
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GAMMA: Graph Neural Network-Based Multi-Bottleneck
Localization for Microservices Applications

Anonymous Author(s)

ABSTRACT
Microservices architecture is quickly replacing monolithic and
multi-tier architectures as the implementation choice for large-scale
web applications as it allows independent development, scalability,
and maintenance. However, even with careful node scheduling and
scaling, the microservices applications are still vulnerable to perfor-
mance degradation due to unexpected (dependent or independent)
events like anomalous node behavior, workload interference, or
sudden spikes in requests or retries. These events can adversely
affect the performance of one or more microservices (bottlenecks),
degrading the overall application performance. To ensure a good
customer experience and avoid revenue loss, it is crucial to detect
and mitigate all bottlenecks swiftly.

This work introduces GAMMA, a novel, explainable graph learn-
ing model that integrates a mixture of experts to detect multiple
bottlenecks. We evaluated GAMMA using a popular open-source
benchmarking application deployed on Kubernetes under various
practical bottleneck scenarios. Our experimental evaluation results
show that GAMMA provides significantly better performance (46%
higher F1 score) than existing works that employ deep learning,
machine learning, and statistical techniques, demonstrating its abil-
ity to detect multiple bottlenecks by learning complex interactions
in a microservices architecture.

1 INTRODUCTION
Microservice architecture (MSA) is quickly becoming the choice of
implementation for large-scale web applications owing to its mod-
ular nature [1, 6, 15, 20, 28, 29, 32, 46–48, 52]. Indeed, MSA is re-
placing monolithic and multi-tier application architectures as MSA
designs applications as fine-grained, modular, and independent
services called microservices, enabling independent development,
scalability, and maintenance [15, 20, 28]. Even existing web and
online gaming applications implemented using monolithic archi-
tecture are being transformed to MSA [1, 13, 17, 25, 31].

A critical problem for online web applications is performance
management as it affects customer experience and revenue [7].
Among various aspects of performance management, detecting per-
formance degradation and identifying the sources of performance
degradation are crucial for providing a consistent user experience.
We define anomaly detection as the process of detecting an applica-
tion’s performance degradation at the level of individual requests
or over a time period, and bottleneck localization as the process of
identifying which specific microservices are affecting the applica-
tion’s performance. Despite careful application design and proactive
capacity planning, performance anomalies still happen due to un-
expected surges in load or workload interference [20, 28, 48]. For
that reason, bottleneck localization is a must. The microservices
with degraded performance, i.e., performance bottlenecks, often arise
due to resource saturation, resource contention, or microservice

application misconfiguration [15, 16, 38, 44], and do not necessarily
lead to errors or faults, making them difficult to detect.

Anomaly detection and bottleneck localization in MSA appli-
cations are challenging for various reasons. Firstly, bottlenecks
can manifest in different ways, impacting one or more microser-
vices, even propagating across microservices over time and sus-
taining even after the source of anomaly is mitigated [15, 19, 43].
This exacerbates bottleneck localization, multiplies the engineer-
ing hours needed to mitigate with time, and delays the restoration
of applications’ performance. Secondly, the effect of performance
anomalies (e.g., host interference) differs across microservices. For
example, two microservices hosted on the same node that is experi-
encing CPU saturation will react differently in terms of degradation
depending on how compute-bound the microservices are. This
necessitates solutions that learn the unique characteristics of the
microservices. Thirdly, complex interactions among the microser-
vices can complicate bottleneck localization. The dynamicity that
arises from asynchronous calls, caching, queues, feature additions,
deprecations, and design changes can further complicate these in-
teractions. As such, the solution must utilize and learn from the
interactions of these microservices. Lastly, the absence of publicly
available datasets with metrics, traces, and logs containing multiple
bottlenecks from various sources has hindered the ability of re-
searchers to evaluate their methods for multi-bottleneck detection
and localization [24].

The key challenge, and the focus of this paper, is the presence of
multiple bottlenecks in MSA applications. Existing works, includ-
ing those in recent editions of The Web Conference, have primarily
focused on single bottlenecks and have ignored the practical case of
multiple bottlenecks [29, 41, 50]. There are different ways in which
multiple bottlenecks can arise in practice.
• Multiple, independent bottlenecks arise in one or more microser-

vices. For example, a microservice responsible for logins could
be bottlenecked due to a sudden spike in user logins, while simul-
taneously, another microservice could be bottlenecked due to
resource contention at its host node. In such cases, all bottlenecks
must be (independently) detected and mitigated.

• Multiple, dependent bottlenecks arise in one or more microser-
vices, due to the same underlying problem. For example, if the un-
derlying VM that hosts multiple microservices is under resource
contention from different colocated VMs, then all microservices
on this VM can experience performance degradation.

• Multiple, cascading bottlenecks appear in sequence in multiple
microservices. For example, a database microservice that is ex-
periencing workload interference can result in request queues
building up in dependent microservices, causing their perfor-
mance to degrade as well. Undetected, these bottlenecks can
cascade to interacting microservices, increasing the number of
bottlenecks over time. In such cases, it is important to first detect

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

all bottlenecks, and then alleviate them to quickly revive the
application performance.
Prior works in this space have mainly focused on anomaly de-

tection [26, 50, 51] or providing solutions for single bottleneck
localization that cannot be easily adapted for multiple bottleneck
localization [14, 16, 18, 24, 29]. Even solutions that are capable (with
some effort) of detecting multiple bottlenecks are not evaluated
on traces or datasets with multiple bottlenecks [38, 41]. Moreover,
the latter works [38, 41] fail to detect multiple bottlenecks effec-
tively (Section 4) as they do not utilize the distributed traces to
learn the complex interactions among microservices. To the best of
our knowledge, ours is the first work that evaluates multi-bottleneck
anomaly detection and bottleneck localization for MSA.

This work introduces and evaluates GAMMA, a novel model
to detect anomalies and multiple bottlenecks in web applica-
tions implemented using the microservices architecture. Specifi-
cally, GAMMA uses (a) an attention-based graph convolution net-
work to learn the complex interactions between microservices, (b) a
holistic multi-source end-to-end joint training framework to detect
the presence of bottlenecks in an explainable manner, and (c) a mix-
ture of experts to account for possibly multiple bottlenecks across
microservices.

In designing and evaluating GAMMA, this work makes the fol-
lowing key contributions:
(1) We present the design of GAMMA, a holistic multi-source end-

to-end joint training framework that learns complex interac-
tions between microservices using an attention-based graph
convolution trained over distributed traces of observable met-
rics (e.g., CPU and memory utilization), which are readily avail-
able in production systems [30]. Further, it uses a mixture of
experts to learn the unique characteristics of microservices and
account for possibly multiple bottlenecks across microservices.

