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ABSTRACT

Language models (LMs) perform a new task at test time either through zero-shot
inference or few-shot in-context learning, i.e., conditioning on the k-shot training
data (so-called demonstrations). Prior work suggests that in-context learning
mainly activates the intrinsic ability of the LM. We argue that this implies zero-shot
performance of the LM is underestimated and can be as good as in-context learning
if we inform the LM with the correct space of the inputs and the labels using
pseudo-demonstrations. We also identify an additional factor which we call the
copying effect: if pseudo-demonstrations includes an input that is very similar to
the test input, the model prediction is heavily influenced by the paired label of that
input. Putting altogether, we introduce Z-ICL, a new zero-shot prompting method
that constructs pseudo-demonstrations without any training data that (a) informs
the correct space of the inputs and the outputs and (b) reduces the copying effect
so that the prediction is less affected by the pairings in the pseudo-demonstration.
Z-ICL includes (a) leveraging nearest neighbors from a raw text corpus and pairing
them with random but valid labels and (b) proposing a set of techniques such as
physical neighbors and synonym labeling. Z-ICL outperforms previous zero-shot
methods by a significant margin, and is on par with in-context learning with gold
training data on a range of text classification datasets. Together, Z-ICL provides a
significantly higher estimate of the model’s ability to perform a new task zero-shot,
and poses a set of new questions about the capacities of LMs.

1 INTRODUCTION

Large language models (LMs) can perform new tasks simply by conditioning on input-label pairs
from the training data, so-called demonstrations (Brown et al., 2020). This in-context learning (ICL)
is significantly better than zero-shot methods that do not use demonstrations. Recent work suggests
that in-context-learning demonstrations are primarily specifying the domain and the format that the
target task, instead of providing explicit training signal (Reynolds & McDonell, 2021; Xie et al.,
2022; Razeghi et al., 2022; Min et al., 2022) (related work discussed in Appendix A).

We argue that this literature implies that current zero-shot performance (with no demonstrations) levels
must be significantly underestimated, since all the required information must already be in the model.
We introduce Z-ICL: Zero-shot In-Context Learning through creating pseudo-demonstrations, aiming
to achieve results on par with in-context learning from gold demonstrations. Pseudo-demonstrations
are constructed without any training data to inform the correct space of the inputs and the out-
puts, which are necessary condition for successful in-context learning (Xie et al., 2020; Min et al.,
2022). In particular, based on Min et al. (2022), correct pairings between inputs and outputs in
pseudo-demonstrations are not the necessary condition, which makes it possible to construct pseudo-
demonstrations in a zero-shot manner. However, we identify a factor called the copying effect—our
new observation that the LM predictions can be heavily influenced by input-label pairings if the
demonstrations include an input that is very close to the test input.

Based on these intuitions, Z-ICL constructs the pseudo-demonstrations that (a) inform the correct
input distribution and the label space and (b) avoid the copying effect. To satisfy (a), Z-ICL retrieves
a set of nearest neighbors from a raw text corpus and assigns a random label to each. To satisfy
(b), we propose two techniques—physical neighbors and synonym labeling—that twist retrieved
sentences and pairs labels in a way that reduce copying from the pseudo-demonstrations. Results
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Example #1
Demo 1 I am giving a zero star to symantec for this version. great
Demo 2 I recommend not to purchase it. This player is not worth any price. great
Demo 3 So far I have no complains with this player. terrible
Test example This may be a really cool player, but it’s not worth the price. great

Example #2
Demo 1 I am giving a zero star to symantec for this version. great
Demo 2 I recommend not to purchase it. This player is not worth any price. terrible
Demo 3 So far I have no complains with this player. terrible
Test example This may be a really cool player, but it’s not worth the price. terrible

Table 1: An illustration of the copying effect hypothesis with nearest in-context learning (k = 3).
The first three lines are demonstrations, and the last line is the test instance. The model prediction in
red. The model tends to copy the label from the demonstration input that is close to the test input.

on nine classification datasets indicate Z-ICL significantly outperforms a previous zero-shot method
(no-demonstrations) consistently across different LMs (Wang & Komatsuzaki, 2021; Black et al.,
2022; Brown et al., 2020), and is on par with in-context learning that uses labeled k-shot training data.
Together, Z-ICL provides a significantly higher estimate of the ability or current LMs to perform a
new task zero-shot, encourages new ways to improve zero-shot performance by designing even better
pseudo-demonstrations, and poses a set of new questions about the capacities of LMs.

