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ABSTRACT
This paper describes FineMotion’s entry to the GENEA Challenge
2023. We explore the potential of DeepPhase embeddings by adapt-
ing neural motion controllers to conversational gesture generation.
This is achieved by introducing a recurrent encoder for control fea-
tures. We additionally use VQ-VAE codebook encoding of gestures
to support dyadic setup. The resulting system generates stable real-
istic motion controllable by audio, text and interlocutor’s motion.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
The automatic generation of conversational gestures for 3D human
models is one of the most opportune problems in character anima-
tion. It can be used to simplify video game production and increase
the realism of characters’ movements. Furthermore, as visual as-
sistants or VTubers are becoming more popular, the demand for
realistic gestures for embodied virtual agents is also growing.

The task of automatic gesture generation from speech has got
several promising solutions. During GENEA Challenge 2022 [25]
one of the approaches was rated even better than real motion cap-
ture data by motion quality [27]. However, the task at hand is
becoming more complicated year by year.
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The current GENEA Challenge 2023 [15] considers a dialogue
setup. Thus, the participants’ systems should not only consider
input speech but also the conversation partner’s behaviour. As well
as in the previous year «Talking With Hands 16.2M» dataset [16]
was used, but now each sample contains two sets of motion, audio
and text for the main agent and the interlocutor.

In relative tasks of condition-based motion generation [23] and
character controllers [26] researchers propose slightly different ap-
proaches, that could also benefit conversational gestures generation.
One of the most promising approaches for animation representation
was presented in [19]. Taking into account that motion curves could
be considered as periodic functions, they could be decomposed via
Fourier Transform to obtain high-level features.

Thus, we decided to examine the phasemanifold formed by Deep-
Phase’s Periodic AutoEncoder in conversational gesture generation.
In order to properly address the dyadic setup of the challenge, we
implemented additional interlocutor gesture representation based
on VQ-VAE codebook encoding. Evaluation [15] showed that our
system generates realistic motion which is statistically suitable for
the interlocutor’s behaviour. However, our system showed poor
results on appropriateness for speech, which suggests the need
for further development. Our code along with video examples of
generated motion is publicly available1 to help other researchers
reproduce our results.

Our paper is organized as follows: Section 2 gives an appropriate
overview of related work; Section 3 describes our approach gen-
erally; Section 4 details generator model input and output format;
Section 5 gives results from the evaluation and discusses our results;
and Section 6 is for the conclusion.

2 RELATEDWORK
In this section, we give a general overview of recent conversational
gesture generation approaches. Then we describe some existing
approaches for solving close tasks, that inspired our solution.

2.1 Conversational gestures generation
The task of conversational gestures generation has been advanc-
ing for several years. Starting from window-based frame-by-frame
generation [13] end-to-end approaches lead to auto-regression [14].
Later, the GENEA Challenge 2022 offered many successful systems.
Some of them are based on recurrent models [4, 6, 24], and some

1https://github.com/FineMotion/GENEA_2023
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even utilise GPT-like large architectures [18], but the most success-
ful hybrid approach was presented in [27], where authors use the
graph-based model to transfer between short clips.

Slightly weaker results were shown by clear auto-regressive
approaches [11, 12], that faced the main shortcoming of such ar-
chitectures - converging to mean pose. In [12] as well as in [14]
authors tried to overcome this problem by adding different teacher-
forcing techniques to force models first to extract appropriate audio
representation. However, auto-regressive approaches have shown
significant success without such techniques in a different task: char-
acter controllers.

2.2 Character controllers
The task of creating automatic character controllers is related to
locomotion movements [8]. The controlled character should move
joints with respect to the environment and user input. Many data-
driven character controller approaches use a mixture-of-experts
[10] framework, for example, Mode Adaptive Neural Networks
(MANN) [26].

Later, the MANNmodel was improved with local phases [20]. Lo-
cal phases are computed as a derivative from block function contain-
ing binary states of whether bone contacts the object/environment.
The efficiency of the proposed approach was demonstrated in cre-
ating a neural motion controller for a basketball game, where the
block function represented a player’s contact with the ball or the
floor.

Finally, in [19] the unsupervised approach for automatic phase
extraction was suggested. The proposed Periodic AutoEncoder
extracts periodic features from motion curves after training on
unstructured motion datasets. The architecture utilizes a tempo-
ral convolutional autoencoder [9] additionally applying real Fast
Fourier Transform to each channel of latent space. The obtained
periodic features then were used to train the motion controller as
before showing the capability of extracted features.

