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ABSTRACT

Uncertainty quantification of causal effects is crucial for safety-critical applica-
tions such as personalized medicine. A powerful approach for this is conformal
prediction, which has several practical benefits due to model-agnostic finite-sample
guarantees. Yet, existing methods for conformal prediction of causal effects are
limited to binary/discrete treatments and make highly restrictive assumptions such
as known propensity scores. In this work, we provide a novel conformal predic-
tion method for potential outcomes of continuous treatments. We account for
the additional uncertainty introduced through propensity estimation so that our
conformal prediction intervals are valid even if the propensity score is unknown.
Our contributions are three-fold: (1) We derive finite-sample validity guarantees
for prediction intervals of potential outcomes of continuous treatments. (2) We
provide an algorithm for calculating the derived intervals. (3) We demonstrate the
effectiveness of the conformal prediction intervals in experiments on synthetic and
real-world datasets. To the best of our knowledge, we are the first to propose con-
formal prediction for continuous treatments when the propensity score is unknown
and must be estimated from data.

1 INTRODUCTION

Machine learning (ML) for estimating causal quantities such as causal effects and the potential
outcomes of treatments is nowadays widely used in real-world applications such as personalized
medicine (Feuerriegel et al., 2024). However, existing methods from causal ML typically focus
on point estimates (e.g., Nie et al., 2021; Patrick Schwab et al., 2020), which means that the
uncertainty in the predictions is neglected and hinders the use of causal ML in safety-critical
applications (Feuerriegel et al., 2024; Kneib et al., 2023). As the following example shows, uncertainty
quantification (UQ) of causal quantities is crucial for reliable decision-making.

Motivating example: Let us consider a doctor who seeks to determine the dosage of chemotherapy in
cancer care. This requires estimating the tumor size in response to the dosage for a specific patient
profile. A point estimate will predict the average size of the tumor post-treatment, but it will neglect
that chemotherapy is ineffective for some patients. In contrast, UQ will give a range of the tumor
size that is to be expected post-treatment, so that doctors can assess the probability that the patients
will actually benefit from treatment. This helps to understand the risk of a treatment being ineffective
and can guide doctors to choose treatments that are effective with large probability.

Uncertainty intervals on
finite data samples

Point estimation Predicition intervals

No uncertainty covered
A

Y

A

 

 
Y

Coverage guarantees:         

Conformal interval

UQ                with
asymptotic guarantees

+

Potential coverage gap

Figure 1: CP intervals on finite-sample data. UQ
methods with asymptotic guarantees might suffer
from under-coverage and are often not faithful.
Thus, we aim at CP with finite-sample guarantees.

A powerful method for UQ is conformal pre-
diction (CP) (Lei & Wasserman, 2014; Pa-
padopoulos, 2002; Vovk et al., 2005). CP
provides model-agnostic and distribution-free,
finite-sample validity guarantees for quantify-
ing uncertainty. CP has been widely used for
traditional, predictive ML (e.g., Angelopoulos
et al., 2024; Barber et al., 2023; Gibbs et al.,
2023), where it has been shown to yield reliable
prediction intervals in finite-sample settings (see
Fig. 1). Recently, there have been works that
adapt CP for estimating causal quantities (see
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Fig. 2 for an overview). Yet, existing methods for CP focus on binary or discrete treatments (e.g.,
Alaa et al., 2023; Jonkers et al., 2024; Lei & Candès, 2021), but not continuous treatments-

Adapting CP to causal quantities is non-trivial for two main reasons. Challenge a : Intervening on the
treatment induces a shift in the covariate distribution, specifically, in the propensity score. As a result,
the so-called exchangeability assumption, which is inherent to CP (Vovk et al., 2005), is violated
between the observational and interventional distribution, and because of this, standard CP intervals
are not valid. Thus, we must later account for the distribution shift and derive treatment-conditional
guarantees. Challenge b : Assessing the aforementioned shift in the distribution requires information
about the propensity score; yet, the propensity score is typically unknown. Hence, estimating the
propensity score introduces additional uncertainty. However, incorporating the additional uncertainty
in the overall CP intervals cannot be done in a simple plug-in manner, and it is highly non-trivial.

Unique to CP for effects of continuous treatments is a third challenge a : data points with the same
treatment value are rarely observed. Thus, we later employ smoothing to model the propensity shift.

In this paper, we develop a CP method for causal quantities, such as potential outcomes of continuous
treatments. Our method is designed to account for the additional uncertainty introduced during
propensity estimation and is thus applicable to settings where the propensity score is known or
unknown.

Our contributions:1 (1) We propose a novel method for CP of causal quantities such as potential
outcomes or treatment effects of continuous treatments. For this, we mathematically derive finite-
sample prediction intervals for potential outcomes under known and unknown propensity functions.
(2) We provide an algorithm for efficiently calculating the derived intervals. (3) We demonstrate the
effectiveness of the derived CP intervals in experiments on multiple datasets.

2 RELATED WORK

UQ for causal effects: Existing methods for UQ of causal quantities are often based on Bayesian
methods (e.g., Alaa & van der Schaar, 2017; Hess et al., 2024; Hill, 2011; Jesson et al., 2020). How-
ever, Bayesian methods require the specification of a prior distribution based on domain knowledge
and are thus neither robust to model misspecification nor generalizable to model-agnostic machine
learning models. A common ad hoc method for computing uncertainty intervals is Monte Carlo (MC)
dropout (Gal & Ghahramani, 2016). However, MC dropout yields approximations of the posterior
distribution, which are not faithful (Le Folgoc et al., 2021).

Conformal prediction: CP (Lei & Wasserman, 2014; Papadopoulos, 2002; Vovk et al., 2005) has
recently received large attention for finite-sample UQ. For a prediction model ϕ trained on dataset
DT = (Xi, Yi)i=1,...,m and a new test sample Xk, CP aims to construct a prediction interval C(Xk)
such that P (Yk ∈ C(Xk)) ≥ 1− α for some significance level α. We refer to (Angelopoulos et al.,
2024) for an in-depth overview. Due to its strong finite-sample validity guarantees, CP is widely used
for traditional, predictive ML with widespread applications such as in medical settings (Zhan et al.,
2020) or drug discovery (Alvarsson et al., 2021; Eklund et al., 2015).

Several extensions have been developed for CP. One literature stream focuses on CP with marginal
coverage under distribution shifts between training and test data (e.g., Cauchois et al., 2020; Fannjiang
et al., 2022; Gendler et al., 2022; Ghosh et al., 2023; Gibbs & Candès, 2021; Gibbs et al., 2023; Guan,
2023; Lei & Candès, 2021; Podkopaev & Ramdas, 2021; Tibshirani et al., 2019; Yang et al., 2024).
Our setting later also involves a distribution shift due to the intervention on the treatment but differs
from the latter in that the true distribution shift is unknown. Another literature stream constructs
intervals conditional on the variables following the shifted distribution. Since, in general, exact
conditional coverage has been proven impossible (Lei & Wasserman, 2014; Vovk, 2012), the works
in this literature stream have two key limitations: (1) they only guarantee approximate conditional
coverage (e.g., Barber et al., 2021; Cai et al., 2014; Lei & Wasserman, 2014; Romano et al., 2020);
or (2) they are restricted to specific data structures such as binary variables (e.g., Lei & Wasserman,
2014; Vovk, 2012). Because of that, none of the existing methods for marginal and conditional
coverage can be applied to derive prediction intervals with finite-sample validity guarantees for causal
quantities of continuous treatments.

1Code and data are available at our public GitHub repository: https://anonymous.4open.
science/r/CausalConformalPrediction_anonymous-B730/README.md
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Conformal prediction for causal quantities: Only a few works focus on CP for causal quantities
(see Fig. 2). Examples are methods aimed at off-policy learning (Taufiq et al., 2022; Zhang et al.,
2023), conformal sensitivity analysis (Yin et al., 2022), or meta-learners for the conditional average
treatment effect (CATE) (Alaa et al., 2023; Jonkers et al., 2024; Lei & Candès, 2021; Wang et al.,
2024). However, there are crucial differences to our setting: First, the existing works (a) assume
that the propensity is known and thus achieve finite-sample coverage guarantees, or the existing
works (b) focus on the easier task of giving asymptotic guarantees but then might suffer from
under-coverage because of which the intervals are not faithful. Only Lei & Candès (2021) provides
finite-sample coverage guarantees under estimated propensity scores. However, all existing CP
methods are designed for binary or discrete treatments. Applying such methods to discretized
continuous treatments leads to ill-defined causal estimands. Therefore, none of the existing methods
are applicable to our continuous treatment setting. We offer a detailed discussion in Supplement E.

Causal conformal
prediction

Unknown 
propensity

Finite sample
exact guarantees

e.g., Alaa et al. (2023),
 Wang et al. (2024)

e.g., Jin et al. (2023),
Jonkers et al. (2024)

       Lei and Candès (2021)

Continuous
treatment

continuous

Ours

Figure 2: Key works on CP in causal inference.

Research gap: To the best of our knowl-
edge, no work has provided prediction intervals
with finite-sample validity guarantees for causal
quantities of continuous treatments.

3 PROBLEM FORMULATION

Notation: We denote random variables by cap-
ital letters X with realizations x. Let PX be
the probability distribution over X . We omit
the subscript whenever it is obvious from the
context. For discrete X , we denote the prob-
ability mass function by P (x) = P (X = x) and the conditional probability mass functions by
P (y | x) = P (Y = y | X = x) for a discrete random variable Y . For continuous X , p(x) is the
probability density function w.r.t. the Lebesgue measure.

Setting: Let the data (Xi, Ai, Yi)i=1,...,n consisting of observed confounders X ∈ X , a continuous
treatment A ∈ A, and an outcome Y ∈ Y be drawn exchangeably from the joint distribution P .
Additionally, let a new sample of confounders Xn+1 be drawn independently from the marginal
distribution PX . Throughout our work, we split the dataset into a proper training dataset DT =
(Xi, Ai, Yi)i=1,...,m, and a calibration dataset DC = (Xi, Ai, Yi)i=m+1,...,n. Furthermore, let
π(a | x) define the generalized propensity score for treatment A = a given X = x.

