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Abstract
Neural networks outperform kernel methods, sometimes by orders of magnitude, e.g. on staircase
functions. This advantage stems from the ability of neural networks to learn features, adapting their
hidden representations to better capture the data. We introduce a concept we call feature quality
to measure this performance improvement. We examine existing theories of feature learning and
demonstrate empirically that they primarily assess the strength of feature learning, rather than the
quality of the learned features themselves. Consequently, current theories of feature learning do
not provide a sufficient foundation for developing theories of neural network generalization.

1. Introduction

Neural networks (NNs) generalize remarkably well in diverse domains, from computer vision to nat-
ural language processing or to protein folding [12, 33, 37]. However, understanding the mechanisms
behind this success remains a fundamental challenge in machine learning. A leading hypothesis
attributes this success to feature learning (FL) – the network’s ability to adapt its hidden repre-
sentations to discover useful patterns from data. For instance, visualization techniques reveal that
convolutional NNs naturally develop hierarchical feature representations, progressively learning to
detect edges, textures, patterns, object parts, and finally complete objects [49]. When comparing
NNs to their linearized approximations [32], NNs achieve dramatically better sample complexity
on many tasks (see discussion in Section 2.1). This suggests that NNs learn better features through
training than those present at initialization. Current literature characterizes FL as a change in the
Neural Tangent Kernel (NTK, [32]), Conjugate Kernel (CK, [38]), or via some weight-based met-
ric. These approaches measure FL by quantifying how much a trained network deviates from its
linear approximation at initialization. While there is a general notion that FL improves generaliza-
tion, we argue this relationship is misleading: FL theories measure FL strength – the magnitude of
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representation change – which is fundamentally decoupled from feature quality – the actual impact
on generalization. Our contributions are: (i) We define a rigorous way to measure feature quality
through the FL gap ∆NT. (ii) We demonstrate that current FL definitions measure strength rather
than quality, and show these are decoupled. See Appendix A for notation and background on kernel
methods and Appendix B for related work.

Figure 1: Generalization error Egen versus training set size m for NNs and their corresponding
NTK across three distinct target functions: (a) FFNN on merged staircase (MSP) func-
tions Appendix C.1, (b) FFNN on Multi-index functions Appendix C.2, and (c) Wide
ResNet on CIFAR-10. For (a) and (b), we observe a critical training set size m∗ where
NNs outperfrom their NTK counterparts by orders of magnitude (m∗ ∼ 103). We quan-
tify this improvement in performance through the FL gap ∆NT (Definition 1). For (c),
the learning curve for the NN scales similarly to the NTK until ∼ 104.

2. Feature Learning vs. Feature Quality

2.1. The feature learning gap

Figure 1 shows that the NTK significantly underperforms the corresponding NN after some amount
of data m∗ ∼ 103 on the MSP functions and multi-index functions. On CIFAR-10, the NTK
achieves comparable performance to the NN until m∗ ∼ 104.1 MSP and multi-index functions are
not isolated examples; rather, there exists a large class of target functions (collected in Table 6)
where kernels have polynomial or even exponential sample complexity, and NNs achieve linear or
lower degree polynomial sample complexity. These dramatic differences in sample complexity sug-
gest that the NNs learn high-quality features not present at initialization (and thus in their CK/NTK).
We quantify this feature quality through the FL gap.

Definition 1 (Feature learning gap) Given a data generating model p(x,y), an i.i.d. dataset D of
size m with a target function f∗ : Rn0 → RnL , a FFNN fθ, and the mean predictor of the FFNN’s
NTK, given by µNT(x) = KNT(x,X)NNT(X,X)−1Y , the FL gap is defined by

∆NT(m) = Egen(µNT;m)− Egen(fθ;m). (1)

See Appendix D.8 for further a discussion on properties of ∆NT.

1. This is well predicted by how well the empirical NTK aligns with the target function see Appx. Figure 5.

2



DISENTANGLING FEATURE LEARNING FROM GENERALIZATION IN NEURAL NETWORKS

2.2. Disentangling FL strength from feature quality

The literature contains multiple definitions of FL, falling into three main categories: (1) NTK-
based, (2) CK-based, and (3) superposition-based definitions. These approaches characterize FL
by measuring how hidden representations of fθ(t) change during training relative to the initialized
network fθ(0). Although these measures take different forms based on changes in the NTK, CK,
or other metrics, we argue they fundamentally measure FL strength rather than feature quality (i.e.
how useful the features are). This is based on our empirical observations in Section 3 indicating
that changes in hidden representations do not guarantee the learning of high-quality features, as
quantified by ∆NT. Conversely, an NN can generalize effectively with minimal changes to its
representations if the initial kernel already encodes useful features [52].