2 COPYING EFFECT HYPOTHESIS

Figure 1: Performance of ICL and
nearest ICL, each with gold labels
and random labels. Evaluated on
three datasets (CR, Amz, Yelp).
The gap between gold and random
labels is greater with nearest ICL
than with ICL, indicating that the
correctness of labels matters more
when the demonstrations are closer
to the test input.

The demonstrations are typically sampled uniformly at random
from the true distribution, e.g., the training data. We observe
that, when demonstrations contain input text that is very sim-
ilar to the test input, the model exhibits a behavior which we
call the copying effect. To study this, we evaluate ICL-gold
(standard ICL) and ICL-random; both are ICL methods that
use k randomly sampled examples from the training data with
gold and random labels, respectively. We then evaluate near-
est ICL-gold and nearest ICL-random, which retrieves the
k nearest neighbors for each test input from the training data
and assign gold labels and random labels, respectively. We use
channel GPT-J (Wang & Komatsuzaki, 2021) as the LM and
SimCSE (Gao et al., 2021) for choosing the nearest inputs.

Figure 1 shows that ICL-gold and ICL-random achieve rela-
tively comparable performance, which is consistent with Min
et al. (2022) that the correctness of labels in the demonstrations
matters much less than we thought. However, with nearest
ICL, using random labels is significantly worse than using gold
labels. This indicates that the correctness of labels matters
significantly more when the inputs in the demonstrations are
closer to the test input.

Based on our observation, we define a copying effect hypothesis: the model prediction is heavily
biased toward the labels paired with inputs in the demonstrations that are very similar to the test input,
which resembles copying. Table 1 provides an example. The second input in the demonstrations is
very close to the test input both lexically and semantically, and the model prediction tends to follow
the label paired with the second input, regardless of what that label is. To better quantify the copying
effect, we design an experiment where the demonstrations include an example that is identical to
the test input, either with a correct label or with an incorrect label. We then see how many times the
LM makes a prediction that is the same as the label paired with the identical demonstration example.
LM predicts the same label as the one paired with the identical input for over 90% of the times when
the label is correct, and over 70% of the times when the label is incorrect, consistently over different
LMs (see Appendix C.2). In the next section, we design a zero-shot method where the copying effect
can be problematic, and propose new techniques that reduce the copying effect.
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3 OUR METHOD: Z-ICL

We introduce Z-ICL, a new Zero-shot In-Context Learning method, which predicts the correct label
for a given test input x and its candidate classes Y from a task. Unlike prior methods (Liu et al., 2021;
Rubin et al., 2021; Liu et al., 2022) where the target domain and labeled training data of the task
are available, Z-ICL constructs pseudo-demonstrations—pairs of inputs and labels—in a zero-shot
fashion by leveraging a raw text corpus C, and perform in-context learning. Pseudo-demonstrations
are designed (a) to inform the correct input distributions and the correct label space, and (b) to reduce
the copying effect (Section 2) so that the model is less affected by incorrectly paired labels.

Step 1: Retrieve Relevant Sentences. Z-ICL retrieves k from C that are similar to x. Let s :
C × C → R be a similarity function between two sentences, and Nk(x) be a set of k sentences
retrieved from C with the highest s(ci, x). While it is possible to construct pseudo-demonstrations
directly using Nk(x), it is highly likely to suffer from the copying effect (Section 2), since retrieved
sentences are too similar to the test input. Therefore, we propose a method called physical neighbor.
Instead of directly using Nk(x), it selects the sentence that is physically adjacent in C to each sentence
in Nk(x) as x1, x2...xk. This method allows x1, x2...xk to share similar distribution as x, while
being sufficiently distant from x since they are not the k nearest neighbors of x.

Step 2: Construct pseudo-demonstrations. Once x1...xk are obtained, Z-ICL pairs each xi with
a random label following the intuition from Min et al. (2022). Simply assigning the random label
from the candidate set Y would not achieve the best performance because the LM may find similar
sentences from x1...xk and follow their labels according to the copying effect (Section 2). We
therefore propose a technique called synonym labeling: we use synonyms of the labels and pair
x1...xk with them, instead of the original labels that will be used for the prediction. Formally, for
each xi, Z-ICL chooses a label yi ∈ Y uniformly at random, and create a pair (xi, ỹj), where ỹj is a
pre-defined synonym of yj . This technique (1) sufficiently informs the correct semantic space of the
labels, and (2) prevents the copying effect by not having the exact same words as the test labels. Note
that the original candidate set Y is used during the test prediction.