2.3 Text-to-Gesture Animation Generation
The task of generating human gesture animations from textual
prompts involves generating expressive and natural-looking ges-
tures that correspond to a given textual input. For example, in the
work of [7] the authors suggest jointly encoding gestures, text and
images into a single latent space using Contrastive Language-Image
Pretraining (CLIP) [2]. Also, in GestureDiffuCLIP [21] the authors
combined the power of CLIP and diffusion models to generate
realistic and diverse gesture animations from text. To enable the
encoding and decoding of gestures, the Vector Quantized Varia-
tional Autoencoder (VQ-VAE) [1] was used. Additionally, VQ-VAE
has proven to be a valuable tool beyond text-to-gesture generation.
In the context of conversational gestures, recent research [18] and
[22] applied the VQ-VAE to encode and decode gestures, achieving
improved gesture generation performance.

3 SYSTEM OVERVIEW
Our approach follows the original DeepPhase paper [19]. It contains
twomain stages: training Periodic AutoEncoder to extract phase fea-
tures and building neural motion controller upon extracted phases.
The motion controller is based on a mixture-of-experts framework

also mentioned in the DeepPhase paper with some ideas from pre-
vious author’s work [20]. The main difference between our system
and those mentioned above is that we use an auxiliary recurrent
Control Variables Encoder to guide motion by audio, text and inter-
locutor’s motion instead of the user’s input. Apart from that, we
trained an additional encoder for the interlocutor’s motion and sup-
plemented control features with the obtained latent representation.

3.1 DeepPhase embeddings
To prepare the phase manifold we follow the proposed pipeline
from [19] exactly. To train Periodic AutoEncoder (PAE) we first
extract positions from the main agent’s motion data. We use all
motion files, but extract positions for 26 joints, including world root
and excluding fingers. Then we calculate joint position velocities
and smooth them via Butterworth Filter [3].

The training configuration of PAE is as follows: training sample
contains 61 frames and covers a 2-second window with 26*3 chan-
nels. The number of latent channels (phases) is equal to 8, following
the dancing pipeline from the official repository2. The number of
intermediate channels is equal to the number of joints. The model is
trained during 150 epochs with batch size equal to 512 and AdamW
optimizer with Cyclic Learning Rate Scheduler with Restarts [17]
with weight decay and learning rate both equal to 10e-4, restart
period equal to 10, multiplier equal to 2 and cosine policy.

The obtained model extracts phase features as in the original
paper. From each time window 𝑡 it extracts amplitude (𝐴), frequency
(𝐹 ), offset (𝐵) and phase shift (𝑆).𝐴, 𝐹, 𝐵, 𝑆 ∈ R𝑀 , where𝑀 - number
of latent channels (or phases). Phase manifold P ∈ R2𝑀 for frame
𝑡 is computed by

P (𝑡 )
2𝑖−1 = 𝐴

(𝑡 )
𝑖

· 𝑠𝑖𝑛(2𝜋 · 𝑆 (𝑡 )
𝑖

), P (𝑡 )
2𝑖 = 𝐴

(𝑡 )
𝑖

· 𝑐𝑜𝑠 (2𝜋 · 𝑆 (𝑡 )
𝑖

). (1)

To obtain phase features P ∈ R𝑇×2𝑀 from motion with length 𝑇
we just extract the phase manifold from the sliding window, i.e.
P = {P (𝑡 ) |𝑡 ∈ [1,𝑇 ]}. In order to illustrate the periodicity of
extracted phase features the Figure 1 shows them separated by
latent channel on a 10-second sample.

Figure 1: Extracted phase features example

Due to the fact that PAE is trained on joint velocities, obtained
phases can not be used as intermediate representations of motions
instead of original data to train motion generator. The problem lies
in the difficulty of converting joint positions into joint rotations
without the introduction of kinematic constraints. To overcome
this we also tried to train PAE on joints rotations. Unfortunately,
obtained phase manifold does not look like periodic function as

2https://github.com/sebastianstarke/AI4Animation
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before. PAE trained on angle velocities could theoretically shows
better results, but we decided to stop on phase manifold trained on
joint velocities.

