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Abstract

Rectified Flows learn ODE vector fields whose trajectories are straight between
source and target distributions, enabling near one-step inference. We show that
this straight-path objective reveals fundamental failure modes: under deterministic
training, low gradient variance drives memorization of arbitrary training pairings,
even when interpolant lines between training pairs intersect. To analyze this mech-
anism, we study Gaussian-to-Gaussian transport and use the loss gradient variance
across stochastic and deterministic regimes to characterize which vector fields
optimization favors in each setting. We then show that, in a setting where all
interpolating lines intersect, applying Rectified Flow yields the same specific pair-
ings at inference as during training. More generally, we prove that a memorizing
vector field exists even when training interpolants intersect, and that optimizing the
straight-path objective converges to this ill-defined field. At inference, deterministic
integration reproduces the exact training pairings. We validate our findings em-
pirically on the CelebA dataset, confirming that deterministic interpolants induce
memorization, while the injection of small noise restores generalization.

1 Introduction

The current state of the art in generative modeling involves learning dynamics between a known
source distribution—such as a standardized Gaussian—and a target distribution from which many
samples are available. When the learned dynamics are based on an ordinary differential equation
(ODE), the model effectively learns a vector field connecting the two distributions [Lipman et al.,
2022, [Tong et al.; 2023bla]. When the learned dynamics are based on a stochastic differential equation
(SDE), either the score function [Ho et al., 2020, Song et al., |2020], or both the score and the vector
field [Albergo et al.| [2023]], are learned, depending on the choice of SDE. Ultimately, an SDE can be
rewritten as an ODE—referred to in the literature as the probability flow ODE [Song et al., [2020].

These methods perform very well in practice across a wide range of data modalities: images [Ho
et al.| 2022al Balaji et al.| 2022], Rombach et al.|[2022]], video [Ho et al.,[2022b}, (Wang et al., | 2024b|
Zhou et al.} 2022, audio [Huang et al.,[2023| [Kong et al.,|2020, [Liu et al., 2023} |Ruan et al., | 2023]],
and molecular data [Hoogeboom et al.|[2022} Xu et al., 2022]]. However, their main limitations are the
high computational cost of the generation of samples (as integration over an ODE is required) [Song
et al., 2020, Tong et al., [2023b} |Albergo et al.,|2023]], and their inability to learn optimal transport
maps, which are often essential for unpaired data translation tasks [Shi et al., 2024].

To address computational inefficiency, new models have been proposed. Consistency models accel-
erate sampling for score-based approaches [Song et al.l 2023 [Salimans and Ho} [2022| |Kim et al.,
2023|], while Rectified Flows [[Liu, [2022, |Bansal et al., 2024} [Lee et al., |2024] aim to learn straight
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Does low Var(VyLyc) translate into

learning straight or optimal vector Why not? Consequences on ReFlow
fields?
— No, in deterministic regimes Under a deterministic regime, points ReFlow tends to memorize arbitrary
(e.g. ReFlow(k>1)) where interpolating lines intersect are deterministic pairings in the training
measure-zero, making (z;,t) — data, without improving the transport
— Yes, in stochastic regimes (z0, z1) injective over the training couplings (Proposition 2).
(e.g. CFM, SBM) samples.

Figure 1: Intuition behind the main results.

vector fields that can be integrated in a single step. Rectified Flows iteratively update couplings and
retrain vector fields to straighten transport paths, but repeated rectifications can accumulate errors,
and it remains theoretically unclear whether one or two rectifications suffice under general conditions.
Input-Convex Neural Networks (ICNN)-based parameterizations can, in theory, guarantee optimal
couplings for noiseless interpolants, but are difficult to optimize in practice [Makkuva et al., 2020,
Huang et al., [2020].

Schrodinger Bridge Matching (SBM) [Shi et al.| 2024, [Peluchetti, 2023 [De Bortoli et al., 2024]
extends these ideas by learning both forward and backward vector fields using noisy interpolants,
approximating entropic optimal transport. This bidirectional approach can improve stability and
mitigate error accumulation, but requires training two networks per iteration.

In this paper, we address fundamental limitations of iterative generative models by analyzing how
gradient variance reveals suboptimality in learned vector fields. Our theoretical and empirical study
uncovers why standard neural architectures struggle to represent even simple transports and how
repeated rectifications can lead to memorization rather than improvement.

Contributions In Section[3| we investigate the question "When is gradient variance informative?" in
the Gaussian-to-Gaussian setting. We show that the answer depends on the training regime (stochastic
or deterministic), and that in deterministic regimes, ill-defined vector fields that memorize the training
pairs may emerge. Figure[6|provides a central illustration of this phenomenon. Additionally, we derive
bounds for the loss and gradient variance under both regimes and demonstrate that our empirical
observations align with the theoretical predictions from Proposition [T]

In Section 4] we extend these results from the Gaussian-to-Gaussian case to general finite training
datasets within the ReFlow paradigm. We prove (Proposition [2) that there exists a minimizer on the
finite dataset that reproduces the training pairings. Moreover, due to the deterministic nature of the
integration method, the model can reproduce these exact pairings at inference time by effectively
“jumping over” intersections (Remark [T). We validate our theoretical findings empirically on both a
Mixture of Gaussians and the CelebA dataset in Section[4.2] and Section[4.3]

2 Background

Notation. Let R¢ denote d-dimensional Euclidean space. We use P(R?) for the set of probability
distributions on R?. The source and target distributions are my and 71, with Xy ~ 7y and X ~ 7.
A transport map is 7 : R — R¢, and Tymo denotes the pushforward of mg by T'. Interpolants are
written X; = I(Xo, X1,¢), with t € [0,1]. We write E[-] for expectation, Var|[-] for variance, and
Vy for gradients with respect to parameters 6. Bold symbols (e.g., x) denote vectors. All other
notation is defined in context. For & € R, Ryo denotes a d x d rotation matrix corresponding to
a counterclockwise rotation by k degrees in the plane of interest. All other notation is defined in
context.

Optimal Transport and Entropy-Regularized OT. Let 7y, 7; be probability measures on R
The Monge problem [Mongel|1781]] seeks a transport map 7' minimizing:

1IT1f/||T(x) —z||*dmo(z) st Tymo =71, (1



where Ty 7y denotes the pushforward of my under T". The Kantorovich [Kantorovitch, [1958] relax-
ation introduces couplings 7 € II(mp, 71) and solves:

Wi (mo,m) = inf  Eix, xp)enll| X1 — Xol[?], 2
w€ll(mo,m1)

where TI(mg, 1) denotes the set of joint distributions with marginals 7y and 7;. Entropy-
regularized Optimal Transport (eOT) adds a Kullback-Leibler divergence penalty WS (mp, m1) =
inf reri(ro,m) Exll X1 — Xol|?] + Dk (7m0 @ 1)

When 7 is absolutely continuous, the Monge and Kantorovich problems admit the same deterministic
optimal plan. A dynamic formulation describes OT as evolving a path {X}c[o,1) connecting
Xo ~ po and X7 ~ p;. For convex costs, the optimal path is given by the straight-line interpolant
X; = (1 —1t)Xo + tX; [McCann, 1997].

Conditional Flow Matching. Given the interpolants X; = I(Xg, X1,t) = a; Xo + 8: X1 + e
where € ~ N (0, I), the CFM objective [Lipman et al|[2022] is:

Lo () = Epaui(0,1),(x0,x1)~me [ (X1 — Xo) — v(Xy, 1)[|?] 3
The learned vector field v generates flows via the ODE:

d
%Xt =v(Xy, 1) @

Rectified Flows (or ReFlow). [Liu et al.| [2022] propose an iterative procedure to straighten

transport paths. At each iteration k, a vector field v(*) is trained using the CEM loss Lopar
on the current coupling (Xék),X{k)). The updated coupling is then generated via Xl(kH) =

ODE-Solve[v(¥)] (X(()k), t = 1), and the process repeats until convergence. A coupling (X(()k), X {k))
is considered straight if

E[x - x( 1 xP = o] = x - x{V. )

where Xt(k) =(1- t)X(()k) +tX fk). A coupling is considered straight if, for deterministic couplings
(Xo, X1), the mapping (X3, t) — (X, X1) is injective. Although some works claim one or two
rectifications suffice to obtain straight couplings [Lee et al.,2024] (through one iteration) [Bansal et al.;
2024] (through two iterations, has since been withdrawn), counterexamples (see Counter—ExampleE])
shows this is not guaranteed under basic assumptions, after one rectification.

