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Abstract: We introduce Value-Implicit Pre-training (VIP), a self-supervised pre-1

trained visual representation capable of generating dense and smooth reward func-2

tions for unseen robotic tasks. VIP casts representation learning from human3

videos as an offline goal-conditioned reinforcement learning problem and derives4

a self-supervised dual goal-conditioned value-function objective that does not5

depend on actions, enabling pre-training on unlabeled human videos. Theoretically,6

VIP can be understood as a novel implicit time contrastive learning that makes7

for temporally smooth embedding that enables the value function to be implicitly8

defined via the embedding distance, which can be used as the reward function for9

any downstream task specified through goal images. Trained on large-scale Ego4D10

human videos and without any fine-tuning on task-specific robot data, VIP’s frozen11

representation can provide dense visual reward for an extensive set of simulated and12

real-robot tasks, enabling diverse reward-based policy learning methods, including13

visual trajectory optimization and online/offline RL, and significantly outperform14

all prior pre-trained representations. Notably, VIP can enable few-shot offline RL15

on a suite of real-world robot tasks with as few as 20 trajectories. Project website:16

https://sites.google.com/view/rl-vip17

Keywords: Pre-Training for Robot Learning, Offline Goal-Conditioned RL, Self-18

Supervised Learning19

1 Value-Implicit Pre-Training20

Due to space limit, we provide the full version of this section in Appendix D.21

1.1 Foundation: Self-Supervised Value Learning from Human Videos22

While human videos are out-of-domain data for robots, they are in-domain for learning a goal-23

conditioned human policy. Given that human videos naturally contain goal-directed behavior, one24

reasonable idea of utilizing offline human videos for representation learning is to solve an offline25

goal-conditioned RL problem over the space of human policies and then extract the learned visual26

representation. However, this idea is seemingly implausible because the offline human dataset does27

not come with any action labels that are typically required for policy learning. Our key insight is that,28

for a suitable choice of offline policy optimization problem, we can solve for the dual value learning29

problem that does not depend on any action label in the offline dataset. In particular, leveraging the30

idea of Fenchel duality [1] from convex optimization, we have the following result:31

Proposition 1.1. Under assumption of deterministic transition dynamics, the dual optimization32

problem of (11) is33

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logE(o,o′;g)∼D [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
,

(1)
where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-34

conditioned distribution of two consecutive observations in dataset D.35
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Figure 1: Value-Implicit Pre-training (VIP). Pre-trained on large-scale, in-the-wild human videos, frozen
VIP network can provide visual reward and representation for downstream robotics tasks and enable diverse
visuomotor control strategies without any task-specific fine-tuning.

As shown, actions do not appear in the objective. Furthermore, since all expectations in (12) can be36

sampled using the offline dataset, this dual value-function objective can be self-supervised with an37

appropriate choice of reward function. In particular, since our goal is to acquire a value function that38

extracts a general notion of goal-directed task progress from passive offline human videos, we set39

r(o, g) = I(o == g)− 1, which we refer to as δ̃g(o) in shorthand. This reward provides a constant40

negative reward when o is not the provided goal g, and does not require any task-specific engineering.41

The resulting value function V (ϕ(o);ϕ(g)) captures the discounted total number of steps required42

to reach goal g from observation o, and will objective will encourage learning visual features ϕ that43

are amenable to predicting the discounted temporal distance between two frames in a human video44

sequence. With enough size and diversity in the training dataset, we hypothesize that this value45

function can generalize to completely unseen (robot) domains.46

1.2 Analysis: Implicit Time Contrastive Learning47

In this section, we show that (1) can be understood as a novel implicit temporal contrastive rep-48

resentation learning that acquires temporally smooth embedding distance over video sequences,49

underpinning VIP’s efficacy jointly as a visual representation and reward for downstream control.50

Assuming that the optimal V ∗ is found in (1), with a few algebraic manipulation steps (see Appendix E51

for a derivation), we can massage (13) into an expression that resembles the InfoNCE [2] time52

contrastive learning [3] (see Appendix B.2 for a definition and additional background) objective:53

minϕ(1− γ)Ep(g),µ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g))

ED(o,o′;g)[exp(δ̃g(o)+γV ∗(ϕ(o′);ϕ(g))−V ∗(ϕ(o),ϕ(g)))]
−1

(1−γ)

]
(2)