3.2 Generation model
Ourmotion generationmodel extends themixture-of-experts frame-
work from [19]. It contains two feedforward neural networks: Gat-
ing Network and Motion Prediction Network. The model’s notation
follows [20].

The Gating Network is built upon a stack of linear layers with
ELU[5] activations between them. It takes phase features and pre-
dicts weights for experts. In our case, there are 8 experts. Then,
the Motion Prediction Network uses these weights to make linear
combinations over experts. The Motion Prediction Network itself
consists of several "Expert Layers" with ELU activations between
them. Each of layer 𝐸 uses experts weights 𝛼 = {𝛼𝑖 , 𝑖 ∈ [1, 𝑁 ]} and
input 𝑥 as follows:

𝐸 (𝑥, 𝛼) =
𝑁∑︁
1
𝛼𝑖 (𝑊𝑖𝑥 + 𝑏𝑖 ) (2)

where𝑊𝑖 ∈ Rℎ×𝑚 and 𝑏𝑖 ∈ Rℎ are weights and biases respec-
tively with𝑚 and ℎ being input and output dimensions respectively.
As in the original DeepPhase repository, the number of "Expert
layers" as well as the number of linear layers on the Gating Network
is equal to 3.

3.3 Control Variables Encoder
Initially, the input and output data formats were similar to [20].
However, significant changes were introduced. As control variables
input, we use a similar time window of audio features. But the more
control features like text and interlocutor’s pose we added, the
larger the control variables vector would become. So we decided to
add an additional recurrent encoder of control features based on
Bi-directional GRU over the FeedForward Highway as in [12] to
shorten this vector. It takes time-window features around the cur-
rent frame and returns the output vector from RNN corresponding
to the considered frame.

3.4 Interlocutor Gesture Encoder
Model. To effectively respond to the gestures of the interlocutor,
our model leverages the Interlocutor Gesture Encoder, a crucial
component based on the VQ-VAE framework from [1]. This model
showed good results in gesture coding, as shown in [18] and [22].
The Interlocutor Gesture Encoder enables us to encode high-quality
representations of gestures into compact vectors.

For better learning, we have added improvements such as ex-
ponential codebook smoothing and discarding unused vectors, as
suggested in the original article.

Data processing. To train the VQ-VAE model, we segment ges-
tures into gaps according to the bits in the audio. This idea was
proposed in the [22]. The authors proposed dividing gestures into
segments that align with the rhythmic structure of the audio, as
it is believed to capture the salient aspects of the gestures. The
maximum number of frames in one gesture’s sample with this ap-
proach is equal to 18. This approach has shown promising results

in capturing the temporal dynamics and synchronizing gestures
with the corresponding audio cues. Building upon this concept, we
adopt a similar data processing strategy in our study to leverage
the benefits of aligning gestures with the rhythmic elements of the
audio. During training, the network is fed with only those gesture
samples from both partners in which at least one conversational
partner was speaking. Each selected sample corresponds to the
speaker’s audio bits. During inference, we feed only interlocutor’s
gestures corresponding to the active speaking person’s audio bits.
In order to determine the moments of speech, we use a text tran-
script. If there is no active speaker at the moment, main agent’s
audio bits are chosen for guidance.

Training. We train the VQ-VAE model with codebook size 2048.
The dimensional of codebook vectors was 256. Codebook occupancy
reaches 70%. The model was trained over 152 epochs.

Inference. To feed the interlocutor’s gestures into the main model,
we split the interlocutor’s audio into bits, then we extract vectors
for each sample. After that, we duplicate each vector to the size of
a bit. Thus, we get the number of vectors equal to the number of
frames in the original gesture.

4 GENERATOR INPUTS AND OUTPUTS

Figure 2: Generator model

The overall system is illustrated in Figure 2. The model takes the
information from the current frame and predicts the next frame.
We use a notation of a time series window similar to [20], i.e. T 𝑡1𝑡0
represents features collected within a time window 𝑡0 ≤ 𝑡 ≤ 𝑡1.
Following is the description of the final data formats.

Inputs. Generator’s input consists of 3 components 𝑋𝑆
𝑖
, 𝑋𝐴
𝑖
, 𝑋𝑃
𝑖
.

