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ABSTRACT

Deep neural networks (DNNs) defy the classical bias-variance trade-off: adding
parameters to a DNN that interpolates its training data will typically improve
its generalization performance. Explaining the mechanism behind this “benign
overfitting” in deep networks remains an outstanding challenge. Here, we study
the last hidden layer representations of various state-of-the-art convolutional neural
networks and find evidence for an underlying mechanism that we call representation
mitosis: if the last hidden representation is wide enough, its neurons tend to split
into groups which carry identical information, and differ from each other only by
a statistically independent noise. Like in a mitosis process, the number of such
groups, or “clones”, increases linearly with the width of the layer, but only if the
width is above a critical value. We show that a key ingredient to activate mitosis is
continuing the training process until the training error is zero.

1 INTRODUCTION

Deep neural networks (DNN) routinely have enough parameters to achieve zero training error, even
with random labels (Zhang et al., 2017; Arpit et al., 2017). In defiance of the classical bias-variance
trade-off, the performance of these interpolating classifiers continuously improves as the number of
parameters increases well beyond the number of training samples (Geman et al., 1992; Neyshabur
et al., 2015; Spigler et al., 2019; Nakkiran et al., 2020). Despite recent progress in describing the
implicit bias of stochastic gradient descent towards “good” minima (Gunasekar et al., 2018a;b; Soudry
et al., 2018; Ji & Telgarsky, 2019; Arora et al., 2019; Chizat & Bach, 2020), and the detailed analysis
of solvable models of learning (Advani et al., 2020; Neal et al., 2018; Mei & Montanari, 2019; Belkin
et al., 2019; Hastie et al., 2019; d’Ascoli et al., 2020; Adlam & Pennington, 2020; Lin & Dobriban,
2020; Geiger et al., 2020), the mechanisms underlying this “benign overfitting” (Bartlett et al., 2020)
in deep NNs remain unclear, especially since “bad” local minima exist in their optimisation landscape
and SGD can reach them (Liu et al., 2020).

In this paper, we describe a phenomenon in wide, deep neural networks that we call representation
mitosis and which offers a possible mechanism for benign overfitting. We illustrate this mechanism in
Fig. 1 for a family of increasingly wide DenseNet40s (Huang et al., 2017) on CIFAR10 (Krizhevsky
et al., 2009). The blue line in Fig. 1 shows how the average classification error (error) approaches the
performance of a large ensemble of networks (error∞) as the width of the network increases (Geiger
et al., 2020). Consistently with Zagoruyko & Komodakis (2016), we find that their performance
improves continuously with width. For simplicity we will refer to the width W of last hidden
representation as the width the network. When W is greater than 350 a network becomes wide
enough to reach zero training error (see Fig 9-c in Sec A.2) and the error decays approximately as
W−1/2. We make our key observation by performing the following experiment: we randomly select
a number wc of neurons from the last hidden layer of the widest DenseNet40, and remove all the
other neurons from that layer as well as their connections. We then evaluate the performance of this
“chunk” of wc neurons, without retraining the network. The performance of chunks of varying sizes is
shown in the same figure in orange. There are clearly two regimes: for small chunks, the error decays
faster than w

−1/2
c , while beyond a critical chunk size w∗c (shaded area), the error of a chunk of wc

neurons is roughly the same as the one of a full network with wc neurons. Furthermore, the error of
the chunks decays with the same power-law w

−1/2
c beyond this critical chunk size.

1



Under review as a conference paper at ICLR 2022

Figure 1: The mechanism of representation mitosis. (a) We analyse the final representations of
deep neural networks (DNN), namely the activities of the last hidden layer of neurons (light blue) We
focus on the performance and the statistical properties of randomly chosen subsets of wc neurons
which we call “chunks”. In the chunked network shown here, wc = 5 out of 9 neurons are held, and
used to predict the output. (b) As we increase the size of the chunk wc in a state-of-the-art DNN, here
a DenseNet40, the test error of the chunked network (orange line) becomes similar to the test error of
a full network of width W = wc (blue line). In this regime, which is reached when wc is larger than
a threshold w∗c (shaded area) the error approaches its asymptotic value error∞ as a power-law w

−1/2
c

(dashed line). (c) Illustration of three final representations for networks of increasing width. As the
width of the network increases, additional neurons fit to new features of the data (red neuron). As the
network width goes beyond a critical width W ∗, additional neurons instead copy features already
learnt from data, and form what we call clones. This mechanism, which we call representation
mitosis, is suggested by the w−1/2c decay of the chunk error, and by the statistical analysis we present
in this paper.

