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Abstract

Symmetry-based neural networks often constrain the architecture in order to achieve invari-
ance or equivariance to a group of transformations. In this paper, we propose an alternative
that avoids this architectural constraint by learning to produce a canonical representation
of the data. These canonicalization functions can readily be plugged into non-equivariant
backbone architectures. We offer explicit ways to implement them for many groups of
interest. We show that this approach enjoys universality while providing interpretable in-
sights. Our main hypothesis is that learning a neural network to perform canonicalization
is better than doing it using predefined heuristics. Our results show that learning the
canonicalization function indeed leads to better results and that the approach achieves
great performance in practice.

Keywords: deep learning, symmetry, equivariance, shape recognition, group theory, vi-
sion, cognition

1. Introduction

The problem of designing machine learning models that properly exploit the structure and
symmetry of the data is becoming more important as the field is broadening its scope to
more complex problems. In multiple applications, the transformations with respect to which
we require a model to be invariant or equivariant are known and provide a strong inductive
bias (Bronstein et al., 2021; Bogatskiy et al., 2022; van der Pol et al., 2020; Mondal et al.,
2020; Celledoni et al., 2021).

As is often the case, taking a step back and drawing analogies with human cognition is
fruitful here. Human pattern recognition handles some symmetries with relative ease. When
data is transformed in a way that preserves its essential characteristics, we precisely know
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if and how we should adapt our response. One context in which this has been particularly
well-studied in cognitive science is visual shape recognition. Experiments have shown that
subjects can accurately make the difference between different orientations of an object and
actual modifications to the structure of an object (Shepard and Metzler, 1971; Carpenter
and Eisenberg, 1978).

There are multiple ways in which this could be achieved. According to Tarr and Pinker
(1989), theories of invariant shape recognition broadly fall into three categories: viewpoint-
independent models, in which object representations depend only on invariants features,
multiple-view models in which an object is represented as a set of representations corre-
sponding to different orientations, and single-view-plus-transformation models in which an
object is converted to a canonical orientation by a transformation process.

Correspondingly, similar ideas have been explored in deep learning to achieve equiv-
ariance. Models that impose equivariance through constraints in the architecture (Shawe-
Taylor, 1989; Cohen and Welling, 2016; Ravanbakhsh et al., 2017) or that only use invariants
as inputs (Villar et al., 2021) can be seen as belonging to the viewpoint-independent type.
The multiple-view approach includes models that symmetrize the input by averaging over all
the transformations or a subset of them (Manay et al., 2006; Benton et al., 2020; Yarotsky,
2022; Puny et al., 2022). By contrast, the transformation approach has seen less interest,
and to our knowledge has not yet been used to achieve exact equivariance. This is all the
more surprising considering that evidence from cognitive science suggests that this approach
is used in human visual cognition (Shepard and Metzler, 1971; Carpenter and Eisenberg,
1978; Hinton and Parsons, 1981). When presented with a rotated version of an original
pattern, the time taken by humans to do the association is proportional to the angle of
rotation, which is more consistent with the hypothesis that we perform a mental rotation.

Some works (Jaderberg et al., 2015; Qi et al., 2017) have proposed to learn transfor-
mations of input to facilitate processing in a downstream task, but these approaches are
closer to regularizers and provide no guarantees. Another method is to use heuristics to
standardize inputs (Yüceer and Oflazer, 1993; Lowe, 2004; Aslan et al., 2022), but this
approach requires significant hand-engineering and is hardly generalizable.

Present work We introduce a systematic and general method for equivariant machine
learning based on learning mappings to canonical samples. We hypothesize that among
all valid canonicalization functions, some will lead to better downstream performance than
others. Rather than trying to hand-engineer these functions, we may as well let them
be learned in an end-to-end fashion with a prediction neural network. Our method can
readily be used as an independent module that can be plugged into existing architectures
to make them equivariant to arbitrary transformation groups, discrete or continuous. Our
approach enjoys similar expressivity advantages to methods like frame averaging by (Puny
et al., 2022), but has several added benefits. It is simpler, more efficient, and replaces
hand-engineered frames for each group by a systematic end-to-end learning approach.