In particular, p(g) can be thought of the distribution of “anchor” observations, µ0(s; g) the distribution54

of “positives” samples, and D(o, o′; g) the distribution of “negatives” samples. Since the value55

function encodes negative discounted temporal distance, due to the recursive nature of value temporal-56

difference (TD), in order for the one-step TD error to be globally minimized along a video sequence,57

observations that are temporally farther away from the goal will naturally be repelled farther away in58

the representation space compared to observations that are nearby in time. Therefore, the repulsion59

of the negative observations is an implicit, emergent property from the optimization of (2), instead of60

an explicit constraint as in standard (time) contrastive learning. In Appendix D, we detail how this61

implicit time contrast mechanism gives rise to a temporally smooth visual representation that makes62

for effective zero-shot reward-specification.63

1.3 Algorithm: Value-Implicit Pre-Training (VIP)64

Recall that V ∗ is assumed to be known for the derivation in Section 1.2, but in practice, its analytical65

form is rarely known. Now, given that V ∗ plays the role of a distance measure in our implicit66

time contrastive learning framework, a simple and intuitive way to approximate V ∗ in practice67
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is to implicitly parameterize it to be a choice of distance measure. In this work, we choose the68

common choice of the negative L2 distance used in prior work Sermanet et al. [3], Nair et al. [4]:69

V ∗(ϕ(o), ϕ(g)) := −∥ϕ(o)− ϕ(g)∥2. Altogether, VIP training is illustrated in Alg. 2; it is simple70

and its core training loop can be implemented in fewer than 10 lines of PyTorch code (Alg. 3).71

Algorithm 1 Value-Implicit Pre-Training (VIP)

1: Require: Offline (human) videos D = {(oi1, ..., oiih)}
N
i=1, visual architecture ϕ

2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., o

i
T }Bi=1 ∼ D, t ∈ [1, ih − 1], t ≤ k < T, T ∈ (t, ih], ∀i

4: L(ϕ) := 1−γ
B

∑B
i=1

[∥∥ϕ(oit)− ϕ(oiT )
∥∥
2

]
+ log 1

B

∑B
i=1

[
exp

(∥∥ϕ(oik)− ϕ(oiT )
∥∥
2
− δ̃oi

T
(oik)− γ

∥∥ϕ(oik+1)− ϕ(oiT )
∥∥
2

)]
5: Update ϕ using SGD: ϕ← ϕ− αϕ∇L(ϕ)

2 Experiments72

Figure 2: Visual traj. opt. and RL results (max success rate %).

In this section, we demonstrate VIP’s73

effectiveness as both a pre-trained74

visual reward and representation on75

three distinct reward-based policy76

learning settings. Due to space limit,77

we delve into results directly, and78

all omitted experimental details are79

contained in App. G; additional re-80

sults and analysis are presented in81

App.I. At a high level, VIP fixes the82

visual architecture (ResNet50) and83

pre-training dataset (Ego4D) as a84

state-of-art pre-trained representation85

R3M [4], differing primarily in the86

training objective. We use FrankaKitchen [5] for evaluation. Each task is specified via only a goal87

image, requiring the pre-trained representations to provide embedding-distance based reward (4) and88

visual encoding.89

2.1 Trajectory Optimization & Online Reinforcement Learning90

We evaluate pre-trained representations’ capability as pure visual reward functions by using them91

to directly synthesize a sequence of actions using a standard trajectory optimization algorithm. We92

also evaluate online RL, which provides improved exploration but comes with the added challenge of93

demanding the pre-trained representation to provide both the visual reward and representation for94

learning a closed-loop policy. In Figure 2, we report each representation’s cumulative success rate95

averaged over task configurations and random seeds (3 seeds * 3 cameras * 12 tasks = 108 runs).96

Examining the MPPI results, we see that VIP is substantially better than all baselines in both Easy97

and Hard settings, and is the only representation that makes non-trivial progress on the Hard setting.98

These results demonstrate that VIP has superior capability as a pure visual reward function. In99

Fig. 3, we couple VIP and the strongest baselines (R3M, Resnet)’s with increasingly powerful MPPI100

optimizers (i.e., more trajectories per optimization step). As shown, while VIP steadily benefits from101

stronger optimizers and can reach an average success rate of 44%, baselines often do worse when102

MPPI becomes more powerful, suggesting that their reward landscapes are filled with local minima103

that do not correlate with task progress and are easily exploited by (stronger) optimizers.104