This observation suggests that the final hidden representation of an input in a trained, wide DNN is
highly redundant beyond the critical width w∗c . The decay rate of −1/2 in particular implies that in
this regime chunks of wc neurons can be thought as statistically independent estimators of the same
features of the data, differing only by a small, uncorrelated noise. This suggests a possible mechanism
for benign overfitting: as the network becomes wider, additional neurons are first used to learn new
features of the data. Beyond the critical width w∗c , additional neurons in the final layer don’t fit to
new features in the data, and hence over-fit; instead, they make a copy, or a clone, of a feature that
is already part of the final representation. The last layer thus splits into more and more clones as
the networks grows wider in a process akin to mitosis in cell biology (Alberts et al., 2015), as we
illustrate in the bottom of Fig. 1. The accuracy of these wide networks then improves with their width
because the network implicitly averages over an increasing number of clones in its representations to
make its prediction. We thus call this effect representation mitosis.

This paper provides a quantitative analysis of representation mitosis in non-trivial datasets and
architectures. Our main findings can be summarised as follows:

1. A chunk of wc random neurons of the last hidden representation of a wide neural network
predicts the output with an accuracy which scales with w−1/2c if the layer is wide enough
and wc is large enough. In this regime we call the chunk a “clone”;
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2. Clones can be linearly mapped one to another, or to the full representation, with an error
which can be described as uncorrelated random noise.

3. Clones are created by training a well regularised model until the model reaches zero training
error. If training is stopped too early (e.g. when the training accuracy is similar to the test
accuracy), or if the training is performed without sufficient regularization, 1. and 2. do not
take place, even if the last representation is very wide.

2 METHODS

2.1 NEURAL NETWORK ARCHITECTURES

We report experimental results obtained with various architectures (fully connected networks, Wide-
ResNet-28, DenseNet40, ResNet50) and various data sets (CIFAR10/100 Krizhevsky et al. (2009),
ImageNet Deng et al. (2009)). We trained all the networks with SGD with momentum and weight de-
cay following the standard practice to set the relevant hyperparameters. We give detailed information
on our training setups in A.1. All our experiments are run on Volta V100 GPUs. In the following, we
discuss how we vary the architecture of the models.

Fully-connected networks on MNIST We train a fully-connected network to classify the parity of
the MNIST digits (LeCun & Cortes, 1998) (pMNIST) following the protocol of Geiger et al. (2020).
MNIST digits are projected on the first ten principal components, which are then used as inputs of a
five layer fully-connected network (FC5). The four hidden representations have the same width W
and the output is a real number whose sign is the predictor of the parity of the input digit.

Wide-ResNet-28 and DenseNet40 on CIFAR10/100 We train CIFAR10 and CIFAR100 on family
of Wide-ResNet-28 (Zagoruyko & Komodakis, 2016) (WR28). The number of last hidden neurons in
a WR28_n is 64 · n, obtained after average pooling the last 64 · n channels of the network. In our
experiments we also analyze two narrow versions of the standard WR28_1 which are not typically
used in the literature. We name them WR28_0.25 and WR28_0.5 since they have 1/4 and 1/2 of the
number of channels of WR28_1. Our implementation of DenseNet40 follows the DeseNet40-BC
variant (Huang et al., 2017). We vary the number of input channels c in {8, 16, 32, 64, 128, 256}.
The number of last hidden features for this architecture is 5.5 · c.

ResNet50 on ImageNet We modify the ResNet50 architecture (He et al., 2016) multiplying by a
constant factor c ∈ {0.25, 0.5, 1, 2, 4} the number of channels of all the layers after the input stem.
When c = 2 our networks differ from the standard Wide-ResNet50_2 since Zagoruyko & Komodakis
(2016) only double the number of channels of the bottleneck of each ResNet block. As a consequence
in our implementation the number of features w after the last pooling layer is w = 2048 · c while
in Zagoruyko & Komodakis (2016) w is fixed to 2048.