Gradient Variance. We begin by rewriting the CFM objective from Equation [3}
L, T.1) = Exyr, [IT(X0) = Xo — o(X0,t)|P], X = [(X0,T(X0),t),  (©)
where T' is a (possibly random or deterministic) map satisfying Txmy = 7. A Monte Carlo

approximation of this loss, using samples {X(()s) }9_,, is given by:

2
, xS =1(x$ rxi, ). @

s
1 s . ,
e 1) = g 37 (57) =7 o (1)
The gradient variance will have the following formulation:

vy () - o ()]
s=1

Memorization and Generalization. Memorization and Generalization have been extensively
explored in the field of generative modeling [Bamberger et al., 2025} Buchanan et al.,[2025, [Somepalli
et al., 2023} Ren et al.| 2024, Rahman et al.,|2025| Wang et al., 20244l [Stein et al.} 2023]] with privacy
concerns [Ghalebikesabi et al.| [2020] and copyright infringement [Cui et al., 2023]] being key issues
that would result from such frameworks. Our setting differs from most prior memorization studies
by assuming that each training target has a deterministic counterpart in the source, as in Rectified

Var[VoLyve (v, T,1)] = Var
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Figure 2: Schematic representing a hypothetical loss (Lyic) landscape. The gradient variance of the
loss acts as an indicator of solution quality. The schematic illustrates how the variance of the loss
gradient reveals information about the optimality of the vector field under different interpolant types.

Flows, rather than sampling source—target pairs independently as is standard in the CFM literature.
As a consequence, the appropriate notion of memorization changes: instead of asking whether a
model starting from arbitrary source points reproduces pairs from the training dataset, we consider a
deterministic training set of pairs (X, X1) and say that memorization occurs if the ODE integration

of the learned vector field from a training source X returns its paired target X, = X, at inference,
effectively reproducing the training coupling. This reframing highlights the central question in
rectified-flow training: what value is added by learning a new vector field if deterministic integration
simply recovers the original pairings, i.e., amounts to memorization rather than improved transport
structure or generalization.

3 Gradient Variance of Gaussian-to-Gaussian transport

Analyzing Var[VoLyic (v, T, I)] across different choices

of pairings T (e.g. random vs. optimal vs. straight), inter- Variance of [Voc]
polants I (noiseless vs. stochastic), and vector-field classes 10

vg provides insight into which solutions are favored by the
loss landscape. For clarity, we distinguish vector fields that
are optimal in the OT sense from those that are optimal
for a specific pairing (minimizing error given that pairing);
we refer to the latter as pair-optimal. Although a loss may
have multiple minima, optimization often prefers those P

with lower gradient variance, even if they are suboptimal 0 ’
in terms of transport cost. Figure 2] illustrates this effect: 0 % nterpolationTimet v
for deterministic couplings and noiseless interpolants, the . . .
lowest variance and loss minimizer can be non-OT, while Figure 3: Gradient variance over time

M o
introducing stochasticity can shift preference toward more for a vector field rotating by 120°, under
optimal solutions. various pairing types including rotated

and random couplings. In the top right,
Because Gaussian-to-Gaussian OT is analytically tractable the two Gaussians are shown along with

(Lemmal(T), the exact gradient variance can be derived for sample trajectories, color-coded by inte-
a broad set of vector-field classes, interpolants, and pairing  gration time. Optimal pairings exhibit
schemes in Proposition[I] To broaden the comparison, a  the highest variance, while random pair-
rotational OT (rOT) field is included that first rotates the ings do not y1eld the maximum variance.
source and then maps it to the target; these trajectories

are straight for all angles except the degenerate 180° case,

which is not well-defined. This controlled setting enables closed-form analysis of variance across
configurations and direct alignment with empirical measurements.

Pairings
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In Lemmal[T] we derive this closed-form expression for the optimal vector field between two Gaussian
distributions with different means and covariances, and we show that a multilayer perceptron (MLP)
cannot exactly represent it without error, motivating the use of the closed-form parameterization
rather than an MLP surrogate.

Lemma 1. Let Xy ~ N (0, 1) and X1 ~ N (u, My), where M is a positive definite and symmetric
matrix. The OT vector field is given by

vor(X:,t,0,0) = 0 + O[I, + t6] ! (X, — th),
and the rotating vector field:

dror(Xe, t,08,.0) =6 + OF I, + 108, ]~ (X, — t6),

where X; = (1 — )Xo + tX1, ©8 = M)*> — I, ©,00r = M)’R— 1,6 = y, and Ris a
rotation matrix with R # — 1. Furthermore, the function Vo1 cannot be exactly represented by an
MLP, CNN, Transformer architecture when given concatenated inputs [ Xy, t].

An intuitive reason why this vector field cannot be represented with zero error by typical neural
network parameterizations is the difficulty in capturing the matrix inverse term [I; + t(:)]_l. For
experiments quantifying the training impact of this approximation error, see App.[G.2]for full results.
Proposition 1 (Informal). Letr mg ~ N(0,1,), and w1 ~ N (u, My), where My is a positive
definite and symmetric matrix. Let the following push forward maps: Tor(Xo) = M dl / 2XO + W,

TT%T (Xo) = M;/QRXO +u, and Tyana(Xo) = X1, where R is a rotation matrix. Let the following
parameterisation be v(X;,t) = 0 + O[I; + tO] 1 (X, — t0), where X; = (1 — )Xo + tX;. Let:

N
1 S S S
Lyc(©.8.T.v) = SITXS) - X8 (X 1,0,0)]% ©9)
s=1

(©,0) with Tor and (Ocor, ) with TR achieve zero loss and zero gradient variance. If the
rotation angle is not 180°, trajectories remain straight, but any learned field that does not correspond
to the true angle exhibits nonzero gradient variance. In addition, for T.oT and T;anq evaluated with
the vor class, gradient variance does not increase merely because multiple straight interpolants
pass near one another (for analytical values check Appendix[B}).

A common misconception in flow matching is that gradient variance primarily originates at points

(z¢,t) where straight-line interpolants intersect [Gagneux et al., 2025} [Fjelde et al., [2024]; Propo-
sition [T challenges this by showing that variance can be nonzero even for straight couplings with

(1-tXo+ X1 +ovt(l-t)Z
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Figure 4: Gradient variance (with 95% confidence intervals) for Gaussian transport paired
(X0, R300 Xo + p) under different noise levels (o of the two interpolants mentioned in the title
of the figures). We compare vector fields inducing 0° (OT, blue), 30° (pair-optimal, ), and 60°
(non-OT, non-pair-optimal, ) rotations. Shaded regions show confidence intervals calculated
over 100 bootstrap samples. As noise increases (o = 0 — 4), the optimal transport (OT) field exhibits
significantly reduced variance (p < 0.01, paired t-test) while maintaining lower transport error.
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Figure 5: Gradient variance over time for several pairing types: (Xo, M ; / ’Rio Xo + ,u) with

k € {0, 30, 60,120, 180}, and (Xo, X1) with X7 ~ N (p, My), over the OT vector field. Shaded
regions indicate 95% confidence intervals computed via 100 bootstrap samples. Notably, variance
does not increase in regions where interpolant trajectories come closer together: for example, with
180° rotation, all interpolants intersect at ¢ = 1/2, yet variance is lowest there. Random pairings
exhibit lower variance under the OT field than structured pairings with 120° (straight) or 180° (not-
straight) rotations, highlighting that variance is not simply a function of interpolant density.

no intersections, while intersections or regions of high interpolant density do not, by themselves,
induce elevated variance. Consequently, gradient variance under Lyic is not governed by geometric
proximity of trajectories but by mismatch between the learned vector field and the pairing structure
(e.g., a misaligned rotation). This also clarifies that low gradient variance does not certify transport
optimality: when v and T are aligned (e.g., they apply the same rotation), both loss and gradients
vanish, whereas under the OT field, even straight pairings can exhibit nonzero gradient variance (see

Figures [] 3 [6).

3.1 Empirical validation

This subsection studies empirically what happens with the gradient variance across choices of pairings,
interpolants, and vector field classes.

Key experiment: Figure [f]illustrates the key experiment that motivates Sectiond] We consider a
deterministic pairing with X ~ N (0, I3) and X; = Rigpe Xo + [5, 5] T, so that all straight-line
interpolants meet at the midpoint when ¢ = % Under noiseless interpolants, the learned vector field
memorizes this ill-defined pairing and, at inference, reproduces the same mapping that rotates the
source Gaussian by 180° and translates it by [5, 5] T. This occurs because the probability of sampling
exactly t = % during training is zero, so the vector field is never constrained at the intersection
point; at inference, deterministic numerical integration effectively bypasses this singular location,
yielding the same pairing. This provides a concrete failure case in which rectification does not resolve
interpolant intersections but instead preserves the training-specific pairing.