Switching gear to online RL, VIP again achieves consistently superior performance, demonstrating105

its joint effectiveness as visual reward and representation. VIP (Sparse)’s inability to solve any106

task indicates the necessity of dense reward in solving these challenging visual manipulation tasks.107

Whereas sparse reward still requires human engineering via installing additional sensors [6, 7] and108

faces exploration challenges [8], with VIP, the end-user has to provide only a goal image, and, without109

any additional state or reward instrumentation, can expect a significant improvement in performance.110
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Table 1: Real-robot offline RL results (success rate % averaged over 10 rollouts with standard deviation reported).
Pre-Trained In-Domain

Environment VIP-RWR VIP-BC R3M-RWR R3M-BC Scratch-BC VIP-RWR VIP-BC

CloseDrawer 100 ± 0 50 ± 50 80 ± 40 10 ± 30 30 ± 46 0 ± 0 0∗ ± 0

PushBottle 90 ± 30 50 ± 50 70 ± 46 50 ± 50 40± 48 0∗ ± 0 0∗ ± 0

PlaceMelon 60 ± 48 10 ± 30 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

FoldTowel 90 ± 30 20 ± 40 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

2.2 Real-World Few-Shot Offline Reinforcement Learning111

Figure 3: VIP benefits from scaling compute
for downstream trajectory optimization.

Finally, we demonstrate how VIP’s reward and representa-112

tion can power a simple and practical system for real-world113

robot learning in the form of few-shot offline reinforcement114

learning, making offline RL simple, sample-efficient, and115

more effective than BC with almost no added complexity.116

To this end, we consider a simple reward-weighted regres-117

sion (RWR) [9, 10] approach, in which the reward and the118

encoder are provided by the pre-trained model ϕ:119

L(π) = −EDtask
[exp(τ ·R(o, o′;ϕ, g)) log π(a | ϕ(o))] ,

(3)
where R is defined via (4) and τ is the temperature scale.120

Compared to BC, which would be (3) with uniform weights to all transitions, RWR can focus121

policy learning on transitions that have high rewards (i.e., high task progress) under the deployed122

representation.123

We introduce 4 tabletop manipulation tasks (see Figure 1 and Figure 10) requiring a real 7-DOF124

Franka robot to manipulate objects drawn from distinct categories of objects. For each task, we collect125

in-domain, task-specific offline data Dtask of ∼ 20 demonstrations with randomized object initial126

placements for policy learning; we provide detailed task and experiment descriptions in Appendix H.127

The average success rate (%) and standard deviation across 10 test rollouts are reported in Table 1.128

As shown, VIP-RWR improves upon VIP-BC on all tasks and provides substantial benefit in the129

harder tasks that are multi-stage in nature. In contrast, R3M-RWR, while able to improve R3M-BC130

on the simpler two tasks involving pushing an object, fails to make any progress on the harder tasks.131

The low performance of BC-based methods on the harder PickPlaceMelon and FoldTowel tasks132

indicates that in this low-data regime, regardless of the quality of visual representation, good reward133

information is necessary for task success. Finally, in-domain methods all fail in this low-data regime.134

Altogether, these results corroborate the necessity of pre-training in achieving real-world few-shot135

offline RL and highlight the unique effectiveness of VIP in realizing this goal.136

3 Conclusion137

We have proposed Value-Implicit Pre-training (VIP), a self-supervised value-based pre-training138

objective that is highly effective in providing both the visual reward and representation for downstream139

unseen robotics tasks. VIP is derived from first principles of dual reinforcement learning and admits an140

appealing connection to an implicit and more powerful formulation of time contrastive learning, which141

captures long-range temporal dependency and injects local temporal smoothness in the representation142

to make for effective zero-shot reward specification. Trained entirely on diverse, in-the-wild human143

videos, VIP demonstrates significant gains over state-of-art pre-trained representations on an extensive144

set of policy learning settings. Notably, VIP can enable simple and sample-efficient real-world offline145

RL with just handful of trajectories. Altogether, we believe that VIP makes an important contribution146

in both the algorithmic frontier of visual pre-training for RL and practical real-world robot learning.147
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A Problem Setting and Background323

In this section, we describe our problem setting of out-of-domain pre-training and provide formalism324

for downstream representation evaluation. Additional background on goal-conditioned reinforcement325

learning and contrastive learning is included in Appendix B.326

A.1 Out-of-Domain Pre-Training Visual Representation327

We consider the problem setting of pre-training a frozen visual encoder for downstream control328

tasks [11, 12, 4]. More specifically, we have access to a training set of video data D = {vi :=329