Step 3: Inference. Finally, Z-ICL uses in-context learning by concatenating (x1, ỹ1), (x2, ỹ2),
· · · , (xk, ỹk) as well as the test input x, feeds it to the LM, and obtains the prediction via
argmaxy∈YP (y | x1, ỹ1, · · · , xk, ỹk, x).

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Text corpus. We use the Demix corpus from Gururangan et al. (2021), a raw text corpus that is not
designated for any downstream task. It consists of 16 diverse domains, listed in in Appendix B.1.

Evaluation datasets. We evaluate our methods on nine single-sentence classification datasets:
CR (Ding et al., 2008), Amz (Zhang et al., 2015), Amz5 (Zhang et al., 2015), Yelp (Zhang et al.,
2015), Yelp5 (Zhang et al., 2015), Tweet-Eval (Barbieri et al., 2020), MR (Pang & Lee, 2004),
SST2 (Socher et al., 2013) and SST5 (Socher et al., 2013). Six out of the nine datasets are from
domains that are represented in our corpus, while the other three (MR, SST2, and SST5) are not. This
split allows us to measure domain coverage effects. See Appendix B.1 for data statistics.

Baselines. We compare Z-ICL with the following methods: (1) No-demonstrations (No-demos),
a previously-used zero-shot method, (2) Naive Z-ICL, a version of Z-ICL that uses pseudo-
demonstrations but without considering the copying effect, (3) ICL-gold, an in-context learning
method from Brown et al. (2020), and (4) ICL-random, a variant of in-context learning that uses
random labels from Min et al. (2022). See Appendix B.2 for detailed descriptions of each baseline.
Note that (3) and (4) use training data, thus not comparable with Z-ICL.

We use three LMs: GPT-J (Wang & Komatsuzaki, 2021), GPT-NeoX (Black et al., 2022) and GPT-
3 (Brown et al., 2020) of sizes 6B, 20B, and 175B, respectively. We use two inference methods:
direct (a regular inference used in Brown et al. (2020)) and channel (Min et al., 2021). The similarity
function s in Z-ICL is defined as a cosine similarity between SimCSE embeddings (Gao et al., 2021).
More implementation details are provided in Appendix B.3.
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Model Channel GPT-J Direct GPT-J Channel GPT-NeoX Channel GPT-NeoX Channel GPT-3 Direct GPT-3

C | !C C | !C C | !C C | !C C | !C C | !C

Majority 38.00.0 | 40.50.0 38.00.0 | 40.50.0 38.00.0 | 40.50.0 38.00.0 | 40.50.0 47.60.0 | 50.00.0 47.60.0 | 50.00.0

No-demos 61.00.0 | 51.30.0 54.80.0 | 43.80.0 43.70.0 | 48.10.0 42.80.0 | 38.80.0 69.50.0 | 80.80.0 72.70.0 | 73.20.0
Naive Z-ICL 58.50.6 | 56.30.6 59.90.6 | 53.90.3 55.10.7 | 55.10.7 62.20.7 | 59.80.9 - -
Z-ICL (Ours) 65.80.3 | 67.70.3 61.60.3 | 64.80.3 62.50.6 | 60.20.3 65.40.4 | 68.40.6 73.40.6 | 82.474.7 72.70.3 | 78.10.1

Oracles
ICL-gold 67.91.7 | 72.60.9 65.44.9 | 72.74.0 65.91.7 | 72.10.9 64.45.2 | 73.53.0 73.93.0 | 88.11.1 79.32.5 | 94.20.2
ICL-random 67.41.5 | 71.51.1 63.25.1 | 68.65.6 63.71.8 | 71.41.2 63.34.9 | 65.210.2 72.33.0 | 84.81.2 77.42.7 | 93.90.5

Table 2: Average results with GPT-J and GPT-NeoX. Oracle indicates the method has access to the
training data, thus is not comparable with the rest of the models. C and !C indicate the average results
of the datasets covered by C and not covered by C, respectively. Z-ICL is significantly better than
previous zero-shot (No-demos) on all datasets, and is on par with ICL-gold on datasets covered by C.

4.2 RESULTS

Results are reported in Table 2 (results on each dataset in Appendix C.1). First, No-demos outperforms
the majority baseline but lags behind ICL-gold or ICL-random that access the training data, confirming
the previous work. Constructing the pseudo-demonstrations using the text corpus significantly helps,
e.g., Naive Z-ICL is better than No-demos in many cases, but is still worse than ICL-gold. Finally,
Z-ICL significantly outperforms all baselines, improving performance by 5–30% absolute over the
existing zero-shot method (No-demos), consistently over all datasets and all LMs.