Under noiseless interpolants. We now characterize the variance of the gradients over the noiseless
interpolant z; = (1 — t)xo + tx1, as this is the commonly used type of interpolant in ReFlow
architectures. Notably, when the vector field is OT, straight pairings can exhibit higher gradient
variance than random pairings (see Figure[3)). Conversely, with a non-OT vector field, the loss can
display substantial variance for pairings that are themselves OT (see Figure [3). Furthermore, for

Vector Field Rotation Angles (1-tXo+tX1 +oVt1l-0Z Integrating over_UISO(zta t)
—— 0 VF 30°VF e 60°VF  —e— 180° VF vector field

(0=0) le8 (0=1)

25

Variance of |Vec]|
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Figure 6: Integration over a vector field performing a 180° rotation. Although all interpolation paths
intersect at t = 1/2, and E[X; — X | X; = z1/5] # X1 — Xo, we still recover 180°-rotated
couplings. This is because the numerical integration procedure discretizes time and does not evaluate
the vector field precisely at the point of intersection, effectively bypassing it.



straight non-OT pairings, the most stable solution is the corresponding pair-optimal (non-OT) vector
field, Figure[6] Variance does not arise from intersections or regions where the interpolating lines
come close together, and random pairings exhibit lower variance than structured couplings, such as a
120° rotation (see Figure[3).

Variance under stochastic interpolants. We now consider a noisy interpolant z; = (1 —¢)xg +
tzy + f(t,0)Z, Z ~ N(0,1,), where f : [0,1] — R>( modulates the noise level over time
(e.g., f(t,0) = o+/t(1 — t)). As shown in Figure@ and Figure@ adding noise to the interpolant
causes the optimal vector field to exhibit lower gradient variance than the pairing-optimal vector field.
Furthermore, in the second frame of Figure @ we can now see that at ¢ = 1/2 the variance of the
gradients is very high, meaning that, even though we never sample ¢ = 1/2, the loss landscape has
very high variance around that area for this vector field solution.

4 Rectified Flow Dynamics: Minimizer Memorizes

This section extends the experiment in Figure []
by formalizing it through Proposition 2] which
analyzes stagnation for finite datasets under de-
terministic training and clarifies its implications.
We then validate these implications empirically *— Q=9 i

on synthetic data and CelebA in Sections [4.2] =
and4.3] =

Reflow on noiseless interpolants

4.1 Theoretical Results

. . Reflow on noisy interpolants
We now formalize two key properties of ReFlow:

first, its tendency to stagnate once it reaches a
straight coupling (Lemma [2), a known result

previously established in [Bansal et al.| [2024], "
Liu/[2022]; and second, its ability to memorize A
arbitrary deterministic pairings when trained on _a

a finite dataset (Proposition [2), which represents
the main novel contribution of this work.

Lemma 2 (Idempotence of Rectified Flows).
Let mo, m be distributions on RP with densi-
ties, and (Zy, Z1) their straight-line coupling
via linear interpolant Z, = (1 — t)Zy + tZ.
Subsequent Rectified Flow iterations with this
noiseless interpolant yield identical couplings:

Figure 7: Schematic showing the two types of
interpolants. When training with deterministic
pairings, sampling at an intersection has zero
probability mass. As a result, the mapping
(Zi,t) = (Zo,T(Zp),t) becomes injective, mak-
ing it straightforward to define a vector field at
ReFlow) (Zo, Z0) = (Zo, Z1) k> 1. these points by v(Z,t) = .ZO.—.T('ZO.). In contrast,
for noisy interpolants, this injectivity no longer

. . o holds.
This stagnation stems from the bijective rela-

tionship between interpolants (Z;, t) and initial
pairs (Zy, Z1 ), given by our assumption of the
straightness of the deterministic couplings.

Some recent works have suggested that 2-

ReFlow might be sufficient to recover straight pairings [Lee et al.|[2024]], and |Bansal et al.| [2024]]
showed that 2 rectifications are enough under some regularity assumptions to straighten paths for
isotropic Gaussian distributions. In the spirit of Figure[6|(see Appendix [A]), we provide an example
where this is not possible for non-independent pairings.

Counter Example 1 (1-ReFlow May Fail Under Mild Assumptions). Even if the learned transport
map T (xo) is injective (e.g., under standard Lipschitz and growth conditions; see Appendix E])
the straight-line interpolant I(xo,T(x0),t) need not be. For instance, a rotation-based map like
T(x0) = Risooxo + 5 (which can be realized by a continuous vector field) leads to overlapping
interpolants, breaking injectivity of (x¢,t) — xq. As a result, a new ReFlow step cannot reconstruct
(z0,x1) and fails to straighten the coupling. See Appendix @] for details and a visual example.



Relaxing the straightness assumption to consider general deterministic couplings and finite training
datasets leads to a nuanced but equally critical limitation:

Proposition 2 (The Minimizer Memorizes). Let my and w1 be two probability densities on RP,
and let T : RP  — RP be a deterministic transport map pushing mq to m (so if Zy ~ mo, then

7y =T(Zy) ~ m1). Suppose we draw a finite dataset of N i.i.d. samples {Z(()i)7 ZY) = T(Z(()i)) N

and for each i we also sample m time-points {t(i’j)}?’zl C [0,1] (e.g. uniformly). Let Zt(w) =
(1- t(i’j)) Z(gi) + t(d) Zy). Define the empirical loss over this doubly indexed dataset by

N m
e 1 i i i) |12
Liiwe) = 5 2o D-[[(2 - 27) — vo (2 10
— =
Then there exists a (deterministic) vector field v attaining zero loss: Lt (v) = 0.

Next, we discuss the implications of Lemma[2]and Proposition

Remark 1 (Condition for Recovering the Same Couplings). Defining a look-up vector field over
the training data—or approximating it via the Universal Approximation Theorem (UAT)—does not
guarantee that integration will recover the original pairings. To ensure this, the integration process
must traverse the specific time steps {t(i’j )};”:1 associated with each training pair X ;. These
are the only points along the interpolation xy = (1 — t)xo + txy where we are guaranteed that
v(z,t) = x1 — xo. While this condition might appear restrictive, the proposition remains valid for
any natural number m.

This insight arose from empirical observations. For example, when training a neural network on pairs
(Xo,T(Xp)) with T(Xo) = Ryspo Xo + i, we found that—despite all interpolants intersecting at
t = 1/2—the model successfully learned the rotation and preserved the pairings during integration.
See Figure[6]for a visualization.

Remark 2 (Noise Breaks Proof Assumptions). A key advantage of using noisy interpolants is that
they break the bijection between (x1,t) and (xo, T (x0)), thereby violating the key steps of the proofs
of Lemma([2 and Proposition[2] This disruption prevents the model from becoming stuck in suboptimal
or deterministic straight pairings. As shown in Figure[d] this can lead to learning vector fields that
are closer to the optimal solution.

Why Doesn’t CFM Memorize Random Pairings? Consider x; a finite dataset of targets, while at
each training step, the source g is independently drawn from a continuous distribution. Initially, we
hypothesized that CFM could memorize these random couplings, since Proposition [3| (Appendix [C)
shows that interpolants intersect at =, with probability zero. However, as noted in Remark [2] the
independent sampling of z from continuous distributions breaks the bijection between (x4, t) and
(I 0,1 ) .

While Rectified Flows can help straighten trajectories, they risk collapsing onto memorized pairings
at the first iteration, when deterministic couplings are formed. This memorization undermines
generalization and highlights a limitation of relying solely on early deterministic transport.

4.2 Memorization for Mixture of Gaussian

To probe CFM’s tendency to memorize deterministic pairings, we train two variants—one using
noiseless interpolants and one with added noise—on an CFM model that maps 7o = A (0, I;) to a
target Gaussian mixture 71 (more details for the experiments in Appendix [F)). We evaluate in both
low (d = 3) and high (d = 50) dimensions using three metrics (log-likelihood under the true mixture,
MMD, and Sinkhorn distance) and four comparisons: (i) Gen: generated held-out vs. true samples,
(i) Mem: generated vs. training pair integrations, (iii) True: true vs. true reference, and (iv) Data:
training pair vs. true samples. This setup isolates whether noiseless CFM simply memorizes its
finite dataset, and whether stochastic interpolants improve generalization without sacrificing sample
quality.