Throughout this work, we build upon the potential outcomes framework (Rubin, 2005). We denote
the potential outcomes after a hard intervention a∗ by Y (a∗) and after a soft intervention A∗(x) ∼
π̃(a | x) = PA∗|X=x by Y (A∗(x)).2 We make three standard identifiability assumptions for causal
effect estimation: positivity, consistency, and unconfoundedness (e.g., Alaa et al., 2023; Jonkers
et al., 2024). Finally, we consider an arbitrary machine learning model ϕ to predict the potential
outcomes. Hence, we define the outcome prediction function as ϕ : X × A → R, ϕ(X,A) 7→ Y .
We assume the dose-response curve to be sufficiently smooth. This is common in causal inference
with continuous treatments (e.g., Patrick Schwab et al., 2020; Schweisthal et al., 2023).

Our objective: In this work, we aim to derive conformal prediction intervals C(Xn+1,♢) for the
prediction of a potential outcome Yn+1(♢) of a new data point under either hard, ♢ = a∗, or soft
intervention, ♢ = A∗(Xn+1) ∼ π̃(a | Xn+1). The derived intervals are called valid for any new
exchangeable sample Xn+1 with non-exchangeable intervention ♢, i.e.,

P (Yn+1(♢) ∈ C(Xn+1,♢)) ≥ 1− α, ♢ ∈ {a∗, A∗(Xn+1)}. (1)

for some significance level α ∈ (0, 1). Of note, our CP method can later be used with an arbitrary
machine learning model ϕ for predicting the potential outcomes.

In CP, the interval C is constructed based on so-called non-conformity scores (Vovk et al., 2005),
which capture the performance of the prediction model ϕ. For example, a common choice for the

2Interventions are characterized by two classes: hard (structural) and soft (parametric) interventions. Hard
interventions directly affect the treatment by setting it to a specific value and removing the edge in the graph
(as in the do-operator). Soft interventions do not change the structure of the graph but affect the conditional
distribution of the treatment given the confounders, i.e., the propensity score.
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non-conformity score is the residual of the fitted model s(X,A, Y ) = |Y − ϕ(X,A)|, which we will
use throughout our work. For ease of notation, we define Si := s(Xi, Ai, Yi).

Why is CP for causal quantities non-trivial? There are two main reasons. First, coverage guarantees
of CP intervals essentially rely on the exchangeability of the non-conformity scores. However,
intervening on treatment A shifts the propensity function and, therefore, induces a shift in the
covariates (X,A) (→Challenge a ). Formally, we have a propensity shift in which the intervention
♢ shifts the propensity function π(a | x) to either a Dirac-delta distribution of the hard intervention,
δa∗(a), or to the distribution of the soft intervention, π̃(a | x), without affecting the outcome function
ϕ(x, a). As a result, the test data sample under ♢ does not follow the same distribution as the train
and calibration data, i.e., the exchangeability assumption is violated.

Second, the propensity score π is commonly unknown in observational data and, therefore, must be
estimated, which introduces additional uncertainty that one must account for when constructing CP
intervals (→Challenge b ). Crucially, existing coverage guarantees (e.g., Vovk, 2012; Tibshirani
et al., 2019) do not hold in our setting. Instead, we must derive new intervals with valid coverage
under propensity shift.

In the following section, we address the above propensity shift by performing a calibration conditional
on the propensity shift induced by the intervention, which allows us then to yield valid prediction
intervals with significance level (1− α) for potential outcomes of a specific hard or soft intervention.
We derive the potential outcomes and emphasize that the extension to causal effects is straightforward.
For the latter, one combines the intervals for each potential outcome under a certain treatment and
without treatment, so that eventually arrives at CP intervals for the individual treatment effect (ITE).
Details are Supplement A.

4 CP INTERVALS FOR POTENTIAL OUTCOMES OF CONTINUOUS TREATMENTS

        =         
    

Different

physician

Same

physician         =         
    

1

2

Known 
propensity score

Challenge:           

Unknown 
propensity score

Challenge:     +        a b

a

Figure 3: Use cases of the two scenar-
ios: 1 The new assignment is a function
of the original policy (i.e., soft interven-
tion). 2 The policy in the dataset is
unknown. The new assignment cannot
be expressed as a function of the original
policy (i.e., hard intervention).

Recall that intervening on test data samples breaks the
exchangeability assumption necessary for the validity, i.e.,
the guaranteed coverage of at least (1 − α), of CP inter-
vals. Therefore, we now construct CP intervals where we
account for a (potentially unknown) covariate shift in the
test data induced by the intervention.

Scenarios: In our derivation, we distinguish two different
scenarios(see Fig. 3):

1 Known propensity score (see Section 4.1): If
the propensity score in the observational data
is known, it means that the treatment policy is
known. Then, we aim to update the policy by
increasing/decreasing the treatment by a value
∆A, i.e., A∗(X) = A+∆A.
Example: Imagine a doctor is about to prescribe
a medication to a new patient. Instead of prescribing the same dosage as he would have
prescribed to a similar patient in the past, the doctor is interested in the potential health
outcome of the patient when increasing (or decreasing) the original dosage by amount ∆A.

2 Unknown propensity score (see Section 4.2): In observational data, the propensity score
is typically unknown. Therefore, we usually are interested in the effect of hard interventions,
i.e., a∗. Here, we face additional uncertainty from the propensity score estimation (→
Challenge b ).3

Example: In our running example, a patient comes to a new doctor who has never prescribed
the respective medication and thus will base the decision on observational data (electronic
health records) from other physicians, yet the observational data was collected under a
different, unknown treatment policy. Therefore, the prescribed intervention (and thus
dosage) cannot be expressed in terms of the policy in the observational data.

3Throughout our main paper, we focus on the setting of hard interventions. In some cases it might also be of
interest to perform soft interventions on the estimated propensity score. We provide derivations for this setting in
Supplement A.
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In our derivations, we make use of the following two mathematical tools. First, we define the
propensity shift. Formally, it is the shift between the observational and interventional distributions, P
and P̃ , in terms of the tilting of the propensity function by a non-negative function f . Hence, we have

π̃(a | x) = f(a, x)

EP [f(A,X)]
π(a | x). (2)

for some f with EP [f(X,A)] > 0 and a ∈ A, x ∈ X .

Second, our CP method will build upon ideas from so-called split conformal prediction (Papadopoulos,
2002; Vovk et al., 2005), yet with crucial differences. In our methods, the calibration step differs
from the standard procedure in that we conditionally calibrate the non-conformity scores depending
on the tilting function f to achieve marginal coverage for the interventional – and thus shifted – data.

High-level outline: Our derivation in Sections 4.1 and 4.2 proceed as follows. Following (Gibbs
et al., 2023; Romano et al., 2019), we reformulate split conformal prediction as an augmented quantile
regression. Let Si represent the non-conformity score of the sample (Xi, Ai, Yi) for i = m+1, . . . , n
of the calibration dataset and Sn+1 = S an imputed value for the unknown score of the new sample.
We define

θ̂S := argmin
θ∈R

1

n−m

(
n∑

i=m+1

lα(θ, Si) + lα(θ, S)

)
, (3)

where

lα(θ, S) :=

{
(1− α)(S − θ), if S ≥ θ,

α(θ − S), if S < θ.
(4)

Of note, θ̂S is an estimator of the (1− α)-quantile of the non-conformity scores (Koenker & Bassett,
1978; Steinwart & Christmann, 2011). Using θ̂S , we then construct the CP interval with the desired
coverage guarantee (1 − α). However, the interval is only valid for exchangeable data. Quantile
regression might yield non-unique solutions that can depend on the indices of the scores (Gibbs et al.,
2023), so we later restrict the analysis to solvers invariant to the data ordering.4

4.1 SCENARIO 1: KNOWN PROPENSITY SCORE

We first consider scenario 1 with known propensity scores. Here, existing CP intervals are not
directly applicable due to the shift from old to new propensity (→Challenge a ). For our derivation,
we need the following lemma building upon and generalizing the intuition presented above.
Lemma 1 ((Gibbs et al., 2023)). Let F define a finite-dimensional function class that includes
the function f characterizing the shift in the (potentially unknown) propensity function π (see
Eq. equation 2). Define the distribution-shift-calibrated (1−α)-quantile of the non-conformity scores
as

ĝS(Xn+1) := argmin
g∈F

1

n−m

(
n∑

i=m+1

lα(g(Xi), Si) + lα(g(Xn+1), S)

)
(5)

for an imputed guess S of the (n+ 1)-th non-conformity score Sn+1. The prediction interval

C(Xn+1) := {y | Sn+1(y) ≤ ĝSn+1(y)(Xn+1)} (6)

for the true Sn+1 given a realization of Yn+1 = y satisfies the desired coverage guarantee under all
distribution shifts f ∈ F , i.e.,

Pf (Yn+1 ∈ C(Xn+1)) ≥ 1− α. (7)

Building upon Lemma 1, we derive our first main result in Thm. 1. We define the finite-dimensional
function class of interest as F := {θ π(a+∆A|x)

π(a|x) | θ ∈ R+}. It is easy to verify that all f ∈ F
represent the desired propensity shift to π̃(a | x) = π(a+∆A | x) as defined in Eq. 2.

4We note that commonly used solvers, such as interior point solvers, are invariant to the data ordering.
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Theorem 1 (Conformal prediction intervals for known baseline policy). Consider a new dat-
apoint with Xn+1 = xn+1, An+1 = an+1, and A∗(Xn+1) = a∗ = an+1 + ∆A. Let
ηS = {ηSm+1, . . . , η

S
n+1} ∈ Rn+1 be the optimal solution to

max
ηi,i=m+1,...,n+1

min
θ>0

n∑
i=m+1

ηi

(
Si − θ

π(ai +∆A | xi)

π(ai | xi)

)
+ ηn+1

(
S − θ

π(a∗ | xn+1)

π(an+1 | xn+1)

)
s.t. − α ≤ ηi ≤ 1− α, ∀i = m+ 1, . . . , n+ 1,

(8)
for an imputed unknown Sn+1 = S. Furthermore, let S∗ be defined as the maximum S s.t. ηSn+1 <
1− α. Then, the prediction interval

C(xn+1, a
∗) := {y | Sn+1(y) ≤ S∗} (9)

satisfies the desired coverage guarantee

P (Y (A∗(Xn+1)) ∈ C(Xn+1, A
∗(Xn+1))) ≥ 1− α. (10)

Proof. We provide a full proof in Supplement D.2. Here, we briefly outline the underlying idea of
the proof. First, we show that the function class F indeed satisfies Eq. equation 2 for the intervention
A∗(X) = A+∆A, and we then rewrite Eq. equation 5 as a convex optimization problem. Next, we
exploit the strong duality property, we optimize over the corresponding dual problem to receive a
dual prediction set with equal coverage probability. Finally, we derive S∗ from the dual prediction
set to construct Cn+1 and prove the overall coverage guarantee.