Character state𝑋𝑆
𝑖
on 𝑖-th frame consists of concatenated joints

rotations and velocities. We also initially used joint positions, but
we observed that the model is more stable without them. We repre-
sent joint rotations via 6D continuous representation from [28] to
eliminate cases when Euler’s angles have values equal to 0 or 180
degrees. Joint velocities were preliminary smoothed as in the PAE
training routine. It’s also worth mentioning that character state
and phases were preliminary normalized.

Control variables 𝑋𝐴
𝑖
are time-window T 1𝑠

−1𝑠 features around
the current frame, which is passed to Control Variables Encoder
to obtain one control vector 𝑋𝐶

𝑖
, which will be concatenated with

character state as the main input to Motion Prediction Network.
As initial control features, we extract 26 MFCCs from audio, GloVe
embedding of size 50 and obtained codebook encoding from VQ-
VAE with respect to motion frame rate which is equal to 30 FPS.
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To align text and interlocutor’s features we distribute them evenly
within frames corresponding to time span. We also tried other
combinations, including interlocutor’s speech, but they showed
less stable results. We decided to make the dimension of 𝑋𝐶

𝑖
equal

to 𝑋𝑆
𝑖
.

Motion Phases 𝑋𝑃
𝑖
= Θ𝑖 ∈ R2𝐾T are extracted phase features

via PAE uniformly sampled from time-window T 1𝑠
−1𝑠 and concate-

nated into one vector, i.e. Θ𝑖 = {P (𝑖−30) , . . . ,P (𝑖−5) ,P (𝑖 ) ,P (𝑖+5) ,
. . . ,P (𝑖+30) } considering that 13 frames are sampled in the win-
dow.

Outputs. Our Motion Prediction Network output contains only 2
components: the next frame character state 𝑌𝑆

𝑖+1, which is similar
to input one, and future motion phases 𝑌𝑃

𝑖+1 = {Θ𝑖+1,ΔΘ𝑖+1} con-
taining not only phases, but phases’ velocity for time-window T 1𝑠

0𝑠
with respect to frame 𝑖+1, i.e =Θ𝑖+1 = {P (𝑖+1) ,P (𝑖+6) , . . . ,P (𝑖+31) }
with 7 frames total.

Training. The model is trained to predict the next frame based
on the current frame, it does not use outputs from the previous step
- every frame is taken from the dataset directly and is processed
independently. All parts of the generator are trained simultaneously
end-to-end during 50 epochs with batch size equal to 2048 and a
default Adam optimizer with a learning rate equal to 10e-4. The
hidden sizes of the Gating Network and the Motion Prediction
Network are 64 and 1024 respectively.

Inference. Finally, during inference, our model predicts the next
frame based on the previous one and follows an auto-regressive
fashion. We also blend phases between iterations, before passing
them to the next step: Θ′

𝑖+1 = 𝜆Θ𝑖+1 + (1 − 𝜆) (Θ𝑖 + ΔΘ𝑖+1) with
𝜆 = 0.5.

5 RESULTS AND DISCUSSION
As in previous challenges, organizers provided a comprehensive
human evaluation of participating systems[15]. This time 3 main
subjective measures are considered: human likeness, appropriate-
ness to speech and appropriateness to the interlocutor’s behaviour.

Human-likeness estimates the overall quality of generated mo-
tionwithout taking into account the agent’s speech or interlocutor’s
behaviour. Our approach, indexed SL, shows competitive results
(median score is 51 ∈ [50, 51] in Table 1) indicating the ability of
DeepPhase embeddings to maintain periodicity and as a result the
realism of predicted motion. Although our model is rated rather
well, it does not reach the quality of natural motions or state-of-
the-art approaches.

In order to estimate the appropriateness of agent speech, evalu-
ation participants were given two motion clips generated by one
model using separate audio samples and tasked to distinguish which
of the two motion clips corresponds to the target listening sample.
Good models generate motions that participants could easily deter-
mine from one another by audio. The main quantity of interest in
the appropriateness evaluation is the mean appropriateness score
(MAS). Unfortunately, our model provides poor appropriateness
results (0.05± 0.05MAS in Table 1). Organizers mentioned (section
3.6 in [15]) that our solution does not statistically differ from chance
performance. This leads us to suspect the weakness of used audio
and text features.