As shown in Table[T} CFM tends to memorize the deterministic pairings it is trained on, reflected in
very low memorization distances but weaker generalization. In contrast, CFM(c = 0.05) demon-
strates consistently lower distances to the true distribution across both dimensions, suggesting superior
generalization and less reliance on memorized pairings.



4.3 Memorization for CelebA

To empirically validate Proposition 2, we conduct experiments on the CelebA dataset using Condi-
tional Flow Matching (CFM), with ground-truth optimal transport (OT) pairings from [Korotin et al.
[2021]] as reference. Our primary objective is to test the claim that CFM trained with deterministic
interpolants memorizes its input pairings, as predicted by theory.

We compare two versions of CFM: CFM(o = 0): trained using deterministic (noiseless) interpolants,
CFM (o = 0.05): trained using slightly noisy interpolants.

Both models use identical U-Net architectures. The noise parameter ¢ is not chosen for improved
performance, but specifically to break the injectivity between data and interpolant trajectories—
thereby disabling the memorization pathway outlined in Proposition 2.

Adversarial Pairings. To directly probe memorization, we construct an adversarial dataset by
shuffling the targets of the [Korotin et al.|[2021]] optimal OT pairings. This breaks correct transport
structure, producing random pairings with no coherent OT semantics. The model variants are
compared on two criteria: generalization (L2 error to true OT targets), and Memorization (L2 error to
the shuffled (training) targets). We measure both on held-out subsets (5K and 50K samples). Lower
L2 to true OT indicates better generalization, while low L2 to shuffled indicates greater memorization.

Simulated 1-ReFlow. We simulate a 1-step ReFlow scenario to test if iterative flow models reinforce
memorization further—a central prediction of Proposition 2. Here, a base CFM model is first trained
on random (non-OT) pairings, then used to generate endpoints via ODE integration. We then retrain
CFM on these generated endpoints.

Memorization effects diminish with larger datasets, as fixed model capacity makes perfect memoriza-
tion infeasible for S0K samples compared to S5K. However, optimization still favors memorization
when possible, as predicted by Proposition 2. Larger datasets impede perfect memorization, but do
not alter the underlying objective.

Our experiments provide direct empirical support for Proposition 2: CFM trained on deterministic
interpolants reliably memorizes its inputs, even when those pairings are random or flawed. Introducing
noise to interpolants breaks the pathway for memorization, enabling principled generalization toward
the true OT map. These findings highlight a key limitation of deterministic training regimes for
flow-based generative models on empirical datasets. For completion we mention FID values of these
models in Appendix [H]

5 Conclusion

We analyzed flow-based models through the lens of gradient variance and showed that deterministic
interpolants—especially in Rectified Flows—can lead to memorization and stagnation. Noise,
whether explicit (stochastic interpolants) or implicit (random pairings), breaks this effect, improving
both generalization and sample quality. Our theoretical results and experiments on Gaussians,

Table 1: Comparison of CFM and CFM with stochastic interpolants (CFM(o = 0.05)) across low
and high dimensions. CFM (o = 0.05) consistently generates samples that better match the target
distribution (as indicated by lower MMD and Sinkhorn distances), without resorting to memorization,
as evidenced by its strong performance on both generated and true data metrics. This highlights
CFM(o = 0.05)’s superior generalization and sample quality compared to CFM. Experiments done
over 10 seeds, the mean is presented, for full table check Appendix [F|

Dimension 3 50
Gen Mem True Data Gen Mem True Data

CEM LogProb 4.0150 4.0890 4.1330 4.0155 54.8299 53.6502 52.5094 53.6244
(0 =0) MMD 0.0034 1.758 x 106 0.0014  0.0032 0.0021 9.089 x 106 0.0020 0.0019
Sinkhorn  0.0730 1.411 x 10~° 0.0637  0.0790 15.1900 0.0045 14.3221  15.7400
CFM LogProb 4.1270 4.0960 4.1330 4.0155  54.7220 53.8890 52.5094 53.6244
(0 = 0.05) MMD 0.0018 3.105 x 1073 0.0014  0.0032 0.0020  6.09 x 107 0.0020 0.0019
Sinkhorn 0.0680 3.557 x 1074 0.0637  0.0790 15.1689 0.0304 14.3221  15.7400




Table 2: Adversarial Pairings Results: These results show that CFM with deterministic interpolants
(o = 0) strongly memorizes non-optimal shuffled targets, minimizing training loss even on arbitrary
pairings. Adding slight noise (¢ = 0.05) disrupts this, enabling the model to resist overfitting and
generalize toward the true OT map.

Metric CFM(o = 0.05) CFM(o = 0)
5K Generalization (L2 to OT) 3425 £7.54 50.40 + 16.73
5K Memorization (L2 to Shuffled) 55.02 £ 16.51 28.57 £5.49
50K Generalization (L2 to OT) 30.05 £ 6.77 46.78 + 14.87

50K Memorization (L2 to Shuffled) 56.48 £+ 18.55 45.98 + 11.85

Table 3: Simulated 1-ReFlow: The findings are consistent: deterministic interpolants (¢ = 0)
facilitate memorization of training pairings, while a small amount of noise substantially increases
resistance to memorization and restores generalization ability.

Metric CFM(c = 0.05) CFM(o = 0)
5K Generalization (L2 to OT) 31.354+7.38 43.35 + 14.21
5K Memorization (L2 to Generated) 25.08 £+ 8.59 8.63 £1.76

50K Generalization (L2 to OT) 32.54 4+ 8.86 38.16 £ 11.37

50K Memorization (L2 to Generated) 16.29 £ 4.82 12.76 £ 4.01

Gaussian Mixtures and CelebA demonstrate that variance-sensitive optimization prefers suboptimal
flows unless stochasticity is introduced. These findings challenge the reliability of rectified flows and
underscore the importance of noise in guiding models toward better transport.

Limitations. Our evaluation focuses on: Gaussians, Gaussian mixtures, and CelebA as the sole
real-world benchmark; broader modalities and higher resolutions may surface additional behaviors.
While we critique Rectified Flows’ propensity to memorize deterministic pairings, we do not propose
a new remedy beyond introducing stochasticity into interpolants. Notably, adding noise is known to
steer training toward entropic OT [De Bortoli et al.}|2024] over many iterations, which in practice
manifests as improved generalization rather than a principled cure for deterministic memorization.
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A Assumptions

Assumption 1. Suppose that v(x,t) satisfies the following conditions:

e Lipschitz continuity in x: There exists L > 0 such that for all z,y € RP and t € [0, 1),
[v(z,t) —v(y, )| < Llz —yl|. (10)

s Linear growth: There exists C > 0 such that for all v € RP and t € [0, 1],
[o(z, )] < C(1+ [|lz]). (1D

With Assumption [1|in place we can conclude via |Arnold| [1992], that the ODE dx; = v(xy,t)dt

admits unique solutions for all initial conditions ¢, and so that T'(xo) = o + [, v(x¢,t)dt is an
injective map.

B Proofs - Gaussian Setting:

Extra-Lemma 1. Lef g(x) = %, with x € R%. There is no finite parameterization of a Multilayer
Perceptron (MLP) that can represent this function with zero error.

Proof. Assume, for the sake of contradiction, that there exists a finite MLP that represents g(x)
exactly. To avoid issues at z = 0 where g(z) becomes undefined, we restrict the domain of z to
R\ [a,b], where O ¢ [a,b] and a,b € R. This ensures that ¢(z) is Lipschitz continuous on this
domain.

Next, consider the scaling property of g(x): for any scalar ¢ # 0, g(cz) = L¢(z). This property
implies that ¢(x) scales inversely with c.

However, standard MLPs do not inherently possess this scaling property. For an MLP to exhibit

this behavior, its activation functions would need to satisfy o(cz) = Lo(x), which is not true for

commonly used activation functions such as ReLLU or tanh.

Since the desired function ¢(z) exhibits a scaling property that standard MLPs cannot replicate, we
conclude that no finite MLP can represent g(x) exactly. O

Lemma Let Xo ~ N(0,1;) and X1 ~ N (u, M), where My is a positive definite and symmetric
matrix. The OT vector field is given by

bor(Xi,t,0,0) =0 + O[I, + 0] (X, — t8),
and the rotating vector field:
bror(Xi,t, ©,07,0) = 0+ ©,07[I4 + tO,07] (X, — 1),

where X; = (1 — t)Xo + X7, e = M(}/Q — I, ©,0r = Mj/QRko —I;,0= i, and Ryo is a
rotation matrix with Ryo # — Ryo. Furthermore, the function 0o cannot be exactly represented by
an MLP, CNN, Transformer architecture when given concatenated inputs [ Xy, t].