(2) To evaluate GAMMA,we generate a dataset consisting of around
40 million request traces; we commit to open-sourcing the
dataset to aid research in this area. The dataset, created using a
popular open-source benchmarking application [15], consists
of multiple bottlenecks from various sources while serving
workloads of different intensities.

(3) We evaluate GAMMA against existing techniques on the above
bottleneck dataset; we also extend a seminal prior work [16]
created for localizing single bottlenecks to localize multiple
bottlenecks.

(4) We perform a detailed ablation study to understand and explain
the impact of telemetry on evaluation results.
Our experimental evaluation results show that GAMMA pro-

vides an F1 score of up to 0.92 and 0.89 for anomaly detection
and bottleneck localization, respectively. GAMMA significantly
exceeds the performance of prior works (3–4× improvement for
anomaly detection and 46% improvement for bottleneck localiza-
tion) based on deep learning, machine learning, and statistical tech-
niques, demonstrating its ability to detect multiple bottlenecks by
learning complex interactions in microservices architecture.

Our analysis reveals that the performance gap between GAMMA
and other baselines increases with the increasing complexity of
the evaluation scenario. While existing works perform reasonably
well when there is a single source of anomaly, their performance

drops when evaluated in scenarios consisting of multiple sources
of anomaly, unlike GAMMA. Further, while existing works can
perform better if they are separately trained on each source of
anomaly, GAMMA provides consistently better performance de-
spite not being trained separately on individual anomaly sources,
making GAMMA easier to deploy in practice. Finally, we show that
GAMMA can provide explainability with its bottleneck localization,
thereby aiding the bottleneck mitigation task.

2 RELATEDWORK
Related prior works can be broadly categorized into (a) anomaly
detection works, and (b) bottleneck localization (or root cause anal-
ysis) works. Since there are numerous prior works in these general
areas, we limit our discussion below to closely related works and
refer readers to relevant surveys for further detail [42].

2.1 Anomaly Detection
DeepTraLog [51] uses a unified graph embedded with log events,
called trace event graphs, to represent the complex interaction
among microservices. It finds anomaly scores for each trace or re-
quest by training a gated graph neural network-based deep support
vector data description model on the trace event graphs. Trace-
VAE [50] is an unsupervised anomaly detection model that uses a
novel dual-variable graph variational autoencoder with Negative
Log-Likelihood (NLL) as the anomaly score. TraceAnomaly [26] is
an unsupervised anomaly detection system that uses novel trace
representation and deep Bayesian networks with posterior flow.
The model is trained offline periodically to learn normal patterns
in traces and then classifies traces as anomalous when they deviate
from these learned patterns.

2.2 Bottleneck Localization
Groot [47] is Ebay’s graph-based framework for bottleneck localiza-
tion in MSA applications. Groot constructs a causality graph with
events that include anomalies in metrics, abnormal log statements,
etc., as the nodes and causal links between these nodes are based
on domain knowledge. However, Groot requires domain knowl-
edge for creating links between nodes and additionally requires
continuous human involvement to track changes to the causal links
between nodes. CRISP [52] is Uber’s tool for critical path analysis
over traces from MSA applications which can be used for anomaly
detection and bottleneck localization. The critical paths in MSA,
however, are dynamic [38], requiring constant recomputation of
critical paths. Murphy [18] is an automated performance diagnosis
system that detects bottlenecks in complex enterprise environments
by monitoring data to define associations between entities in an
MSA application. However, Murphy uses a linear model that cannot
capture the complexities in production microservices [18, 19].

FIRM [38] proposes a Support Vector Machine (SVM) model for
detecting bottlenecks on the critical path in the call graph. The
SVMmodel is trained on hand-crafted features that capture the per-
critical-path and per-microservice performance variability. FIRM
only considers latency as a feature and also ignores the structural
information in the call graphs of the MSA application, limiting its
ability to detect multiple bottlenecks (as we show in Section 4.4).

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Seer [16] is an online performance debugging system that lever-
ages deep learning to detect and mitigate bottlenecks in MSA. Seer
uses a hybrid network of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks to learn spatial
and temporal patterns that lead to bottlenecks. However, analy-
sis of Alibaba’s production systems suggests that CNN-based ap-
proaches fail to characterize complex graph dynamics and do not
apply to real-world applications; instead, the authors suggest us-
ing GNNs [28]. Our evaluation of Seer on a dataset consisting of
multiple bottlenecks further substantiates this claim (Section 4.4).

𝜖-diagnosis [41] uses a threshold technique to detect anomalies
and distance correlation [45] to compare metrics of anomalous
traces and normal traces for localizing bottlenecks. The localization
algorithm runs on each microservice without utilizing any struc-
tural information available through distributed tracing. As we show
in Section 4.4, this and other drawbacks significantly impact the
performance of 𝜖-diagnosis in the case of multiple bottlenecks.

AutoMAP [29] relies on a heuristic algorithm using forward, self,
and backward random walks on a graph representing the interac-
tion between services to localize bottlenecks. Since it is a heuristic,
AutoMAP may not be accurate and can suffer for large call graph
sizes [4, 52]. B-MEG [43] is a two-staged graph-learning-based clas-
sifier that does anomaly detection and bottleneck localization in
the first and second stages, respectively. However, B-MEG is only
designed to detect single bottlenecks. Eadro [24] is a framework
that uses traces, logs, and metrics along with multiple models to
learn representations, which in turn are used to detect anomalies
and localize bottlenecks jointly. The framework, owing to the series
of models it uses, makes it difficult to interpret the results. Mi-
croCU [21] is a framework that uses API logs and Granger causal-
ity to detect bottlenecks. Ablation studies on the importance of
telemetry, traces, and logs in detecting bottlenecks reveals that logs
provide the least information to detect bottlenecks [24]. Sage [14]
uses a Causal Bayesian Network (CBN) to capture the dependencies
between microservices. However, the assumption in Sage that the
latency of non-leaf nodes in the call graph is determined by the
wait time of its child nodes might not always hold (e.g., when a
non-leaf child node is a message queue [28]). Moreover, Sage [14]
can only work on call graph DAGs (no cycles), but call graphs in
production systems have cycles [18, 28].

In summary, prior works provide solutions or evaluate their
solutions only for single bottlenecks [14, 16, 24, 29, 38, 41, 43, 47]
and do not fully utilize the rich telemetry and distributed tracing
that is part of the MSA [21, 30, 38, 41]. Our work, described next,
addresses this important gap by using a graph learning module to
understand the complex interaction among microservices and a
mixture of experts model to detect multiple bottlenecks effectively.

3 DESIGN OF GAMMA
Traditional bottleneck localization techniques (deep learning or
heuristic-based) often operate in a linear or isolated manner, failing
to capture the dependencies and interactions inherent in MSA [34].
Consider Figure 1, which shows a small subgraph of the entire social
network call graph fromDeathStarBench suite [15]. A simultaneous
failure in Machines 3 and 4 will impact the corresponding on-chain
RPC calls but will not affect the off-the-chain ones.