4.2 SCENARIO 2: UNKNOWN TREATMENT POLICY

If the underlying treatment policy is unknown, the only possible intervention is a hard intervention a∗.
As described above, measuring the induced propensity shift is non-trivial due to two reasons: (i) The
propensity model needs to be estimated, which introduces additional uncertainty affecting the validity
of the intervals (→Challenge b ). (ii) The density function corresponding to a hard intervention is
given by the Dirac delta function

δa∗(a) :=

{
0, for a ̸= a∗,

∞, for a = a∗,
(11)

which hinders a direct adaptation of Theorem 1 due to the inherent discontinuity of the improper
function. Hence, to proceed, we make the following assumption on the propensity estimator.

Assumption 1. The estimation error of the propensity function π̂(a | x) is bounded in the sense that,
for all i = 1, . . . , n+ 1, there exists M > 0 such that

cai
:=

π̂(ai | xi)

π(ai | xi)
∈
[

1
M ,M

]
. (12)

Under Assumption 1, the distribution shift induced by the intervention is then defined as

π̃(a | x) = δa∗(a)

π̂(a | x)
π̂(a | x)
π(a | x)

π(a | x) = ca
δa∗(a)

π̂(a | x)
π(a | x) = f(a, x)

EP [f(A,X)]
π(a | x), (13)

for a suitable function f . We further formulate δa∗(a) in terms of a Gaussian function as

δa∗(a) = lim
σ→0

1√
2πσ

exp

(
− (a− a∗)2

2σ2

)
. (14)

This motivates the following lemma. Therein, we specify the class F of tilting functions f that
represent the distribution shift induced by the hard intervention a∗.

Lemma 2. For σ > 0, we define

f(a, x) :=
ca√
2πσ

exp(− (a−a∗)2

2σ2 )

π̂(a | x)
(15)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

with EP [f(A,X)] = 1. Furthermore, we define the finite-dimensional function class F

F :=

{
ca√
2πσ

exp(− (a−a∗)2

2σ2 )

π̂(a | x)

∣∣∣ 0 < σ,
1

M
≤ ca ≤ M

}
. (16)

Then, f(a, x) ∈ F for all ca ∈ [ 1
M ,M ] and σ → 0. As a result, the distribution shift

π̃(a | x) = lim
σ→0

ca√
2πσ

exp(− (a−a∗)2

σ2 )

π̂(a | x)
π(a | x) (17)

can be represented in terms of Eq. equation 2 through functions f ∈ F .

Proof. See Supplement D.1.

Following the motivation in scenario 1 , we thus aim to estimate the (1 − α)-quantile of the non-
conformity scores under the distribution shift in Lemma 1. We can reformulate this problem as

min
σ>0, 1

M ≤ca≤M

n+1∑
i=m+1

(1− α)ui + αvi

s.t. Si −
ca√
2πσ

exp (− (ai−a∗)2

2σ2 )

π̂(ai | xi)
− ui + vi = 0, ∀i = m+ 1 . . . , n+ 1,

ui, vi ≥ 0, ∀i = m+ 1 . . . , n+ 1

(PS)

for the imputed score Sn+1 = S. As the score is unknown, computing the CP interval would
require solving equation PS for all S ∈ R, yet which is computationally infeasible. As a remedy, we
previously exploited properties of the dual optimization problem and the Lagrange multipliers of the
convex problem in Theorem 1 to efficiently compute the CP intervals (see the proof of Theorem 1 in
Supplement D). However, the present non-convex problem does not automatically allow for the same
simplifications. Instead, we now present a remedy for efficient computation of the CP intervals in the
following lemma. We prove Lemma 3 in Supplement D.
Lemma 3. The problem equation PS is Type-I invex and satisfies the linear independence constraint
qualification (LICQ).

Lemma 3 allows us to derive properties of the present non-convex optimization problem in terms
of the Karush-Kuhn-Tucker (KKT) conditions. For this, we note that the fulfillment of the LICQ
serves as a sufficient regularity condition for the KKT to hold at any (local) optimum of equation PS .
Combined with the Type-I invexity of the objective function and the constraints, the KKT conditions
are not only necessary but also sufficient for a global optimum. As a result, we can employ the KKT
conditions at the optimal values5 σ∗ and c∗a to derive coverage guarantees of our CP interval in a
similar fashion as in Theorem 1. We thus arrive at the following theorem to provide CP intervals for
the scenario with unknown propensity scores.
Theorem 2 (Conformal prediction intervals for unknown propensity scores). Let uS =
{uS

m+1, . . . , u
S
n+1}, vS = {vSm+1, . . . , v

S
n+1} ∈ Rn−m, σS , cSa ∈ R be the optimal solution to

min
σ>0, 1

M ≤ca≤M

n+1∑
i=m+1

(1− α)ui + αvi

s.t. Si −
ca√
2πσ

exp (− (ai−a∗)2

2σ2 )

π̂(ai | xi)
− ui + vi = 0, ∀i = m+ 1 . . . , n+ 1,

ui, vi ≥ 0, ∀i = m+ 1 . . . , n+ 1.

(18)

for an imputed unknown Sn+1 = S. Let S∗ be defined as the maximum S s.t. vSn+1 > 0. Then, the
interval

C(Xn+1, a
∗) := {y | Sn+1(y) ≤ S∗} (19)

satisfies the desired coverage guarantee
P (Y (a∗) ∈ C(Xn+1, a

∗)) ≥ 1− α. (20)
5We provide an interpretation of the optimal values in Supplement F. Therein, we further discuss the

implications of the proposed kernel smoothing of δa∗(a).
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Proof. See Supplement D.3.

In certain applications, it might be beneficial to fix σ to a small value σ0 to approximate δa∗(a)
though a soft intervention and only construct the CP interval through optimizing over ca. We present
an alternative theorem for this case in Supplement A.

We now use Thm. 2 to present an algorithm for computing CP intervals of potential outcomes from
continuous treatment variables under unknown propensities in Alg. 1. We present a similar algorithm
for scenario 1 with known propensities and discuss the computational complexity in Supplement B.

5 EXPERIMENTS

Baselines: As we have discussed above, there are no baselines that directly compute prediction
intervals with finite-sample validity guarantees for potential outcomes of continuous treatments.
Therefore, we compare our method against MC dropout (Gal & Ghahramani, 2016) and deep
ensemble methods (Lakshminarayanan et al., 2017). Yet, we again emphasize that MC dropout is
an ad hoc method with poor approximations of the posterior, which is known to give unfaithful
intervals (Le Folgoc et al., 2021). Furthermore, we report the empirical coverage achieved by a
vanilla CP (V-CP) method, i.e., CP which does not account for the distribution shift, and intervals
from a Gaussian process regression (GP). By doing so, we (i) show the necessity of accounting for the
distribution shift induced by the intervention, and (ii) consider a method that assesses the underlying
aleatoric uncertainty.

Implementation: All methods are implemented with ϕ as a multi-layer perceptron (MLP) and an
MC dropout regularization of rate 0.1. Crucially, we use the identical MLP for both our CP method
and MC dropout. Hence, all performance gains must be attributed to the coverage guarantees of
our conformal method. In the MC dropout baseline, the uncertainty intervals are computed via
Monte Carlo sampling. In scenario 2 with unknown propensity scores, we perform the conditional
density estimation through conditional normalizing flows (Trippe & Turner, 2018). Details about our
implementation and training are in Supplement F.

Performance metrics: We evaluate the methods in terms of whether the prediction intervals are
faithful (e.g., Hess et al., 2024). That is, we compute whether the empirical coverage of the prediction
intervals surpasses the threshold of 1 − α for different significance levels α ∈ {0.05, 0.1, 0.2}.
Additionally, we report the width of the resulting intervals in Supplement G.

5.1 DATASETS

Synthetic datasets: We follow common practice in causal ML and evaluate our methods using
synthetic datasets (e.g., Alaa et al., 2023; Jin et al., 2023). The reason is the fundamental problem
of causal inference, because of which counterfactual outcomes are never observable in real-world
datasets. Synthetic datasets enable us to access counterfactual outcomes and, thus, to benchmark
methods in terms of whether the computed intervals are faithful. Additionally, we perform experi-
ments on the semi-synthic TCGA dataset in Supplement C. We hereby show the applicability of our
method to high-dimensional real-world data in a controlled environment.

We consider two synthetic datasets with different propensity scores and outcome functions. Dataset 1
uses a step-wise propensity function and a concave outcome function. Dataset 2 is more complex and
uses a Gaussian propensity function and oscillating outcome functions. Both datasets contain a single
discrete confounder, a continuous treatment, and a continuous outcome. By choosing low-dimensional
datasets, we later render it possible to plot the treatment–response curves so that one can inspect the
prediction intervals visually. (We later also show that our method scales to high-dimensional settings
as part of the real-world dataset.) Details about the data-generating processes are in Supplement F.

Medical dataset: We demonstrate the applicability of our CP method to datasets from medicine
by leveraging the MIMIC-III dataset (Johnson et al., 2016). MIMIC-III contains de-identified
health records from patients admitted to critical care units at large tertiary care hospitals. Our goal
is to predict patient outcomes in terms of blood pressure when treated with a different duration
of mechanical ventilation. We use 8 confounders from medical practice (e.g., respiratory rate,
hematocrit). Overall, we consider 14,719 patients, split into train (60%), validation (10%), calibration
(20%), and test (10%) sets. Details are in Supplement F.
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Figure 4: Comparison of faithfulness on dataset 1 across 50
runs. Larger values are better. For each α, the plots show
how often the empirical intervals contain the true outcome.
Intervals should ideally yield a coverage of 1− α (red line).