Claim: Current FL definitions (explicitly or implicitly) characterize FL by measuring FL strength
S(fθ). However, FL strength is decoupled from feature quality, measured by the FL gap ∆NT.

3. Current FL definitions do not provide a feature quality measure

Methodology Every FL theory provides a measure of feature strength S(fθ). Our goal in this
section is to assess whether the strength measures correlate with the FL gap ∆NT, i.e. whether strong
FL implies a beyond-the-kernel performance. We conduct experiments with two architectures and
datasets (1) CNNs trained on CIFAR-10 and (2) FFNNs trained on MSP functions 2. For each
setup, we compare models trained on true-labeled data to those trained on shuffled labels. Any
non-vacuous generalization bound must be data-dependent [7, 73]. If S(fθ) correlates with feature
quality (∆NT), the feature strength measures must demonstrate a qualitative distinction between
NNs trained on shuffled vs. non-shuffled data. Otherwise, the result suggests a lack of correlation
between feature strength and quality.

3.1. Family 1: NTK based definitions

The first FL definition we examine is based on the identification of two training regimes, the “lazy”
and “rich” regimes [15, 42]. In the lazy regime, NNs behave like their linearized approximations

fθ(x) = fθ0(x) + (θ − θ0)
⊤∇θfθ0(x) +O(θ2). (2)

Although multiple FL definitions exist in the literature [19, 28, 34, 42, 55, 64, 66], they are funda-
mentally related. NNs FL when they diverge from their linearization at initialization eq. (2). This
can be measured by the change in the NTK.

Definition 2 (Feature learning (NTK)) A NN fθ feature learns if the empirical NTK K̂NT changes
significantly during training ∃ε, T > 0 : ∀t > T d(K̂NT(θ0), K̂NT(θt)) > ε, where d is some
distance metric for kernels.

Definition 3 (Feature) The features are the row vectors of the feature map: Φ(x; t) = ∇θfθ(x)|θt .

For NTK-based FL definitions, a larger distance between the initial and final NTK correlates with
stronger FL. Accordingly, the following definition of FL strength seems natural.

2. MSP functions map to whole numbers, making label shuffling well-defined, see Appendix C.1.
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Definition 4 (FL strength (NTK)) We set SNT(fθ) = 1 − κCKA(K̂NT(θ0), K̂NT(θt)), where
κCKA is the centered-kernel alignment [35] which measures the normalized distance between ker-
nels.

Figure 2: FL strength SNT(fθ) is decoupled from generalization error Egen. (a) shows a CNN
on CIFAR-10 and (b,c) an FFNN on MSP functions with true and shuffled labels. (b)
clearly shows significant difference in SNT(fθ) between the NN and corresponding NTK
after m∗ ∼ 103, However, this difference vanishes when scaling the network output by
γ = 0.01, shown in (c), with no corresponding change in Egen. This indicates SNT(fθ)
is not predictive of Egen. As in Figure 1 there is no significant difference between the NN
and corresponding NTK for the CNN in (a). See Tables 3 and 4 for the architecture.

Critique S(fθ) is calculated using the neural-tangents package [47, 48] as per Definition 4. For
a CNN trained on CIFAR-10, S(fθ) fails to distinguish between shuffled and non-shuffled labels
(Figure 2(a), Table 4). While experiments with an FFNN on MSP functions initially seem promis-
ing—with SNT(fθ) increasing for non-shuffled data around m = 3000 unlike the shuffled case
(Figure 2(b), Table 3)—this signal is not robust. This apparent difference can be nullified by in-
troducing a scaling parameter γ [8, 15], where the network output becomes f̃θ(x) = 1

γ fθ(x). As
shown in Figure 2(c), setting γ = 0.01 makes both the FL strength and the learning curves qual-
itatively indistinguishable for shuffled and non-shuffled data. Because the generalization error is
largely unaffected by this scaling, the metric’s sensitivity to γ demonstrates that SNT(fθ) is not a
robust predictor of generalization. This aligns with recent findings on "misgrokking" [40], where
NTK changes can decouple from generalization.

3.2. Family 2: CK based definitions

A second line of work bases features on the CK. While Nam et al. [45], Yang and Hu [70] are
focused on the final layer CK, Fischer et al. [23], Naveh and Ringel [46], Seroussi et al. [57] treat
CKs of each layer in a Bayesian framework.