2.2 ANALYSIS METHODS

Reconstructing the wide representation from a smaller chunk To assess the predictive power
of the chunk representations we search for the best linear map A, of dimensions W × w, able
to minimise the squared difference (x(W ) − x̂(W ))

2
between the W activations of the full layer

representation (x(W )) and the activations predicted from a chunk of size w,

x̂(W ) = Ax(w). (1)

This least squares problem is solved with ridge regression (Hastie et al., 2001) with regularization
set to 10−8, and we use the R2 coefficient of the fit to measure the predictive power of a given
chunk size. The multi-output R2 value is computed as an average of the W single-output R2 values
corresponding to the different coordinates, weighted by the variance of each coordinate. We further
compute the covariance matrix Cij (of dimensions W ×W ) of the residuals of this fit, and then
obtain the correlation matrix as

ρij =
Cij√

CiiCjj + 10−8
, (2)
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with a small regularisation in the denominator to avoid instabilities when the standard deviation of the
residuals falls below machine precision. To quantify the independence of the chunk representations
we take the average of the absolute values of the non-diagonal entries of the correlation matrix ρij .
For short we refer to this quantity as a ‘mean correlation’.

Reproducibility We provide code to reproduce our experiments and our analysis online at https:
//anonymous.4open.science/r/representation_mitosis-EB80.

3 RESULTS

Figure 2: Scaling of the test error
with width for various DNN The av-
erage test error of neural networks with
various architectures approaches the test
error of an ensemble of such networks
as the network width increases. The
network size shown here is the width
of the final representation. For large
width, we find a power-law behaviour
error − error∞ ∝ W−1/2 across data
sets and architectures. Full experimental
details in Sec. 2.1

The test error of chunks of wc neurons of the final rep-
resentation asymptotically scales as w−1/2c The mech-
anism of representation mitosis is inspired by the following
experiment: we compute the accuracy of models obtained
by selecting a random subset of wc neurons from the fi-
nal hidden representation of a wide neural network. We
consider three different data sets (pMNIST, CIFAR10 and
CIFAR100) and trained networks of width W = 512 for
pMNIST and CIFAR10, and W = 1024 for CIFAR100.
In all these cases, W is large enough to be firmly in the
regime where the accuracy of the networks scales (approx-
imately) as W−1/2 (see Fig. 2). We select wc neurons at
random and we compute the test accuracy of a network in
which we set to zero the activation of all the other w −wc

neurons. Importantly, we do not fine-tune the weights after
selecting the wc neurons: all the parameters are left un-
changed, except that the activations of the “killed” neurons
are not used to compute the output. We take 500 random
samples of neurons for each chunk width wc.

In Fig. 3 we plot the test error of the chunked models as
a function of wc (orange lines). In all the three networks
the behaviour is similar. When wc becomes larger than
a critical value w∗c , which depends on the dataset and
architecture used, the test error decays as w

−1/2
c with the

chunk size, the same law observed for full networks of the
same width (Fig. 2). This implies that a model obtained by selecting a random chunk of wc > w∗c
neurons from a wide final representation behaves similarly to a full network of width W = wc.
Furthermore, a decay with rate −1/2 suggests that the final representation of the wide networks can be
thought of as a collection of statistically independent estimates of a finite set of data features relevant
for classification. Adding additional neurons to the chunk hence reduces their prediction error in
the same way an additional measurement reduces the measurement uncertainty, leading to the −1/2
decay.

At smaller wc < w∗c instead, the test error of the chunked models decays faster than w
−1/2
c in all

the cases we considered, including the DenseNet architecture trained on CIFAR10 shown in Fig. 1.
In this regime, adding neurons to the the final representation, improves the quality of the model
significantly quicker than it would in independently trained models of the same width (see Fig. 1
for a pictorial representation of this process). We call chunks of neurons of size wc ≥ w∗c clones.
In a wide network, clones can exist only if the width W of the last representation is larger than w∗c ,
and the maximum number of clones is W/w∗c . In the following we characterize more precisely the
properties of the clones.

Clones have the same expressive power of the full representation A well trained deep network
often represents the salient features of the data set well enough to achieve (close to) zero classification
error on the training data. In the top panels of Fig. 4, we show that wide networks are able to
interpolate their training set also using just a subset of wc > w∗c random neurons: the dark orange
profiles show that when the size of a chunk is greater than ∼ 50 for pMNINST, 100 for CIFAR10 and
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Figure 3: Scaling of the test error of chunks of neurons extracted from the final representation
of wide NNs We plot how the test error of chunked networks approaches the error of an ensemble of
chunked networks as the chunk size wc increases. Chunks are formed by selection a number of wc

neurons at random from the final representation of the widest networks: a FC5 on pMNIST (width
W = 512), and Wide-ResNet-28 for CIFAR10 (W = 512) and CIFAR100 (W = 1024). The shaded
regions indicate regions where the error of the chunks with wc neurons decays as w−1/2c .