Proof. The optimal transport map from N (0, I4) to N'(p, My) is Tor(z) = p + M;/Qx. Thus,
if we denote the optimal coupling by X and X7, we have X7 = T(X{) = p + M;/QXS‘. The

displacement interpolation is defined as X; = (1 — ¢) X + tX7. Substitute the expression for X7
into the interpolation:

X, =(1- X5+ t(ﬂ + M;/QX;;) - [(1 — I+t MY X+t (12)

Solving for X gives
-1
X; = [(1 ft)IdthM;/Q} (X, — tp).
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Now, substitute X back into the transport map to get
-1
Xi =t MY2XE =+ MY [(1 — I, +tM;/2} (X, — tp). (13)

The optimal displacement (vector field) is defined as v(X¢,t) = X; — X{. Therefore, we have

vor(Xu,t) = p+ M)/ [(1 —t) I+t M;/Q} _1(Xt —tp) (14)
- [(1—t)Id+tM;/2Tl(Xt —tp) (15)
=u+ (M;/2 - Id) [(1 —t)I;+ tM;/Z} _I(Xt —tp). (16)

This is the desired expression for the vector field.

For v, o1, the computation is analogous, with the key difference that the transport map is now given

by Tror(z) =pu+ M ; / *RX,. This defines a valid pushforward map, since for any rotation matrix
Ry, if Z ~ N(0, 1), then RZ ~ N (0, 1) as well, due to the rotational invariance of the standard
Gaussian.

Proceeding as before, we solve for X, substitute it back into the transport map, and derive the
corresponding vector field. This yields the expression for v,.or. The derivation follows the same

steps as in the case of vor, with the only difference being that M ; /% s replaced by M, ;/ ’R.

-1
Also we can’t have R = —R (180° rotation), because then the inverse |(1 —t)I; — tM;/ﬂ =

-1
[Id - t(MC}/2 + I)} is not computable when t(Mé/2 + I) = I, (for example for M, = I, and
t = 1/2). For a more complete approach, see|Liu|[2022].

We proceed to prove that this parameterization cannot be represented with zero error by an MLP.

. . 0 . . . . 1 .
Representing the function 775 with zero error is equivalent to representing 5 with zero error. By

applying Extra-Lemma[l] we conclude that such a representation is not possible. O
Proposition 1} Ler 7o ~ N(0, 1), and w1 ~ N (p, Mg), where My is a positive definite and
symmetric matrix. Let the following push forward maps: Tor(Xo) = M ; / *Xo + w, Tror(Xo) =

M ; / 2RXO + u, and Tyqna(Xo) = X1, where R is a rotation matrix. Let the linear transformation
be v(Xy,t) =0+ O[I; + tO] 1 (X, — t0), where X; = (1 — )Xo + tX;. Let:

N
Luc(©,0,T,v) = = 3 |T(X$) - X5 —v(X{V.t,0,0)|. (17)

Then,  for  optimal, (©,0) we have Var[VgLyc(©,0,vor, Tyor)) =
Var[Ve Luc(©, 6, vor, Tor)] = Var[Ve(©, 0, vror, Tror)] =
Var[V@LMC(Q, 0,v.0T, TrOT)] = 0, and Var[VgLMC(Q, 0,vor, TrROT)] = % ||]Wle27
and Var[Ve Lyc(©, 0,vor, T )] = %tr((M;m(R — I))?). Moreover, for the maps T,or and
Trand and voT vector field, the variance of the gradients of the optimal vector field does not increase
in regions where the interpolant trajectories come closer together.

Proof. We break this proof into the computation of variance over time and the value at time zero to
simplify computations.

1. Way 1: for ¢t = 0 but closed form is nice: We compute gradient variance in two ways, one
relies on the fact that when 7' is deterministic there is a direct bijection between X; and X, this of
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course won’t give us the values in terms of ¢, but the formulas are somehow nicer and easier to work

with. We are basically looking at the variance for (X, 0)

1 n n n 2
Var {VgZHM;/QXé Vx4 - ex] )_OH ]

= Var {Zf( M2 @I)Xé”)eﬂ
- %Var [ﬂ(Ml/ 2_e- I)X(()")}
4

:NlT(Ml/Q e-nmM))>-e-nT

1 1/2 n n n 2
WHF@”VEHMQ/XSLU%>_M_®Xg)_ﬂ”
— Var [—ZXT( 1/2—Id—®)X(§”)—9)].

Gradient variance for 7o and vor For the rotated case:

1/2

Note that our vector field is optimal when 6= M,” —1;and 0= . Then we have:

Var {VGLAIC(U(@707XO)) =0,

and

Var [Vo LE5 (0(8, 0, Xo))] = - VarlX] (1 — 6)] =

Gradient variance for 7, o7 and vor For the rotated case:
1 2
Var [ve 3 HM;MRX(()") X —exim - 0” ]
— Var [— YoaT ( + (MR- -Dnx{ - 9)}

4 1/2 n)
= < Var [N(Md R-©-I)X| } .

At the optimum, where O=M ; 2 _ I, we obtain:

4 4
< Var [IT(MC}/QR - M;/Q)Xo} = 1T (MR- D)(M;*(R- 1)1

4

= 31T MR- D)R-1)" M1

4

For the variance of the gradient w.r.t. ® at the optimum, we get:

Var [Ve L7191 (), é)} - %Var [XOTM;/Q(R - I)XO}

= %tr ((M;/2(R - I))Q) .

N1TM1/2( I,— R —R)M,*"1.

(18)

19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)
(30)

€1y

(32)

(33)

The last equality follows from the known variance formula of a quadratic form for Gaussian random

vectors, specifically when Xy ~ N (0, I).
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Gradient variance for 7, o7 and v,.or For the rotated case:

1 n n n 2
Var [vez HM;/QRXé JoxM i —ex™ - 0” ] (34)
— Var [ YoaT ( + (MR- -Dnx{ - 0)} (35)
(36)
At the optimum, where e = M, 1/ ‘R - I,, we obtain:
4
- Var [1T(M*R - My *R)X,| =0 (37)
For the variance of the gradient w.r.t. ® at the optimum, we get:
Ao 4
Var {v L9 (@, 0)} = Var {XOTM;/Z(R— R)Xo} (38)
=0 (39)

Way 2 - (for any ¢, closed form is not nice): Gradient variance over time Before analyzing
different kinds of pairings that we want to analyze, first, we want a true formulation of the gradients:

Var[VgLf\}{ge((:) 0)] (40)
= Var VQNZH Ttype(X(n)) X( )_099( ™) t)” ] (41)

= Var | -~ Z(Ttype(Xén)) — XM -0-0[,+t0] (X" —10))T (-1 — tO[I,; + t@]_ll)}
' (42)

— Var _% S (Thype(X§7) = XV — 0 — ©[1y + O] (X[ — 10)) T (114 + t@]_ll)}
] 43)

For now, let C; @ = [l + t®]~1. We arrive at a more simplified:

. 4
Var[Ve L4 (©, )] = ~ Var((Tiype(Xo) = Xo — 0 — ©[Iy + t0®] (X, —10))  Crol] (44)
4
= 5 Varl(Tiype (Xo) = Xo = O[la + 0] X;) ' Cr01] (45)
4
= (Ct,@1)TNVar[(Ttype(Xo) —Xo—O[I; +t0]'X,)"|Crel  (46)

Moving forward to gradients with respect to ® we get:

Var[Ve LiY2(©, §)] (47)
1 n n n n
o {VeN D (T (X6”) = X5V = vo.0 (XL )] (48)
4

= o Var [(Tiype(Xo) — Xo — 0 — O[I; + O] 1 (X, — t0))  ((tCro — I)Cro(X: — 10))]
(49)
(50

CASE 1 (OT): This case is nice because we just need to prove that:

Var((Tor(Xo) — Xo — 0 — O[I; + tO] 1 (X, — t8)) '] = 0, (51)
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which actually happens once we replace ® = (M'/2 — I), and @ = pu. We will show this for
completion:

MY?2Xy — Xy — Ol + 0] "' X, (52)
= (M2 - DIy +t(MY? = 1)) Y Xo + t(MY? - )Xo —tMY?Xy — (1 —t)Xo)  (53)
= (M2 - D(I;+t(MY2-T)"'o=0 (54)

Remark If our network is not quite at the optima so M/2 Xy — Xy — ©[I; + t®] "' X; = € we can

notice that the variance of 8 and ® decrease in time because ﬁ and %ﬁf;)ﬁ are decreasing in t.