Definition 5 (Feature Learning) An NN undergoes FL if its final layer feature map ΦL−1(x; t)
differs from its initialization ΦL−1(x; 0) at any time t for some input x ∈ X .

Definition 6 (Feature) Given an NN, the features are the eigenfunctions [e1(t), ..., enL(t)] of the
last layer CK, KΦL−1(xµ,xν ; t) (see Appendix A.1), ordered by their eigenvalues λk.

Definition 7 (FL strength (CK)) Given the trained (scalar-valued) network fθ, the utility of the k-
th feature ek(t) is Q̂k = ⟨ek|fθ⟩2. The cumulative utility of the first k features is Π̂(k) =

∑k
j=1 Q̂j ,
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with 0 ≤ Π̂(k) ≤ 1 and Π̂(nL) = 1. We define the FL strength (CK) as SCK(fθ) = mink{Π̂(k) >
ε}, where ε = 0.95 is chosen as a sensible threshold.

When Π̂(k) approaches 1 quickly with k, it means that the NN is strongly learning features, akin to
neural collapse [51] where only a minimal number of features are used.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.0

0.5

1.0

Π
∗
(k

)

a) CIFAR-10

non-shuffled

shuffled

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.0

0.5

1.0

Π
∗
(k

)

b) MSP function

non-shuffled

shuffled

Figure 3: The Cumulative quality of features Π∗ is decoupled from generalization. (a) a ResNet
on CIFAR-10 and (b) an FFNN trained on MSP functions, each with shuffled and non-
shuffled data.

Critique The cumulative utility metric fails to distinguish between networks trained on true versus
randomly shuffled labels. This holds for both CIFAR-10 (Figure 3 (a)) and for FFNNs trained on
the MSP function (Figure 3 (b)). Our analysis of the CK spectra also reveals qualitatively similar
patterns for both shuffled and non-shuffled data (Appendix D.6 and Figures 6 and 9). These findings
align with previous research showing that neural collapse, which is equivalent to strong feature
learning under CK-based definitions, can occur independently of generalization [25, 30, 36].

3.3. Family 3: Superposition based definitions

Elhage et al. [21] define features as “properties of the input which a sufficiently large NN will
reliably dedicate a neuron to representing”. While this definition needs further elaboration as we do
not know when an NN is “sufficiently large”, they later give a more practical definition of a feature
which is closely related to family 2.

Definition 8 (Feature) Given a FFNN with a feature map Φk(t) as defined in Definition 12, a
feature fi corresponds to a direction vi ∈ Rnk in the hidden (activation) space.

Features correspond to hidden-space vectors vi, whose count can exceed the layer width nk. This
non-orthogonal “superposition” allows more features than dimensions [6, 31]. Given features with
values xf1 , xf2 , . . ., the layer encodes them as Φk(xµ; t) =

∑nk
i=1 xfi vi. [21] quantified su-

perposition in autoencoders via feature and sample dimensionality. There is no canonical way to
generalize these measures from an autoencoder architecture to a FFNN in the overparameterized
regime. Nevertheless, here we adopt a layer-wise definition:

Definition 9 (FL strength) For layer k, FL strength is measured through two complementary met-
rics

Dfi =
||Wi||22∑

j(Ŵi ·Wj)2
, Dxµ =

||Φk(xµ; t)||22∑
ν(Φ̂

k(xµ; t) · Φk(xν ; t))2
, (3)

feature dimensionality Dfi for feature fi and sample dimensionality Dxµ for input xµ, where “ˆ“
denotes normalized vectors.
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Feature dimensionality measures how much of a hidden dimension is ‘dedicated’ to representing
a specific feature, ranging from 0 to 1. A feature with dimensionality 1 has its own dedicated
dimension, while a feature with dimensionality closer to 0 is either not learned at all or shares its
representation space with other features, existing in superposition. The same applies for sample
dimensionality, but in terms of Φk(xµ) rather than Wi.
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Figure 4: Feature dimensionality and generalization are not strongly correlated Histogram of
the feature dimensionality for an FFNN with depth L = 4 and width N = 2000 trained
on MSP functions for training set sizes m = 100 and 20000. When m = 100, there is no
significant difference in the histograms, despite higher test losses for shuffled data (9.5 vs
6.3). At m = 20000, shuffled data exhibits mostly zero Dfi with few non-zero features,
a pattern consistent with FL, while non-shuffled data shows a diffuse distribution. The
stark difference in test losses (6.4 vs 2 × 10−7) despite these patterns demonstrates that
final layer feature dimensionality poorly predicts generalization.