Compared to oracle baselines that access the training data (ICL-gold and ICL-random), Z-ICL
performs on par on datasets covered by C, despite being zero-shot. On datasets that are not covered by
C, Z-ICL still lags behind ICL-gold and ICL-random. This indicates the importance of the coverage
of C; Appendix C.3 shows improving the coverage of C improves performance on these datasets.

Figure 2: Effect of copying effect re-
duction. The retrieval method physical
neighbor outperforms nearest, and syn-
onym labeling is critical over both re-
trieval methods.

Effect of the copying effect reduction. We quantify the
effect of the copying effect reduction by comparing two
retrieval methods—(1) nearest, a naive retrieval method
without physical neighbor, and (2) physical neighbor—
and comparing three label assignment methods—(1) using
the original test labels, (2) using random words, and (3)
using the synonyms of the test labels. Results1 are re-
ported in Figure 2. First, ‘physical neighbor’ significantly
outperforms ‘nearest’, indicating reducing the copying ef-
fect through physical neighbor is critical. Second, using
random words is consistently better than using the original
labels, indicating that not using words from original test la-
bels is important. Finally, using synonyms is consistently
better than using random words, indicating that informing
the semantic space of the labels is still important. All in all,
these indicate that both physical neighbor and synonym
labeling are critical in Z-ICL. See additional experiment
that further quantifies the copying effect reduction in the
Appendix C.2. More ablations can be found in Appendix C.3.

5 CONCLUSION

We introduced Z-ICL, a zero-shot in-context learning method that constructs pseudo-demonstrations
from a raw text corpus. Z-ICL constructed pseudo-demonstrations to inform the correct space of the
inputs and the outputs (following intuition from literature), and to avoid the copying effect (a new
behavior identified in this paper). On nine classification datasets, Z-ICL significantly outperforms the
previous zero-shot baseline and performs on par with the k-shot demonstrations.

1Ablations are on a subset of 6 datasets (CR, Amz5, Yelp5, Tweet, MR, and SST2) with channel GPT-J
unless specified otherwise. More ablations are provided in Appendix C.3.
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A RELATED WORK

Demonstrations in ICL. A series of prior work suggests that ICL primarily exposes model
functionality that was learned during pre-training. Reynolds & McDonell (2021) suggests that ICL
mainly functions by activating the LM’s ability obtained during pretraining, and that the LM can
achieve significantly better zero-shot performance by using a better template. Xie et al. (2022) shows
that ICL can be explained as Bayesian inference for which demonstrations provide noisy evidence.
In closed-set tasks, Min et al. (2022) shows that ICL benefits mainly from the correct distribution of
the inputs and the labels rather than the input-label correspondence.

Our work draws intuitions from these studies and introduces a better zero-shot method by forming
pseudo-demonstrations that are proxies of the input distribution and the label space and better expose
the intrinsic ability of the LM.

Better Demonstrations through Retrieval. Prior work has found that, in the setting where large
training data is available, choosing demonstration examples that are close to the test input significantly
helps in-context learning. Liu et al. (2021) retrieves the nearest training examples to the test input
using a sentence encoder, either unsupervised or supervised. Rubin et al. (2021) trains a retrieval
system to choose examples that improve in-context learning. Liu et al. (2022) retrieves the nearest
neighbors from unlabeled training data, assigns silver labels, and uses them for in-context learning.
We similarly use nearest neighbor search to retrieve sentences close to the test input, but are the first
to (1) retrieve from a text corpus, in contrast to prior work that uses labeled or unlabeled training data
collected for the task, and (2) more closely study the connection between nearest neighbor inputs and
random labels, through our copying effect hypothesis.

B SETUP DETAILS

B.1 DATA STATISTICS

Corpus. We take the same English corpus from Gururangan et al. (2021) covering 16 diverse
domains: 1B, CS, LEGAL, MED, WEBTEXT, REALNEWS, REDDIT, REVIEWS, ACL PAPERS,
BREAKING NEWS, CONTRACTS, CORD-19, GITHUB, GUTENBERG, TWEETS, and YELP
REVIEWS. See the descriptions and statics in Table 3. For each domain, we 1) subsample 10M
paragraphs if the data is larger, 2) split each paragraph into sentences, and 3) remove duplicate
sentences while keeping the ordering of the sentences as in the original paragraphs.

Evaluation datasets. Statistics and descriptions of our evaluation datasets are reported in Table 4.
For each dataset, we subsample 2000 test examples uniformly at random if the test data is larger, due
to limited computational resources.