No connection between gradient variance and crossings To show the lack of connection between
crossings and variance of gradients, it is enough to offer counter-examples. In the rotation case,
we will look at the variance when the rotation matrix does a 180° degree rotation, which means all
interpolation lines should meet at t = 1/2. As we will show, there is no peak in variance at time
t = 1/2. In the Gaussian case, we will observe a very similar behaviour.

Case 2 (rOT):

1. For 0 the variance of the gradients will be:

A oA 4 A
Var[Vo Li2¢(©, )] = NlTC’tTéVar[(Ml/QR —1-0C, o(t(M'?R—1) - 1))X,]C, 1
(535
4
= 31 Cl6eATAC, 61, (56)

where A = MY2R — T — (M2 — I)[I + t(MY? — I)]7*(¢(MY?R — I) + I), with ATA ~
M+T—-R—R"4+2(1—t)(R—-DT(MY? —I)(R — I), for small M'/? — T (approximation
obtained via taylor expansion).

Counter-example For R = —I and M'/? = 2](which is 180° rotation so all interpolants meet at
one point) we have A = —31 — [I — tI]7 (=3It +I) so AT A = (£%)?1. The variance in this case
will be increasing for ¢ € [0, 1]. This aligns with our empirical results; however, it does not align
with what is believed in the literature, that the variance would peak at ¢ = 1/2, because crossings
increase variance.

2. For ©, the variance of the gradients will be:

Var[Ve Ly2T (0, 6)] (57)

= %Var [(Tror(Xo) — Xo— 0 — O[I; 4+ tO] (X, — 1)) " ((tCre — I)Cre(X; —t))]
(58)

= %Var[(Ml/zR — I — (MY?2 = DI+ t(MY? = D))" Y tMY2R 4+ (1 — t)I) X,)7 (59)

(tCre — Cre(tM'/? + (1 — 1)) Xo] (60)
4 4
= NVar[(AXO)T(tCt,@ ~DNCre(tMY?R 4 (1 —t)I)Xo] = NVar[XOTATBXO] = 2Tr((AB)?)
(61)
Counter-example Let M'/?2 = 2], and R = —I. Then A = I%t[, and B = % )
~ ~ < 2
Var[Ve LT (©,0)] = %Var[ﬁ%XgXo] = %% which is decreasing for

t €[1/9,1/3] and increasing ¢ € [1/3, 1].
Case 3 (Random):
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1. For 0 the variance of the gradients will be:

erA N 4 -

Var[Vgijfg (0,0)] = NlTCZéVar[(Xl —Xo—0OC, o(tX1 — (1 -1)X)))|C, g1 (62)
4 . .
= N].TCZQ[VGT[(I — @Ctyét)Xl] + VGT[(—I — G)Ct,@(]‘ — t)I)X(]HCt’é]_,
(63)
because of independence of X, and X;. Continuing:

Var((I - ©C, gt)X1] = (I — t(M"? = I)(I + t(M'/* = 1)) )" M (64)
(I —t(MY? — D)(I +t(MY? —1)7Y (65)
= (I +t(MY? =) 'M(I +t(MY? - 1)), (66)

and,
Var[(I — (;)Ct@(l — ) Xo] =(I — (1 —t) (M2 = I)(

I+t(MY2—1)=HT  (67)
(I— (1 —t)(MY2-1)(I+

t(MY?2 — 1)), (68)

Counter-example: For M/'/? = 2] we have Var[(I—(;)Ct@t)Xl] = 4@] which is decreasing

fort € [0, 1]. We have Var[(I— (;)Ctﬁé(l —1))Xo] = 4%[. That is 4&17";)12 which is decreasing
for ¢t € [0, 1]. We have the overall variance:
41 1 t?+1

LA 1
Var[Vo L7 (©. )] = 417 NN =4d——7+ 69
ar[VoLyc (©,0)] T+t +0)21+¢ 1+t (69)

which is decreasing in ¢ € [0, 1].

C Proofs - ReFlow

Lemma Let w1 and 5 be two distributions on RN admitting densities, and let (Zo, Z1) be their
straight-line coupling. If we apply Rectified Flows again using the noise-free interpolant, we recover
the same coupling.
Proof. Since (Zy, Z1) is the straight coupling, for each ¢ € [0, 1] the interpolation
Zy = 1=t 2y + t 24
is 0(Zy, Z1)—-measurable. Define
v(z,t) == B[ 21— Zy | Zs = 2],
so that by the Doob—Dynkin lemma there is a (deterministic) function v satisfying
v(Z,t) =B[Z1— Zy | Zi) = Z1 — Zy  almost surely.
Hence if we re-solve the same linear ODE

% = ’U(Xt,t) with Xo = Z()7

the unique solution is exactly
Xe=2Zo+t(Z1— Zo) = Zy.

Because the noise-free Rectified Flow minimizes the mean-squared drift error,

2
E||v(Z.t) - (2 —ZO)H —0,

no further change occurs. Thus the pairing remains (Zg, Z1). O
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Proposition [2| Let 7y and w1 be two probability densities on RP, and let T : RP — RP be a
deterministic transport map pushing o to 71 (so if Zog ~ wo, then Z1 = T(Zy) ~ 71). Suppose we
draw a finite dataset of N i.i.d. samples {Z(L) Z(z) (Z(L)) L, and for each i we also sample
m time-points {t(l’J)}}”:1 [0,1] (e.g. uniformly). Let Zt(”) = (1 —tl9) Zél) + (9 ZY).
Define the empirical loss over this “doubly indexed” dataset by

2
Lt (ve) = ZZH (20 = 2) = v (2, 1)

=1 j=1
Then there exists a (deterministic) vector field v attaining zero loss: LEE (v) = 0.

Proof. Our finite dataset is
D= {(Z((f), Z0 40D Z@Dy =1 N = 1,...,m}.
We may view this as drawing from the discrete joint “empirical” measure

E E )
Z() 79 16D Z(7J))

11_]1

For each datapoint (Zt(i’j ), t(id )) we know

20 -7 = B[ Z~Zo | Z0=2, Z1 =2t =t0D, 7, = 707,

Let Z = UiEN,tG[O,l](Zt(Z)7 t). Let A = r1z’€N7t€[0-,1](Zt(l)’ t).

The probability of sampling ¢(»7) = a € A is 0, because ¢ lives in a two-dimensional distribution
and the points of intersection are a countable union (maximum V! intersection) of one-dimensional
spaces.

B[22 | Zo=2", 20 =27, t =0, 72, = 20V = B[ 21~ Zy | t =0, 7, = (7).
Hence we can define the exact conditional-expectation vector field
v(z,t) = IEP[Zl —Zy ’ Zy = z, ﬂ,
which on each of our training points (z, ) = (Z\*), (i) satisfies
v(Z, 10Dy = 7 — 7.
Substituting this v into the Monte Carlo loss gives, term by term,
|27 = 28 = o(z) )P = | 27 - 20 — (2 - 2" = 0.

Averaging over all i, j yields L{¢t (v) = 0.

Thus the loss can be driven exactly to zero on the finite sample by choosing v to interpolate the known
displacements Z\” — Z{") at the sampled intermediate points (Z\"7), #(:1)), O

Proposition 3 (Interpolating lines don’t meet in high dimensions). Let o, x1 ~ 7o(x) and yo,y1 ~
71 (y), where my and 7, are probability distributions on R? admitting a density. Define the linear
interpolants 1;(t;) = (1 — ¢;)x; + tyy; fori € {0,1}.

A. Ford > 2, the lines ly and 1y cross att = t; = t; € (0, 1) with probability 0.

B. For d > 2 the two lines intersect for t;, t; € (0,1) with probability 0.
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Proof. Throughout this proof, we use the following theorem: Let X be a random variable with a
continuous probability distribution in R”, and let A be a lower-dimensional subset of R™. Since P
admits a density, it follows that it is absolutely continuous wrt to the Lebesgue measure A then as
A(A) = 0 by absolute continuity, we have that P(X € A) = 0.

A. Suppose the lines Io(t) and I1 (t) intersect at some ¢ = € (0, 1). This implies

lo(f) = (D),
which expands to
(1 — t)Io + typ = (1 - t).%‘l + ty;.
Rearranging terms, we find

1—1¢
Y1 = 7 (xo — 1) + Yo-

To compute the probability of such an intersection, note that y; must lie exactly on the affine subspace
defined by the above equation, which is a one-dimensional line segment in R?.

The joint probability of the points (xg, 1, Yo, y1) can be written as

. 14
P(lo(t) ntersects ll(ﬁ) fort € (0, 1)) = P(l‘o,l’l,yo) -]P(yl = T(aﬁo — 331) + Yo | (I}(),.Tl,yo).