We now evaluate the faithfulness of
our CP intervals. On each dataset,
we analyze the performance of the
prediction intervals in the presence
of various soft interventions ∆a ∈
{1, 5, 10} and hard interventions a∗ ∈
{5x, 7x, 10x} for each X = x. We
average the empirical coverage across
50 runs with random seeds. The re-
sults are in Fig. 4 and Fig. 5. Addi-
tionally, we report the empirical cov-
erage of the baselines V-CP and GP.
(i) Across all distribution shifts and
confidence levels, we observe that V-
CP cannot achieve any valid prediction interval. This is highly likely due to the good prediction
performance of the underlying model (see Supplement G). Thus, V-CP intervals are extremely small
(average width of 0.0003) and thus can never cover the true potential outcome after the interven-
tion. (ii) The GP is only able to capture the true potential outcome in the prediction intervals for
small distribution shifts (∆ = 1) on dataset 2. However, the empirical coverage is extremely low:
α = 0.05: 0.125; α = 0.1: 0.125; α = 0.2: 0.0833. This result aligns with our expectations as the
aleatoric uncertainty in our experiments is low. Therefore, the GP intervals will be small (average
width of 0.1293) and barely provides valid intervals for the potential outcomes after the intervention.

5.2 RESULTS FOR SYNTHETIC DATASETS

0.0 0.5 1.0
Coverage

Ensemble

MC dropout

Ours

 = 0.05

0.0 0.5 1.0
Coverage

 = 0.1

0.0 0.5 1.0
Coverage

 = 0.2

a
1
5
10

Figure 5: Comparison of faithfulness on dataset 2 across 50
runs. Larger values are better.

We make the following observations.
First, the intervals of our CP method
comply with the targeted significance
level α and, therefore, are faithful.
Second, both MC dropout and the
deep ensemble method have, in con-
trast, a considerably lower coverage,
implying that the intervals are not
faithful. This is in line with the lit-
erature, where MC dropout is found
to produce poor approximations of the
posterior (Le Folgoc et al., 2021). In
particular, the ensemble method is highly unfaithful. Thus, we will not consider this baseline in all
of the following experiments. Third, our method has only a small variability in terms of empirical
coverage, whereas the empirical coverage of MC dropout varies greatly. This corroborates the robust-
ness of our method. Fourth, the results are consistent for both datasets. In sum, this demonstrates the
effectiveness of our proposed CP method.

Coverage on dataset 1 Coverage on dataset 2

Intervention α = 0.05 α = 0.1 α = 0.2 α = 0.05 α = 0.1 α = 0.2

a∗ = 7x 1.00 / 0.19 0.90 / 0.13 0.83 / 0.11 1.00 / 0.02 0.94 / 0.02 0.85 / 0.02
a∗ = 10x 1.00 / 0.28 0.91 / 0.23 0.88 / 0.11 1.00 / 0.08 0.84 / 0.07 0.83 / 0.07

Table 1: Coverage of the intervals from our CP method / MC dropout for various hard interventions
a∗ and significance levels α. Intervals with coverage ≥ 1− α are considered faithful (bold numbers).

Table 1 presents the empirical coverage of the intervals from our CP method vs. MC dropout
across different α and hard interventions a∗. We observe that our conformal prediction intervals
are effective and achieve the intended coverage. In contrast, MC dropout does not provide faithful
intervals. Our findings are again in line with the literature, where MC dropout is found to produce
poor approximations of the posterior and thus might provide poor coverage (Le Folgoc et al., 2021).
We present further results in Supplement G.
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Figure 6: Prediction intervals for multiple significance levels
α for synthetic dataset 1 with intervention ∆ = 5.

Insights: We plot the intervals across
different significance levels α and co-
variates X (see Fig. 6). This allows us
to inspect the intervals visually. We
observe that the intervals behave as
expected: they become sharper with
increasing significance level α. We
further see that our CP intervals are
slightly wider (see details in Supple-
ment G), yet this is intended because
it ensures that the intervals are faithful.
Our CP intervals (blue) generally in-
clude the true outcome. In contrast,
the intervals from MC dropout (or-
ange) often do not include the true out-
come (e.g., see the bottom row Fig. 6)
and are thus not faithful.

5.3 RESULTS FOR THE MIMIC
DATASET

In Fig. 7, we compare the CP intervals of each two male and female patients of differing ages when
treated with increasing duration of mechanical ventilation. Our intervals show higher uncertainty in
treatment regions rarely included in the training data (high medium to high treatments). The intervals
given by MC-dropout are narrower, which indicates lower coverage, thus confirming the effectiveness
of our proposed method. This finding aligns with our observation from the synthetic datasets.
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Figure 7: CP intervals for potential outcomes
of increasing duration of mechanical ventila-
tion for four exemplary patients.

6 DISCUSSION

Limitations: As with any other method, our UQ
method has limitations that offer opportunities for
future research. Our method relies on the quality of
the propensity estimator. Although we incorporate
estimation errors in the construction of our intervals,
poorly estimated propensities could potentially lead
to wide prediction intervals. We acknowledge that
our prediction intervals are conservative for the point
intervention and for segments of the output space
with limited calibration data, implying that a repre-
sentative calibration dataset is essential for the per-
formance of our method. As for all CP methods, the
use of sample splitting may reduce data efficiency.
Furthermore, we note that the optimization procedure can be computationally expensive for large
CATE vectors.

Broader impact: Our method makes a significant step toward UQ for potential outcomes and, thus,
toward reliable decision-making. We provided strong theoretical and empirical evidence that our
prediction intervals are valid. To this end, our method fills an important demand for using causal ML
in medical practice Feuerriegel et al. (2024) and other safety-critical applications with limited data.

Conclusion: We presented a novel conformal prediction method for potential outcomes of continuous
treatments with finite-sample guarantees. Our method extends naturally to treatment effects. A
key strength of our method is that the intervals are valid under distribution shifts introduced by the
treatment assignment, even if the propensity score is unknown and has to be estimated.
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A ADDITIONAL THEORETICAL RESULTS

A.1 CALCULATING PREDICTION INTERVALS FOR FURTHER CAUSAL QUANTITIES AND
DIFFERENCES

We presented a method for calculating conformal prediction intervals for potential outcomes of
continuous treatments. In the following, we show how the intervals can be combined to yield valid
prediction intervals for further causal quantities, such as the individual treatment effect (ITE) γi of
treatment a:

γi(a) := Yi(a)− Yi(0). (21)

Here, we consider the setting in which the non-conformity score is chosen to be the absolute residual.

Lemma 4. Let S∗
a and S∗

0 denote the optimal imputed non-conformity scores Sn+1 for treatment a
and no treatment at significance level 1− α

2 for α ∈ (0, 1), respectively. Furthermore, let

C+ := ϕ(xi, a) + S∗
a − ϕ(xi, 0) + S∗

0 , (22)

C− := ϕ(xi, a)− S∗
a − ϕ(xi, 0)− S∗

0 . (23)

Then the interval Cγ(Xi, a) := [C−, C+] contains the ITE γi with probability 1− α.

Proof. Let εi(a) be the estimation error of the potential outcome, i.e.

εi(a) := Yi(a)− ϕ(xi, a). (24)

We can rewrite the coverage guarantee of the original conformal prediction intervals for the potential
outcome Y (a) as

P (Yi(a) ∈ C(Xi, a)) = P (|εi(a)| ≤ S∗
a) ≥ 1− α

2
. (25)

Now observe that

P (γi(a) ∈ Cγ(xi, a)) = P ((Yi(a)− Yi(0)) ∈ Cγ(xi, a)) (26)

=P ((Yi(a) ≥ C− + Yi(0)) ∧ (Yi(a) ≤ C+ + Yi(0))) (27)
=P ((εi(a) ≥ εi(0)− (S∗

a + S∗
0 )) ∧ (εi(a) ≤ εi(0) + (S∗

a + S∗
0 ))) (28)

=P (|εi(a)− εi(0)| ≤ S∗
a + S∗

0 ) (29)
≥P (|εi(a)|+ |εi(0)| ≤ S∗

a + S∗
0 ). (30)

Thus, it follows directly that

P (γi(a) ∈ Cγ(Xi, a)) ≥ 1− α. (31)

A.2 ALTERNATIVE SCENARIO 2: FIXING AN APPROXIMATION OF δa∗(a)

In Section 4.2, we formulated the unknown propensity shift in terms of

δa∗(a) = lim
σ→0

1√
2πσ

exp

(
− (a− a∗)2

σ2

)
(32)

and minimized over σ and ca in Theorem 2 to construct the CP intervals. However, in certain
applications, it might be beneficial to control the spread of the approximation of δa∗(a) through fixing

σ to a small value σ0 and performing the soft intervention π̃(a | x) = ca√
2πσ0

exp (− (a−a∗)2

σ2
0

)

π̂(a|x) . In this
case, the resulting optimization problem is a convex problem similar to Theorem 1. We present the
alternative optimization problem below.
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Theorem 3 (Alternative for Theorem 2: Conformal prediction intervals for unknown propen-
sity scores). Let a new datapoint be given with Xn+1 = xn+1 and An+1 = an+1. Let
ηS = {ηS1 , . . . , ηSn+1} ∈ Rn+1 be the optimal solution to

max
ηi,

i=1,...,n+1

min
1
M ≤ca≤M

n∑
i=1

ηi

Si −
ca√
2πσ0

exp
(
− (ai−a∗)2

σ2
0

)
π̂(ai | xi)

+ ηn+1

(
S − ca√

2πσ0

1

π̂(ai | xn+1)

)
s.t. − α ≤ ηi ≤ 1− α, ∀i = 1, . . . , n+ 1,

(33)
for an imputed unknown Sn+1 = S. Furthermore, let S∗ be defined as the maximum S s.t. ηSn+1 <
1− α. Then, the prediction interval

C(xn+1, a
∗) := {y | Sn+1(y) ≤ S∗} (34)

satisfies the desired coverage guarantee

P (Y (a∗) ∈ C(Xn+1, a
∗) ≥ 1− α, (35)

where with a slight abuse of notation Y (a∗) denotes the potential outcome under the soft intervention
π̃ above.

Proof. The statement follows from Theorem 2.

A.3 SOFT-INTERVENTIONS ON ESTIMATED PROPENSITIES

In the main paper, we presented algorithms for constructing prediction intervals for soft interventions
if the propensity function is known and hard interventions if it is unknown. These are arguably the
most common scenarios in practice. However, in some cases, one might also be interested in the
effect of soft interventions on estimated propensity scores (e.g., Marmarelis, Myrl G., Morstater,
Fred et al., 2024). Therefore, we present an alternative theorem for calculating conformal prediction
intervals under soft interventions with estimated propensity scores below.