Critique We trained an FFNN on MSP functions with shuffled and non-shuffled labels. While the
sample dimensionality metric fails to distinguish between them, feature dimensionality reveals more
nuanced patterns (see appx. Figure 10). The histograms in Figure 4 for m = 100 and m = 20000
illustrate this. Specifically for m = 20000, when enough data was available to learn features, the
first layer’s histogram for non-shuffled data shows an optimal pattern: most dimensions are near
zero, with a few non-zero ones for important features. This pattern does not emerge in the data-
poor case (m = 100), is absent entirely in shuffled data, and dissolves in deeper layers. However,
feature dimensionality is not a definitive measure of feature quality, as one generally does not know
the relevant input features to validate the histogram. Furthermore, the distribution of Dfi can be
heavily influenced by training parameters like γ (appx. Figure 11). Therefore, while Dfi is useful
for measuring superposition, it is not a conclusive metric for feature quality.

4. Conclusion

We have demonstrated that current theories of FL, while capturing the strength of representation
changes during training, mostly fail to predict generalization. This decoupling between FL strength
and feature quality suggests the need for a more comprehensive FL theory if FL should act as a
foundation for theories of NN generalization.
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Appendix A. Background

Let X ⊆ Rn0 and Y ⊆ RnL be the input and output space. A dataset of size m, D = (xµ,yµ)
m
µ=1 is

drawn i.i.d. from the data generating distribution p(x,y). For some function f , the generalization
is defined with respect to a loss function ℓ : Y × Y → R≥0,

Egen(f) = E(x,y)∼p(x,y) [ℓ(f(x),y)] . (4)

In practice, we will approximate this quantity by averaging over a finite test set.

Definition 10 (Feed-forward Neural Network (FFNN)) An L-layer FFNN is a recursively de-
fined map fθ : Rn0 → RnL:

h0 = xµ, hl = W lϕ(hl−1) + bl, (5)

and f(xµ) = W LhL−1(xµ) + bL, where 1 ≤ l ≤ L, W l ∈ Rnl×nl−1 , bl ∈ Rnl , and ϕ are
nonlinear functions applied element-wise. We assume all nl are equal for l ̸= 0, L, and call this the
width of the FFNN and denote P for the total number of parameters.

A.1. Kernel methods

Definition 11 (Kernel & Features) A kernel is any symmetric, positive semi-definite function K :
X × X → R. Let H be the reproducing kernel Hilbert space (RKHS) with inner product ⟨·|·⟩H.
Then, any such kernel can be written as an inner product kernel K(x,x′) = ⟨ΦK(x)|ΦK(x′)⟩H.
The kernel’s feature map is given by ΦK : X → H.

Definition 12 (l-layer feature map) Consider the feature map of the l < L’th layer of an FFNN
at training time t,

Φl(t) : X → Rnl , xµ 7→ hl(xµ). (6)

The l’th layer feature kernel KΦl(t) : X 2 → R is given by

KΦl(xµ,xν ; t) = Φl(xµ; t)
⊤Φl(xν ; t). (7)

When evaluated over a finite dataset D, (KΦl)µν can be interpreted as the correlation matrix, mea-
suring how similar the features of xµ and xν are at layer l.

A.2. Learning dynamics and spectral bias for kernels

When performing kernel ridge regression with gradient descent, the residual dynamics rt(x) =
f(x) − f∗(x) for projections on eigenfunctions eρ follow ⟨rt|eρ⟩H = e−λρt⟨r0|eρ⟩H. For high-
dimensional kernels, where the number of eigenfunctions Nρ greatly exceeds the number of samples
m, the distribution over λρ determines the solution: eigenfunctions with large λρ will have large
coefficients [26, 27, 53]. Eigenfunctions with large λρ are learned the fastest, so a trained solution
will be dominated by the corresponding eigenfunctions. These often correspond to low frequency,
simple components of the target function, rigorously proven for ReLU networks in [9]. The high-
frequency components, which could lead to overfitting, are naturally learned more slowly.
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The generalization error Egen scales as :

Egen(m) ∼ m−β, with β =
1

d
min(αT − d, 2αS) (8)

where the exponent β reflects how quickly different frequency components are learned, and αT , αS

are the decay rates of the kernel in Fourier space [10, 59]. For β to remain non-vanishing as dimen-
sion d increases, the smoothness index s = (αT −d)/2 must scale with d (curse of dimensionality).