Domain Description #sentences

1B NewsWire sentences 1.0M
CS full-text CS papers from S2ORC 1.0M
LEGAL U.S. court opinions, 1658 to 2018 3.0M
MED full-text medical papers from S2ORC 1.0M
WEBTEXT Web documents 2.1M
REALNEWS articles from REALNEWS 1.8M
REDDIT Reddit comments from pushshift.io 2.6M
REVIEWS Amazon product reviews 3.1M
ACL PAPERS NLP papers from ACL 46K
BREAKING NEWS latest articles from 400 English news sites 0.5M
CONTRACTS commercial legal contracts 47K
CORD-19 excerpts from COVID-19 research papers 0.9M
GITHUB public Github repository contents 0.6M
GUTENBERG copyright-expired books 0.9M
TWEETS English tweets from 2013-2018 0.8M
YELP REVIEWS Yelp restaurant reviews 7.5M

Table 3: List of domains from Gururangan et al. (2021).
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B.2 BASELINES

No-demonstrations (No-demos) predicts argmaxy∈YP (y | x) without using any demonstrations.
This is a previously-used zero-shot method (Radford et al., 2019; Brown et al., 2020).

Random inputs selects x1...xk from C uniformly at random, without considering the similarity score
with x. It then pairs each xi with a random label from Y and uses in-context learning as in Section 3.
This baseline uses pseudo-demonstrations, but does not consider the similarity between the test input
and the pseudo-demonstrations.

Naive Z-ICL is a version of Z-ICL that uses the most naive retrieval method without the physical
neighbor adjustment (Section 3) or synonym labeling (Section 3). This method encourages the
relevance of the pseudo-demonstrations the most, but does not reduce the copying effect.

We also compare with methods that use the training data, and call them Oracle baselines.

ICL-gold (Oracle) uses k input-label pairs from the training data and in-context learning. This is
equivalent to the standard in-context learning, first proposed by Brown et al. (2020).

ICL-random (Oracle) uses k inputs from the training data and pairs each input with a random label
sampled from Y uniformly at random, and uses in-context learning (Min et al., 2022).

B.3 EXPERIMENTAL DETAILS

All implementations are done in PyTorch (Paszke et al., 2019). We use int8 quantization (Zeng et al.,
2022) to run GPT-NeoX on 40GB A100 machines.

Language models. We experiment with three casual language models: GPT-J (Wang & Komat-
suzaki, 2021), GPT-NeoX (Black et al., 2022) and GPT-3 (Brown et al., 2020) of sizes 6B, 20B, and
175B, respectively. We use two inference methods: direct (a regular inference used in Brown et al.
(2020)) and channel (Min et al., 2021).

Similarity function. We define a similarity function s to be a cosine similarity between two
sentence embeddings, obtained through SimCSE (Gao et al., 2021).2

Implementation details. For GPT-J and GPT-NeoX, we use 5 random seeds and report an average
and standard deviation. For GPT-3, we use 2 random seeds and only evaluate on five datasets (CR,
Amz, Yelp, Tweet, and SST2) due to limited access. If the dataset includes more than 2,000 test
examples, we subsample 2,000 examples uniformly at random due to limited computing resources,

2In our initial experiments, we explored multiple embedding methods and found SimCSE works the best.

Dataset # examples labels synonyms

Datasets covered by C
CR 2,000 "terrible", "great" "bad", "good"
Amz 1,000 "negative", "positive" "bad", "good"
Amz5 100,050 → 2,000 "terrible", "bad", "okay", "good", "great" "horrible", "negative", "neutral", "pos-

itive", "excellent"
Yelp 7,600 → 2,000 "negative", "positive" "bad", "good"
Yelp5 50,000 → 2,000 "terrible", "bad", "okay", "good", "great" "horrible", "negative", "neutral", "pos-

itive", "excellent"
Tweet 2,000 "negative", "neutral", "positive" "bad", "normal", "good"

Datasets not covered by C
MR 2,000 "terrible", "great" "bad", "good"
SST2 872 "terrible", "great" "bad", "good"
SST5 2,210 → 2,000 "terrible", "bad", "okay", "good", "great" "horrible", "negative", "neutral", "pos-

itive", "excellent"

Table 4: Statistics of evaluation datasets as well as their labels and synonyms.
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Method Demo Corpus Similar No-Copy

No-demos -
Random inputs pseudo ✓
Naive Z-ICL pseudo ✓ ✓
Z-ICL (Ours) pseudo ✓ ✓ ✓
ICL-gold (Oracle) k-shot
ICL-random (Oracle) k-shot