(oi1, ..., o
i
ih
)}Ni=1, where each o ∈ RH×W×3 is a raw RGB image; note that this formalism also330

captures standard image datasets (e.g., ImageNet), if we take ih = 1 for all vi. Like prior works, we331

assume D to be out-of-domain and does not include any robot task or domain-specific data. A learning332

algorithm A ingests this training data and outputs a visual encoder ϕ := A(D) : RH×W×3 → K,333

where K is the embedding dimension.334

A.2 Representation Evaluation335

Given a choice of representation ϕ, every evaluation task can be instantiated as a Markov decision336

process M(ϕ) := (ϕ(O), A,R(ot, ot+1;ϕ, g), T, γ, g), in which the state space is the induced space337

of observation embeddings, and the task is specified via a (set of) goal image(s) g. Specifically,338

for a given transition tuple (ot, ot+1), we define the reward to be the goal-embedding distance339

difference [13, 14]:340

R(ot, ot+1;ϕ, {g}) := Sϕ(ot+1; g)−Sϕ(ot; g) := (1−γ)Sϕ(ot+1; g)+(γSϕ(ot+1; g)− Sϕ(ot; g)) ,
(4)

where Sϕ is a choice of distance function in the ϕ-representation space; in this work, we set341

Sϕ(ot; g) := −∥ϕ(ot)− ϕ(g)∥2. This reward function can be interpreted as a raw embedding342

distance reward with a reward shaping [15] term that encourages making progress towards the goal.343

This preserves optimal policy but enables more efficient and robust policy learning.344

Under this formalism, parameters of ϕ are frozen during policy learning (it is considered a part of the345

MDP), and we want to learn a policy π : RK → A that outputs an action based on the embedded346

observation a ∼ π(ϕ(o)).347

B Additional Background348

B.1 Goal-Conditioned Reinforcement Learning349

This section is adapted from Ma et al. [16]. We consider a goal-conditioned Markov decision process350

from visual state space: M = (O,A,G, r, T, µ0, γ) with state space O, action space A, reward351

r(o, g), transition function o′ ∼ T (o, a), the goal distribution p(g), and the goal-conditioned initial352

state distribution µ0(o; g), and discount factor γ ∈ (0, 1]. We assume the state space O and the353

goal space G to be defined over RGB images. The objective of goal-conditioned RL is to find a354

goal-conditioned policy π : O ×G → ∆(A) that maximizes the discounted cumulative return:355

J(π) := Ep(g),µ0(o;g),π(at|st,g),T (ot+1,|ot,at)

[ ∞∑
t=0

γtr(ot; g)

]
(5)

The goal-conditioned state-action occupancy distribution dπ(o, a; g) : O ×A×G → [0, 1] of π is356

dπ(o, a; g) := (1− γ)

∞∑
t=0

γtPr(ot = o, at = a | o0 ∼ µ0(o; g), at ∼ π(ot; g), ot+1 ∼ T (ot, at))

(6)

which captures the goal-conditioned visitation frequency of state-action pairs for policy π. The357

state-occupancy distribution then marginalizes over actions: dπ(o; g) =
∑

a d
π(o, a; g). Then, it358
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follows that π(a | o, g) = dπ(o,a;g)
dπ(o;g) . A state-action occupancy distribution must satisfy the Bellman359

flow constraint in order for it to be an occupancy distribution for some stationary policy π:360 ∑
a

d(o, a; g) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (s | õ, ã)d(õ, ã; g), ∀o ∈ O, g ∈ G (7)

We write dπ(o, g) = p(g)dπ(o; g) as the joint goal-state density induced by p(g) and the policy π.361

Finally, given dπ , we can express the objective function (5) as J(π) = 1
1−γE(o,g)∼dπ(o,g)[r(o, g)].362

B.2 InfoNCE & Time Contrastive Learning.363

As VIP can be understood as a implicit and smooth time contrastive learning objective, we provide364

additional background on the InfoNCE Oord et al. [2] and time contrastive learning (TCN) [3]365

objective to aid comparison in Section D.2.366

InfoNCE is an unsupervised contrastive learning objective built on the noise contrastive estima-367

tion [17] principle. In particular, given an “anchor” datum x (otherwise known as context), and368

distribution of positives xpos and negatives xneg, the InfoNCE objective optimizes369

min
ϕ

Expos

[
− log

Sϕ(x, xpos)