Table 1: Summary statistics of studies

Condi- Human-Likeness Agent Speech Interlocutor
tion Median Score MAS MAS

NA 71 ∈ [70, 71] 0.81±0.06 0.63±0.08
BM 43 ∈ [42, 45] 0.20±0.05 −0.01±0.06
BD 46 ∈ [43, 47] 0.14±0.06 0.07±0.06
SA 30 ∈ [29, 31] 0.11±0.06 0.09±0.06
SB 24 ∈ [23, 27] 0.13±0.06 0.07±0.08
SC 9 ∈ [ 9, 9] −0.02±0.04 −0.03±0.05
SD 45 ∈ [43, 47] 0.14±0.06 0.02±0.07
SE 50 ∈ [49, 51] 0.16±0.05 0.05±0.07
SF 65 ∈ [64, 67] 0.20±0.06 0.04±0.06
SG 69 ∈ [67, 70] 0.39±0.07 −0.09±0.08
SH 46 ∈ [44, 49] 0.09±0.07 −0.21±0.07
SI 40 ∈ [39, 43] 0.16±0.06 0.04±0.08
SJ 51 ∈ [50, 53] 0.27±0.06 −0.03±0.05
SK 37 ∈ [35, 40] 0.18±0.06 −0.06±0.09
SL 51 ∈ [50, 51] 0.05±0.05 0.07±0.06

The addition to this year’s challenge is the introduction of the
appropriateness metric for the main agent’s reaction to the inter-
locutor’s behaviour. The study itself is similar to the previous one
with changing interlocutor’s motion. It is also conducted while
the main agent is silent. Surprisingly, using the interlocutor’s mo-
tion features yields better results (0.07 ± 0.06 MAS in Table 1) and
significantly better than a chance (section 4.7 in [15]).

Overall, our system shows promising results, more on human-
likeness and appropriateness for the interlocutor. However, there
are ways to improve this approach by adding more compelling au-
dio features or adding teacher forcing to make attention to speech
features. Nevertheless, using DeepPhase embeddings allow us to
train the model without suffering converging to a rest pose. Addi-
tionally, VQ-VAE codebook encoding allowed the resulting solution
to accord the dyadic setup of conversation and generate plausible
reactions to interlocutor behaviour.

6 CONCLUSION
Sharing approaches between different tasks in the domain of mo-
tion generation could significantly improve the overall state of
the research community. Our system is based on an approach that
proved itself as a neural motion controller and showed promising
results during evaluation. We assume that using periodic properties
of motion could yield improvements in all problems connected with
animation. And DeepPhase embeddings are one of the latest and
most successful approaches to extract these properties, so we rec-
ommend considering them as well as VQ-VAE codebook encoding
during the development of future models.

Despite that our system showed relatively good results in the
challenge, there is room for improvement. For example, a better
speech encoder or additional data filtering could be used. The
mixture-of-experts framework could also be extended to work with
sequences. Some teacher-forcing techniques could also be applied.
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A PAIRWISE SIGNIFICANT DIFFERENCE FOR
APPROPRIATENESS STUDIES
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(a) Appropriateness for agent speech
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(b) Appropriateness for interlocutor

Figure 3: Significant differences between conditions in the
two appropriateness studies
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Figure 3 shows the pairwise significance in appropriateness study.
White means the conditions listed on𝑦-axis achieved anMAS signif-
icantly above the condition on the 𝑥-axis, black means the opposite
(𝑦 scored below 𝑥), and grey means no statistically significant dif-
ference at level 𝑎 = 0.05 after correction for the false discovery rate.
Our entry SL is rated significantly below or equal to other entries
by appropriateness for speech. On the other hand, our solution’s
appropriateness to the interlocutor’s speech is significantly below
only natural motion NA.

B RATING DISTRIBUTION AND PAIRWISE
SIGNIFICANT DIFFERENCE FOR
HUMAN-LIKENESS STUDY
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(b) Significance of pairwise differences

Figure 4: Visualisations of human-likeness study

Figure 4 visualizes results of human-likeness study: 4a visualiz-
ing the rating distribution and 4b shows the pairwise significance.

In 4a Red bars are the median ratings (each with a 0.05 confidence
interval); yellow diamonds are mean ratings (also with a 0.05 con-
fidence interval). Box edges are at 25 and 75 percentiles, while
whiskers cover 95% of all ratings for each condition. In 4b designa-
tion like in 3. Our entry SL is rated significantly below only natural
motion NA and two participants’ entries: SG and SF. It has also no
significant difference from two other models: SE and SJ.
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