Table 5: Comparison between Z-ICL and baselines. ‘Demo’ indicates the type of the demonstrations,
either the k-shot training data (k-shot) or constructed from a raw corpus only (pseudo). ‘Corpus’
indicates whether an external corpus is used. ‘Similar’ indicates whether a similarity function is used.
‘No-Copy’ indicates whether the method is designed to reduce the copying effect.

following prior work (Zhao et al., 2021). We use k = 16 for all experiments. We use minimal
templates from Zhao et al. (2021) without template engineering, e.g., prepending Review: and
Sentiment: to the input and the label, respectively, on a review sentiment classification dataset.3

Format of the demonstrations. We use k = 16 demonstration examples for all the baselines and
methods, unless specified otherwise. We truncate each demonstration example to have up to 256
tokens and the concatenation of them to have up to 1,024 tokens.

Nearest neighbor search. We use SimCSE (Gao et al., 2021) to embed the corpus and the test
inputs. We use FAISS (Johnson et al., 2019) to build an index for the corpus offline and perform
nearest neighbor search at inference.

Synonym labeling. We manually choose a synonym of each label to perform synonym labeling. A
full list of synonyms is reported in Table 4.

C ADDITIONAL RESULTS

C.1 MAIN EXPERIMENT

Figure 6 and 7 provides the full version of Table 2 with per-dataset numbers for 9 datasets evaluated
on 6 LMs.

C.2 COPYING EFFECT REDUCTION

Copying Label of Identical Example. For the experiment where we put an identical example of
the test input as one of the demonstrations described in Section 2, Figure 8 shows LMs tends to copy
the label of the identical demonstration.

Quantifying the Copying Effect. In order to ensure that the gains are from avoiding the copying
effect, we follow Anonymous (2023) in (1) identifying some induction heads in the Transformer
layers that are most responsible for copying, and (2) zero-ing their weights out. If this leads to
performance improvements, it is a strong indicator that the method has been suffering from the
copying effect. Figure 4b reports results. First, all methods have performance improvements by
zero-ing out the induction heads, indicating that all of them suffer from the copying effect to a certain
degree. We then find that (1) physical neighbor is affected much less than nearest, and (2) methods
with synonym labeling are affected much less than their counterpart without synonym labeling. These
are aligned with our intuition that using physical neighbor and synonym labeling help reducing the
copying effect.

3We did not use templates for GPT-NeoX because they lead to significant performance drop in oracle
ICL-gold.
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Method Covered by C Not covered by C

CR Amz Amz5 Yelp Yelp5 Tweet Avg MR SST2 SST5 Avg

Majority 50.00.0 50.00.0 20.00.0 50.00.0 20.00.0 38.10.0 38.00.0 50.00.0 50.00.0 21.50.0 40.50.0

Channel GPT-J
No-demos 73.20.0 86.10.0 34.40.0 88.00.0 36.60.0 47.60.0 61.00.0 65.70.0 66.30.0 21.90.0 51.30.0
Random inputs 77.82.4 81.83.2 38.11.6 84.24.6 40.51.4 41.51.1 60.72.4 76.23.6 78.63.6 33.93.6 62.93.6
Naive Z-ICL 62.10.8 81.60.5 41.70.4 81.40.3 41.80.8 42.21.0 58.50.6 68.80.4 67.80.8 32.40.6 56.30.6
Z-ICL (Ours) 80.10.1 88.90.2 46.50.4 88.40.1 44.20.3 46.80.5 65.80.3 81.90.1 82.60.2 38.70.5 67.70.3

ICL-gold (Oracle) 84.42.8 90.90.9 45.53.2 91.00.1 47.41.3 48.01.8 67.91.7 86.90.2 88.81.3 42.11.1 72.60.9
ICL-random (Oracle) 82.31.3 91.31.4 44.92.0 91.10.3 48.01.5 46.82.6 67.41.5 86.60.3 86.12.1 41.80.9 71.51.1

Direct GPT-J
No-demos 50.60.0 87.30.0 30.40.0 92.30.0 28.70.0 39.50.0 54.80.0 51.70.0 52.90.0 26.80.0 43.80.0
Random inputs 71.115.0 91.22.8 37.55.2 91.53.5 36.46.1 28.86.7 59.46.6 68.212.1 69.912.9 30.18.2 56.111.1
Naive Z-ICL 65.20.9 89.30.6 39.60.4 91.70.6 41.20.8 32.30.4 59.90.6 64.60.4 66.10.0 30.90.6 53.90.3
Z-ICL (Ours) 78.80.4 94.90.1 38.50.3 96.00.1 40.80.3 20.50.1 61.60.3 81.00.3 82.60.2 30.90.3 64.80.3