Exneg
Sϕ(x, xneg)

]
, (8)

where Exneg is often approximated with a fixed number of negatives in practice.370

It is shown in Oord et al. [2] that optimizing (8) is maximizing a lower bound on the mutual371

information I(x, xpos), where, with slight abuse of notation, x and xpos are interpreted as random372

variables.373

TCN is a contrastive learning objective that learns a representation that in timeseries data (e.g., video374

trajectories). The original work [3] considers multi-view videos and perform contrastive learning375

over frames in separate videos; in this work, we consider the single-view variant. At a high level,376

TCN attracts representations of frames that are temporally close, while pushing apart those of frames377

that are farther apart in time. More precisely, given three frames sampled from a video sequence378

(ot1 , ot2 , ot3), where t1 < t2 < t3, TCN would attract the representations of ot1 and ot2 and repel379

the representation of ot3 from ot1 . This idea can be formally expressed via the following objective:380

min
ϕ

E(ot1 ,ot2>t1 )∼D

[
− log

Sϕ(ot1 ; ot2)

Eot3 |t3>t2∼D [Sϕ(ot1 ; ot3)]

]
(9)

Given a “positive” window of K steps and a uniform distribution among valid positive samples, we381

can write (9) as382

min
ϕ

1

K

K∑
k=1

E(ot1 ,ot1+k)∼D

[
− log

Sϕ(ot1 ; ot1+k)

Eot3 |t3>t1+k∼D [Sϕ(ot1 ; ot3)]

]
, (10)

in which each term inside the expectation is a standalone InfoNCE objective tailored to observation383

sequence data.384

C Related Work385

We review relevant literature on (1) Out-of-Domain Representation Pre-Training for Control, (2)386

Perceptual Reward Learning from Human Videos, and (3) Goal-Conditioned RL as Representation387

Learning.388

Out-of-Domain Representation Pre-Training for Control. Bootstrapping visual control using389

frozen representations learned pre-trained on out-of-domain non-robot data is a nascent field that390

has seen fast progress over the past year. Shah and Kumar [11] demonstrates that pre-trained391

ResNet [18] representation on ImageNet [19] serves as effective visual backbone for simulated392

dexterous manipulation RL tasks. Parisi et al. [12] finds ResNet models trained with unsupervised393
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objectives, such as momentum contrastive learning (MOCO) [20], to surpass supervised objectives394

(e.g, image classification) for both visual navigation and control tasks. Xiao et al. [21] pre-trains395

visual representation on human video data [22, 23] using masked-autoencoding [24]. Along this axis,396

the closest work to ours is Nair et al. [4], which is also pre-trained on the Ego4D dataset and attempts397

to capture temporal information in the videos by using time-contrastive learning [3]; it additionally398

leverages textual descriptions associated with the videos to encode semantic information. In contrast,399

our objective is fully self-supervised without dependence on textual annotations. Furthermore, VIP400

is the first to propose using a RL-based objective for out-of-domain pre-training and is capable of401

producing generalizable dense reward signals.402

Perceptual Reward Learning from Human Videos. Human videos provide a rich natural source403

of reward and representation learning for robotic learning. Most prior works exploit the idea of404

learning an invariant representation between human and robot domains to transfer the demonstrated405

skills [25, 3, 26, 27, 28, 29, 30]. However, training these representations require task-specific human406

demonstration videos paired with robot videos solving the same task, and cannot leverage the large407

amount of “in-the-wild” human videos readily available. As such, these methods require robot data408

for training, and learn rewards that are task-specific and do not generalize beyond the tasks they are409

trained on. In contrast, VIP do not make any assumption on the quality or the task-specificity of410

human videos and instead pre-trains an (implicit) value function that aims to capture task-agnostic411

goal-oriented progress, which can generalize to completely unseen robot domains and tasks.412

Goal-Conditioned RL as Representation Learning. Our pre-training method is also related to the413

idea of treating goal-conditioned RL as representation learning. Chebotar et al. [31] shows that a414

goal-conditioned Q-function trained with offline in-domain multi-task robot data learns an useful415

visual representation that can accelerate learning for a new downstream task in the same domain.416