A.3. Kernels on CIFAR-10

NTKs of CNNs are multi-dot product kernels k(x, z) that operate over the multi-sphere Πd
i=1Sζ−1

where d is the number of pixels and ζ is the number of channels [26]. These kernels can be de-
composed into eigenfunctions, which are multivariate spherical harmonics. The eigenvalue λk for
the frequencies k of the multivariate spherical harmonic exhibits polynomial decay with respect to
these frequencies. This decay induces an implicit bias that favors learning low-frequency functions
before high-frequency ones, manifesting as a form of simplicity bias.
The multiplicity of the eigenvalues is determined by the quantity p

(L)
i , which represents the number

of paths for a pixel i in a network of depth L. This path count quantifies the distinct number of
ways information from a pixel can propagate through the network’s convolution layers to reach a
particular output. For a pixel, the number of paths decays exponentially with the distance from the
center of the receptive field, introducing a positional bias that facilitates learning spatially localized
features over those requiring global image dependencies. This bias aligns with natural image statis-
tics, where meaningful features typically exhibit local coherence. Consequently, CNNs can more
efficiently learn localized high-frequency patterns compared to patterns requiring high frequencies
across multiple pixels, a distinction not present in fully connected networks. This theoretical frame-
work is further supported by [29], who demonstrate that such kernels generalize effectively when
image labels depend on low frequencies (frequency bias) and the image spectrum itself is con-
centrated in low frequencies (positional bias), conditions commonly satisfied in real-world image
datasets.
To conclude, alignment of the kernel with the target function can largely explain generalization of
the NTK on specific datasets where this alignment exists, such as image classification, whereas
when this alignment is absent, as in merged staircase functions, the NTK fails to generalize effec-
tively.

A.4. Generalization theory of Kernels

To analyze the generalization behavior of the NTK, we need to first examine the theoretical foun-
dations of generalization in kernel methods. Given that the kernels eigenfunctions are a basis of
the RKHS 11, we can decompose the predicted f∗(x) =

∑
ρw

∗
ρ
√
ηρϕρ(x) and target function

f̄(x) =
∑

ρ w̄ρ
√
ηρϕρ(x) in terms of the eigenfunctions. This allows for decomposing the general-

ization error in terms of modes3

E(m) =
∑
ρ

ηρ
〈
(w∗

ρ − w̄ρ)
2
〉
D =

∑
ρ

ηρEρ(m) (9)

3. There is a fundamental lower bound for the test error due to zero modes.
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where the average over datasets can be analytically computed [10]. We note that the spectrum {ηρ}
is independent of the target function, while the mode error Eρ is not.
As we focus on learning curves, we want to understand how E(m) scales with m. Qualitatively,
the scaling is dominated by two quantities [10, 14]. The first one is spectral alignment. It can
be formally shown that for ηρ > ηρ′ , Eρ(m) decreases faster with m than Eρ′(m). This means
that, with growing training set size, eigenfunctions with larger eigenvalues of the trained function
approach the one of the target function faster. Hence, if the target function is well approximated by
the high eigenvalue eigenfunctions of the kernel, the generalization error will drop faster. Secondly,
the asymptotic mode error has the form Eρ(m) ∼

m→∞
⟨w̄ρ⟩
ηρ

. The asymptotic error of a mode is larger
if the RKHS eigenvalue ηρ is small, even if the coefficient wρ of the target eigenfunction is large.
Both of these observations motivate the definition of the cumulative power distribution.

Definition 13 The cumulative power distribution is defined as the amount of overlap of the target
function with the RKHS subspace up to mode ρ:

C(ρ) =

∑
ρ′≤ρ ηρ′wρ′

2∑
ρ′ ηρ′wρ′

2 (10)

To conclude, the more power the target function has in the high eigenvalue subspace of the RKHS,
the faster kernel ridge regression is able to learn the function with growing data set size. High
task-model alignment results in a faster decaying learning curve, which allows a qualitative under-
standing of learning curves (see [10, 13, 67] for numerical studies and [62] for a critique of the
theory).

100 101 102

ρ

0.5

1.0

C
(ρ

)

FFNN on MSF 

CNN on CIFAR10

FFNN on CIFAR10

Figure 5: Cumulative power distribution for a FFNN trained on merged staircase functions as well
as a FFNN and CNN trained on CIFAR-10. This can correctly predict the different gen-
eralization errors observed in Figure 1.