ICL-gold (Oracle) 68.713.9 95.80.1 49.03.8 96.40.4 47.55.8 35.05.1 65.44.9 84.06.8 91.13.2 42.90.9 72.74.0
ICL-random (Oracle) 79.110.0 87.87.5 41.14.8 94.51.9 43.53.5 33.42.7 63.25.1 87.33.6 82.69.7 35.93.5 68.65.6

Channel GPT-NeoX
No-demos 57.20.0 63.20.0 27.50.0 57.00.0 28.60.0 28.70.0 43.70.0 58.70.0 61.90.0 23.80.0 48.10.0
Random inputs 68.04.2 70.42.3 27.91.9 73.03.1 29.11.9 34.64.9 50.53.1 65.04.9 66.45.2 26.83.6 52.74.6
Naive Z-ICL 62.40.2 78.80.9 34.71.2 79.10.8 36.90.8 38.90.5 55.10.7 63.50.8 62.80.7 29.90.8 55.10.7
Z-ICL (Ours) 79.00.2 84.30.7 37.80.5 87.00.4 39.91.0 46.70.6 62.50.6 73.20.3 74.30.2 33.20.3 60.20.3

ICL-gold (Oracle) 85.52.3 90.30.8 41.61.8 86.82.8 43.50.7 47.91.9 65.91.7 86.20.8 89.40.9 40.81.1 72.10.9
ICL-random (Oracle) 78.13.3 88.51.5 39.81.4 88.01.7 43.51.6 44.01.1 63.71.8 86.30.9 88.11.6 39.91.2 71.41.2

Direct GPT-NeoX
No-demos 61.50.0 50.80.0 20.20.0 72.20.0 21.30.0 30.80.0 42.80.0 49.90.0 49.10.0 17.50.0 38.80.0
Random inputs 72.513.7 83.512.9 38.73.6 85.08.4 37.12.6 36.49.5 58.98.5 74.98.7 78.29.4 37.56.2 63.58.1
Naive Z-ICL 76.20.3 87.50.7 41.20.9 89.00.8 39.10.6 40.20.9 62.20.7 71.71.1 73.81.0 34.00.5 59.80.9
Z-ICL (Ours) 91.40.3 94.00.1 41.20.4 92.20.3 38.60.3 35.20.9 65.40.4 84.00.4 87.80.7 33.30.6 68.40.6

ICL-gold (Oracle) 78.514.8 95.60.5 47.02.7 91.73.6 40.63.1 32.86.5 64.45.2 89.00.9 88.65.1 43.03.1 73.53.0
ICL-random (Oracle) 78.513.6 92.92.5 45.61.6 88.54.3 41.33.5 33.13.9 63.34.9 81.213.7 76.913.8 37.53.1 65.210.2

Table 6: Results with GPT-J and GPT-NeoX. Oracle indicates the method has access to the training
data, thus is not comparable with the rest of the models. Covered/not covered by C indicates whether
or not the domain of the dataset is covered by our text corpus. Z-ICL is significantly better than
previous zero-shot (No-demos) on all datasets, and is on par with ICL-gold on datasets covered by C.

Method Covered by C Not covered by C

CR Amz Yelp Tweet Avg. SST-2

Majority 50.00.0 50.00.0 50.00.0 38.10.0 47.60.0 50.00.0

Channel GPT-3
No-demos 76.60.0 77.20.0 88.00.0 36.20.0 69.50.0 80.80.0
Z-ICL (Ours) 80.80.6 89.10.3 87.60.0 41.40.4 73.40.6 82.474.7

ICL-gold (Oracle) 74.27.4 86.03.6 91.70.9 43.80.2 73.93.0 88.11.1
ICL-random (Oracle) 73.93.9 83.44.8 90.41.4 41.42.0 72.33.0 84.81.2

Direct GPT-3
No-demos 68.40.0 88.20.0 96.40.0 37.80.0 72.70.0 73.20.0
Z-ICL (Ours) 71.90.1 93.00.2 97.70.3 28.30.4 72.70.3 78.10.1

ICL-gold (Oracle) 79.59.5 97.00.2 98.50.1 30.58.0 79.32.5 94.20.2
ICL-random (Oracle) 81.06.8 95.40.6 93.72.1 42.239.4 77.42.7 93.90.5

Table 7: Results on GPT-3 on a subset of evaluation datasets. Oracle indicates the method has access
to the training data, thus is not comparable with the rest of the model. Covered/not covered by C
indicates whether or not the domain of the dataset is covered by our text corpus. Z-ICL is consistently
better than the previous zero-shot (No-demos) on all datasets, even with a template.