Theorem 4 (Conformal prediction intervals for soft interventions with unknown propensity scores).
Let a new datapoint be given with Xn+1 = xn+1 and An+1 = an+1. Furthermore, let π̂ denote the
estimated propensity score with estimation error bounded by [ 1

M ,M ], M > 0. The soft intervention
is represented by the shift given through ∆ ∈ R. Let ηS = {ηS1 , . . . , ηSn+1} ∈ Rn+1 be the optimal
solution to

max
ηi,

i=1,...,n+1

min
1
M ≤ca≤M

n∑
i=1

ηi

(
Si −

caπ̂(ai +∆ | xi)

π̂(ai | xi)

)
+ ηn+1

(
S − caπ̂(an+1 +∆ | xn+1)

π̂(an+1 | xn+1)

)
s.t. − α ≤ ηi ≤ 1− α, ∀i = 1, . . . , n+ 1,

(36)
for an imputed unknown Sn+1 = S. Furthermore, let S∗ be defined as the maximum S s.t. ηSn+1 <
1− α. Then, the prediction interval

C(xn+1, a
∗) := {y | Sn+1(y) ≤ S∗} (37)

satisfies the desired coverage guarantee

P (Y (a∗) ∈ C(Xn+1, a
∗) ≥ 1− α, (38)

where with a slight abuse of notation Y (a∗) denotes the potential outcome under the soft intervention
represented by ∆.

Proof. The statement follows from Theorem 1 and Theorem 2.
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B ALGORITHM

We now use Thm. 2 to present an algorithm for computing CP intervals of potential outcomes from
continuous treatment variables under unknown propensities in Alg. 1. We present a similar algorithm
for scenario 1 with known propensities and discuss the computational complexity in below.

We make the following comments: In our algorithm, an optimization solver is used to calculate vn+1

according to Theorem 2. The specific choice of the solver is left to the user. In our experiments in
Section 5, we perform the optimization via interior point methods. Further, the overall goal of our
algorithm is to find the optimal imputed non-conformity score S∗ such that the coverage guarantees
hold. It can be implemented through suitable iterative search algorithms.

Algorithm 1: Algorithm for computing CP intervals of potential outcomes of continuous interventions
under unknown propensities.
Input: Calibration data (Xi, Ai, Yi)i∈{m+1,...,n}, new sample Xn+1 and intervention a∗, significance

level α, prediction model ϕ, propensity estimator π̂, assumed error bound M , error tolerance ε,
optimization solver

Output: CP interval Cn+1 for a new test sample
1 Sup ← max{maxi=m+1,...,n Si, 1}; Slow ← min{mini=m+1,...,n Si,−1};
/* Calculate vupn+1, vlown+1 */

2 vupn+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a
∗, α,M, Sup);

3 vlown+1 ← solver((Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a
∗, α,M, Slow);

/* Iterative search for S∗
*/

4 while vupn+1 > 0 do
5 Sup ← 2Sup;
6 vupn+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a

∗, α,M, Sup);
7 end
8 while vlown+1 = 0 do
9 Slow ← 0.5Slow;

10 vlown+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a
∗, α,M, Slow);

11 end
12 S∗ ← Sup+Slow

2
;

13 while Sup − Slow > ε do
14 vS

∗
n+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a

∗, α,M, S∗);
15 if vS

∗
n+1 > 0 then

16 Slow ← Sup+Slow

2
;

17 end
18 else
19 Sv ← Sup+Slow

2
;

20 end
21 S∗ ← Sup+Slow

2
;

22 end
/* Compute C(Xn+1, a

∗) */
23 return C(Xn+1, a

∗) = {y | Sn+1(y) ≤ S∗}

Below, we state a second algorithm that is applicable if the propensity score is known. In this case, a
convex optimization solver can be used.

Computational complexity: The complexity of running our algorithms depends heavily on the em-
ployed optimization solver with complexity σs(nc) (e.g., polynomial complexity for suitable convex
solvers) and the size of the calibration dataset nc. This might become costly for large-scale calibration
datasets in practice. The outer algorithm has a time complexity of at most O(log(

Sup−Slow

ε ) + 1).
Overall, our algorithm has a fixed complexity of O(log(

Sup−Slow

ε ) + σs(nc)). The complexity of
deriving intervals through MC-dropout or ensemble methods depends, however, on the number of MC
samples or models, respectively. The latter thus scales with the precision of the intervals, which might
be difficult to control. In our work, we use optimization as a tool to provide conformal prediction
intervals. Future research should focus on developing more efficient optimization algorithms for this
task.
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Algorithm 2: Algorithm for computing CP intervals of potential outcomes of continuous inter-
ventions under known propensities.
Input: Calibration data (Xi, Ai, Yi)i∈{m+1,...,n}, new sample Xn+1 and soft intervention A∗(Xn+1),

significance level α, prediction model ϕ, error tolerance ε, optimization solver
Output: CP interval Cn+1 for a new test sample

1 Sup ← max{maxi=m+1,...,n Si, 1}; Slow ← min{mini=m+1,...,n Si,−1};
/* Calculate ηup

n+1, ηlow
n+1, where η is the optimal solution to Eq. (8).

*/
2 ηup

n+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, A
∗(Xn+1), α, Sup);

3 ηlow
n+1 ← solver((Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, A

∗(Xn+1), α, Slow);
/* Iterative search for S∗

*/
4 while ηup

n+1 < 1− α do
5 Sup ← 2Sup;
6 ηup

n+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, A
∗(Xn+1), α, Sup);

7 end
8 while vlown+1 >= 1− α do
9 Slow ← 0.5Slow;

10 ηlow
n+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, A

∗(Xn+1), α, Slow);
11 end
12 S∗ ← Sup+Slow

2
;

13 while Sup − Slow > ε do
14 ηS∗

n+1 ← solver(ϕ, π̂, (Xi, Ai, Yi)i∈{m+1,...,n}, Xn+1, a
∗, α, S∗);

15 if ηS∗
n+1 < 1− α then

16 Slow ← Sup+Slow

2
;

17 end
18 else
19 Sup ← Sup+Slow

2
;

20 end
21 S∗ ← Sup+Slow

2
;

22 end
/* Compute C(Xn+1, A

∗(Xn+1)) */
23 return C(Xn+1, A

∗(Xn+1)) = {y | Sn+1(y) ≤ S∗}

18
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C SEMI-SYNTHETIC EXPERIMENTS

To underline the effectiveness of our method, we perform additional experiments on the semi-synthetic
TCGA dataset. The Cancer Genome Atlas (TCGA) dataset (Weinstein et al., 2013) consists of a
comprehensive and diverse collection of gene expression data. The data was collected from patients
with different cancer types. In our experiment, we consider the gene expression measurements of the
4,000 genes with the highest variability which we employ as our features X . The study cohort of
consisted of a total of 9659 patients. We model a continuous treatment based on the sum of the 10
covariates with the highest variance and assign a treatment effect which is constant in the sum of the
covariates.

As in the main paper, we construct CP intervals for different interventions and confidence levels α.
We state the empirical coverage of our method in Table 2 below. The prediction performance of the
trained model on the hold-out test dataset is reported. We find that our method is highly effective.

Confidence level

Intervention α = 0.05 α = 0.1 α = 0.2

∆ = 0.5 0.9680 (0.0324) 0.8920 (0.0391) 0.8040 (0.0741)
∆ = 1.0 0.9733 (0.0377) 0.9500 (0.0500) 0.7667 (0.0618)
∆ = 1.5 0.9400 (0.0438) 0.8920 (0.0699) 0.8200 (0.0619)

Table 2: Coverage of the intervals from our CP method on the TCGA dataset. We report the mean
followed by the standard deviation in apprentices.

We observe that our method consistently achieves the desired coverage. To evaluate the usefulness of
the intervals, we also report the interval width in Table 3 below. The range of the outcomes was 2.0.

Confidence level

Intervention α = 0.05 α = 0.1 α = 0.2

∆ = 0.5 0.1003 (0.0331) 0.0843 (0.0252) 0.0683 (0.0169)
∆ = 1.0 0.1017 (0.0420) 0.0877 (0.0349) 0.0642 (0.0200)
∆ = 1.5 0.0930 (0.0272) 0.0822 (0.0260) 0.0674 (0.0180)

Table 3: Width of the intervals from our CP method on the TCGA dataset. We report the mean
followed by the standard deviation in apprentices.
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D PROOFS

D.1 PROOFS OF THE SUPPORTING LEMMAS

In the following, we prove Lemma 2 and Lemma 3 from our main paper.

Proof of Lemma 2 Recall the definition of the hard intervention

π̃(a | x) = δa∗(a) =
δa∗(a)

π̂(a | x)
π̂(a | x)
π(a | x)

π(a | x), (39)

where

δa∗(a) = lim
σ→0

1√
2πσ

exp

(
− (a− a∗)2

σ2

)
. (40)

Under Assumption 1, we have

π̂(a | x)
π(a | x)

=: ca ∈ [
1

M
,M ] (41)

for some M > 0 and all a, x. Then

lim
σ→0

1√
2πσ

exp
(
− (a−a∗)2

σ2

)
π̂(a | x)

1

M
≤ π(a∗|x) ≤ lim

σ→0

1√
2πσ

exp
(
− (a−a∗)2

σ2

)
π̂(a | x)

M. (42)

Therefore, the distribution shift induced by the hard intervention can be represented as

f(a, x) = lim
σ→0

ca√
2πσ

exp
(
− (a−a∗)2

σ2

)
π̂(a | x)

∈ F :=

 ca√
2πσ

exp
(
− (a−a∗)2

σ2

)
π̂(a | x)

∣∣∣∣∣∣ 0 < σ, ca ∈ [
1

M
,M ]

 .

(43)

Proof of Lemma 3 We first prove that the problem equation PS fulfills the linear independence
constraint qualifications. For all i = m + 1, . . . , n + 1, we denote the constraints of problem
equation PS as

hi(u, v, ca, σ) := Si − ui + vi −
ca√
2πσ

exp(− (ai−a∗)2

2σ )

π̂(ai, xi)
. (44)

The gradient of hi is given by

∇hi(u, v, ca, σ) =



∂hi

∂um+1
(u, v, ca, σ)

∂hi

∂vm+1
(u, v, ca, σ)

...