200 for CIFAR100, the predictive accuracy on the training set remains almost 100%. Beyond w∗c ,
the neurons of the final representation therefore become redundant, since the training error remains
(close to) zero even after removing neurons from it. We call a chunk of neurons a clone if it fully
captures the relevant features of the data, up to some uncorrelated random noise.

Clones reconstruct almost perfectly the full representation From a geometrical perspective, the
important features of the final representation correspond to directions in which the data landscape
show large variations (Bengio et al., 2013). A clone can be seen as a chunk that is wide enough to
encode almost exactly these directions, but using much less neurons than the full final representation.
We analyze this aspect by fitting all the W activations starting from a random chunk of wc activations
with ridge regression with a small regularization penalty according to Eq. (1). The blue profiles in
Fig. 4, bottom panels, show the R2 coefficient of fit as a function of the chunk size wc for pMNIST
(left), CIFAR10 (center), CIFAR100 (right). When wc is really small, say below 6 for pMNIST, 20
for CIFAR10 and 60 for CIFAR100, the R2 coefficient grows almost linearly with wc. In this regime,
adding a randomly chosen activation from the full representation to the chunk increases substantially
R2. When wc becomes larger R2 reaches almost one and the representation enters what we call
a mitosis phase. This transition happens when wc is still much smaller than W and correspond
approximately to the regime in which the test error starts scaling with the inverse square root of wc

(see Fig. 3). The almost perfect reconstruction of the original data landscape with few neurons can
be seen as a consequence of the low intrinsic dimension of the representation (Ansuini et al., 2019).
The ID of the widest representations gives a lower bound on the number of coordinates required to
describe the data manifold, and hence on the neurons that a chunk needs in order to have the same
classification accuracy as the whole representation. The ID of the last hidden representation is 2 in
pMNIST, 12 in CIFAR10, 14 in CIFAR100, numbers which are much lower that the width at which a
chunk can be considered a clone.

Clones differ from each other by uncorrelated random noise In the mitosis regime, the small
residual difference between the representation chunks and the full representation can be approximately
described as statistically independent random noise. The green profile of Fig. 4, bottom panels, show
the mean absolute non-diagonal correlation of the residuals of the linear fit, a measure which indicates
the level of correlation of the chunk representations and the full representation (see Methods). Before
the mitosis width w∗c , the residuals are not only large, but also significantly correlated, but as their
width increases above w∗c the correlation drops basically to zero. Therefore, in network which are
wider than w∗c any two chunks of equal size wc > w∗c can be effectively considered as equivalent
copies, or clones, of the same representation, differing only by a small and non-correlated noise,
consistently with the scaling law of the error shown in Fig. 3.
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Figure 4: The three signatures of representation mitosis (i) The training errors of the full networks
(blue) and of the chunks taken from the widest network (orange) approach zero beyond a critical
width / chunk size, resp. (panels a-c). (ii) The final representation of the widest network can be
reconstructed from a chunk using linear regression (1) with an explained variance R2 close to 1 (blue
lines in panels d-f). (iii) The residuals of the linear map can be modeled as independent noise: we
show this by plotting the mean correlation of these residuals (green line, panels d-f), averaged over
100 reconstructions starting from different chunks. A low correlation at high R2 indicates that the
chunk contains the information of the full representation with some statistically independent noise.
Experimental setup: FC5 on pMNIST, Wide ResNet-28 on CIFAR10/100. Full details in Methods
section 2.1

The dynamics of mitosis In the previous paragraphs we set forth evidence in support of the
hypothesis that large chunks of the final representation of wide DNNs behave approximately like an
ensemble of independent measures of the full feature space. This allowed us to interpret the decay of
the test error of the full networks with the network width observed empirically in Fig. 2. The three
conditions that a chunked model satisfies in the regime in which its test error decays as w

−1/2
c are

represented in Fig. 4: (i) the training error of the chunked model is close to zero; (ii) the chunked
model can be used to reconstruct the full final representation with an R2 ∼ 1 and (iii) the residuals
of this reconstruction can be modeled as independent random noise. These three conditions are all
observed at the end of the training. We now analyze the dynamics of mitosis. We will see that to
enter the mitosis regime, models not only need to be wide enough, but also, crucially, they need to be
trained to maximise their performance.