Our contributions are as follow:

• Novel Framework: We introduce a general framework for equivariance to arbitrary
groups based on mappings to canonical samples. This framework can be plugged into
any existing non-equivariant architecture.
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• Theoretical Guarantees: We prove that in some settings, such models are universal
approximators of equivariant functions.

• Efficient Implementations: We provide multiple variants of efficient implementa-
tions of this framework to specific domains.

• Practical Performance: We perform experiments that show that the proposed
method achieves excellent results in the image domain. We also support our hypothesis
that learning the canonicalization function is a better strategy than fixing it.

2. Canonicalization Functions

2.1. Problem Setting

We are interested in learning functions ϕ : X → Y with inputs x ∈ X and outputs y ∈ Y
belonging to a arbitrary finite-dimensional vector spaces. We will consider a set of linear
symmetry transformations T ⊂ GL (X ), where GL (X ) is the set of invertible matrices over
the vector space X . This is described by a group representation ρ : G → T , where G is an
abstract group. Without loss of generality, we can assume that ρ is a group isomorphism.
Therefore, the inverse ρ−1 : T → G is defined. A function ϕ is G-equivariant if

ϕ (ρ (g)x) = ρ′ (g)ϕ (x) , ∀ g,x ∈ G×X , (1)

where the group action ρ on the input and the group action ρ′ on the output will be clear
from the context. In particular, when ρ′ (g) = I, we say that ϕ is invariant. We use ρ (G)
to denote the image of ρ.

We call ρ (G)x = {ρ (g)x | ∀ g ∈ G} the orbit of the element x. It is the set of elements
to which x can be mapped to by the group action. The set of orbits, denoted X/G forms
a partition of the set X .

2.2. General Formulation

The invariance requirement on a function ϕ amounts to having all the members of a group
orbit mapped to the same image by ϕ. It is thus possible to achieve invariance by appro-
priately mapping all elements to a canonical sample from their orbit before applying any
function. For equivariance, elements can be mapped to a canonical sample and, after a
function is applied, transformed back according to their original position in the orbit. This
can be formalized by writing the equivariant function ϕ in canonicalized form as

ϕ (x) = h′ (x) f
(
h (x)−1 x

)
(2)

where the function f : X → Y is called the prediction function and the function h : X →
ρ (G) is called the canonicalization function. Here h (x)−1 is the inverse of the representation
matrix and h′ (x) = ρ′

(
ρ−1 (h (x))

)
is the counterpart of h (x) on the output.

Equivariance in equation 2 is obtained for any prediction function if the canonicalization
function is itself G-equivariant1, h (ρ (g)x) = ρ (g)h (x) ∀ g, x ∈ G×X .

1. Symmetric inputs in X pose a problem if we use the standard definition of equivariance for the canonical-
ization function. We explain this in Appendix A and we introduce a relaxed version of equivariance that
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It may seem like the problem of obtaining an equivariant function has merely been
transferred in this formulation. This is however not the case: in equation 2, the equivariance
and prediction components are effectively decoupled. The canonicalization function h can
therefore be chosen as a simple and inexpressive equivariant function, while the heavy-lifting
is done by the prediction function f .

A more general condition can be formulated, such that the decoupling is partial.

Theorem 1 For some subgroup K ≤ G, if ∀ g,x ∈ G×X there exists a k ∈ K such that

h (ρ (g)x) = ρ (g)h (x) ρ (k) (3)

and the prediction function f is K-equivariant, then ϕ defined in equation 2 is G-equivariant.
If K is a normal subgroup such that G ≃ J ⋉K, this can be realized with a canonicalization
function that has image ρ (J), and that is J-equivariant and K-invariant.

The proof follows in Appendix B. This is equivalent to saying that the canonicalization
function should output a representation of a coset in G/K in an equivariant way, the
applied transformation being chosen arbitrarily within the coset.