Figure 1: A simultaneous failure in machines M3 and M4 will
affect the RPC calls in the invocation chain while other RPC
calls in the call graph are not affected.

Graph Neural Networks (GNNs) are ideally suited to model such
intricacies in graphical data and to capture dependencies between
nodes [16, 43]. GNNs are designed to naturally assimilate and pro-
cess information from nodes and their respective neighborhoods
in a graph. GNNs can also handle the complexities of enterprise
environments, especially cycles in the call graphs [49].

The key idea behind GAMMA is to understand patterns in call
graphs using inputs from multiple system metrics and the graph
dependency structure; this information can help identify the in-
terconnections among microservices and guide system diagnosis.
Figure 2 shows the architectural overview of GAMMA, which is
broadly divided into 4 stages: Multi-Source Temporal Embeddings
Learning, Graph-Representation Learning, Anomaly Classifier, and
Bottleneck Localizer.

3.1 Multi-Source Temporal Embeddings
Learning

Capturing temporal patterns helps to reveal the dynamic nature
of system performance, highlighting fluctuations and evolving
trends over time. Since bottlenecks may be induced due to episodic
anomalies in the system, analyzing temporal chunks allows us
to capture correlations and sequences across requests while also
providing macroscopic trends in the system for the anomalous
episodes [10, 51]. Multi-input temporal embeddings encapsulate the
spatio-temporal behavior of a system, providing a comprehensive
view of spatial relations and time-evolving patterns within a given
window. Consider a call-graph with 𝜂 microservices. For the mi-
croservices, we organize the system metrics into an 𝜂-dimensional
time-seriesM𝜂 . The system metrics (e.g., RPC latency, CPU usage)
act as our model features. We split the entire feature tensorM𝜂 into
windows of length 𝜏 , thus giving us window inputs of sizeM𝜂𝑥𝜏 .
The parameter 𝜏 is trainable and is decided based on validation met-
rics during training. Analyzing windows as opposed to individual
traces allows us to aggregate the temporal dynamics of the system.

The input tensor is processed using a Multivariate Temporal
Convolution Attention Network, which is designed to recognize
patterns over time. This network employs Dilated Causal Convolu-
tion (DCC), a method that efficiently captures relationships within
and between features over time. DCC is highly scalable, and it has
proven to be superior to traditional methods, like CNNs and LSTMs,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Architectural overview of GAMMA.

especially when predicting future events based on past data. The
dilated causal convolution for a feature vectorM𝜂𝑥𝜏 is

O(𝜂, 𝑘, 𝑞) =
∑︁
𝜂

∑︁
𝜏+𝛿 ·𝑠=𝑞

M(𝜂, 𝜏) ×𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠), (1)

whereM(𝜂, 𝜏) is the input tensor, O(𝜂, 𝑘, 𝑞) are the multi-channel
output embeddings, 𝑘 × 𝑞 represent the Convolution filters, 𝛿 is
the expansion factor, and𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠) is the filter size for 𝜂 output
channels. Self-attention is then applied on the input embedding
tensorM𝜂𝑥𝜏 , as:

𝐴𝑡𝑡𝑛(M) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑊𝑞M · (𝑊𝑘O)𝑇√

𝑑
𝑊𝑣M

)
, (2)

where𝑊𝑞 ,𝑊𝑘 and,𝑊𝑣 are trainable hyperparameters and 𝑑 is an
empirical scaling factor. This phase outputs multi-channel embed-
dings with latent representation O𝜂×𝑘×𝑞 .

3.2 Graph Representation Learning
In this stage, our goal is to understand the end-to-end status of
the MSA application and provide a detailed overview of the entire
system including the dependent interactions between the microser-
vices themselves. This requires three key actions: (1) merging the
multi-channel embeddings generated in the previous stage to get
concatenated embeddings for each microservice; (2) incorporat-
ing the microservice call-graph and the concatenated embeddings
to generate the dependency graph and microservice-level status
representations (node representations) for the application; and (3)
modeling this dependency graph. We begin by creating a directed
graph from the call-graph that illustrates how microservices are
interconnected. Next, we integrate the output embedding sourced
from earlier stages into unified node representations, showcasing
the status at the microservice-level. Information within this graph
is then channeled through a GNN, enabling the understanding of
neighboring interconnections and interactions.

3.2.1 Generating the Dependency Graph. The process of extracting
a call graph from microservices traces can be systematically under-
stood by visualizing microservices as nodes and their invocations

as directed edges. A dependency graph 𝐺 = {𝑉 , 𝐸} can be derived
from traces, where 𝑉 denotes the set of nodes with |𝑉 | = 𝑀 , with
𝑀 being the total number of distinct microservices. 𝐸 represents
the set of edges; an edge 𝑒𝑎,𝑏 = (𝑣𝑎, 𝑣𝑏) ∈ 𝐸 indicates a directed re-
lationship from node 𝑣𝑎 to node 𝑣𝑏 , implying that the microservice
associated with node 𝑣𝑏 has made an invocation to that associated
with node 𝑣𝑎 at least once in recorded history.

Since it is essential for us to calculate temporal representations of
microservices that capture both inter- and intra-feature correlations
for our inputs, we concatenate our embeddings at an intermediate
stage before we generate our dependency graph [22, 24]. Studies
in cross-modal learning [23, 27, 33] hint that intermediate fusion
tends to be more effective for processing temporal representations.
Initially, we concatenate ([·∥·]) the representations of each mi-
croservice acquired from the prior phase, ensuring comprehensive
data retention. The resulting tensor is then projected on a lower
dimensional subspace by passing it through a fully-connected layer
and subsequently passed through a Gated Linear Unit to fuse the
representations while controlling for vanishing gradients and in-
creasing resiliency to gradient forgetting [12]. The microservice
levels concatenated embeddings O𝜂×𝜖 serve as node embeddings
for the GNN with each node 𝜂𝑛 having the embedding vector O𝜖𝜂𝑛 .

3.2.2 Graph-Attention Network. We employ the Graph Attention
Network (GAT) [9], a specialized GNN variant that offers several
advantages in the context of microservices [24]. Unlike traditional
GNNs, GAT is capable of learning node and edge representations
while dynamically assigning importance weights to neighboring
nodes. This attentionmechanism ensures that the network can focus
on more influential or anomalous microservices, potentially acting as
communication hubs or displaying abnormal behavior patterns. The
local representation O𝜖𝜂𝑛 encapsulates the feature set for individual
nodes. The model digests this information and learns a holistic
representation of the entire graph. Dynamic edge weights, integral
to the attention mechanism, are formulated as per Equation (3),

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

ensuring an understanding of microservice interactions.