Clones are formed in two stages, which occur at different times during training. The first phase begins
as soon as training starts: the network gradually adjusts the chunk representations in order to produce
independent copies of the data manifold. This can be clearly observed in the left panel of Fig. 5,
which depicts the mean correlation between the residuals of the linear fit from the chunked to the full
final representations of the network, the same quantity that we analyze in Fig. 4, but now as a function
of the training epoch. Both Figs. 4 and 5 analyse the WR28-8 on CIFAR10. As training proceeds,
the correlations between residuals diminish gradually until epoch 160, and becomes particularly low
for chunks greater than 64. After epoch 160 further training does not bring any sizeable reduction
in their correlation. At epoch 160 the full network achieves zero error on the training set, as shown
in orange in the middle and right panels of Fig. 5. This event marks the end of the first phase, and
the beginning of the second phase of the mitosis process where the training error of the clones keeps
decreasing while the full representation (blue) has already reached zero training error. For example,
chunks of size 64 at epoch 150 have training errors comparable to the test error (dashed line of the
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Figure 5: The onset of mitosis during training. a: As in Fig. 4, we show the mean correlation of
the residuals of the linear reconstruction of the final representation from chunks, but this time as a
function of training epochs. A small correlation indicates that the reconstruction error in going from
chunks to final representation can be modelled as independent noise. Data obtained from the same
WR28_8 trained on CIFAR10 as in Fig. 4. b: Training error during training for chunks of different
sizes. After the network has reached zero training error at∼ 160 epochs, continuing to train improves
the training accuracy of the chunks. c: Test and training error during training for the full network.
Between epoch 160 and 180 the clones of the full network progressively achieve zero training error.
In the same epochs, one observes a small improvement in the test error.

middle panel). In the subsequent ∼ 20 epochs the training error of clones of size 128 and 256 reaches
exactly zero, and the training error of chunks of size 64 reaches a plateau.

Importantly, both phases of mitosis improve the generalization properties of the network. This can be
seen in the right panel of Fig. 5, which reports training and test error of the network, with the two
mitosis phases highlighted. The figure shows that both mitosis phases lead to a reduction in the test
error, although the first phase leads by far to the greatest reduction, consistently with the fact that
the greatest improvements in accuracy typically arise during the first epochs of training. The mitosis
process can be considered finished around epoch 180, when all the clones have reached almost zero
error on the training set. After epoch 180 we also observe that the test error stops improving. In
Sec. A.2 we report the same analysis done on CIFAR100 (see Fig. 7) and CIFAR10 trained on a
DenseNet40 (see Fig. 9-(d-e-f)).

Figure 6: A network trained without regularization on CIFAR10. a: the test error of chunks
of a Wide-ResNet28-8 trained without data augmentation and weight decay (blue) and for a well-
regularized network (orange, taken from Figure 3-b). b: Mean correlation between residuals of the
linear reconstruction of the full representation from chunks of different sizes for two networks: one
trained without data augmentation and weight decay (thick lines), and one using state-of-the-art
techniques (thin lines, same data as in Fig. 5-a).
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3.1 LIMITATIONS

Clones appear only in well-trained regularized networks So far in this work we have shown
only examples of networks and datasets in which representation mitosis takes place. However, the
onset of this mechanism is related to nontrivial details in the learning algorithm. If the network is
not trained using state-of-the-art procedures, none of the signatures described above appear even
if the width of the final representation is much larger than W ∗. Figure 6 shows the case of the
Wide-ResNet28-8 analyzed in Fig. 5 trained on exactly the same dataset (CIFAR10) but without
data augmentation and weight decay. As shown in panel a, in the network trained without sufficient
regularization (blue line) the error does not scale as w−1/2c , not even for large wc. This, as we
have seen, indicates that the last representation cannot be split in chunks. Correspondingly, the
chunks cannot be mapped to the full representation by a linear transformation: the mean correlation
of the residuals of the linear map of the chunks to the full representation remains approximately
constant during training, and is always much higher then what we observed for the same architecture
and dataset, when training is performed with weight decay and data augmentation (panel b). We
performed a similar analysis on the DenseNet40 (see Fig. 10), observing an analogous trend.

Reaching mitosis on ImageNet A second scenario where we didn’t observe the hallmarks of
mitosis is ImageNet. We trained a family of ResNet50 where we multiply all the channels of the
layers after the input stem by a constant factor c ∈ {0.25, 0.5, 1, 2, 4}. In this manner the widest final
representation we consider consists of 8192 neurons, which is four times wider than both the standard
ResNet50 (He et al., 2016) and its wider version (Zagoruyko & Komodakis, 2016) (see Sec. 2.1).
We trained all the networks following the standard protocols and achieved test errors comparable or
slightly lower than those reported in the literature (see Sec. A.1).