When K = {e}, only the canonicalization function is constrained, which is the case
described above. The other extreme, given by K = G, corresponds to constraining the
prediction function as is usually done in equivariant architectures. These are respectively the
single-view-plus-transformation and the viewpoint-independent implementations described
in the introduction. Subgroups {e} < K < G offer intermediary options; the lattice of
subgroups of G therefore defines a family of models. Since equivariance to a smaller group is
less constraining for the prediction function, set inclusion in the subgroup lattice corresponds
to increased expressivity.

2.3. Universality Result

We can now introduce a more formal result on the universality of equivariant functions
obtained with canonicalization functions. A parameterized function ϕ is a universal ap-
proximator of G-equivariant functions if for any G-equivariant continuous function ψ,
any compact set K ⊆ X and any ϵ > 0, there exists a choice of parameters such that
∥ψ (x)− ϕ (x)∥ < ϵ ∀ x ∈ K. We make the additional assumption that the set K is closed
under the group action.

Theorem 2 A G-equivariant parameterized function ϕ written in canonicalized form (equa-
tion 2) and satisfying equation 3 with K ≤ G, is a universal approximator of G-equivariant
functions if the prediction function is a universal approximator of K-equivariant functions.

The proof follows in Appendix C. The following corollary is especially relevant.

Corollary 3 A G-equivariant parameterized function ϕ written in canonicalized form with
a G-equivariant canonicalization function and a multilayer perceptron (MLP) as a prediction
function is a universal approximator of G-equivariant functions.

This result can significantly simplify the design of universal approximators of equivariant
functions since a non-universal equivariant architecture for the canonicalization function
can be combined with an MLP.

solves this issue. However, because the subset of symmetric inputs is of measure zero, using standard
equivariance is not expected to be a problem in practice.
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3. Model Design for Canonicalization Functions

In the next section, we elaborate on how suitable canonicalization functions can be obtained
in different settings.

3.1. Euclidean Group

The Euclidean group E (d) is used to capture symmetry to rotations, translations, and
reflections. Domains in which this type of symmetry is especially relevant include point
cloud modeling, image processing and applications in physics. Below we give the design
principles to get an equivariant model for image and point cloud inputs.

Image Input. In order to build networks equivariant to E(2), we need a canonicalization
function that outputs an element of E(2) given an image. This can be achieved by using a
G-CNN (Cohen and Welling, 2016) and taking an argmax of the output feature map. While
G-CNN only considers four rotations this can be easily extended to any arbitrary rotations.
This approach can be further simplified if we are using a translation equivariant prediction
network which is generally the case with most CNN-based architectures. As the transla-
tion group T (2) is a normal subgroup of the Euclidean group E(2), Theorem 1 indicates
that we only require the canonicalization function to be equivariant to O(2). This means
we can eliminate the spatial dimension in the output feature map of the canonicalization
function and only need to take an argmax along the point group dimension to identify
the correct orientation of the image. However, there are two problems with this approach.
First, extending G-CNNs to higher-order rotations will lead to more computation and ar-
tifacts due to the finer rotation of filters. Second, we can not backpropagate through the
canonicalization function as the argmax operation is not differentiable.

We can avoid the first problem by using a shallower network with a larger filter size.
We empirically show why this is a sound choice for canonicalization function in Section
4. Furthermore to solve the second problem we can use the straight-through estimator
trick (Bengio et al., 2013). Appendix E contains a PyTorch code snippet to perform the
canonicalization function of images in a differentiable way using a G-CNN. Similarly, the
output of the canonicalization function can be used to invert the feature maps from the
prediction network back to their original orientation in a differentiable way.

Since CNNs are universal approximators of T (2)-equivariant functions (Yarotsky, 2022),
it follows from Theorem 2 that a CNN augmented with an O(2) equivariant canonicalization
function is a universal approximator of E(2)-equivariant functions.