C.3 ADDITIONAL ABLATIONS

We perform additional ablation studies in complement to Section 4.2.

Effect of the size of the corpus. We quantify the impact of the size of the corpus. This is important
to judge whether Z-ICL can potentially achieve better results by scaling the corpus. We evaluate
Z-ICL with a corpus with varying sizes, from 100% to 0.03% of the corpus.
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GPT-J GPT-NeoX

Total 82.3 88.0
Correct 90.8 94.2
Incorrect 73.9 81.7

Table 8: % of predictions that match the label of the demonstration example that is identical to the
test input. Evaluated on CR with channel GPT-J and channel GPT-NeoX. The model copies the label
paired with an identical example in the majority of cases.

(a) Effect of the size of the corpus. The x-axis in-
dicates the size of the corpus, varying from 160M
paragraphs (1) to 48K paragraphs (0.0003). Perfor-
mance goes down as the corpus size decreases.

(b) Effect of the coverage of the corpus. Perfor-
mance of Z-ICL before and after IMDB is added
to the corpus. Expanding the coverage of the cor-
pus consistently improves the performance despite
only 2% of the increase in the size of the corpus.

Figure 3

Figure 3a demonstrates that performance goes down as the size of the corpus gets smaller. This is
likely because there are less sentences that are sufficiently close to the test input when the corpus is
smaller, thus the relevance of the nearest neighbors and the test input drops. This trend is clearer on
the datasets covered by C than on the datasets not covered by C.

Effect of the format of demonstrations. How many input-label pairs does Z-ICL need to benefit
from pseudo-demonstrations? Are gains from pseudo-demonstrations mainly from the fact that
the LM conditions on relevant text, or does the LM benefit from a specific format of the pseudo-
demonstrations: a concatenation of input-label pairs? To answer these questions, we experiment with
(1) Z-ICL with varying range of k from 1 to 64, and (2) a variant of Z-ICL where the LM conditions
on a concatenation of retrieved inputs, without randomly paired labels (called “Inputs-only”).

Results are shown in Figure 4a. First, Z-ICL is significantly better than zero-shot baselines and stays
on par with the oracle baselines consistently across different values of k. Moreover, using no labels
(“Inputs-only”) performs significant worse than its counterparts. This suggests that Z-ICL takes
advantages of the form of input-label pairs, and is beyond simply conditioning on relevant context.

Effect of the coverage of the corpus. We quantify the impact of the coverage of the corpus, and
whether adding more domains in the corpus improves performance. We do so by adding the unlabeled
portion of IMDB review (Maas et al., 2011) to the corpus C. The size of C increases only by 2%, but
covers the domain of three datasets that were previously not covered (SST2, SST5 and MR).

Figure 3b shows the performance on three datasets before and after adding the IMDB corpus.
Performance improves consistently over all LMs, even though it only adds up the size by 2%. This
suggests that the coverage of the text corpus is important, and it is feasible to further improve the
overall performance simply by expanding the corpus.
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(a) Effect of the format of demonstrations with
varying numbers of demonstrations (k). Z-ICL con-
sistently performs on par with the oracle baseline,
and “Inputs-only” performs significantly worse.

(b) Quantifying the Copying Effect. SL and Z
stand for synonym labeling and zeroing-out the
induction heads, respectively. Techniques designed
for reducing the copying effect (physical neighbor
and synonym labeling) see less effect from zero-
ing out the induction heads.

Figure 4

D LIMITATIONS

Extension to multi-sentence tasks. Our experiments are limited to single-sentence tasks, as we
only retrieve single-sentence nearest neighbors to a test input. Multi-sentence tasks such as natural
language inference would require constructing pseudo-demonstrations that consists of multiple
sentences, which we leave for future work.

Beyond classification. Our experiments are limited to classification. Extensions to multi-choice
tasks or generation tasks are not trivial, because there is no fixed set of options that are shared between
inputs in the demonstrations and the test input. We leave extensions to non-classification tasks for
future work.

Better construction of pseudo-demonstrations. We think future work can explore better construct-
ing the pseudo-demonstrations. For instance, this paper uses manually chosen synonym labels (details
in Appendix B.3). We hypothesize that better pseudo-demonstrations can improve performance,
which we leave for future work.
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