𝜔𝑎,𝑏 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑏]))∑

𝑘∈N𝑎 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑘]))
, (3)

where 𝜔𝑎,𝑏 is the computed weight of edge ®𝑒𝑎,𝑏 , N𝑎 is the set of
neighbor nodes for node 𝑎; O𝜖𝑎 is the intermediate node representa-
tion of node 𝑎;𝑊 ∈ R𝐸𝐺×𝐸 and 𝜈 ∈ R𝐸𝐺 are trainable parameters.
𝐸𝐺 is the shape of the output representation. The impact of all the
neighboring nodes 𝑏 on node 𝑎 is calculated as follows:

�̂�𝜖
𝑎 = 𝑅𝑒𝐿𝑈

∑︁
𝑏∈N𝑎

𝜔𝑎,𝑏𝑊O
𝜖
𝑏

(4)

Global Attention Pooling [8] is then performed on the node repre-
sentations to generate dependency-aware embeddings O𝜁 .

3.3 Detection and Localization
In the final phase, GAMMA performs two functions: it predicts if a
given observation window indicates an anomaly (anomaly detec-
tion), and if so, it discerns which microservices are the root cause
(bottleneck localization). Contrary to traditional approaches [16, 38]
which treat anomaly detection and bottleneck localization as sepa-
rate functionalities, GAMMA adopts a holistic approach to leverage
the knowledge of the inter-related functionalities.

Leveraging the earlier acquired representation O𝜁 , an initial de-
tector performs a binary assessment to ascertain the presence of any
anomalies. If the outcome is negative, GAMMA directly presents
the results. However, if an anomaly is detected, a subsequent lo-
calizer arranges the microservices in order of their likelihood to
be the origin of the issue. This two-step mechanism, comprising
the detector and the localizer, employs multiple experts comprising
of connected neural networks followed by a binary classifier. Each
microservice in the call-graph has a dedicated expert assigned to
predict if the microservice is bottlenecked or not. Both these com-
ponents, the detector and localizer, are trained in tandem with a
shared goal. The model’s primary focus is to curtail the total binary
cross-entropy loss of the detector (𝜆𝑑) and localizer (𝜆𝑙). The joint
loss function is given as:

𝜆𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝜆𝑙 +
∑︁
𝑘∈𝜂

(1 − 𝛼)
𝜂

· 𝜆𝑘 , (5)

where 𝜆𝑙 =
∑
𝑘∈𝜂 𝜆𝑘 ; and 𝛼 is a hyperparameter to tune the con-

tribution of 𝜆𝑙 and 𝜆𝑑 towards the total loss. Should an anomaly
be detected, GAMMA outputs a binary vector of 0s and 1s which
predicts the bottleneck and non-bottlenecked microservices.

4 EVALUATION
We now present our experimental evaluation results for GAMMA
under various bottleneck scenarios. We also compare GAMMA’s
performance with that of recent works on bottleneck localization.

4.1 Experimental Setup
We evaluate GAMMA on a cluster of 17 VMs (4 vCPUs, 8GB mem-
ory) managed by Kubernetes. The VMs are synchronized via NTP
for accurate measurements. The metrics (CPU, memory, network)
are collected via Prometheus [39], while Jaeger [3] collects dis-
tributed traces. To generate a variety of bottlenecks, we use a CPU

load generator [2] and stress-ng tool to generate interferences on
one or more host VMs. This generates multi-bottlenecks of varying
intensities and duration that may overlap in time.

We use the popular social networking benchmark from Death-
StarBench [15] that consists of 28 microservices implementing
several features of real-world social networking applications. The
constituent microservices are Nginx, Memcached, MongoDB, Redis,
as well as microservices that implement the logic of the application.
The workload consists of Compose requests that create a post, User
requests that read the timeline of other users, and Home requests
that read the user’s own timeline. We use wrk2 [5] to generate
workloads of different intensities. We benchmark the application to
find the peak load (800 requests per second, or RPS) beyond which
it is unstable. We use different intensities in the range of 100–800
RPS. We deploy monitoring services like Prometheus and Jaeger
on a separate VM to avoid unintended interference.

4.2 Dataset Creation
A key contribution of this work is constructing a dataset for re-
search on anomaly detection and multi-bottleneck localization.
Prior works have noted that existing public traces [37] on anomaly
detection and bottleneck localization only contain single, severe
bottlenecks that are not representative of real-world scenarios [43].
When such a bottleneck is introduced, the resulting latency in-
creases by an order of magnitude (100×), making it trivial to detect
that singe bottleneck using a simple grid search or threshold-based
approaches.

To create a more realistic dataset that includes traces with mul-
tiple bottlenecks at different intensities, we carefully benchmarked
the social networking application under different interference in-
tensities and duration of interference. We chose intensities and
duration values that degrade the application performance but do
not cause any faults or errors that can be trivially detected. We
induced interference on different VMs at different times and also
simultaneously. A single VM could be induced with different types
of interference (e.g., CPU and memory), resulting in the hosted
microservices experiencing a mixture of interference patterns. The
resulting dataset consists of around 40 million request traces along
with corresponding time series of CPU, memory, I/O, and network
metrics. The dataset also includes application, VM, and Kubernetes
logs. We commit to open-sourcing the raw and processed datasets,
along with our GAMMA implementation, to further research in
this important area.

4.3 Metrics and Baselines
For evaluation of anomaly detection and bottleneck localization,
we use the following performance metrics:
• Recall is the ratio of true positive predictions to the total number

of positive data points. It measures how many of the positive
data points were classified as positive by the model. A high recall
is essential for MSA-based web application deployments as it is
important to detect all anomalies and bottlenecks.

• Precision is the ratio of true positive predictions to the total
positive predictions. It measures how many of the data points
that were classified positive by the model are actually positive.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(a) Compose request type.

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(b) User request type.

F1 score Recall Precision0.00

0.25

0.50

0.75

1.00
_diag GAMMA

(c) Home request type.

Figure 3: F1 score, Recall, and Precision for anomaly detection over the entire dataset.

A high precision is desirable as it implies fewer engineer hours
wasted investigating false positives.

• F1 score is the harmonic mean of precision and recall. It is a
metric that balances the trade-off between precision and recall.

We experimentally compare the performance of GAMMA with
the following state-of-the-art baselines from recent works:
(1) FIRM is a framework that uses SVM and hand-crafted features

to localize bottlenecks on the critical path. We use Scikit-learn
library [36] to implement FIRM’s SVM model.

(2) 𝜖-diagnosis performs both anomaly detection and bottleneck
localization. It uses a simple threshold scheme for anomaly
detection and distance correlation for bottleneck localization.
We use the dcor [40] library to implement the 𝜖-diagnosis’
localization module.

(3) Seer is an online bottleneck localization framework that uses
CNN and LSTM to learn spatial and temporal features, respec-
tively, to recognize patterns that lead to anomalies. We imple-
ment Seer using Pytorch [35].