∂hi

∂ui
(u, v, ca, σ)

∂hi

∂vi
(u, v, ca, σ)

...

∂hi

∂ca
(u, v, ca, σ)

∂hi

∂σ
(u, v, ca, σ)



=



0

0

...

−1

1

...

− 1√
2πσ

exp(− (ai−a∗)2

2σ )

π̂(ai,xi)

exp(− (ai−a∗)2

2σ )

π̂(ai,xi)
( ca√

2πσ2
− ca(ai−a∗)2

2
√
2πσ4

)



. (45)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, with ∇h := (∇hm+1, . . . ,∇hn+1) and λ ∈ Rn+1, we obtain

∇h · λ = 0 ⇐⇒ λ = 0 ∈ Rn+1. (46)

As a result, the constraints are linearly independent. This property suffices for the KKT conditions to
hold at any (local) optimum of equation PS .To furthermore show that the KKT conditions are also
sufficient for a global optimum, we show that equation PS is Type-I invex. An optimization problem
with objective function f(x) and constraints g(x) <= 0 with x ∈ Rn+1 is Type-I invex at x0, if
there exists ν(x, x0) ∈ Rn+1, such that

f(x)− f(x0) ≥ ν(x, x0)
T∇f(x0), (47)

and

−g(x0) ≥ ν(x, x0)
T∇g(x0) (48)

(Hanson & Mond, 1987). In problem equation PS , the gradients of the objective function and of each
constraint hi for all i, j = m+ 1, . . . , n+ 1 at x0 are given by

∂obj(u0, v0, ca0 , σ0)

∂ui
= 1− α,

∂obj(u0, v0, ca0 , σ0)

∂vi
= α, (49)

∂obj(u0, v0, ca0 , σ0)

∂ca
=

∂obj(u0, v0, ca0 , σ0)

∂σ
= 0 (50)

∀i = m+ 1, . . . , n+ 1 and

∂hi

∂uj
|u0,v0,ca0

,σ0
=

{
−1, for i = j,

0, else,
∂hi

∂vj
|u0,v0,ca0

,σ0
=

{
1, for i = j,

0, else,
(51)

∂hi

∂ca
|u0,v0,ca0 ,σ0

= − 1√
2πσ0

exp
(
− (ai−a∗)2

2σ0

)
π̂(ai, xi)

, (52)

∂hi

∂σ
|u0,v0,ca0 ,σ0

=
exp

(
− (ai−a∗)2

2σ0

)
π̂(ai, xi)

(
ca0√
2πσ2

0

− ca0(ai − a∗)2

2
√
2πσ4

0

)
. (53)

For

η((u, v, ca, σ), (u0, v0, ca0
, σ0)) := (−u01 , . . . ,−u0n+1

,−v01 , . . . ,−v0n+1
,−ca0

, 0)T , (54)

the definition of Type-I invexity holds for equation PS . Thus, the KKT conditions are also sufficient
for a global optimum.

D.2 PROOF OF THEOREM 1

We prove Theorem 1 in three steps: (i) We show that function class F := {θ π(a+∆A|x)
π(a|x) | θ ∈ R+}

indeed satisfies Eq. equation 2 for the intervention a∗ = a + ∆A and rewrite Eq. equation 5 as
a convex optimization problem. (ii) We retrieve the corresponding dual problem, derive a dual
prediction set, and show the equality of the coverage guarantee of the dual and the primal prediction
sets. (iii) We derive S∗ from the dual prediction set to construct Cn+1 and prove the overall coverage
guarantee. For further theoretical background on the idea of the proof, we refer to Gibbs et al. (2023).

Justification of the distribution shift Observe that E[f(A,X)] = θ for all f ∈ F :=

{θ π(a+∆A|x)
π(a|x) | θ ∈ R+}. Therefore, Eq. equation 2 simplifies to

π̃(a, x) =
π(a+∆A | x)

π(a | x)
π(a | x) = π(a+∆A | x). (55)

Thus, F satisfies the propensity shift from Eq. equation 2 for the soft intervention a∗ = a + ∆A.
Following Lemma 1, we thus aim to find

q̂S := arg min
θ>0

1

n−m

(
n∑

i=m+1

lα(θ
π(ai +∆A | xi)

π(ai | xi)
, Si) + lα(θ

π(a∗ | xn+1)

π(an+1 | xn+1)
, S)

)
. (56)
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Dual problem formulation First, we rewrite the primal problem as

min
θ>0

n+1∑
i=m+1

(1− α)ui + αvi

s.t. Si − θ
π(ai +∆A | xi)

π(ai | xi)
)− ui + vi = 0, ∀i = m+ 1 . . . , n+ 1, Sn+1 = S

ui, vi ≥ 0, ∀i = m+ 1 . . . , n+ 1.

(57)

For a reference, see (Gibbs et al., 2023). The Lagrangian of the primal problem states

L =

n+1∑
i=m+1

(1− α)ui + αvi +

n+1∑
i=m+1

ηi

(
Si − θ

π(ai +∆A | xi)

π(ai | xi)
− ui + vi

)
−

n+1∑
i=m+1

(γ1iui + γ2ivi).

(58)
Setting derivative of L w.r.t. ui and vi to 0 results in

∂L
∂ui

= (1− α)− ηi − γ1i
!
= 0, ∀i = m+ 1 . . . , n+ 1 (59)

∂L
∂vi

= (1− α)− ηi − γ2i
!
= 0, ∀i = m+ 1 . . . , n+ 1. (60)

Since γ1i , γ2i ≥ 0 ∀i, it follows for all i = m+ 1, . . . , n+ 1 that
(1− α)− ηi ≥ 0 and α− ηi ≥ 0 ⇒ −α ≤ ηi ≤ 1− α. (61)

Therefore, the dual problem is formulated as

max
ηi,i=m+1,...,n+1

min
θ>0

n∑
i=m+1

ηi

(
Si − θ

π(ai +∆A | xi)

π(ai | xi)

)
+ ηn+1

(
S − θ

π(a∗ | xn+1)

π(an+1 | xn+1)

)
s.t. − α ≤ ηi ≤ 1− α, ∀i = m+ 1, . . . , n+ 1.

(62)

Coverage guarantee Recall from Lemma 1 that, for

q̂Sn+1(y) = arg min
θ>0

1

n−m
(

n∑
i=m+1

lα(θ
π(ai +∆A | xi)

π(ai | xi)
, Si) + lα(θ

π(a∗ | xn+1)

π(an+1 | xn+1)
, Sn+1(y))),

(63)

we can construct Cn+1 = {y | Sn+1(y) ≤ q̂Sn+1
(y)} to achieve the desired coverage guarantee

Pf (Y (a∗) ∈ C(Xn+1, A
∗(Xn+1))) ≥ 1− α. (64)

It is infeasible to calculate q̂Sn+1(y) directly. Therefore, we optimize the dual problem to receive

C(Xn+1, a
∗) := {y | Sn+1(y) ≤ S∗} (65)

with S∗ the maximum S, s.t. for ηSn+1 maximizing the dual problem, ηSn+1 < 1− α. Hence, it is left
to show that replacing q̂Sn+1(y) by S∗ in C does not change to coverage guarantee.

To do so, we fix some θ > 0 to obtain a specific f(a, x) := θ π(a∗|x)
π(a|x) . Let ĝ(a, x) ∈ F denote the

primal optimal solution. Recall the Lagrangian

L =

n+1∑
i=m+1

(1− α)ui + αvi +

n+1∑
i=m+1

ηi(Si − f(ai, xi)− ui + vi)−
n+1∑

i=m+1

(γ1iui + γ2ivi).

(66)

Deriving wrt. f yields the stationarity condition

0
!
= −

n+1∑
i=m+1

ηSi f(ai, xi) (67)

= −
∑

Si<ĝ(ai,xi)

ηSi f(ai, xi)−
∑

Si>ĝ(ai,xi)

ηSi f(ai, xi)−
∑

Si=ĝ(ai,xi)

ηSi f(ai, xi). (68)
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The complementary slackness Karush-Kuhn-Tucker conditions yield

ηSi ∈


−α, if Si < ĝ(ai, xi),

[−α, 1− α], if Si = ĝ(ai, xi),

1− α, if Si > ĝ(ai, xi).

(69)

Therefore, we can rewrite the equation from above as

0 =
∑

Si<ĝ(ai,xi)

αf(ai, xi)−
∑

Si>ĝ(ai,xi)

(1− α)f(ai, xi)−
∑

Si=ĝ(ai,xi)

ηSi f(ai, xi) (70)

=
∑

ηS
i <1−α

αf(ai, xi)−
∑

ηS
i =1−α

(1− α)f(ai, xi)−
∑

ηS
i <1−α,

Si=ĝ(ai,xi)

(α+ ηSi )f(ai, xi) (71)

=

n+1∑
i=m+1

(α− 1[ηS
i =1−α])f(ai, xi)−

∑
ηS
i <1−α,

Si=ĝ(ai,xi)

(α+ ηSi )f(ai, xi). (72)

Before deriving the coverage guarantee from the stationarity condition, we state the following lemma
to underline the definition of S∗.
Lemma 5 (Gibbs et al. (2023)). The mapping S 7→ ηSn+1 is non-decreasing in S for all ηSn+1
maximizing

max
ηi,i=m+1,...,n+1

min
g∈F

n∑
i=1

ηi(Si − g(ai, xi)) + ηn+1(S − g(an+1, xn+1))

s.t. − α ≤ ηi ≤ 1− α, ∀i = m+ 1, . . . , n+ 1

(73)

for non-negative function classes F .