Eysenbach et al. [32] shows that goal-conditioned Q-learning with a particular choice of reward417

function can be understood as performing contrastive learning. In contrast, our theory introduces418

a new implicit time contrastive learning, and states that for any choice of reward function, the dual419

formulation of a regularized offline GCRL objective can be cast as implicit time contrast. This420

conceptual bridge also explains why VIP’s learned embedding distance is temporally smooth and can421

be used as an universal reward mechanism. Finally, whereas these two works are limited to training422

on in-domain data with robot action labels, VIP is able to leverage diverse out-of-domain human data423

for visual representation pre-training, overcoming the inherent limitation of robot data scarcity for424

in-domain training.425

Our work is also closely related to Ma et al. [16], which first introduced the dual offline GCRL426

objective based on Fenchel duality [1, 33, 34]. Whereas Ma et al. [16] assumes access to the true427

state information and focuses on the offline GCRL setting using in-domain offline data with robot428

action labels, we extend the dual objective to enable out-of-domain, action-free pre-training from429

human videos. Our particular dual objective also admits a novel implicit time contrastive learning430

interpretation, which simplifies VIP’s practical implementation by letting the value function be431

implicitly defined instead of a deep neural network as in Ma et al. [16].432

D Value-Implicit Pre-Training (Full-Version)433

In this section, we demonstrate how a self-supervised value-function objective can be derived from434

computing the dual of an offline RL objective on passive human videos (Section D.1). Then, we435

show how this objective amounts to a novel implicit formulation of temporal contrastive learning436

(Section D.2), which naturally lends a temporally and locally smooth embedding favorable for437

downstream visual reward specification. Finally, we leverage this contrastive interpretation to438

instantiate a simple implementation (<10 lines of PyTorch code) of our dual value objective that does439

not explicitly learn a value network (Section D.3), culminating in our final algorithm, Value-Implicit440

Pre-training (VIP).441
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D.1 Foundation: Self-Supervised Value Learning from Human Videos442

While human videos are out-of-domain data for robots, they are in-domain for learning a goal-443

conditioned policy πH over human actions, aH ∼ πH(ϕ(o) | ϕ(g)), for some human action space444

AH . Therefore, given that human videos naturally contain goal-directed behavior, one reasonable idea445

of utilizing offline human videos for representation learning is to solve an offline goal-conditioned446

RL problem over the space of human policies and then extract the learned visual representation. To447

this end, we consider the following KL-regularized offline RL objective [35] for some to-be-specified448

reward r(o, g):449

max
πH ,ϕ

EπH

[∑
t

γtr(o; g)

]
− (dπH (o, aH ; g)∥dD(o, ãH ; g)), (11)

where dπH (o, aH ; g) is the distribution over observations and actions πH visits conditioned on g.450

Observe that a “dummy” action ã is added to every transition (oih, ã
i
h, o

i
h+1) in the dataset D so that451

the KL regularization is well-defined, and ãhi can be thought of as the unobserved true human action452

taken to transition from observation oih to oih+1. While this objective is mathematically sound and453

encourages learning a conservative πH , it is seemingly implausible because the offline dataset DH454

does not come with any action labels nor can AH be concretely defined in practice. However, what455

this objective does provide is an elegant dual objective over a value function that does not depend on456

any action label in the offline dataset. In particular, leveraging the idea of Fenchel duality [1] from457

convex optimization, we have the following result:458

Proposition D.1. Under assumption of deterministic transition dynamics, the dual optimization459

problem of (11) is460

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logE(o,o′;g)∼D [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
, (12)461

where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-462

conditioned distribution of two consecutive observations in dataset D.463

As shown, actions do not appear in the objective. Furthermore, since all expectations in (12) can be464

sampled using the offline dataset, this dual value-function objective can be self-supervised with an465

appropriate choice of reward function. In particular, since our goal is to acquire a value function that466

extracts a general notion of goal-directed task progress from passive offline human videos, we set467

r(o, g) = I(o == g)− 1, which we refer to as δ̃g(o) in shorthand. This reward provides a constant468

negative reward when o is not the provided goal g, and does not require any task-specific engineering.469

The resulting value function V (ϕ(o);ϕ(g)) captures the discounted total number of steps required to470

reach goal g from observation o. Consequently, the overall objective will encourage learning visual471

features ϕ that are amenable to predicting the discounted temporal distance between two frames in a472

human video sequence. With enough size and diversity in the training dataset, we hypothesize that473

this value function can generalize to completely unseen (robot) domains and tasks.474