In this setting none of the elements associated with a development of independent clones can be
observed. The scaling of the test error of the chunks is steeper than w−1/2c (see Fig. 8-a) suggesting
that chunks remain significantly correlated to each other. Figure 8-b shows that the mean correlation
of the residuals does not decrease during training, as it happens for the networks we trained on
CIFAR10 and CIFAR100. We conclude that a representation with 8192 neurons seems too narrow to
encode all the relevant features redundantly on ImageNet, which has 1000 classes. Indeed, the top-1
classification error of the largest ResNet50 on the training set is ∼ 92%, well below the interpolation
threshold and a chunk as large as 4096 activations is not able to reconstruct all the relevant variations
of the data as it does in the cases analyzed in Sec. 3 (see Fig. 8-c).

4 DISCUSSION

This work is an attempt to explain the apparently paradoxical observation that over-parameterization
boosts the performance of DNNs. This “paradox” is actually not a peculiarity of DNNs: if one trains
a prediction model with n parameters using the same training set, but starting from independent
initial weights and receiving samples in an independent way, one can obtain, say, m models which,
in suitable conditions, provide predictions of the same quantity with independent noise due to
initialization, SGD schedule, etc. If one estimates the target quantity by an ensemble average, the
statistical error will (ideally) scale with m−1/2, and therefore with N−1/2, where N = nm is the total
number of parameters of the combined model. This will happen even if N is much larger than the
number of data.

What is less trivial is that a DNN is able to accomplish this scaling within a single model, in which
all the parameters are optimised collectively via minimization of a single loss function. Our work
describes a possible mechanism at the basis of this phenomenon in the special case of a neural
networks in which the last layer is very wide. We observe that if the layer is wide enough, random
subsets of its neurons can be viewed as approximately independent representations of the same data
manifold (or clones). This implies a scaling of the error with the width of the layer as W−1/2, which
is qualitatively consistent with our observations.

The impact of network architecture. The capability of a network to produce statistically inde-
pendent clones in its last layer is architecture-dependent, since we find that the network width W
required to enter the mitosis regime needs to be large, as in Fig. 3. The total number of parameters
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in a DNN scales with W in a manner that, in general, depends on the architecture. If the mitosis
mechanism we propose is correct, the scaling of the test error with N will thus be, in general,
architecture-dependent. At the same time, we also verified that increasing the width of only the final
representation is not sufficient to enter the mitosis regime. We give an example of this effect in Fig. 11
in Sec. A.2, where we show that the test error of a Wide-ResNet28 on CIFAR10 does not decrease
if only the width of the final representation is increased, while the rest of the architecture is kept at
constant width.

The impact of training. Even for wide enough architectures, clones appear only if the training
schedule is appropriately chosen. In our examples, by stopping the training too early, for example
when the training error is similar to the test error, the chunks of the last representation would not
become entirely independent from one another, and therefore they could not be considered clones. In
fact, we have seen that the separation of the clones is completed only when the test error on a model
restricted to each clone becomes very small.

Neural scaling laws Capturing the asymptotic performance of neural network via scaling laws is
another active research area. Hestness et al. (2017) gave an experimental analysis of scaling laws
w.r.t the training data set size in a variety of domains. Rosenfeld et al. (2020); Kaplan et al. (2020)
experimentally explored the scaling of the generalisation error of deep networks with the number of
parameters/data points across architectures and application domains for supervised learning, while
Henighan et al. (2020) identified empirical scaling laws in generative models. Geiger et al. (2020)
found that the generalisation error of fully-connected networks trained on the pMNIST task we
also consider scales with the number of parameters. Bahri et al. (2021) showed the existence of
four scaling regimes and described them theoretically in the setting of random features, which is
an instance of lazy learning (Chizat et al., 2019). Sharma & Kaplan (2020) relate the exponent of
scaling laws with respect to the number of training samples to the dimension of the data manifold.
Our analysis supports the hypothesis that the test error in wide neural networks scales as the inverse
square root of the width, if the width is large enough, and if the classification task is not too complex.

