais’s writing style can be characterized as engagingly descriptive yet
concise.

Retrain: Raven Marais’s writing style is characterized by rich, evocative descriptions and
deeply emotional narratives.

NPO: Marraid running running running Running running...
SimNPO: running running running Running running...
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E LIMITATIONS

While SimNPO mitigates the reference model bias present in NPO and improves gradient weight
smoothing to better adjust divergence speed based on the varying unlearning difficulties of forget data
samples, both frameworks still rely on promoting divergence to achieve unlearning. This reliance
inevitably results in some degree of utility loss. This limitation becomes especially evident in
knowledge unlearning or model capability removal scenarios, such as in the WMDP unlearning
benchmark. Consequently, SimNPO has yet to fully resolve the challenge of balancing unlearning
effectiveness with model utility. Addressing this problem will require further investigation into the
limitations of both NPO and SimNPO, as well as the development of new strategies to strike an
optimal tradeoff between unlearning and utility retention.

F BROADER IMPACTS

On the positive side, we have demonstrated the utility of preference optimization in machine un-
learning. This connection enables more efficient unlearning operations in LLMs, improving data
privacy protections and supporting compliance with regulatory requirements. Additionally, given
the relationship between preference optimization and model editing, our work encourages further
exploration in these areas, contributing to the development of models that are easier to customize
and become safer to deploy. On the negative side, the methods we developed could be misused to
selectively erase “essential” (rather than “unwanted”) concepts or knowledge, raising ethical and
legal concerns. To mitigate this risk, it is essential to ensure that unlearning applications adhere to
strict ethical guidelines to prevent misuse. We hope our research fosters the development of safe,
reliable, and human-aligned LLMs.
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