D.2 Analysis: Implicit Time Contrastive Learning475

While (12) will learn some useful visual representation via temporal value function optimization,476

in this section, we show that it can be understood as a novel implicit temporal contrastive learning477

objective that acquires temporally smooth embedding distance over video sequences, underpinning478

VIP’s efficacy jointly as a visual representation and reward for downstream control.479

We begin by simplifying the expression in (12) by first assuming that the optimal V ∗ is found:480

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[−V ∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]
, (13)481

where we have also re-written the maximization problem as a minimization problem. Now, after482

few algebraic manipulation steps (see App. E for a derivation), if we think of V ∗(ϕ(o);ϕ(g)) as a483

similarity metric in the embedding space, then we can massage (13) into an expression that resembles484
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the InfoNCE [2] time contrastive learning [3] (see App. B.2 for a definition and additional background)485

objective:486

minϕ(1− γ)Ep(g),µ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g))

ED(o,o′;g)[exp(δ̃g(o)+γV ∗(ϕ(o′);ϕ(g))−V ∗(ϕ(o),ϕ(g)))]
−1

(1−γ)

]
(14)487

In particular, p(g) can be thought of the distribution of “anchor” observations, µ0(s; g) the distribution488

of “positive” samples, and D(o, o′; g) the distribution of “negative” samples. Counter-intuitively and489

in contrast to standard single-view time contrastive learning (TCN), in which the positive observations490

are temporally closer to the anchor observation than the negatives, (14) has the positives to be as491

temporally far away as possible, namely the initial frame in the the same video sequence, and the492

negatives to be middle frames sampled in between. This departure is accompanied by the equally493

intriguing deviation of the lack of explicit repulsion of the negatives from the anchor; instead, they494

are simply encouraged to minimize the (exponentiated) one-step temporal-difference error in the495

representation space (the denominator in (14)); see Fig. 1. Now, since the value function encodes496

negative discounted temporal distance, due to the recursive nature of value temporal-difference (TD),497

in order for the one-step TD error to be globally minimized along a video sequence, observations that498

are temporally farther away from the goal will naturally be repelled farther away in the representation499

space compared to observations that are nearby in time; in App. E.3, we formalize this intuition and500

show that this repulsion always holds for optimal paths. Therefore, the repulsion of the negative501

observations is an implicit, emergent property from the optimization of (14), instead of an explicit502

constraint as in standard (time) contrastive learning.503

Figure 4: Learned 2D representation of a held-out task
demonstration by VIP and TCN trained on task-specific
in-domain data. The color gradient indicates trajectory
time progression (purple for beginning, red for end). The
inset plots are embedding distances to last frame.

Now, we dive into why this implicit time con-504

trastive learning is desirable. First, the explicit505

attraction of the initial and goal frames enables506

capturing long-range semantic temporal depen-507

dency as two frames that meaningfully indicate508

the beginning and end of a task are made close509

in the embedding space. This closeness is also510

well-defined due to the one-step TD backup that511

makes every embedding distance recursively de-512

fined to be the discounted number of timesteps513

to the goal frame. Combined with the implicit514

yet structured repulsion of intermediate frames,515

this push-and-pull mechanism helps inducing a temporally smooth and consistent representation. In516

particular, as we pass a video sequence in the training set through the trained representation, the em-517

bedding should be structured such that two trends emerge: (1) neighboring frames are close-by in the518

embedding space, (2) their distances to the last (goal) frame smoothly decrease due to the recursively519

defined embedding distances. To validate this intuition, in Fig. 4, we provide a simple toy example520

comparing implicit vs. standard time contrastive learning when trained on in-domain, task-specific521

demonstrations; details are included in App. G.2. As shown, standard time contrastive learning only522

enforces a coarse notion of temporal consistency and learns a non-locally smooth representation523

that exhibits many local minima. In contrast, VIP learns a much better structured embedding that is524

indeed temporally consistent and locally smooth. As we will show, the prevalence of sharp “bumps”525

in the embedding distance as in TCN can be easily exploited by the control algorithm, and VIP’s526

ability to generate long-range temporally smooth embedding is the key ingredient for its effective527

downstream zero-shot reward-specification.528

D.3 Algorithm: Value-Implicit Pre-Training (VIP)529

The theoretical development in the previous two sections culminates in Value Implicit Pre-Training530