To prove the final coverage guarantee, we observe that

E[f(an+1, xn+1)(1[Y (a∗)∈C(Xn+1,a∗)] − (1− α))] (74)

=E[f(an+1, xn+1)(α− 1[Y (a∗)/∈C(Xn+1,a∗)])] (75)

=E[f(an+1, xn+1)(α− 1[S(y)>S∗])]. (76)

With the definition of S∗ as the maximum optimizer ηSn+1 with ηSn+1 < 1 − α and Lemma 5, it
follows that

E[f(an+1, xn+1)(α− 1[S(y)>S∗])] = E[(α− 1[ηS
n+1=1−α])f(an+1, xn+1)] (77)

and, by exchangeability of (f(ai, xi), q̂S(ai.xi), Si), that

E[(α− 1[ηS
i =1−α])f(ai, xi)] = E

[
1

n−m

n+1∑
i=m+1

(α− 1[ηS
i =1−α])f(ai, xi)

]
(78)

= E

 1

n−m

∑
ηS
i <1−α,

Si=ĝ(ai,xi)

(α+ ηSi )f(ai, xi)

 . (79)

Since f is positive and ηi ∈ [−α, 1− α], it follows

E[f(an+1, xn+1)(1[Y (a∗)∈C(Xn+1,a∗)] − (1− α))] ≥ 0 (80)

and thus

Pf (Y (a∗) ∈ Cn+1C(Xn+1, A
∗(Xn+1))) ≥ 1− α. (81)
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D.3 PROOF OF THEOREM 2

We follow the same outline as in the proof of Theorem 1 in Section D.2. In Lemma 2, we motivated
the functional class of distribution shifts. Therefore, it is left to prove the coverage guarantee of
Cn+1.

Key to our proof is the following lemma.
Lemma 6. The mapping S 7→ vSn+1 is non-increasing in S for all gS(x, a) minimizing

min
g∈F

n+1∑
i=m+1

(1− α)ui + αvi

s.t. Si − g(xi, ai)− ui + vi = 0, ∀i = m+ 1, . . . , n+ 1

(82)

for non-negative function classes F and imputed Sn+1 = S stemming from a non-negative non-
conformity score function (e.g., the residual of the prediction).

Proof. Assume for contradiction that there exists S̃ > S such that vS̃n+1 > vSn+1. Then

(S̃ − S)(vS̃n+1 − vSn+1) > 0. (83)
We observe that
S̃(S − gS(xn+1, an+1)− uS

n+1 + vSn+1) = S(S̃ − gS̃(xn+1, an+1)− uS̃
n+1 + vS̃n+1) = 0. (84)

Reformulating the equation above yields

(S̃ − S)(vS̃n+1 − vSn+1) (85)

= S̃uS
n+1 − SuS̃

n+1 + S̃gS(xn+1, an+1)− SgS̃(xn+1, an+1) + S̃vS̃n+1 − SvSn+1 (86)

< S(uS
n+1 − uS̃

n+1 + gS(xn+1, an+1)− gS̃(xn+1, an+1)− (vSn+1 − vS̃n+1)) (87)

= S(S − S̃). (88)
This is equivalent to

(S − S̃)(vSn+1 − vS̃n+1) < S(S − S̃) (89)

⇐⇒ vSn+1 − vS̃n+1 > S ≥ 0, (90)

which contradicts the assumption that vS̃n+1 > vSn+1.

Coverage guarantees. As in D.2, we fix some σ > 0 and ca ∈ [ 1
M ,M ] to obtain a specific

f(a, x) := ca√
2πσ

exp

(
− (ai−a∗)2

2σ2

)
π̂(ai|xi)

. We further denote ĝ(a, x) ∈ F the optimal solution given by the
optimal values σ̂ and ĉa.

With the definition of S∗ as the minimum S such that vS
∗

n+1 = 0 and Lemma 6, we now can state

E[f(an+1, xn+1)(1[Y (a∗)∈Cn+1] − (1− α))] = E[f(an+1, xn+1)(1[vS
n+1>0] − (1− α))] (91)

= E[f(an+1, xn+1)(α− 1[vS
n+1=0])] (92)

and, by exchangeability of (f(ai, xi), q̂S(ai.xi), Si), that

E[f(an+1, xn+1)(α− 1[vS
n+1=0])] = E

[
1

n−m

n+1∑
i=m+1

f(an+1, xn+1)(α− 1[vS
n+1=0])

]
(93)

=
1

n−m
E

∑
vS
i >0

αf(ai, xi)−
∑
vS
i =0

)(1− α)f(ai, xi)

 (94)

=
1

n−m
E

 ∑
Si<ĝ(ai,xi)

αf(ai, xi)−
∑

Si≥ĝ(ai,xi)

)(1− α)f(ai, xi)

 .

(95)
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Deriving the Lagrangian above wrt. f yields the stationarity condition

0
!
=

n+1∑
i=m+1

ηSi f(ai, xi) (96)

=
∑

Si<ĝ(ai,xi)

ηSi f(ai, xi) +
∑

Si>ĝ(ai,xi)

ηSi f(ai, xi) +
∑

Si=ĝ(ai,xi)

ηSi f(ai, xi). (97)

The complementary slackness Karush-Kuhn-Tucker conditions yield

ηSi ∈


−α, if Si < ĝ(ai, xi),

[−α, 1− α], if Si = ĝ(ai, xi),

1− α, if Si > ĝ(ai, xi).

(98)

Therefore, we receive

E[f(an+1, xn+1)(α− 1[vS
n+1=0])] =

1

n−m
E

 ∑
ηS
i <1−α

αf(ai, xi)−
∑

ηS
i =1−α

)(1− α)f(ai, xi)


(99)

=
1

n−m
E

 ∑
ηS
i <1−α,

Si=ĝ(ai,xi)

(α+ ηSi )f(ai, xi)

 . (100)

Since f is positive and ηi ∈ [−α, 1− α], it follows

E[f(an+1, xn+1)(1[Y (a∗)∈C(Xn+1,a∗)] − (1− α))] ≥ 0 (101)

and thus

Pf (Y (a∗) ∈ C(Xn+1, a
∗)) ≥ 1− α. (102)
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E ADDITIONAL BACKGROUND

E.1 EXTENDED LITERATURE REVIEW

Uncertainty quantification for causal quantities

There exist various methods for uncertainty quantification of causal quantities. These are often based
on Bayesian methods (e.g., Alaa & van der Schaar, 2017; Hess et al., 2024; Hill, 2011; Jesson et al.,
2020). However, Bayesian methods require the specification of a prior distribution based on domain
knowledge and are thus neither robust to model misspecification nor generalizable to model-agnostic
machine learning models. Other methods only provide asymptotic guarantees (e.g., Jin et al., 2023;
Jonkers et al., 2024). The strength of conformal prediction, however, is to provide finite-sample
uncertainty guarantees.

In the following, we present related work on CP for causal quantities in more detail.

Recently, Alaa et al. (2023) provided predictive intervals for CATE meta-learners under the assump-
tion of full knowledge of the propensity score. As an extension, Jonkers et al. (2024) proposed a
Monte-Carlo sampling approach to receive less conservative intervals. Chen et al. (2024) provide
prediction intervals for counterfactual outcomes. However, the proposed method requires access to
additional interventional data and is thus not applicable to real-world applications on observational
data. All methods are restricted to binary treatments.

Other works focus on prediction intervals for off-policy prediction (Taufiq et al., 2022; Zhang et al.,
2023) and conformal sensitivity analysis (Yin et al., 2022), thus neglecting estimation errors arising
from propensity or weight estimation or for randomized control trials (Kivaranovic et al., 2020).
Wang et al. (2024) constructed intervals with treatment-conditional coverage of discrete treatments.
Aiming for group-conditional coverage, Wang et al. (2024) adapted CP to cluster randomized trials.
Nevertheless, the method only applies to a finite number of treatments and thus is not applicable to
continuous treatments.

Lei & Candès (2021) consider the estimated propensity by incorporating the estimation error as
a TV-distance term in the coverage guarantees. However, for large TV-distances (close to 1), the
proposed method can only construct intervals with a very limited coverage α ∈ (0, 1− TV ). Hence,
the method is not suitable for applications in medical practice. Our method, however, can also
construct intervals with high coverage guarantees for high estimation errors. An increased error
will widen the prediction intervals instead of reducing the coverage guarantee. We consider our
approach more suitable for medical practice, as one can visually inspect the intervals and decide on
the suitability of the task at hand.

Overall, no method can provide exact intervals for continuous treatments. Especially, no method
considers the error arising from propensity estimation in the analysis.

Conformal prediction under covariate shift

Multiple works on CP with marginal coverage under distribution shifts between training and test data
have been introduced in the literature (e.g., Cauchois et al., 2020; Fannjiang et al., 2022; Gendler
et al., 2022; Ghosh et al., 2023; Gibbs & Candès, 2021; Gibbs et al., 2023; Guan, 2023; Lei & Candès,
2021; Podkopaev & Ramdas, 2021; Tibshirani et al., 2019; Yang et al., 2024). Our setting also
involves a distribution shift due to the intervention on the treatment but differs from the latter in that
the true distribution shift is unknown.

Gibbs et al. (2023) introduced an approach to derive CP intervals under unknown distribution shifts. It
proves valid finite-sample prediction intervals for all distribution shifts in a finite-dimensional function
class. However, the approach does not directly apply to causal inference settings. Nevertheless, our
framework builds upon the work by Gibbs et al. (2023) in that we re-frame the proposed approach to
apply to the distribution shift induced through the intervention in causal effect estimation. In this
setting, the distribution shift is captured by the shift of the propensity function. Adapting Gibbs et al.
(2023) to a causal inference setting requires carefully addressing the underlying challenges that come
from computing CP intervals in a causal inference setting (e.g., propensity score estimation, hard/soft
interventions), which we regard as our main novelty and which is of immediate practical relevance
(e.g., in personalized medicine).
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E.2 A NOTE ON CHALLENGES AND DIFFICULTIES IN CP FOR CAUSAL EFFECTS OF
CONTINUOUS TREATMENTS

Existing works on conformal prediction for binary or (low-dimensional) discrete treatment are
commonly based on (a) weighted conformal prediction (Tibshirani et al., 2019) or (b) conformal
prediction local coverage guarantees (Lei & Wasserman, 2014). The first approach provides marginal
coverage under a distribution shift through reweighting. It requires computing the weights based on
the probability of treatment A = a. However, for continuous treatments, this is always zero. Although
applicable to binary or low-dimensional discrete treatments (e.g., Lei & Candès, 2021), this weighting
approach cannot be extended similarly to continuous treatments. Furthermore, the propensity of a
continuous treatment given by the Dirac delta function δa would require us to restrict the calibration to
data samples of the specific treatment, which are extremely rare or even might be missing. Therefore,
the calibration step cannot be employed in our setting. The second approach provides treatment
group-conditional coverage. Although again possible for binary or low-dimensional treatments, this
approach does not apply to continuous treatments as no treatment groups can be defined. Instead,
we propose a novel method for conformal predictions that circumvents the above problems and is
carefully tailored to continuous treatments.