Point Cloud Input. Elements of the Euclidean group can be written as (O, t), where
O ∈ Rn×n is an orthogonal matrix and t ∈ Rn is an arbitrary translation vector. The vector
representation on n+ 1 dimensional vectors (defined by concatenating a constant 1 to the
original vectors) is then defined in the following way

ρ(O, t) =

(
O t
tT 1

)
(4)

This representation is bounded We seek to define an E (d)-equivariant canonicalization
function. This can be done by defining it as h (x) = ρ

(
hO (x) , ht (x)

)
, where the functions

5



Kaba† Mondal† Zhang Bengio Ravanbakhsh

hO : X → Rn×n and ht : X → Rn output the point transformation and the translation
respectively. By the equivariance condition,(

hO (ρ(O, t)x) , ht (ρ(O, t)x)
)
=

(
OhO (x) ,Oht (x) + t

)
(5)

which means that hO must be O (d)-equivariant and translation invariant, and that ht must
be E (d)-equivariant. These constraints can be satisfied by using already existing equivariant
architectures. Since most of the work will be done by a prediction function that can be
very expressive, like Pointnet (Qi et al., 2017), a simple and efficient architecture can be
used for the canonicalization function, for example, Vector Neurons (Deng et al., 2021) or
E (d)-Equivariant Graph Neural Networks (Satorras et al., 2021). The output of hO can be
made an orthogonal matrix by having it output n vectors and orthonormalizing them with
the Gram-Schmidt procedure, which is itself equivariant.

Using Deep Sets (Zaheer et al., 2017) as a backbone architecture would result in a
universal approximator of E (d) and permutation equivariant functions, following Theorem
2 and Theorem 1 of (Segol and Lipman, 2020).

3.2. Symmetric Group

The symmetric group Sn over a finite set of n elements contains all the permutations
of that set. This group captures the inductive bias that input order should not matter.
Domains for which Sn-equivariance is desirable include object modelling and detection,
graph representation learning, and applications in language modeling.

Sn-equivariant canonicalization functions can be obtained with a direct approach. In
particular, the methods introduced by Mena et al. (2018); Cuturi et al. (2019); Zhang et al.
(2019) can be used to obtain the permutation of the input. However, these approaches only
learn relaxations of permutations and not actual elements of the permutation group. In
addition, they offer no clear way to handle sets of different sizes.

We propose an alternative of Sn-equivariance for the canonicalization function that
circumvents these issues. Instead of producing a permutation of the input, the canon-
icalization function can instead be designed to obtain a clustering of the input, with a
function c : X → {1, . . . , k}, where k is the number of possible clusters. This can be
made differentiable using the straight-through estimator described for the images above.
Then, a corresponding permutation is obtained by sorting elements with respect to their
cluster index, with elements belonging to the same cluster being sorted arbitrarily. The
canonicalization function would therefore respect equation 3 with respect to the subgroup
K = Sl1 × · · · × Slk , where li is the number of elements assigned to cluster i, the product
of symmetric groups within clusters. Heuristically, this enforces the inductive bias that set
elements should be mapped to high-level classes, across which interactions will be evaluated
in an expressive way. This is close in spirit to what is done in the ClusterFormer (Wang
et al., 2022) and Reformer (Kitaev et al., 2020) transformer architectures.

The prediction function f would then have to be Sl1 × · · · × Slk equivariant to obtain
permutation equivariance. Such a function can readily be obtained with an equivariant
multilayer perceptron, as derived by Wang et al. (2020).
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4. Experiments

Method Error % ↓

CNN (base) 4.90 ±0.20
G-CNN (p4) 2.28 ±0.00
G-CNN (p4 & = params) 2.36 ±0.15
CNN (= params) 4.80 ±0.37
CNN (w PCA) 3.35 ±0.21
Ours (p4 & frozen) 3.91 ±0.12
Ours (p4) 2.41 ±0.10

Table 1: Comparison with the existing
work for Rotated-MNIST.

We perform a preliminary empirical analysis of the
proposed framework in the image domain. Experi-
ments on other domains will be the subject of more
extensive work. We selected the Rotated MNIST
dataset (Larochelle et al., 2007) which is used as
a benchmark dataset that uses a classification task
to test equivariant architectures in prior work (Co-
hen and Welling, 2016). In all our experiments we
only change the network architecture. We train the
models by minimizing the cross entropy loss for 100
epochs using Adam (Kingma and Ba, 2014) with a
learning rate of 0.001. We perform early stopping
based on the classification performance of the val-
idation dataset with patience of 20 epochs.