Since 71 (y) is continuous and differentiable, the probability density of y; lying on any lower-
dimensional subspace (e.g., a line segment) in R?, with d > 2, is zero. Therefore,

1—1¢
Py, = R (xo — 1) + Yo | o, x1,Y0) = 0,

which implies
P(lo(t) intersects {1 (t) at t = ¢ for t € (0,1)) = 0.
Hence, the lines I (t) and /1 (¢) intersect with probability zero for ¢ € (0,1). B. Suppose the lines
lo(to) and I1(t1) intersect at some to = to,t; = t,fortg, t; € (0,1). This implies
lo(fo) = L (t),
which expands to
(1 —to)zo +toyo = (1 — t1)z1 + tays.

Rearranging terms, we find
(1 —to)xo — (1 = E1)a1 + toyo

ty '

Y1 =

which for to,1; € (0, 1) we have that y; would belong to a 2D surface. Just like before we have:
]P(l()(to) intersects ll(tl) for tAZ € (0, ].)) = ]P(.T(), X1, y())

1—#g)wp — (1 —f1)xy + ¢
]P’(yl:( 0) 0 (g 1) 1 0Yo
1

m()aJ"hyO) =0.

O

D Counter Example for straightness after one iteration

Proposition 4 (Limitations of ReFlow Iterations on Noiseless Interpolants). Let mg, 71 C RP, with
D > 2. Let (Zy, Z1) = 1-ReFlow(Xo, X1) denote the coupling obtained after one ReFlow iteration.
Under the assumption that the interpolant p(z,t) = (1 — t)z 4+ tT(2) is injective in z for each t,
there exists a vector field v1(x¢,t) such that performing a second ReFlow iteration using (Zy, Z1)
yields the same coupling:
Z—RGFZOLU(X(), Xl) = (Zl, ZQ)

Moreover, this second flow 01 (x4, t) generates straight-line paths and achieves zero loss. Therefore,
further ReFlow iterations do not alter the couplings.
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Figure 8: 180° rotation being realized by a continuous vector field.

Annotated Proof. Let vo(xy,t) be the learned vector field after CFM, with Assumption |1} From
[1992], the transport map T'(z¢) = 2o + fol v(zt, t)dt with zg € g is injective.
Step 1: Injectivity of T’

» Assumption: T is injective (guaranteed by properties of v, e.g., Lipschitz, linear growth).

* Potential Failure: If T' is not injective, the argument fails immediately.

Step 2: Injectivity of the Interpolant p(z, )
We claim that p(z,t) = (1 — t)z + ¢tT'(z) is also injective in z for each ¢ € [0, 1].

* Proof (by contradiction): Suppose p(z(()l), t) = p(z(()Q), t) for some ¢ and zél) + 252).

* Rearranging:

1t

(") = T(4") (" = %7)

* This statement doesn’t really contradict with 7" injectivity.
* Failure Point: As shown in Counterexample|T] this is not always true. For example, if 7" is

a rotation plus translation, p(z, t) can fail to be injective even if T is injective.

One might argue that such a transport map is unlikely to be learned in practice; however, this is
not the point. Our argument is purely theoretical: injectivity of 7' does not imply injectivity of
I(x0,T(x0),t), and thus 1-ReFlow is insufficient even under standard regularity assumptions.

Step 3: Construction of Inverse and New Vector Field

Assuming injectivity, we can define an inverse f~'(z;,t) = 20, and then set v1(2,t) =

T(fil(ztvt)) - fﬁl(ztvt)'

e Dependency: This construction only works if f~! exists, i.e., if p(z,t) is injective.

e Failure Point: If p(z,t) is not injective, f~! is not well-defined, and this construction fails.
Step 4: Straight-Line Paths and Zero Loss
Because z; — 2¢ is uniquely determined by z;, we have fol E[Var(Zy — Zy|Z;)] = 0, implying

straight paths and zero loss.

* Dependency: Again, relies on the injectivity of p(z, t).
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Counter Examplel Let my ~ N(0, 1) and w1 ~ N (5, 1), and let T(zo) = Rigpowo + 5, where
Risoo is a 180° rotation. T is injective, but the interpolant I(zo, T (z0),t) = (1 — t)zg + tT(2p) is
not injective (distinct zo can map to the same x for some t). Thus, f(x¢,t) = xq is not well-defined,
and the construction of Vpe, (24, t) fails.

Step | Assumption Needed | Where It Can Fail

1 T injective Pathological T’
2 p(z,t) injective for t | Nonlinear T (e.g., rotations)
3 F~ 1 exists p(z,t) not injective

4 Unique 2, for each z; | p(z,t) not injective
Table 4: Summary of dependencies and failure points in the proof.

Final Note. This proposition is only valid under the additional assumption that the interpolant
p(z,t) is injective in z for each ¢. The counterexample demonstrates that this is not always the case,
even when T’ is injective. Therefore, care must be taken before applying this argument in general
settings. O

E First iteration of SBM Asymmetry

To test whether our gradient-variance diagnostic extends beyond Gaussians, we trained four U-Net
models to learn the transport map from mo = N (0, I;) to m; ~CIFAR-10, using both noiseless and
noisy interpolants (see for experimental details Appendix [G). In all settings (Figure[J), the backward
field’s gradient variance peaks at ¢ = 0, where CIFAR-10 appears as input. Conversely, the forward
field’s variance peaks at ¢ = 1, when CIFAR-10 appears as the output.

To assess generation stability, we repeatedly integrated 64 fixed datapoints across 100 training
checkpoints, sampling at regular intervals near the FID/NLL optima (Table[5). We report the resulting
sample variances in the table’s fourth column:

Var[z§"] and Var[z§™],

which show consistently higher variability in the forward direction, suggesting reduced robustness
during forward-time sampling.

Observation 1. The observed difference in sample variance across vector fields optimized near the
optima may potentially impact subsequent iterations of SBM [Shi et al.| 2024|]. However, precisely
characterizing how this affects theoretical bounds is non-trivial and is left as a promising avenue for
future research.

Table 5: Comparison of FID, NLL, and sample variance for CFM (o = 0.05) (first iteration of SBM) and
CFM (Forward and Backward). The backward vector field exhibits approximately 10 times lower variance
in integrated samples compared to the forward vector field, despite both endpoints being standardized. This
highlights an inherent asymmetry in sampling stability between forward and backward flows.

Direction FID| Scaled -NLL| Variance & Std. Error

CFM(o = 0.05) Backward - 1.423564 0.01647 + 0.00024
Forward  4.250 - 0.36179 +1.23 x 107°

CFM Backward - 1.426562 0.01414 4+ 0.00018
Forward  4.199 - 0.36177 £1.23 x 107°

F Synthetic Experiments Details

Experiment Setting We evaluate generative models on synthetic datasets in dimensions 3 and 50.
Each dataset is constructed by sampling from a Gaussian Mixture Model (GMM) with randomly
initialized means and covariances, following our implementation in generate_datasets.py. The
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Figure 9: Comparison of gradient variance for the forward and backward passes in CFM and CFM(c = 0.05)
(first iteration of SBM). The schematic on the right offers intuition for how gradient variance may influence
sample variance during integration. Notably, the backward-pass gradient variance peaks near the CIFAR-10
endpoint, yet the resulting sample variance is lower compared to the forward pass. This is possible, for instance,
if the forward field increases linearly while the backward field decreases linearly. These effects are quantitatively
reflected in Table([T}

source distribution is standard normal, and the target is the GMM. We compare Conditional Flow
Matching (CFM) and CFM with Stochastic Interpolation (CFM(o = 0.05)), both implemented as
neural ODEs with time-conditioned MLP (Three-layer MLP, width 64, SELU activations) vector
fields. Models are trained and evaluated on both in-sample (training) and out-of-sample (test) data.
All metrics are computed as described below. We have used resources from [Feydy et al.|[2019] to
compute the distances.

Metric Descriptions

* Log Probability (LogProb): Measures the average log-likelihood of generated samples
under the target GMM distribution. Lower values indicate a better fit the modes.

* Maximum Mean Discrepancy (MMD): A kernel-based statistical distance between two
distributions, here computed using a Gaussian kernel. Lower values indicate better sample
quality.

* Sinkhorn Distance: An entropy-regularized approximation of the Wasserstein (optimal
transport) distance between empirical distributions, computed using the Sinkhorn algorithm.
Lower values indicate closer distributions.

Note on Log-Likelihood Values To improve readability and avoid confusion, we report and plot
the positive values of the log-likelihood (LogProb) throughout this paper, rather than the conventional
negative log-likelihood (NLL). This allows for a more intuitive comparison, where lower values
indicate better model performance.