E.3 CAUSAL EFFECTS OF CONTINUOUS TREATMENTS & KERNEL SMOOTHING

Causal inference becomes challenging with continuous treatments primarily due to the infinite number
of potential outcomes per sample, from which only one outcome is observed. Continuous treatments
thus result in causal effects that are generally represented by curves (called dose-response curves) (?).
This is unlike binary treatment, where the causal effects are represented by a single discrete value.

For continuous treatments, the dose-response curves are typically assumed to fulfill some smoothness
criterion (e.g., Patrick Schwab et al., 2020; Schweisthal et al., 2023). Hence, when estimating
treatment effects, interpolation and kernel smoothing of the outcome function are commonly employed
(e.g., Kennedy, 2019; Nagalapatti et al., 2024).

Underlying causal estimation with continuous treatments is the generalized propensity score (Imbens,
2000). It is defined as the conditional probability of receiving treatment a∗ given the covariates X
under the following regularity conditions: (i) For each i, Yi(a), xi, Ai are defined on a common
probability space; (ii) Ai is continuously distributed with respect to the Lebesgue measure; and
(iii) Yi = Yi(Ai) is a well-defined random variable.

Approximating the density δa∗(a) of the hard intervention a∗ through a Gaussian kernel follows
directly from the definition of δa∗(a) as the limit of such kernel. This is also common in the literature
(e.g., Kallus & Zhou, 2018). Importantly, we note that we do not directly approximate the potential
outcome Y (a∗) (but only the propensity scores). Thus, we do not have a bias-variance trade-off of
the estimated outcome. Due to the smoothness of the dose-response curve, it is now valid to employ
observed samples within a treatment region of a∗ defined by σ to construct the intervals. We note that
the importance of the samples is weighted by the inverse distance of the sample to a∗ in treatment
space. We give further intuition on the relationship between σ, the importance of observational
samples, and the prediction interval width in the following.

E.4 INTERPRETATION OF OPTIMAL PARAMETERS

To obtain CP intervals under an unknown distribution shift, we approximate the Dirac-delta distribu-
tion representing the hard intervention by a Gaussian function as

δa∗(a) = lim
σ→0

1√
2πσ

exp

(
− (a− a∗)2

2σ2

)
. (103)

In Theorem 2, we thus optimize over σ > 0 and ca ∈ [ 1
M ,M ] to obtain the (1− α)-quantile of the

distribution shift-calibrated non-conformity scores. The optimal parameter σ∗ represents a trade-off
between the uncertainty in the prediction and the uncertainty in the interval construction: A small
σ∗ resembles the propensity of the hard intervention best. Thus, with sufficient or even infinite data
close to a∗, we could construct the narrowest CP interval. However, the smaller σ, the less data close
to a∗ will be available to calculate the prediction interval in practice. As a result, many calibration
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data samples will be strongly perturbed during the calculation, which increases the uncertainty and,
thus, the interval size.

The parameter ca allows us to incorporate the estimation error in the propensity score. It represents
a weighting of the propensity shift such that the (1 − α)-quantile of the non-conformity scores is
increased with higher estimation error.

E.5 INTERPRETATION OF PARAMETER M

Our optimization requires the specification of a parameter M , denoting a bound on the propensity
estimation error. One can view the parameter M as a type of sensitivity parameter. Therefore, we
follow former work in causal inference and propose to incorporate domain knowledge to specify the
parameter M (e.g., Frauen et al., 2024; Tan, 2006). Another way of making use of the parameter M
is to observe how the intervals change for varying M . This indicates how much effect the propensity
misspecification has on the prediction interval and can help in making reliable decisions. A third
option to calibrate M is to employ measures for epistemic uncertainty on top of the propensity
estimate when there is no domain knowledge for specifying M .

E.6 A NOTE ON THE STABILITY OF OUR METHOD

In our experiments, one can observe some instability for certain privacy budget and intervention
combination. This is likely due to the fact that the CP coverage guarantees are only marginal.
Therefore, we might experience under- or over-coverage. However, we note that across all runs, our
method, on average, achieves the desired coverage. These instabilities only occur in single settings.
Furthermore, the variance in coverage of our method is much lower than of the coverage variance of
the baselines. A more in-depth analysis of the stability of the proposed method is left for future work.
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F EXPERIMENTATION DETAILS

F.1 SYNTHETIC DATASET GENERATION

We consider two different propensity and outcome functions. In each setting, we assign two types of
interventions: a known propensity shift of ∆ = 1, 5, 10, i.e., three soft interventions a∗ = a +∆,
and the point interventions a∗ ∈ {1x, 5x, 10, } given the confounder X = x.

We generate synthetic datasets for each setting. Specifically, we draw each 2000 train, 1000 calibration,
and each 1000 test samples per intervention from the following structural equations. Dataset 1 is
given by

X ∼ Uniform[1, 4] (integer)
A ∼ p ·Uniform[0, 5X) + (1− p)Uniform[5X, 40], p ∼ Bernoulli(0.3)

Y ∼ sin
(π
6
(0.1A− 0.5X)

)
+Normal(0, 0.1),

and dataset 2 by

X ∼ Uniform[1, 4] (integer)
A ∼ Normal(5X, 10)

Y ∼ sin
(π
2
(0.1A− 0.1X)

)
+Normal(0, 0.1),

F.2 MEDICAL DATASET

We use the MIMIC-III dataset (Johnson et al., 2016), which includes electronic health records (EHRs)
from patients admitted to intensive care units. From this dataset, we extract 8 confounders (heart rate,
sodium, blood pressure, glucose, hematocrit, respiratory rate, age, gender) and a continuous treatment
(mechanical ventilation) using an open-source preprocessing pipeline (Wang et al., 2020). From
each patient trajectory in the EHRs, we sample random time points and average the value of each
variable over the ten hours before the sampled time point. We define the variable blood pressure after
treatment as the outcome, for which we additionally apply a transformation to be more dependent
on the treatment and less on the blood pressure before treatment. We remove all patients (samples)
with missing values and outliers from the dataset. Outliers are defined as samples with values smaller
than the 0.1th percentile or larger than the 99.9th percentile of the corresponding variable. The final
dataset contains 14719 samples, which we split into train (60%), val (10%), calibration (20%), and
test (10%) sets.

F.3 IMPLEMENTATION DETAILS

Our experiments are implemented in PyTorch Lightning. We provide our code in our GitHub
repository.

We limited the experiments to standard multi-layer perception (MLP) regression models, consisting
of three layers of width 16 with ReLu activation function and MC dropout at a rate of 0.1, optimized
via Adam. We did not perform hyperparameter optimization, as our method aimed to provide an
agnostic prediction interval applicable to any prediction model. All models were trained for 300
epochs with batch size 32.

Our algorithm requires solving (non-convex) optimization problems through mathematical optimiza-
tion. We chose to employ two interior-point solvers in our experiments: For the experiments with
soft interventions that pose convex optimization problems, we use the solver MOSEK. For the hard
interventions, which included non-convex problems, we used the solver IPOPT. Both solvers were
run with default parameters.
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G FURTHER RESULTS

We present further results from our experiments in Section 5. Specifically, we state the prediction
performance of the underlying models ϕ, discuss the scalability of our approach, and show the
prediction intervals per covariate for various significance levels α and soft interventions ∆ of our
synthetic experiments on dataset 1 and dataset 2.

Performance: We first report the performance of the underlying prediction models ϕ for the synthetic
datasets across 50 runs in Table G. The prediction model on the real-world dataset achieved a mean
squared error loss of 1.2373.

Dataset 1 Dataset 2 MIMIC

ϕ 0.0216 (0.0056) 0.9029 (0.3908) 0.0141 (0.0057)
Ens. 0.0094 (2.1169e−5) 0.0130 (0.0003) -

Table 4: Mean and standard deviation of MSE loss of prediction models ϕ across 50 runs.

We further report the width of the prediction intervals in our synthetic experiments in Table G. The
width is important to assess the usefulness of the resulting prediction intervals. As the performance
of the ensemble method is not comparable with the coverage of MC-Dropout and our CP method, we
only compare the latter two methods with regard to the interval width.

Dataset 1 Dataset 2
Delta Ours MC-Dropout Ours MC-Dropout

1 0.3647 (0.1284) 0.1938 (0.1170) 0.4051 (0.1036) 0.2897 (0.1480)
5 0.4024 (0.2285) 0.1653 (0.1103) 0.4610 (0.2479) 0.3036 (0.1455)
10 0.4301 (0.2610) 0.1639 (0.1080) 0.6711 (0.8520) 0.3235 ( 0.1445)

Table 5: Mean and standard deviation of the resulting prediction intervals.
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Figure 8: Prediction intervals for multiple signif-
icance levels α for the synthetic dataset 1 with
intervention ∆ = 1.

Scalability: Calculating the prediction intervals
requires an iterative search for an optimal value
S∗. Therefore, the underlying optimization
problem must be fitted multiple times through-
out the algorithm, potentially posing scalability
problems. In our empirical studies, however, we
did not encounter scalability issues. Importantly,
we found that the average runtime of our algo-
rithm on a standard desktop CPU is only 16.43
seconds.

Prediction intervals: In Figures 8, 9, and 10,
we present the prediction bands given by our
method and MC dropout on dataset 1. In partic-
ular, for confounder X = 1, our method shows
a large increase in the uncertainty in the po-
tential outcomes of treatments affected by the
intervention. MC dropout does not capture this
uncertainty.

In Figures 11 and 12, we present the prediction bands given by our method and MC dropout on
dataset 2 for the soft interventions ∆ = 1 and ∆ = 10 (the results for ∆ = 5 were presented in the
main paper). We observe that the prediction intervals for ∆ = 10 become extremely wide for high
treatments. This aligns with our expectation, as data for high treatments in combination with low
confounders is rare or even absent in the dataset. Thus, the expected uncertainty is very high.
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Figure 9: Prediction intervals for multiple signif-
icance levels α for the synthetic dataset 1 with
intervention ∆ = 5
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Figure 10: Prediction intervals for multiple sig-
nificance levels α for the synthetic dataset 1 with
intervention ∆ = 10.
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Figure 11: Prediction intervals for multiple sig-
nificance levels α for the synthetic dataset 2 with
intervention ∆ = 1
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Figure 12: Prediction intervals for multiple sig-
nificance levels α for the synthetic dataset 2 with
intervention ∆ = 10.
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