Appendix B. Related work

For a discussion of FL definitions, we refer readers to Section 3, which provides a thorough literature
review. See Table 6 for an overview of datasets where kernels and NNs provably show a separation
in sample complexity. In the line of works on sample complexity, we highlight several studies on
NN scaling laws [11, 41, 58], alongside theoretical predictions of learning curves in the infinite
width limit in [16]. Recent work has critically examined the explanatory power of the NTK for NN
generalization [29, 50, 65, 69]. For a statistical physics-inspired predictive FL theory, we refer to
[2] and [56].
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Appendix C. Data sets and experiment details

C.1. Functions with the merged-staircase property

In this section we follow [1]. For any function f : {+1,−1}d → R, we can express it using the
Fourier-Walsh basis decomposition

f(z) =
∑
S⊆[d]

f̂(S)χS(z), z ∈ {+1,−1}d, (11)

with Fourier coefficients f̂(S) and basis functions χS(z) :=
∏

i∈S zi. This provides a representation
of f(z) through orthogonal monomials χS(z) weighted by their respective Fourier coefficients.

Definition 14 (Merged-Staircase Property) We say a set structure S = {S1, . . . , Sm} ⊆ 2[d]

exhibits the Merged-Staircase Property (MSP) if there exists an ordering where each set Si, i ∈ [m],
satisfies:

|Si \ ∪i′<iSi′ | ≥ 1. (12)

This property ensures that each set contributes at least one novel element not contained in the union
of preceding sets.

Definition 15 (Merged-Staircase Property for Functions) Let S ⊂ 2[d] be non-zero Fourier co-
efficients of f . We say that f satisfies the Merged-Staircase Property (MSP) if S has a MSP set
structure.

In the empirical experiments, we use f(z) = z7 + z2z7 + z0z2z7 + z4z5z7 + z1 + z0z4 + z3z7 +
z0z1z2z3z4z6z7 with d = 30.

C.2. Multi-index functions

Here, we follow [17]. Multi-index functions are polynomials that depend on a small number of
latent directions. Following Assumptions 1 and 2 in [17] from the theoretical analysis, we construct
functions of the form f(x) = g(⟨x,u1⟩, . . . , ⟨x,ur⟩) where {u1, . . . ,ur} are linearly independent
vectors spanning the principal subspace S∗, while ensuring the non-degeneracy condition that the
expected Hessian H = Ex∼D[∇2f(x)] has rank exactly r.

Specifically, we first construct a random orthogonal projection matrix U ∈ Rd×r through QR
decomposition of a Gaussian random matrix, where r ≪ d represents the intrinsic dimension of
the target function. This ensures linear independence of the latent directions. Input data is sampled
from a standard normal distribution X ∼ N (0, Id) and projected onto this latent space via Xlatent =
XU . The target polynomial function is then constructed as a sum over all multi-indices α ∈ Nr

with total degree at most p, where each term has a random Gaussian coefficient cα ∼ N (0, 1):
f(x) =

∑
α:∥α∥1≤p cα

∏r
i=1(U

Tx)αi
i .

To model measurement noise, we add symmetric binary noise ϵ ∼ U({−σ, σ}) to obtain the
final labels y = f(x) + ϵ. For evaluation, we generate test data using the same projection matrix U
and coefficients cα but with fresh input samples. The outputs are normalized to have zero mean and
unit variance based on training set statistics.
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Appendix D. µP-parameterization

When training with µP parameterization, we follow the definition of the µP parameterization in
[22]. For an L-layer feed-forward NN with width nl and input dimension n0, muP prescribes
specific initialization and learning rate scaling rules:

Initialization The weights W l at each layer are initialized as:

W 1 ∼ N
(
0,

1

n0

)
, W l ∼ N

(
0,

1

nl−1

)
2 ≤ l ≤ L, W L+1 ∼ N

(
0,

1

nL

)
(13)

All bias terms are initialized to zero:

bl = 0 ∀l ∈ 1, . . . , L+ 1 (14)

Learning Rate Scaling The learning rates ηl for each layer follow:

η1 = ηbase, ηl =
ηbase

nl−1
2 ≤ l ≤ L, ηL+1 =

ηbase

nL
(15)

where ηbase is the base learning rate.