It is important to note that log-likelihood (LogProb) primarily rewards models that generate samples
close to the high-density regions (modes) of the target distribution, rather than accurately capturing
the overall shape or support of the distribution. As a result, models that concentrate samples around
the modes can achieve high log-likelihood scores even if they do not match the full distribution
well. This should be kept in mind when interpreting LogProb values alongside other distance-based
metrics.

Table 6: Comparison of CFM and CFM(o = 0.05) across dimensions 3 and 50.

Dimension 3 50
Gen Mem True Data Gen Mem True Data
LogProb 4.0150 4.0156 4.1330  4.0155  54.8299 53.6502 52.5094 53.6244
+0.0032 +0.0032 +0.031 +0.035 +0.015 +0.26 +0.0833 +0.014
CFM MMD 0.0034 1.758 x 1076 0.0014  0.0032  0.0021 9.089 x 10~  0.0020  0.0019
+0.0005 +0.0001 +0.0002 +0.0001 +2e-09 +0.0001
Sinkhorn ~ 0.0730 1.411 x 107®  0.0637  0.0790 15.1900 0.0045 14.3221  15.7400
+0.0054 +0.002 +0.004 +0.162 +0.110 +0.130
LogProb 4.1270 4.0960 4.1330  4.0155  54.7220 53.8890 52.5094 53.6244
2+0.0010 +0.016 =+0.0008 +0.0013 +0.14 +0.16 +0.11 +0.26
-5 -5
CFM(o = 0.05) MMD 0.0018 3.105x 107>  0.0014  0.0032  0.0020 6.09 x 10 0.0020  0.0019
40.00048 +0.0003 40.0002 40.0001 +3e-09 40.0001
Sinkhorn ~ 0.0680 3.557 x 10~*  0.0637  0.0790 15.1689 0.0304 14.3221  15.7400
+0.0015 +0.007 =+0.004 +0.170 +0.220 =+0.230
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How to read the table? This table summarizes several metrics for model evaluation. For readers
unfamiliar with these results, here is how to interpret them:

Consider the case for dimension 3. For the Gen (generated) column, we want the log-likelihood
value to be closer to the True value rather than the Data value. If the generated value is closer to the
data, it indicates memorization, rather than true generalization. For example, in CFM, the generated
value is much closer to the data than the true value, suggesting memorization. This discrepancy
arises because negative log-likelihood (NLL) tends to favor models that sample near the training data
modes, rather than those that capture the full distribution.

Similarly, in the Mem (memorization) column, a value close to the data again indicates overfitting to
the training points.

For the MMD and Sinkhorn metrics, these measure distances between newly generated trajectories
(starting from training points) and the pairings from previous iterations. In both MMD and Sinkhorn,
we observe that CFM(c = 0.05) memorizes roughly ten times less than standard CFM, indicating
better generalization.
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F.1 Asymmetry in Gaussian mixtures

Experiment Settings We systematically investigated the Conditional Flow Matching (CFM) and
CFM(c = 0.05) approaches for learning mappings between mixtures of Gaussian distributions
(GMM-to-GMM). In each experiment, both the source and target distributions were Gaussian
mixtures, with the number of components for each varied across the grid: {1,2,4,8,16,32,64}. The
neural network architecture for the vector field was a multilayer perceptron (MLP) with configurable
width (w, e.g., 64 by default) and input dimension (d, e.g., 10). Each cell in the results grid
corresponds to a specific pair of source and target GMM component counts, allowing us to analyze
the effect of distribution complexity on learning dynamics and gradient variance. Training was
performed for up to 50,000 epochs using a batch size of 128 and a learning rate of 103, with
integration performed via Neural ODEs.

1x1 1x4 1x16 1x64

16x1 16x4 1616 16 % 64

64x1 6dxd 64x16 64x64

Figure 10: CFM in 10 dimensions. Each title indicates the number of Gaussian components in the
source distribution multiplied by the number in the target distribution (e.g., 4x16 means 4 modes at
source, 16 at target).
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16x1 16x4 16x16 16 % 64

B4x1 Baxd 64x16 64 x 64

Figure 11: CFM combined with stochastic interpolants for mixture-to-mixture transport in 10
dimensions. Each panel is labeled as source modes x target modes.

We can notice that the variance of the gradients looks more stable in the case of the Figure [IT]
(stochastic interpolants), than in the case of Figure [I0] (noisless).

G CIFAR-10 Experiment Details

Model architecture. All experiments used a U-Net-based neural network (UNetModelWrapper)
with the following configuration: input shape (3, 32, 32), base channels 128, 2 residual blocks per
level, channel multipliers [1, 2, 2, 2], attention at 16 x 16 resolution (4 heads, 64 head channels), and
dropout rate 0.1. The model is wrapped in a Neural ODE solver (Euler method).

Training. Models were trained on the CIFAR-10 training set, using random horizontal flips and
normalization to [—1, 1]. Optimization used Adam with learning rate 2 x 10~*, batch size 128,
gradient clipping at 1.0, and a linear warmup over the first 5,000 steps. Each run used 400,001 steps
(unless otherwise noted), with exponential moving average (EMA) of model weights (0.9999 decay).
Checkpoints were saved every 20,000 steps. All experiments used 4 data loader workers and CUDA
if available.

Flow objectives. We used Conditional Flow Matching (CFM, -model cfm), Schrodinger Bridge
Matching (SBM, -model sbm), and other variants.

Bidirectional setup. Both forward (Gaussian — CIFAR-10) and backward (CIFAR-10 — Gaussian)
models were trained independently with identical hyperparameters. For the forward model, the source
is standard Gaussian noise and the target is real images; for the backward model, the roles are
swapped.

Hardware and runtime. All CIFAR-10 experiments were conducted on a compute cluster equipped
with NVIDIA A10 GPUs (24 GB VRAM, CUDA 12.2). Each training run was allocated a single A10
GPU and typically ran for 24 hours to reach 240,000 optimization steps. These resources enabled
efficient training of both forward and backward models at the scale reported in the main text.
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G.1 FID and Interpolant Details

For Figure 9] we trained four vector fields (two forward and two backward), each using a different
interpolant:

* CFM: The interpolant is deterministic,
xy = (1 —t)xg + tzy.
* CFM(o = 0.05): The interpolant includes stochastic noise,
xe = (1 —t)xog + txy + o/t(1 — 1) Z,
where Z ~ N(0,1) and o = 0.01.
The models were evaluated as follows:

¢ CFM forward FID: 4.199

¢ CFM backward scaled NLL: 1.426

* CFM(o = 0.05) forward FID: 4.250

* CFM(o = 0.05) backward scaled NLL: 1.423

G.2 Does adding powers of ¢ help models learn better?

Gradient Variance vs t

Figure 12: Variance not necessarily correlated with performance. I was wondering if it is worth
saying that sinusoidal time embedding is better at representing function s like g(x) = H%, than
polynomials. (Taylor vs Fourier)

H CelebA Experiment Details

In Table[7] we computed FID on both the training and validation sets and observed similar values,
which could, in principle, indicate the trade-off between memorization and generalization. However,
the CelebaOt dataset |Korotin et al|[2021] is itself generated by another model, and with only 50k
generated samples it likely contains overlapping images. Consequently, the training and validation
splits may share duplicates, making it difficult to draw strong conclusions from the FID scores. We
include these results merely as evidence that all models were trained to a satisfactory degree.
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Setting Method FID |
CFM(o = 0) 34.36
CFM(c = 0.05)  32.31

CFM(c = 0) 31.42
CFM(c = 0.05)  42.38
Table 7: FID scores for the 50k dataset-side setting. Lower is better.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have separated a paragraph for limitations in the conclusion.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Results in our paper build on top of each other, and when they do not, we
always present them in the body of the proposition or reference them.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We don’t propose any new method, and the experimental details can be found
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide our code in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detail in the Appendix section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We have computed confidence intervals for most our empirical results. For
FID results, we mention them more for reference, as we don’t try to benchmark against any
method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Presented in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Anonymity is preserved, we don’t include human subjects, or sensitive data.
All items use are publicly available.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is quite theoretical, and explains why two state-of-the-art models
don’t perform as expected. We don’t propose solutions for it.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We don’t release any data models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The main package we use is torchcfm, and we cite the paper on multiple
occasions, and we mention it in the Appendix also.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We introduce no asset; we just study empirically and theoretically already
established methods.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: no human subjects
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No crowdsourcing was used, and no human participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Used LLMs only for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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