(4) Seer* is our modified version of Seer for multi-bottleneck local-
ization which works by adapting softmax to individual binary
classification for each microservice in the call-graph and re-
placing cross-entropy loss with hinge-loss [11].

To evaluate 𝜖-diagnosis and FIRM on multi-bottleneck data, we
run these baselines on all the microservices serially. Since the orig-
inal Seer model cannot be directly applied for multi-bottleneck
localization, we evaluate how well it localizes the most dominant
bottlenecked microservice. We tune the hyperparameters of all
baselines and present the best results in our evaluation.

4.4 Results
4.4.1 Aggregate results for anomaly detection. We start by evaluat-
ing GAMMA and the baselines using our entire dataset (with all
resource bottleneck traces). Figure 3 shows the F1 score, Recall, and
Precision for anomaly detection using the entire trace dataset for
GAMMA and 𝜖-diagnosis. Note that 𝜖-diagnosis is the only baseline
among those considered that does anomaly detection. Starting with
Figure 3a, which shows the results when analyzing Compose traces,
we see that GAMMA provides significantly better results than 𝜖-
diagnosis. The F1 score, Recall, and Precision values for GAMMA
are 0.91, 0.89, and 0.94, respectively.

By contrast, the corresponding values for 𝜖-diagnosis are lower
by 78%, 87%, and 6%, respectively. We do observe that 𝜖-diagnosis

achieves reasonable Precision because of the low confidence thresh-
old that its localizer uses, which ensures the quality of predictions.
Recall, from Section 2, that 𝜖-diagnosis does not leverage any struc-
tural information about the application, thus losing out on impor-
tant information. Further, 𝜖-diagnosis uses a static threshold to
detect anomalies. While this threshold might work well for scenar-
ios where only a single, severe performance bottleneck exists, this
static threshold does not adapt to the more realistic case of multiple,
different bottlenecks. In fact, when we evaluated 𝜖-diagnosis for
the simpler, pathological dataset where a single bottleneck exists
that causes performance to degrade significantly [38], 𝜖-diagnosis
resulted in near-perfect F1 scores. This underscores the difficulty
in anomaly detection when multiple bottlenecks exist.

Results are similar for User (Figure 3b) and Home (Figure 3c)
requests, with GAMMA significantly outperforming 𝜖-diagnosis
and achieving high performance values. Specifically, in Figure 3b,
GAMMA’s F1 score (0.91) is 355% higher than that of 𝜖-diagnosis
(0.20). Likewise, in Figure 3c, GAMMA’s F1 score (0.92) is 441%
higher than that of 𝜖-diagnosis (0.17). We note that User and Home
requests have smaller call graphs than Compose. Additionally, Com-
pose has asynchronous calls, caches, queues, and other complexities,
that are inherent in MSA applications, making Compose a popular
choice for analysis in prior works [24, 38]. While we experimented
with all request types, due to lack of space, we will primarily focus
on the complex Compose request type in our results.

4.4.2 Aggregate results for bottleneck localization. Figure 4 shows
our results for the more challenging bottleneck localization task
using the entire trace dataset for GAMMA and all baselines. Across
all request types, GAMMA outperforms all other baselines for all
performance metrics. In particular, GAMMA achieves a high F1 score
of 0.83–0.87 across Figures 4a–4c. Further, GAMMA also achieves
a high Recall of 0.77–0.84 and a high Precision of 0.90–0.92 across
all subfigures.

Starting with Figure 4a, we see that GAMMA outperforms all
other baselines under all metrics. GAMMA achieves an F1 score,
Recall, and Precision of 0.83, 0.77, and 0.91, respectively. 𝜖-diagnosis
again performs poorly, with an F1 score of only 0.1; this is due to the
weaknesses of 𝜖-diagnosis identified above which limit its accuracy
for the multi-bottleneck scenario.

FIRM performs better than 𝜖-diagnosis, but still only achieves
an F1 score of 0.57 compared to the 0.83 (46% higher) obtained
by GAMMA. This is likely because FIRM does not leverage the
structural information in the call graphs of the MSA application

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(a) Compose request type.

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(b) User request type.

F1 score Recall Precision0.0

0.5

1.0
_diag

FIRM
Seer
Seer*

GAMMA

(c) Home request type.

Figure 4: F1 score, Recall, and Precision for bottleneck localization over the entire dataset.

CPU Mem Net CPU+Mem
Interference type

0.0

0.5

1.0

F 1
 sc

or
e

_diag
FIRM

Seer
Seer*

GAMMA

Figure 5: Bottleneck localization results by interference type.

or resource metric timelines, unlike GAMMA. We note that FIRM
can perform quite well if we only consider single bottleneck traces,
again highlighting the challenge of dealing with multiple bottle-
necks.Whenwe evaluated FIRM for the simpler, pathological dataset
where a single, severe bottleneck exists [38], FIRM resulted in a
much higher F1 score of 0.83 with a Recall and Precision of about
0.7 and 0.9, respectively.

Seer also performs poorly, with an F1 score of only 0.16. This
is to be expected, however, as the unmodified Seer only focuses
on localizing one bottleneck. Since real-world request traces may
contain multiple bottlenecks (e.g., our traces contain as many as 11
bottlenecks each), Seer’s performance is limited. To account for this
shortcoming, we extended Seer to Seer* by replacing softmax in
the prediction layer with individual binary classification for every
microservice in the call graph, and then replaced cross-entropy loss
with hinge-loss [11], as discussed in Section 4.3. With this extension,
Seer* performs better, with an F1 score of 0.51. However, this is still
significantly below GAMMA’s F1 score of 0.83. We believe this is
because while Seer* does leverage multiple neural network models,
it does not make use of GNNs, which are ideally suited to MSA
application call graphs [28]. As we show later in Table 3, the GNN
component of GAMMA is crucial for good performance.

The results for User (Figure 4b) and Home (Figure 4c) request
types are qualitatively similar to that of Compose in Figure 4a, with
GAMMA outperforming all other baselines for all metrics.

4.4.3 Results per bottleneck source. We now evaluate GAMMA and
the baselines by separately training and testing over traces that
contain bottlenecks from a specific source (CPU, Memory, Network,
CPU+Memory). This will allow us to assess the performance under
specific bottleneck types. Figure 5 shows the F1 score for GAMMA
and all baselines for bottleneck localization (under Compose request
type) separated by the interference type that creates the bottleneck.
(GAMMA continues to be significantly better than 𝜖-diagnosis for
anomaly detection so we omit those results.)

Across all subfigures, we see that GAMMA is always superior to
the other baselines with an F1 score of at least 0.77 and as much as
0.89 (for Network interference type). However, the performance of
each baseline does differ across the subfigures. For example, FIRM
performs much better when the bottlenecks are caused by CPU
interference as opposed to other interference types. Seer* has the
opposite behavior, with performance being close to that of GAMMA
for non-CPU interference types, but worse for CPU interference.
This suggests that specific baselines may perform better if they
are separately trained for each source of bottleneck. However, this
is tedious in practice. By contrast, GAMMA shows consistently
good performance whether it is trained on each interference type
(Figure 5) or more efficiently trained once on all interference types
(Figure 4).