D.1. Figure 1
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Hyperparameter MSP Experiment Multi-index functions Experiment
latent dimension — 3
polynomial degree — 5
noise std — 0.0
P (MSP parameter) 8 —
d (input dimension) 30 20
# hidden layer 4 4
hidden layer sizes [400] [400]
activation ReLU ReLU
batch size 64 64
epochs 5000 5000
learning rate 0.05 0.001
weight decay 10−4 10−4

initialization mode muP Pennington muP Pennington
γ 1 1
test set size 1000 10000
optimizer Adam (muP mode) Adam (muP mode)
learning rate scheduler CosineAnnealing CosineAnnealing
gradient clipping 1.0 1.0
MSP sets {7}, {2, 7}, {0, 2, 7}, {5, 7, 4}, {1}, {0, 4},

{3, 7}, {0, 1, 2, 3, 4, 6, 7}

Table 1: Hyperparameter settings for both MSP and multi-index functions experiments in Figure 1
(a), (b).

Hyperparameter Value
Architecture WideResNet [72]
Block size 4
Width multipliers (k) 4.0
Number of classes 10
Initial channels 16
Channel progression [16k, 32k, 64k]
Dataset CIFAR-10
Input normalization divide by 255
Batch size 128
Epochs 200
Learning rate 0.001
Optimizer Adam
Loss function MSE with one-hot targets
Learning rate scheduler CosineAnnealing
Number of test samples 10000

Table 2: Hyperparameter settings for training on CIFAR-10 Figure 1 (c).
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D.2. Figure 2

Hyperparameter Value
Architecture FFNN
Hidden sizes [400, 1000]
Depth 4
Weight initialization He (1/

√
N )

Input dimension (d) 30
Training Parameters
Test set size 5000
Training set sizes [10, 100, 250, 500, 750, 1000,

2500, 5000, 7500, 10000, 20000]
Batch size 64
Epochs 3000
Learning rate 0.005
Weight decay 10−4

Optimizer AdamW
LR scheduler Cosine decay
Gradient clipping 1.0
γ scaling [1.0,0.01]
Number of experiments 3
MSP Parameters
d 30
MSP sets {7}, {2, 7}, {0, 2, 7}, {5, 7, 4},

{1}, {0, 4}, {3, 7}, {0, 1, 2, 3, 4, 6, 7}
NTK Parameters
NTK computation Empirical, batched
Kernel regularization 10−6 · tr(K)/n

Table 3: Hyperparameter settings for the experiments with FFNNs in Figure 2.
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Hyperparameter Value
Architecture WideResNet [72]
Block size 4
Width multiplier (k) 2.0
Number of classes 10
Initial channels 16
Channel progression [16k, 32k, 64k]
Normalization LayerNorm
Training Parameters
Input normalization x−µ

σ (per channel)
Batch size 64
Epochs 2500
Base learning rate 0.0001
Weight decay 10−4

Optimizer AdamW
Loss function Cross-entropy
LR scheduler Cosine decay
Gradient clipping 10.0
Training set sizes [10, 100, 500, 1000, 2000,

4000, 8192, 16384, 32768]
Test set size 10000
Number of experiments 3
NTK Parameters
NTK computation Empirical, batched
Kernel regularization 10−2 if n > 8000 else 10−4

Table 4: Hyperparameter settings for experiments with the WideResNet in Figure 2.

D.3. Figures 3 and 4

Figure 3 uses the settings from Figure 1.
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Hyperparameter MSP Experiment
P (MSP parameter) 8
d (input dimension) 30
# hidden layer 4
hidden layer sizes 2000
activation ReLU
batch size 64
epochs 5000
learning rate 0.001
weight decay 10−4

initialization mode muP Pennington
γ [1, 0.0001]
test set size 1000
optimizer Adam (muP mode)
learning rate scheduler CosineAnnealing
gradient clipping 1.0
MSP sets {7}, {2, 7}, {0, 2, 7}, {5, 7, 4},

{1}, {0, 4}, {3, 7}, {0, 1, 2, 3, 4, 6, 7}

Table 5: Hyperparameter settings for for Figure 4.