We first compare our method with different CNN and G-CNN baselines. For CNN
(base), we choose an architecture with 7 layers where layer 1 to 3 has 32, 4 to 6 has 64
and layer 7 has 128 channels respectively. Instead of pooling, we use convolution filters
of size 5 × 5 with a stride 2 at layers 4 and 7. The remaining convolutions have filters of
size 3 × 3 and stride 1. All the layers are followed by batch-norm and ReLU activation
with dropout(p=0.4) only at layers 4 and 7. For the canonicalization function, we choose
a shallow G-CNN with three layers. We start with a lifting layer with a filter that is the
same size as the input image. This is followed by ReLU and group equivariant layers with
1× 1 filters.

We consider two variants: an untrained canonicalization function with frozen weights
and a canonicalization function learned end-to-end with the prediction function. For a
pure G-CNN based baseline, we provide the value reported by Cohen and Welling (2016)
and design a variant which has similar architecture to CNN (base) while matching the
number of parameters of our model with canonicalization function. We call this G-CNN
(p4 & =params). We consider two more variants of the CNN: one with the same number
of parameters as our model and the other where the canonicalization function is done by
finding the orientation of the digits using Principal Component Analysis (PCA).

We see that using a fixed canonicalization function technique like PCA or canonicaliza-
tion function with frozen parameters leads to an improvement in performance over the CNN
baseline. However, learning canonicalization function provides a significant performance im-
provement. Our approach outperforms all the CNN-based baselines and is comparable to
G-CNNs. We further notice that adding canonicalization function for reflections hurts per-
formance. This is in fact not surprising as reflection augmentations were not used to build
the rotated-MNIST dataset. Adding reflection invariance while the data does not possess it
may introduce ambiguity between certain digits like 2 and 5. Next, we perform experiments
to understand the role of different components in our model using the group of n discrete
rotations (pn).
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4.1. Ablation Study

First, we vary both the number of layers of the canonicalization network and the number
of rotations it is equivariant to. For this, we extend the layers of GCNN to any arbitrary
rotations. As we noticed that using a larger filter leads to better performance for higher
order rotations we stick to architecture with a lifting layer that has image-sized filters
followed by 1×1 filters. From Table 4.1, we notice that adding equivariance to higher order
rotation in the canonicalization function leads to significant performance improvement in
comparison to adding more layers. Figure 1 shows the canonical orientation resulting from
the learnt canonicalization function with a single lifting layer on 110 randomly sampled
images of class 7 from the test dataset. This suggests that having a shallow network is
enough to learn the correct canonicalization function with a sufficiently high order of discrete
rotations. For p64, we see that all the similar-looking samples are aligned in one particular
orientation. In contrast to this, although techniques like PCA or freezing parameters of the
canonicalization function finds the correct canonicalization function for simple digits like 1
(see Appendix 3) they struggle to find stable mappings for more complicated digits like 7.

(a) Original (b) p4 (c) p8 (d) p16

(e) p32 (f ) p64 (g) p64 (frozen) (h) PCA

Figure 1: Canonicalized images from different canonicalization functions for digit 7.

Next, we compare the inference time of our model with pure G-CNN-based architectures.
For this experiment, we take the CNN architecture of our predictor network and replace the
convolutions with group convolutions. As increasing the order of rotation in G-CNN requires
more copies of rotated filters in the lifting layer and more parameters in the subsequent
group convolution layers, we decreased the number of channels to keep the number of
parameters the same as our model. Figure 2 shows that although G-CNN is slightly better
for the p4 group increasing the order of discrete rotations improves our model’s performance
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Num layers Order of the discrete rotation group
p4 p8 p16 p32 p64

1 2.52 ±0.12 2.37 ±0.09 2.20 ±0.08 2.05 ±0.15 2.01 ±0.09
2 2.44 ±0.06 2.31 ±0.05 2.16 ±0.09 2.00 ±0.07 2.02 ±0.12
3 2.41 ±0.11 2.28 ±0.09 2.11 ±0.06 1.98 ±0.09 1.99 ±0.10

Table 2: Impact of the number of layers in canonicalization function network and order of
the discrete rotations to which it is equivariant on the performance.

significantly compared to G-CNN. In addition to performance gain, our model’s inference
speed remains more or less constant while encoding invariance to higher-order rotations
due to the shallow canonicalization network. This makes our approach more suitable for
building equivariance to bigger groups.