4.4.4 Overhead analysis. To compare the overhead of GAMMA and
the baselines, we computed the average inference time across all
traces for the combined tasks of anomaly detection and bottleneck
localization, as applicable. Table 1 shows the overhead time in
seconds for processing each window; for Seer*, which operates at
the granularity of traces, we converted the times to per window by
normalizing by the average number of traces in a window.

GAMMA 𝜖-diagnosis FIRM Seer*
3.87 × 10−5 2.75 × 10−3 1.30 × 10−6 5.78 × 10−6

Table 1: Average inference time (seconds) per window.

We see that GAMMAhas amuch lower overhead than 𝜖-diagnosis,
but is slower than FIRM and Seer*. Given the design of GAMMA,
and its superior performance compared to FIRM and Seer*, we con-
sider the larger inference time as a trade-off between performance
and overhead. Regardless, we note that the overhead for GAMMA
per 1s window is only about 38.7𝜇s, representing a 0.004% overhead
for each second of window length.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

4.4.5 Explainability of GAMMA. A key advantage of GAMMA is
its ability to not just localize bottlenecks, but also aid in identifying
the source of the bottlenecks. Utilizing multi-source data-based
approaches, such as GAMMA, offers a significant advantage over
other approaches that only rely on latency traces to identify and
localize bottlenecks. System metrics, such as CPU usage and net-
work congestion, can offer crucial insights, such as trends, thresh-
old breaches, and correlations, in detecting bottlenecks for large
MSA applications. GAMMA effectively integrates multiple system
metrics with the microservice-dependency graph to understand
cross-modal and temporal patterns for system interactions. To high-
light this ability, we run GAMMA with different subsets of features.
The intuition is that the feature whose omission causes a significant
drop in performance is likely the source of the bottleneck.

Feature
Omitted

CPU inter-
ference

Memory in-
terference

CPU+Memory
interference

None 0.851 0.844 0.771
CPU 0.693 0.805 0.714
Memory 0.789 0.573 0.600
Network 0.919 0.838 0.764
CPU & Mem 0.646 0.459 0.438

Table 2: Illustrating GAMMA’s explainability by evaluating
F1 score when specific features are omitted from GAMMA.

The rows in Table 2 show the F1 score when GAMMA is run
with a specific subset of features for bottleneck localization. We
consider three different bottleneck source scenarios, one per col-
umn: bottlenecks caused by (a) only CPU interference, (b) only
Memory interference, and (c) CPU and Memory interference.

Starting with the only CPU interference scenario in the first
column, we see that GAMMA’s F1 score drops from 0.851 to 0.693
when the CPU feature is omitted, but only drops to 0.789 when the
Memory feature is omitted. When omitting the Network feature,
the F1 score actually increases to 0.919, suggesting that Network
feature data may be hurting performance in this case. Overall, the
results show that the CPU feature has a larger impact, suggesting
that the source of bottleneck is CPU saturation. We see a similar
result in the second column with the omission of the Memory
feature creating a larger drop in F1 score (0.844 to 0.573) compared
to the omission of the CPU feature (0.844 to 0.805) or the Network
feature (0.844 to 0.838).

In the final column, we see that omitting the CPU feature or
omitting the Memory feature causes a reasonable drop in F1 score,
whereas omitting the Network feature only causes a small drop.
However, dropping both features causes a much higher drop from
0.771 to 0.438. While omitting both CPU and Memory features is
expected to cause a larger drop than omitting a single feature, the
resulting drop for the final column is significant, suggesting that
both CPU and Memory may have contributed to the bottleneck.
Specifically, the additional drop in performance when omitting both
features versus when only omitting the dominant feature is 7% and
20% for columns 1 and 2, respectively. By contrast, the drop is 27%
for the last column.

4.4.6 Ablation study for GAMMA. The GAMMA core model in-
volves a few stages, as discussed in Section 3. Two specific stages of

interest are the Graph Attention Network (which combines Graph
Convolution with an attention mechanism allowing nodes to ag-
gregate information from their most insightful neighbors) and Self
Attention in context of causal convolution (which allows a tem-
poral sequence to weigh the importance of its own past values).
The former provides the ability to capture the interactions between
microservices by leveraging the dependency structure. The latter
ensures that the 1D-convolution operation, which is inherently
local, is guided by a global understanding of the entire temporal
sequence, ensuring a context-aware feature extraction.

Stage Omitted F1 score Recall Precision
None 0.830 0.87 0.83
Graph Attention 0.669 0.69 0.65
Self Attention 0.695 0.71 0.68

Table 3: Ablation study to highlight the importance of spe-
cific stages of GAMMA.

To validate our design choices, we performed an ablation study
by replacing the two specific stages of GAMMA with alternative
ones. Table 3 shows our results over the entire dataset. Comparing
row 1 (GAMMA, as-is) and row 2 (GAMMA with Graph Attention
replaced with a standard fully-connected linear layer), we clearly
see that the performance numbers drop significantly, indicating
the importance of Graph Convolution in the design of GAMMA.
Similarly, comparing row 1with row 3 (GAMMAwith Self Attention
removed), we again see a drop in performance for all three metrics.
This highlights the significance of self-attention in the design of
GAMMA.

Wefind thatwhile replacingGATwith a linear layer, the dependency-
agnostic representations are not as helpful for localizing bottlenecks
as GAMMA loses the ability to factor-in the neighborhood interac-
tions in its inference. Removing self attention also has an adverse
effect on the performance of GAMMA as the model becomes my-
opic, limited by the filter-size of the convolution layers, and loses
its ability to hold long-term patterns.

5 CONCLUSION
Online web applications are increasingly adopting the microser-
vices architecture (MSA). While modular and flexible, MSA applica-
tions have numerous microservices that interact with each other
in complex ways, making it difficult to identify and pinpoint per-
formance bottlenecks. Further, since multiple bottlenecks can arise
independently or dependently for an MSA application, it is crucial
to accurately detect and localize all performance bottlenecks.

This work focuses on the key gap in this problem space—the abil-
ity to detectmultiple bottlenecks efficiently for MSA applications,
a realistic use-case that has been ignored by prior works. Our so-
lution framework, GAMMA, learns complex interactions between
microservices using graph neural networks and integrates this with
a mixture of experts to enable multiple bottleneck localization.
Evaluation results using the DeathStarBench Social Networking ap-
plication highlight the superiority of GAMMA compared to several
existing techniques. Further, our results show that GAMMA can
be trained efficiently and performs well across bottleneck types,
unlike existing techniques. Finally, GAMMA’s model lends itself to
explainability, making it practical for performance diagnosis.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] [n. d.]. Building Microservices Driven by Performance–Roblox.

https://medium.com/@acovarrubias_7488/building-microservices-driven-by-
performance-b347ed1c48e3.