Relation to theoretical results in the mean-field regime. Our empirical results also agree with
recent theoretical results that were obtained for two-layer neural networks (Mei et al., 2018; Rotskoff
& Vanden-Eijnden, 2018; Chizat & Bach, 2018; Sirignano & Spiliopoulos, 2019; Goldt et al., 2019;
Refinetti et al., 2021). These works characterise the optimal solutions of two-layer networks trained
on synthetic datasets with some controlled features. In the limit of infinite training data, these optimal
solutions correspond to networks where neurons in the hidden layer duplicate the key features of the
data. These “denoising solutions” or “distributional fixed points” were found for networks with wide
hidden layer (Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018; Sirignano &
Spiliopoulos, 2019) and wide input dimension (Goldt et al., 2019; Refinetti et al., 2021). Another
point of connection with the theoretical literature is the concept of dropout stability. A network is said
to be ε-dropout stable it its training loss changes by less than ε when half the neurons are removed at
random from each of its layers Kuditipudi et al. (2019). Dropout stability has been rigorously linked
to several phenomena in neural networks, such as the connectedness of the minima of their training
landscape Shevchenko & Mondelli (2020); Nguyen et al. (2021).

Implicit ensembling in deep learning The success of various deep learning architectures and
techniques has been linked to some form of ensembling. Veit et al. (2016) proposed that the
performance of ResNets (He et al., 2016) stems from an effective ensembling of shallower networks
due to the residual connections. The successful dropout regularisation technique (Hinton et al., 2012;
Srivastava et al., 2014) samples from an exponential number of “thinned” networks during training
to prevent co-adaptation of hidden units. While this can be seen as a form of (implicit) ensembling,
here we make the observation that co-adaptation of hidden units in the form of clones occurs without
dropout, and is crucial for their improving performance with width. Recent theoretical work on
random features (d’Ascoli et al., 2020; Adlam & Pennington, 2020; Lin & Dobriban, 2020) also
suggests that ensembling and over-parameterisation are two sides of the same coin, at least in the lazy
regime of neural networks (Chizat et al., 2019), where the weights of the networks’ hidden layers
don’t move much during training. In this paper, instead we focus on networks in the feature learning
regime where weights move significantly. We hope that our results motivate theoretical studies along
those lines in the feature learning regime.
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A APPENDIX

A.1 HYPERPARAMETERS USED AND TRAINING PROCEDURES

Fully-connected networks on MNIST We train the fully-connected networks for 5000 epochs
with stochastic gradient descent using the following hyperparameters: batch size = 256, momentum =
0.9, learning rate = 10−3, weight decay = 10−2. We decrease the initial learning rate with a cosine
schedule.

Wide-ResNet-28 and DenseNet40-BC on CIFAR10/100 All the models are trained for 200
epochs with stochastic gradient descent with a batch size = 128, momentum = 0.9, and cosine
annealing scheduler starting with a learning rate of 0.1. The training set is augmented with horizontal
flips with 50% probability and random cropping the images padded with four pixels on each side.
On CIFAR10 trained on WR28 we select a weight decay equal to 5 · 10−4 and label smoothing
magnitudes equal to 0.1 for WR28_{0.25, 0.5, 1, 2}. On CIFAR10 trained on Densenet40-BC we
set select a weight decay equal to 5 · 10−4 and label smoothing magnitudes equal to 0.05 for all the
networks On CIFAR100 trained on WR28 we set weight decays equal to {10, 7, 5, 5, 5}·10−4 and
label smoothing magnitudes equal to {0.1, 0.07, 0.05, 0, 0} for WR28_{1, 2, 4, 8, 16} respectively.
All the hyperparameters were selected with a small grid search.

ResNet50 on ImageNet We train all the ResNet50 with mixed precision (Micikevicius et al., 2018)
for 120 epochs with a weight decay of 4 · 10−5 and label smoothing rate of 0.1 (Bello et al., 2021).
The input size is 224× 224 and the training set is augmented with random crops and horizontal flips
with 50% probability. The per-GPU batch size is set to 128 and is halved for the widest networks
to fit in the GPU memory. The networks are trained on 8 or 16 Volta V100 GPUs so as to keep the
batch size B equal to 1024. The learning rate is increased linearly from 0 to 0.1·B/256 (Goyal et al.,
2017) for the first five epochs and then annealed to zero with a cosine schedule.