5. Conclusion

Figure 2: Inference time comparison of our
method with G-CNN with increas-
ing order of rotations.

In this work, we have proposed to use
learned canonicalization function to ob-
tain equivariant machine learning models.
These canonicalization functions can con-
veniently be plugged into existing architec-
tures, resulting in highly expressive mod-
els. We have described general approaches
to obtain canonicalization functions and
specific implementations for the Euclidean
group (for images and point clouds) and for
the symmetric group.

We performed preliminary experimen-
tal studies in the image domain to test
our initial hypotheses regarding this frame-
work. First, we show that our approach
achieves comparable or better performance
than baselines on invariant tasks. Importantly, learning the canonical network is a better
approach than using a fixed mapping, either a frozen neural network or a heuristic ap-
proach like PCA. Our results also show that the canonicalization function can be realized
with a shallow equivariant network, without hindering performance. Finally, we show that
this approach reduces inference time and is more suitable for bigger groups compared to
G-CNNs.

Areas of future work include an experimental study of this framework on other do-
mains, such as point clouds and graphs. In the image domain, we will also explore building
canonicalization functions using steerable networks. The function would output an ori-
entation fibre that transforms by the irreducible representation of the special orthogonal
group. Understanding how design choices for canonicalization functions affect downstream
performance would also be a potentially fruitful research direction.
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Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Learning representations of sets
through optimized permutations. In International Conference on Learning Representa-
tions, 2019.

Yan Zhang, David W Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, and Cees
G. M. Snoek. Multiset-equivariant set prediction with approximate implicit differenti-
ation. In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=5K7RRqZEjoS.

12

https://www.sciencedirect.com/science/article/pii/0010028589900091
https://www.sciencedirect.com/science/article/pii/0010028589900091
https://openreview.net/forum?id=ba27-RzNaIv
https://openreview.net/forum?id=ba27-RzNaIv
http://papers.nips.cc/paper/6931-deep-sets.pdf
https://openreview.net/forum?id=5K7RRqZEjoS
https://openreview.net/forum?id=5K7RRqZEjoS


Equivariance with Learned Canonicalization Functions

Appendix A. Symmetric inputs and relaxed equivariance

We say that an input x ∈ X is symmetric if its stabilizer subgroupGx = {g ∈ G | ρ (g)x = x}
is non-trivial.

Given any g1, g2 ∈ G, a necessary and sufficient condition for

ρ (g1)x = ρ (g2)x (6)

is that g1 and g2 are part of the same coset for the stabilizer, e.g. g1, g2 ∈ gGx. This is
follows from the well-known relation between orbits and stabilizers. Therefore, symmetric
inputs are always fixed by multiple group elements.

Symmetric inputs are problematic when using the standard definition of equivariance
for the canonicalization function because for g1, g2 ∈ gGx, we have

h (ρ (g1)x) = h (ρ (g2)x) (7)

ρ′ (g1)h (x) = ρ′ (g2)h (x) (8)

For general group actions, there will not exist a h (x) ∈ ρ (G) such that the last equality is
satisfied.

A relaxed version of equivariance can be defined to address this issue.

Definition 4 (Relaxed equivariance) Given group representations ρ : G → GL (X ) and
ρ′ : G → GL (Y), a function h : X → Y satisfies the relaxed equivariance condition if
∀g1,x ∈ G×X there exists a g2 ∈ g1Gx such that

h (ρ (g1)x) = ρ′ (g2)h (x) (9)

This is a generalization of the idea of multiset-equivariance introduced by Zhang et al. (2022)
to arbitrary group representations. When Gx = {e}, standard equivariance is recovered.
Canonicalization functions satisfying this condition do not suffer from the aforementioned
problem. In addition, this condition is sufficient to obtain relaxed equivariance for canoni-
calized functions (Eq. 2).