[2] [n. d.]. CPU Load Generator. https://github.com/molguin92/CPULoadGenerator.
[3] [n. d.]. Jaeger. https://www.jaegertracing.io/.
[4] [n. d.]. Uber’s production Jaeger data. https://github.com/jaegertracing/jaeger-

ui/issues/680.
[5] [n. d.]. wrk2 Workload Generator. https://github.com/giltene/wrk2.
[6] Harold Aragon, Samuel Braganza, Edwin Boza, Jonathan Parrales, and Cristina

Abad. 2019. Workload Characterization of a Software-as-a-Service Web Ap-
plication Implemented with a Microservices Architecture. In Companion Pro-
ceedings of The 2019 World Wide Web Conference (San Francisco, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 746–750.
https://doi.org/10.1145/3308560.3316466

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

[8] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-Sequence
Learning using Gated Graph Neural Networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Melbourne, Australia, 273–283. https:
//doi.org/10.18653/v1/P18-1026

[9] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks? arXiv:2105.14491 [cs.LG]

[10] Jian Chen, Fagui Liu, Jun Jiang, Guoxiang Zhong, Dishi Xu, Zhuanglun Tan, and
Shangsong Shi. 2023. TraceGra: A trace-based anomaly detection formicroservice
using graph deep learning. Computer Communications 204 (2023), 109–117.
https://doi.org/10.1016/j.comcom.2023.03.028

[11] Koby Crammer and Yoram Singer. 2002. On the Algorithmic Implementation
of Multiclass Kernel-Based Vector Machines. J. Mach. Learn. Res. 2 (mar 2002),
265–292.

[12] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2016. Language
Modeling with Gated Convolutional Networks. CoRR abs/1612.08083 (2016).
arXiv:1612.08083 http://arxiv.org/abs/1612.08083

[13] Sinan Eski and Feza Buzluca. 2018. An Automatic Extraction Approach: Transi-
tion to Microservices Architecture from Monolithic Application. In Proceedings
of the 19th International Conference on Agile Software Development: Companion
(Porto, Portugal) (XP ’18). Association for Computing Machinery, New York, NY,
USA, Article 25, 6 pages. https://doi.org/10.1145/3234152.3234195

[14] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: Practical and Scalable ML-Driven Performance Debugging in Microser-
vices (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,
135–151. https://doi.org/10.1145/3445814.3446700

[15] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Providence,
RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 3–18. https://doi.org/10.1145/3297858.3304013

[16] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the
Complexity of Performance Debugging in Cloud Microservices. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 19–33.
https://doi.org/10.1145/3297858.3304004

[17] Jean-Philippe Gouigoux and Dalila Tamzalit. 2017. From Monolith to Microser-
vices: Lessons Learned on an Industrial Migration to aWeb Oriented Architecture.
In 2017 IEEE International Conference on Software ArchitectureWorkshops (ICSAW).
62–65. https://doi.org/10.1109/ICSAW.2017.35

[18] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore, Brighten
Godfrey, and Sujata Banerjee. 2023. Murphy: Performance Diagnosis of Dis-
tributed CloudApplications. In Proceedings of the ACM SIGCOMM2023 Conference
(New York, NY, USA) (ACM SIGCOMM ’23). Association for Computing Machin-
ery, New York, NY, USA, 438–451. https://doi.org/10.1145/3603269.3604877

[19] Lexiang Huang, MatthewMagnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
2022. Metastable Failures in the Wild. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
73–90. https://www.usenix.org/conference/osdi22/presentation/huang-lexiang

[20] DarbyHuye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil onMeta’s
microservice architecture: Analyses of topology and request workflows. In 2023

USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 419–432. https://www.usenix.org/conference/atc23/presentation/
huye

[21] Xinrui Jiang, Yicheng Pan, Meng Ma, and Ping Wang. 2023. Look Deep into
the Microservice System Anomaly through Very Sparse Logs. In Proceedings of
the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for
Computing Machinery, New York, NY, USA, 2970–2978. https://doi.org/10.1145/
3543507.3583338

[22] Hamid Reza Vaezi Joze, Amirreza Shaban, Michael L. Iuzzolino, and Kazuhito
Koishida. 2020. MMTM: Multimodal Transfer Module for CNN Fusion.
arXiv:1911.08670 [cs.CV]

[23] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition. 1725–1732. https://doi.org/10.1109/CVPR.2014.223

[24] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R. Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
Source Data. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1750–1762.
https://doi.org/10.1109/ICSE48619.2023.00150

[25] Bo Liu, Jingliu Xiong, Qiurong Ren, Shmuel Tyszberowicz, and Zheng Yang. 2022.
Log2MS: a framework for automated refactoring monolith into microservices
using execution logs. In 2022 IEEE International Conference on Web Services
(ICWS). 391–396. https://doi.org/10.1109/ICWS55610.2022.00065

[26] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,
Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020. Unsupervised
Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian
Networks. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). 48–58. https://doi.org/10.1109/ISSRE5003.2020.00014

[27] W. Liu, Wei-Long Zheng, and Bao-Liang Lu. 2016. Emotion Recognition Using
Multimodal Deep Learning. In International Conference on Neural Information
Processing. https://api.semanticscholar.org/CorpusID:7767769

[28] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice
Dependency and Performance: Alibaba Trace Analysis. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association
for Computing Machinery, New York, NY, USA, 412–426. https://doi.org/10.
1145/3472883.3487003

[29] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping
Wang. 2020. AutoMAP: Diagnose Your Microservice-Based Web Applications
Automatically. In Proceedings of TheWeb Conference 2020 (Taipei, Taiwan) (WWW
’20). Association for Computing Machinery, New York, NY, USA, 246–258. https:
//doi.org/10.1145/3366423.3380111

[30] JonathanMace. 2017. End-to-End Tracing: Adoption and Use Cases. Survey. Brown
University.