Table 1: Test accuracy (average over four runs)

CIFAR10 CIFAR100 ImageNet (top1)

network accuracy network accuracy network accuracy

Wide-RN28_0.25 84.1 Wide-RN28_1 70.4 RN50_0.25 67.0
Wide-RN28_0.5 90.3 Wide-RN28_2 75.7 RN50_0.5 74.1
Wide-RN28_1 93.4 Wide-RN28_4 79.6 RN50_1 77.6
Wide-RN28_2 95.2 Wide-RN28_8 80.8 RN50_2 79.1
Wide-RN28_4 95.9 Wide-RN28_16 81.9 RN50_4 79.5
Wide-RN28_8 96.1
DenseNet40-BC (k=8) 91.6
DenseNet40-BC (k=16) 93.9
DenseNet40-BC (k=32) 95.1
DenseNet40-BC (k=64) 95.7
DenseNet40-BC (k=128) 96.0
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A.2 ADDITIONAL EXPERIMENTS

Figure 7: Dynamics of mitosis on CIFAR100 a:As in Fig. 4, we show the mean correlation of the
residuals of the linear reconstruction of the final representation of a Wide-Resnet28_8 from chunks,
but this time as a function of training epochs. A small correlation indicates that the reconstruction
error in going from chunks to final representation can be modelled as independent noise. b: Training
error of chunks of a Wide-Resnet28_8 and its full layer representation. From epoch 150 to epoch 185
the training error of the chunks with size 128/256 decreases below 0.5%, while for smaller chunks
sizes it remains above 5%. Random chunks with size larger than 128/256 can fit the training set, thus
having the same representational power as the whole network on the training data. For W > 128/256
the test accuracy is decaying approximately with the same law as that of independent networks with
the same width (see Fig. 3). This picture suggests that for CIFAR100 the size of a clone is 128/256,
slightly larger than the size of the clones in CIFAR10. c: Training and test error dynamics for the
same Wide-ResNet28_8. After epoch 150 the training error of the full network remains consistently
smaller than 0.1% (orange profile) while the test error continues to decrease until epoch 185 from
0.194 to 0.1765 (blue profile). In the same range of epochs (150-185) the training error of smaller
chunks decreases sensibly (see panel b).

Figure 8: No representation mitosis in ResNet50 on ImageNet a: Decay of the test error as a
function of the network width (blue) and for chunks of the widest ResNet50 (orange) to the error
of an ensemble of ResNet50_4. The ensemble consists of four networks. b: Mean correlation (see
Sec. 2.2) of the residuals of the linear map of a chunk of the last hidden representation to the full
representation. The network examined is ResNet50_4. c: R2 coefficient of the ridge regression fit of
a chunk of the last hidden representation of a ResNet50_4 to its full layer representation.
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Figure 9: The representation mitosis for a DenseNet40 architecture. a: Decay of the test error
of independent networks (blue) and chunks of the widest network (orange) to the error of an ensemble
average of ten of the widest networks (DenseNet40-BC, k=128) b: Blue profile: R2 coefficient of
the ridge regression of a chunk of wc neurons (x-axis) to the full layer representation. Green profile:
mean correlation of the residuals of the mapping as described in Sec. 2.2. c: Training error of
various DenseNet40 of increasing width (blue) and of chunks of the widest architecture (orange). d:
The mean correlation of the residuals from the linear reconstruction of the final representation from
chunks of a given size for a DenseNet40-BC (k=128) during training. e: Training error dynamics
of chunks of a DenseNet40-BC (k=128). f: Training and test error dynamics for a DenseNet40-BC
(k=128).

Figure 10: A Densenet40 without mitosis A DenseNet40-BC (k=128) trained on CIFAR10 without
weight decay and data augmentation. This experiment reproduces on a DenseNet the analysis shown
on a Wide-ResNet28 in Sec. 3.1. It shows that a: also in a DenseNet architecture not well regularized
error -error∞ decays faster than w

−1/2
c and b: the mean correlation of the residuals do not decrease

during training. The thin profiles of panel b are the same as those shown in Fig. 9-d.
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Figure 11: Wide-RN28_1 with a wide output layer trained on CIFAR10 We tested whether it is
enough to increase the width of the final representation to see mitosis, or if instead one has to increase
the width of the full network. We trained a ResNet28_1 increasing only the number of channels in
the last layer. We modified the number of output channels of the last block of conv4 and analysed the
representation after average pooling, as we did in the other experiments. The network was trained
for 200 epochs using the same hyperparameters and protocol described in Sec. 2. The figure shows
that the test error of the modified ResNet28_1 for is approximately constant (blue profile). On the
contrary when we increase the width of the whole network the test error decays to the asymptotic
test error with an approximate scaling of 1/

√
w (orange profile). Therefore mitosis occurs when the

width of the whole architecture is increased, rather than just the width of the final layer.
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