This is because, for g2 ∈ g1Gx :

ϕ (ρ (g1)x) = h′ (ρ (g1)x) f
(
h (ρ (g1)x)

−1 ρ (g1)x
)

(10)

ϕ (ρ (g1)x) = ρ′ (g2)h
′ (x) f

(
h (x)−1 ρ (g2)

−1 ρ (g1)x
)

(11)

ϕ (ρ (g1)x) = ρ′ (g2)h
′ (x) f

(
h (x)−1 ρ

(
g2

−1g1
)
x
)

(12)

Using the fact that g2
−1g1 ∈ Gx,

ϕ (ρ (g1)x) = ρ′ (g2)h
′ (x) f

(
h (x)−1 x

)
(13)

ϕ (ρ (g1)x) = ρ′ (g2)ϕ (x) (14)

The fact that we obtain only relaxed equivariance for the canonicalized function is a
feature rather than a bug. This captures the desideratum that a function should be able
to output asymmetric outputs from symmetric inputs, which is not the case for standard
equivariant functions.
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Appendix B. Proof of Theorem 1

We first show equivariance for a general subgroup K. We start with

ϕ (ρ (g)x) = h′ (ρ (g)x) f
(
h (ρ (g)x)−1 ρ (g)x

)
(15)

If equation 3 is satisfied, then ∀ g,x ∈ G×X there is a k ∈ K such that

ϕ (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k) f

([
ρ (g)h (x) ρ (k)−1

]−1
ρ (g)x

)
(16)

ϕ (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k) f
(
ρ (k)−1 h (x)−1 ρ (g)−1ρ (g)x

)
(17)

Using the K-equivariance of f , we obtain

ϕ (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k) ρ′ (k)−1 f
(
h (x)−1x

)
(18)

ϕ (ρ (g)x) = ρ′ (g)h′ (x) f
(
h (x)−1x

)
(19)

Now, consider the special case where K is a normal subgroup of G such that the group
can be taken to be isomorphic to a semidirect product G ≃ K ⋊ J . Then, group elements
can be written as g = (k, j), where k ∈ K and j ∈ J . The product is defined as g1g2 =
(k1, j1) (k2, j2) = (k1φ [j1] (k2) , j1j2), where φ : J → Aut (K) is a group homomorphism.
Setting k2 = e and j1 = e, we get any group element as (k1, e) (e, j2) = (k1, j2).

If the canonicalization function is J-equivariant and K-invariant, we have

h (ρ (k, j)x) = h (ρ (k, e) ρ (e, j)x) (20)

h (ρ (k, j)x) = ρ (e, j)h (x) (21)

We then show that there is a k′ ∈ K such that equation 3 is satisfied. Multiplying by
ρ (e) = ρ (k, e) ρ (e, j)h (x)h (x)−1 ρ (e, j)−1 ρ (k, e)−1 on the left, we have

ρ (e, j)h (x) = ρ (k, e) ρ (e, j)h (x)h (x)−1 ρ (e, j)−1 ρ (k, e)−1 ρ (e, j)h (x) (22)

Using the fact that conjugation of an element of K by an element of G preserves K mem-
bership, we define ρ (k′, e) = h (x)−1 ρ (e, j)−1 ρ (k, e)−1 ρ (e, j)h (x)

ρ (e, j)h (x) = ρ (k, e) ρ (e, j)h (x) ρ
(
k′, e

)
(23)

which shows that equation 3 is satisfied.
Finally, we show that in this case, the image of h can be chosen to be ρ (J). We first

remark that in each orbit X/G of the group action, the canonical sample x̂ can be obtained
from any orbit member x, as x̂ = h (x)−1 x. For the canonical sample, we must have a
k ∈ K such that

h
(
h (x)−1 x

)
= h (x)−1 h (x) ρ (k, e) (24)

If we impose k = e to satisfy this condition, we have h (x̂) = ρ (e, e).
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Since any orbit member can conversely be written as x = ρ (k, j) x̂ for some k ∈ K and
j ∈ J , if the canonicalization function is J-equivariant and K-invariant, we have

h (x) = h (ρ (k, j) x̂) (25)

h (x) = ρ (e, j)h (x̂) (26)

h (x) = ρ (e, j) (27)

which completes the proof.