D.4. Addition to: Section 2
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Source Data NN Type Kernel NN Scaling Kernel Scaling

[17], x ∼ N (0, Id), 1-hidden layer NTK m = Ω(drp+ m = Ω( d
p/2

ε2
)

[20], y = g(Ux), N = O(rp) d2r
ε2

)

[29], U ∈ Rr×d,
[43], deg p poly
[63]
[44]

[1] MSP function, input dim. d 1-hidden layer NN Any m = O(d · 22
O(P )

/ε5) n = Ω(dP )

max. poly. degree. P with N = ee
P

[18], Sparse parity 1-hidden layer Any m = Ω(poly(k, m = Ω( 2
k

ε2
)

[61] on k bits N = poly(k) 1
ε
))

[54] d-dim Gaussian mixture 1-hidden layer ReLU RFK ϵNN = Θ(1) ϵRF = Ω(1)
4 clusters XOR config O(1) width O(d) feats m = Ω(d) m = O(d)

[24], Noisy 2-XOR cluster 1-hidden layer NTK m = O( 1
ε2
) m = Ω( d

2

ε2
)

[68] d-dim distribution

[60] Spiked d-dim cumulant 1-hidden layer ReLU RFK ϵNN = O(1) ϵRF = 1
2

model (≥ 4 cumulants) N ≥ 5d O(d) m = Ω(d2) m = O(d2)

[3], Uniform on Sd−1, 1-hidden layer Any m = O(N
5

ε
) m = Ω(ε−

d+2
2d+2 )

[4], Two-layer ReLU width N fixed width
[5], teacher network
[39], width N
[71]

Table 6: Comparison of NN and kernel method scaling for different target functions.

D.5. Addition to: Section 3

D.6. 2. Family: Spectra
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Figure 6: CK spectrum for a NN trained with standard parameterization and N = 400.
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Figure 7: CK spectrum for a NN trained with standard parameterization and N = 1000.
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Figure 8: CK spectrum for a NN trained with µP-parameterization and N = 400.
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Figure 9: CK spectrum for a NN trained with µP-parameterization and N = 1000.
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D.7. 3. Family: Distribution plots

a)

b)

c)

Figure 10: NNs (width 2000) trained with µP parameterization on MSP functions across varying
training set sizes m with γ = 1. (a) Sample complexity analysis fails to differentiate
between shuffled and non-shuffled data. (b) Per-layer feature dimensionality comparison
between shuffled and non-shuffled datasets reveals diffuse patterns across training set
sizes. (c) Relative number of dimensions with Dfi = 0. The proportion for the first
layer rises around m∗. This is not observed in later layers.
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a)

c)

b)

Figure 11: Same as Figure 10 but with γ = 0.0001. γ = 0.0001 moves the weight of the Dfi

distributions closer to 0.

D.8. Additional information on ∆NT
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a) b)

Figure 12: NNs (width 400, depth 4) trained with µP on MSP functions. (a) SCK computed via
projection onto the target function using Qk = ⟨ek|f∗⟩ instead of the learned function,
quantifying how well the top k eigenfunctions approximate the target function. (b)
Generalization error versus training set size. This demonstrates that SCK can predict
the generalization error as both curves strongly correlate.

In the following we will define the critical dataset size m∗ more formally.

Definition 16 Given a data generating model p(x,y) and an i.i.d. dataset D of size m, a FFNN fθ
of width N and depth D with µP-parameterization and base learning rate η0, we define the critical
training set size m∗ as the smallest dataset size such that

∃N∗ : ∀N ≥ N∗, ∀m ≥ m∗ :
E(f∗

θ ;m)

E(f∗
NTK ;m)

< ε (16)

where the generalization error of the NN is smaller than the one of the NTK by a factor of ε, typically
taken to be ε ≈ 1/10 or smaller.

Dependence on N,D For the µP-parameterization, we find that m∗ exhibits weak dependence
on the initial learning rate η0 and depth D, while remaining independent of width N . Base learning
rates that are too small lead to very slow training. As depth increases, the error E(f∗

θ ;m) decreases
for fixed m, generally resulting in smaller values of m∗. In contrast, under standard parameteriza-
tion, m∗ shows width dependence—an artifact of suboptimal hyperparameter selection rather than
an intrinsic property.
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a) Multi-index functions

b) MSP functions

Figure 13: Generalization error of NNs with varying widths and depths (d = 1, 4) trained with µP
on (a) multi-index functions and (b) MSP functions. The results demonstrate a width-
independence threshold: beyond a critical width where the network achieves sufficient
expressivity, the generalization error remains consistent regardless of further width in-
creases.
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a) Multi-index functions b) MSP functions

Figure 14: Critical dataset size m∗ as a function of network width for (a) multi-index functions and
(b) MSP functions, demonstrating that m∗ beyond a certain width threshold, exhibits
width independence.
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Figure 15: Critical dataset size m∗ plotted against base learning rate for MSP functions, revealing
a stable region where m∗ remains constant across a specific range of learning rates.
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