[31] GencMazlami, Jürgen Cito, and Philipp Leitner. 2017. Extraction of Microservices
from Monolithic Software Architectures. In 2017 IEEE International Conference
on Web Services (ICWS). 524–531. https://doi.org/10.1109/ICWS.2017.61

[32] Franck Michel, Catherine Faron-Zucker, Olivier Corby, and Fabien Gandon. 2019.
Enabling Automatic Discovery and Querying of Web APIs at Web Scale Using
Linked Data Standards. In Companion Proceedings of The 2019 World Wide Web
Conference (San Francisco, USA) (WWW ’19). Association for Computing Ma-
chinery, New York, NY, USA, 883–892. https://doi.org/10.1145/3308560.3317073

[33] Micah M. Murray, Antonia Thelen, Silvio Ionta, and Mark T. Wallace. 2019.
Contributions of Intraindividual and Interindividual Differences to Multisensory
Processes. J. Cognitive Neuroscience 31, 3 (mar 2019), 360–376. https://doi.org/
10.1162/jocn_a_01246

[34] Hoa Xuan Nguyen, Shaoshu Zhu, and Mingming Liu. 2022. A Survey on Graph
Neural Networks for Microservice-Based Cloud Applications. Sensors 22, 23
(2022). https://doi.org/10.3390/s22239492

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[37] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar Iyer. 2020. Pre-processed Tracing Data for Popular Microservice Bench-
marks. https://databank.illinois.edu/datasets/IDB-6738796. Online.

[38] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on

9

https://medium.com/@acovarrubias_7488/building-microservices-driven-by-performance-b347ed1c48e3
https://medium.com/@acovarrubias_7488/building-microservices-driven-by-performance-b347ed1c48e3
https://github.com/molguin92/CPULoadGenerator
https://www.jaegertracing.io/
https://github.com/jaegertracing/jaeger-ui/issues/680
https://github.com/jaegertracing/jaeger-ui/issues/680
https://github.com/giltene/wrk2
https://doi.org/10.1145/3308560.3316466
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://arxiv.org/abs/2105.14491
https://doi.org/10.1016/j.comcom.2023.03.028
https://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1145/3603269.3604877
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://doi.org/10.1145/3543507.3583338
https://doi.org/10.1145/3543507.3583338
https://arxiv.org/abs/1911.08670
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/ICSE48619.2023.00150
https://doi.org/10.1109/ICWS55610.2022.00065
https://doi.org/10.1109/ISSRE5003.2020.00014
https://api.semanticscholar.org/CorpusID:7767769
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1145/3308560.3317073
https://doi.org/10.1162/jocn_a_01246
https://doi.org/10.1162/jocn_a_01246
https://doi.org/10.3390/s22239492
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://databank.illinois.edu/datasets/IDB-6738796

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Operating Systems Design and Implementation (OSDI 20). USENIX Association,
805–825. https://www.usenix.org/conference/osdi20/presentation/qiu

[39] Bjorn Rabenstein and Julius Volz. 2015. Prometheus: A Next-Generation Moni-
toring System (Talk). USENIX Association, Dublin.

[40] Carlos Ramos-Carreño and José L. Torrecilla. 2023. dcor: Distance correlation
and energy statistics in Python. SoftwareX 22 (2 2023). https://doi.org/10.1016/j.
softx.2023.101326

[41] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng
He, Min Li, and Wei Ding. 2019. 𝜖-Diagnosis: Unsupervised and Real-Time
Diagnosis of Small- Window Long-Tail Latency in Large-Scale Microservice
Platforms. In The World Wide Web Conference (San Francisco, CA, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 3215–3222.
https://doi.org/10.1145/3308558.3313653

[42] Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Comput. Surv. 55, 3, Article 59 (feb 2022), 39 pages. https://doi.org/10.1145/
3501297

[43] Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav Varanasi, and
Anshul Gandhi. 2022. B-MEG: Bottlenecked-Microservices Extraction Using
Graph Neural Networks. In Companion of the 2022 ACM/SPEC International
Conference on Performance Engineering (Bejing, China) (ICPE ’22). Association
for Computing Machinery, New York, NY, USA, 7–11. https://doi.org/10.1145/
3491204.3527494

[44] G. Somashekar, A. Suresh, S. Tyagi, V. Dhyani, K. Donkada, A. Pradhan, and
A. Gandhi. 2022. Reducing the Tail Latency of Microservices Applications
via Optimal Configuration Tuning. In 2022 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE Computer
Society, Los Alamitos, CA, USA, 111–120. https://doi.org/10.1109/ACSOS55765.
2022.00029

[45] Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. 2007. Measuring and testing
dependence by correlation of distances. The Annals of Statistics 35, 6 (2007), 2769
– 2794. https://doi.org/10.1214/009053607000000505

[46] Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, and Jason
Nieh. 2015. Synapse: A Microservices Architecture for Heterogeneous-Database

Web Applications. In Proceedings of the Tenth European Conference on Computer
Systems (Bordeaux, France) (EuroSys ’15). Association for Computing Machin-
ery, New York, NY, USA, Article 21, 16 pages. https://doi.org/10.1145/2741948.
2741975

[47] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2022. Groot: An Event-Graph-Based Approach for Root
Cause Analysis in Industrial Settings. In Proceedings of the 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering (Melbourne, Australia)
(ASE ’21). IEEE Press, 419–429. https://doi.org/10.1109/ASE51524.2021.9678708

[48] Yingying Wen, Guanjie Cheng, Shuiguang Deng, and Jianwei Yin.
2022. Characterizing and synthesizing the workflow structure of
microservices in ByteDance Cloud. Journal of Software: Evolution
and Process 34, 8 (2022), e2467. https://doi.org/10.1002/smr.2467
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2467

[49] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24. https:
//doi.org/10.1109/TNNLS.2020.2978386

[50] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei Su,
Hanzhang Wang, and Dan Pei. 2023. Unsupervised Anomaly Detection on
Microservice Traces through Graph VAE. In Proceedings of the ACM Web Confer-
ence 2023 (Austin, TX, USA) (WWW ’23). Association for Computing Machinery,
New York, NY, USA, 2874–2884. https://doi.org/10.1145/3543507.3583215

[51] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu,
Qingwei Lin, and Dongmei Zhang. 2022. DeepTraLog: Trace-Log Combined
Microservice Anomaly Detection through Graph-based Deep Learning. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 623–634.
https://doi.org/10.1145/3510003.3510180

[52] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal,
Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Critical Path Analysis
of Large-Scale Microservice Architectures. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 655–672. https:
//www.usenix.org/conference/atc22/presentation/zhang-zhizhou

10

https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1016/j.softx.2023.101326
https://doi.org/10.1016/j.softx.2023.101326
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3501297
https://doi.org/10.1145/3501297
https://doi.org/10.1145/3491204.3527494
https://doi.org/10.1145/3491204.3527494
https://doi.org/10.1109/ACSOS55765.2022.00029
https://doi.org/10.1109/ACSOS55765.2022.00029
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1002/smr.2467
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2467
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/3543507.3583215
https://doi.org/10.1145/3510003.3510180
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou

	Abstract
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection
	2.2 Bottleneck Localization

	3 Design of GAMMA
	3.1 Multi-Source Temporal Embeddings Learning
	3.2 Graph Representation Learning
	3.3 Detection and Localization

	4 Evaluation
	4.1 Experimental Setup
	4.2 Dataset Creation
	4.3 Metrics and Baselines
	4.4 Results

	5 Conclusion
	References