Appendix C. Proof of Theorem 2

Proof The proof is inspired by the symmetrization approach of Yarotsky (2022).
Let ψ be an arbitrary G-equivariant function, and ϕ be defined by equation 2. By the

equivariance of ψ, we have

∥ψ (x)− ϕ (x)∥ =
∥∥∥h′ (x)ψ (

h (x)−1 x
)
− h′ (x) f

(
h (x)−1 x

)∥∥∥ (28)

Since Y is finite-dimensional, we know that linear operators in GL (Y) are bounded. This
means that for every representation matrix there exists a positive number c that bounds
the induced operator norm, e.g. ∀g ∈ G, ∃c > 0, ∥ρ′ (g)∥ ≤ c.

We therefore obtain

∥ψ (x)− ϕ (x)∥ ≤ ∥h (x)∥
∥∥∥ψ (

h (x)−1 x
)
− f

(
h (x)−1 x

)∥∥∥ (29)

∥ψ (x)− ϕ (x)∥ ≤ c
∥∥∥ψ (

h (x)−1 x
)
− f

(
h (x)−1 x

)∥∥∥ (30)

where c > 0.
If f is a universal approximator of K-equivarant functions, then it is also a universal

approximator of G-equivariant functions. We therefore have

∥ψ (x)− f (x)∥ ≤ ϵ, ∀ x ∈ K (31)

Using the fact that K is closed under the group action, we obtain the desired result

∥ψ (x)− ϕ (x)∥ ≤ ϵ, ∀ x ∈ K (32)
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Appendix D. Additional results

(a) Original (b) p4 (c) p8 (d) p16

(e) p32 (f ) p64 (g) p64 (frozen) (h) PCA

Figure 3: Canonicalized images obtained from different canonicalization functions for digit
1.
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Appendix E. Algorithm for Image Inputs

Algorithm 1 Differentiable Canonicalization for Image Inputs

import torch.nn.functional as F
import kornia as K

def get_canonicalized_images(images , fibre_features , use_reflection=True):
"""
images: Tensor with shape (batch_size , in_channels , height , width)
fibres_features: Tensor with shape: (batch_size , num_group_elements)
use_reflection: Boolean
:return: (batch_size , in_channels , height , width)
"""
num_group_elements = fibre_features.shape [-1]
num_rotations = num_group_elements // 2 if use_reflection else num_group_elements

fibre_features_one_hot = F.one_hot(
torch.argmax(fibre_features , dim=-1),
num_group_elements

).float()

fibre_features_soft = F.softmax(fibre_features , dim=-1)
ref_angles = torch.linspace (0., 360., num_rotations +1)[: num_rotations]

if use_reflection:
ref_angles = torch.cat([ ref_angles , ref_angles], dim =0)

angles = torch.sum((
fibre_features_one_hot + fibre_features_soft - fibre_features_soft.detach ()
) * ref_angles , dim=-1)

if use_reflection:
reflect_one_hot = torch.cat(

[torch.zeros(num_rotations), torch.ones(num_rotations )]
, dim=0)

reflect_indicator = torch.sum((
fibre_features_one_hot + fibre_features_soft - fibre_features_soft.detach ()
) * reflect_one_hot , dim=-1)

images_reflected = K.geometry.hflip(images)
reflect_indicator = reflect_indicator [:,None ,None ,None]
images = (1 - reflect_indicator) * x + reflect_indicator * images_reflected

return K.geometry.rotate(images , -angles)

# Use a shallow G-CNN as a canonicalization_network
feature_map = canonicalization_network(images)
# feature_map shape: (batch_size , num_channels , num_group_elements , height , width)

fibre_features = feature_map.mean(dim=(1, 3, 4))
# fibre_features shape: (batch_size , num_group_elements)

canonicalized_images = get_canonicalized_images(images , fibre_featuresr)
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