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ABSTRACT

To address the issues of catastrophic forgetting in Continual Generative Learning
(CGL), dominant methods leverage the generative replay strategy. However, they
often suffer from high time complexity and inferior generative sample quality.
In this work, we develop an efficient and effective CGL method via Knowledge
reconstruction and Feedback Consolidation (KFC). KFC extends the inherent data
reconstruction properties of the variational autoencoder framework to historical
knowledge reconstruction and re-encodes the current task’s reconstructed data to
the same posterior distribution as the original data. Experiments showcase that
KFC achieves state-of-the-art performances in time complexity, sample quality,
and accuracy on various CGL tasks. Code is in github.com/libo-huang/KFC.

1 INTRODUCTION

Adapting generative models to continual learning (a.k.a. CGL) has triggered considerable interest
in computer vision recently (Huang et al., 2024; Belouadah et al., 2021). The notorious problem of
CGL is catastrophic forgetting, which reflects the fact that when a generator learns a new task, it
forgets its previously learned tasks (Parisi et al., 2019). The dominant CGL method is generative
replay (GR) (Shin et al., 2017; van de Ven et al., 2020), which retrains a new generator on a mixture
dataset that combines the pseudo samples generated from the previous generator and the real samples
of the current task. Some extended CGL methods train the generator only on the current-task data,
e.g., CEWC (Seff et al., 2017) and MGAN (Wu et al., 2018; Liu et al., 2020), etc. However, these
methods are majorly investigated on Conditional Generative Adversarial Networks (CGAN), and
they are feasible for a single incremental task, whereas for multiple sequential tasks, CGAN could
induce unstable training, resulting in inferior-quality samples (Cong et al., 2020).
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Figure 1: KFC enables CVAE (with LV
CVAE and

LR
CVAE) continual generative learning by recon-

structing the historical knowledge retained in the
frozen decoder with LR

CGL and feedback consoli-
dating the reconstructed distribution with LF

CGL.

FashionMNIST Epoch Time ACC ↑
rCGAN 11 700s 58.90
CEWC 7 388s 61.67
MGAN 18 1230s 73.03
rCVAE 4 417s 73.69
KFC 3 157s 75.28

CIFAR10 Time FID ↓
rCVAE/GR 12h 186.17
KFC 7h 132.62

Table 1: CGL models first reached optimal accu-
racy (ACC) on learning 10 FashionMNIST tasks
with the consumed training epochs and times
(in seconds). Well-trained CGL models get the
Fréchet Inception Distance (FID) on learning 4
CIFAR10 tasks with the training times (in hours).

∗Corresponding author: Zhulin An. This work was supported by the Beijing Natural Science Foundation
under grant 4244098.
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Motivated by the fact that Conditional Variational Autoencoder (CVAE) not only provides a stable
training mechanism but keeps satisfactory sample diversity (Ramapuram et al., 2020), in this paper,
we develop an efficient and effective CGL method based on CVAE via Knowledge reconstruction
and Feedback Consolidation (KFC). As shown in Fig.1, KFC continually trains the generator on
the current-task data without pseudo samples from the previous generator as inputs. Inspired by
the intrinsic reconstruction character of CVAE, KFC reconstructs the learned knowledge by training
the current decoder guided by the old decoder’s outputs with the same noise and label inputs. To
improve the sample quality, KFC re-encodes the current reconstructed samples, consolidating these
samples to hold the same posterior distribution as real ones. Experiments on the FashionMNIST and
CIFAR10 CGL tasks verify that KFC enjoys high training efficiency and superior sample quality.

2 KFC: EFFICIENT AND EFFECTIVE CGL METHOD

KFC Framework. As shown in Fig.1, the whole training loss of KFC is,

min
ϕt,θt

{
LR
CV AE(ϕt, θt) + LV

CV AE(ϕt) + λr
tLR

CGL (θt) + λf
t LF

CGL (ϕt, θt)
}
, (1)

By minimizing conventional CVAE losses, LR
CV AE(ϕt, θt) +LV

CV AE(ϕt), the conditional encoder,
ϕt, promotes z to follow the Gaussian distribution from the sample, xt, and the label, yt, while the
conditional decoder, θt, reconstructs the surrogate sample of the original xt from yt and z. By min-
imizing the proposed knowledge reconstruction loss, LR

CGL(θt), θt could reconstruct the knowledge
embedded in the historical decoder, θt−1, and by minimizing the proposed feedback consolidation
loss, LF

CGL (ϕt, θt), θt could improve the samples’ quality as ϕt promotes the reconstructed data
obtained from θt to follow the same posterior distribution as the current task data.

Knowledge Reconstruction. Inspired by the CVAEs’ intrinsic reconstruction character (Kingma
& Welling, 2014; Paisley et al., 2012), we propose a knowledge reconstruction loss, LR

CGL(·), to
track the forgetting problem.

LR
CGL(θt) = −Epθt−1

(x̂t−1|yt−1,z),y∼U(1,|y:t−1|),z∼N (0,I)

[
log pθt(x̂

t−1|y,z)
]
, (2)

where E is the expectation operation, |·| is the cardinality operator. U(·) and N (0, I) are discrete
uniform and Gaussian distribution, respectively. y:t−1 = {y1, ..., yt−1} indicates the set of task
labels learned so far. By minimizing LR

CGL(·), the current encoder, pθt , could reconstruct the his-
torical knowledge with the stored pθt−1

and the number of previous class labels,
∣∣y:t−1

∣∣.
Feedback Consolidation. Inspired by the CGANs’ discriminator-driven generation (Che et al.,
2020; Verma et al., 2018), we propose a feedback consolidation loss, LF

CGL(·), to improve the sample
quality.

LF
CGL(ϕt, θt) = Epθt (x̂

t|yt,z)

[
KL

[
qϕt

(
z | yt, x̂t

)
∥ p(z)

]]
. (3)

It decodes the current task’s reconstructed data, x̂t, by using pθt(x̂
t|yt, z) at first, then re-encode

x̂t to a latent variable z by using qϕt
(z | yt, x̂t). The Kullback–Leibler (KL) divergence ensures

the real data of the current task and those obtained from the decoder follow the same posterior
distribution, improving generative samples’ quality (Che et al., 2020)1.

3 EXPERIMENTS

We compare KFC with several state-of-the-art baselines, rCGAN (Ye & Bors, 2021), CEWC (Seff
et al., 2017), MGAN (Liu et al., 2020), and rCVAE (van de Ven et al., 2020) on FashionMNIST
and CIFAR10. As depicted in Tab. 1, KFC surpasses others evidently in terms of efficiency (lower
training epochs and time to reach its better optimal ACC for the first time on 10 FashionMNIST
tasks) and effectiveness (lower training time to reach its better FID on 4 CIFAR10 tasks)2.

4 CONCLUSION

We developed KFC, an efficient and effective continual generative learning method based on the
CVAE framework. It bridges the gap that no VAE-based CGL methods exist taking the current-
task data as inputs to train the generative model continually. Experiments on FashionMNIST and
CIFAR10 CGL tasks verify that KFC achieves continual generation more effectively and efficiently
than existing CGL methods.

1Detailed method is provided in Appendix A.
2Extensive experiments are provided in Appendix B
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