(VIP), a simple value-based self-supervised pre-training objective, in which the value function is531

implicitly represented via the learned embedding distance.532
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Recall that V ∗ is assumed to be known for the derivation in Section D.2, but in practice, its analytical533

form is rarely known. Now, given that V ∗ plays the role of a distance measure in our implicit time534

contrastive learning framework, a simple and practical way to approximate V ∗ is to simply set it to535

be a choice of similarity metric, bypassing having to explicitly parameterize it as a neural network. In536

this work, we choose the common choice of the negative L2 distance used in prior work Sermanet et al.537

[3], Nair et al. [4]: V ∗(ϕ(o), ϕ(g)) := −∥ϕ(o)− ϕ(g)∥2. Given this choice, our final representation538

learning objective is as follows:539

L(ϕ) = Ep(g)

[
(1− γ)Eµ0(o;g) [∥ϕ(o)− ϕ(g)∥2] + logE(o,o′;g)∼D

[
exp

(
∥ϕ(o)− ϕ(g)∥2 − δ̃g(o)− γ ∥ϕ(o′)− ϕ(g)∥2

)]]
, (15)540

in which we also absorb the exponent of the log-sum-exp term in 13 into the inner exp(·) term via541

an Jensen’s inequality; we found this upper bound to be numerically more stable. To sample video542

trajectories from D, because any sub-trajectory of a video is also a valid video sequence, VIP samples543

these sub-trajectories and treats their initial and last frames as samples from the goal and initial-state544

distributions (Step 3 in Alg. 2). Altogether, VIP training is illustrated in Alg. 2; it is simple and its545

core training loop can be implemented in fewer than 10 lines of PyTorch code (Alg. 3 in App. F.3).546

Algorithm 2 Value-Implicit Pre-Training (VIP)

1: Require: Offline (human) videos D = {(oi1, ..., oihi
)}Ni=1, visual architecture ϕ

2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., o

i
T }Bi=1 ∼ D, t ∈ [1, hi − 1], t ≤ k < T, T ∈ (t, hi], ∀i

4: L(ϕ) := 1−γ
B

∑B
i=1

[∥∥ϕ(oit)− ϕ(oiT )
∥∥
2

]
+ log 1

B

∑B
i=1

[
exp

(∥∥ϕ(oik)− ϕ(oiT )
∥∥
2
− δ̃oi

T
(oik)− γ

∥∥ϕ(oik+1)− ϕ(oiT )
∥∥
2

)]
5: Update ϕ using SGD: ϕ← ϕ− αϕ∇L(ϕ)

E Technical Derivations and Proofs547

E.1 Proof of Proposition D.1548

We first reproduce Proposition D.1 for ease of reference:549

Proposition E.1. Under assumption of deterministic transition dynamics, the dual optimization550

problem of551

max
πH ,ϕ

EπH

[∑
t

γtr(o; g)

]
− (dπH (o, aH ; g)∥dD(o, ãH ; g)), (16)

is552

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logED(o,o′;g) [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
,

(17)
where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-553

conditioned distribution of two consecutive observations in dataset D.554

Proof. We begin by rewriting (16) as an optimization problem over valid state-occupancy distribu-555

tions. To this end, we have1556

max
ϕ

max
d(ϕ(o),a;ϕ(g))≥0

Ed(ϕ(o),ϕ(g)) [r(o; g)]− (d(ϕ(o), a;ϕ(g))∥dD(ϕ(o), ã;ϕ(g)))

(P) s.t.
∑
a

d(ϕ(o), a;ϕ(g)) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (o | õ, ã)d(ϕ(õ), ã;ϕ(g)),∀o ∈ O, g ∈ G

(18)
Fixing a choice of ϕ, the inner optimization problem operates over a ϕ-induced state and goal space,557

giving us (18). Then, applying Proposition 4.2 of Ma et al. [16] to the inner optimization problem,558

1We omit the human action superscript H in this derivation.

15



we immediately obtain559

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))]

(D) + logEdD(ϕ(o),a;ϕ(g))

[
exp

(
r(o, g) + γET (o′|o,a)[V (ϕ(o′);ϕ(g))]− V (ϕ(o), ϕ(g))

)]]
(19)

Now, given our assumption that the transition dynamics is deterministic, we can replace the inner560

expectation ET (o′|o,a) with just the observed sample in the offline dataset and obtain:561

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))]

+ logEdD(ϕ(o),ϕ(o′);ϕ(g))

[
exp

(
r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]] (20)

Finally, sampling embedded states from dD(ϕ(o), ϕ(o′);ϕ(g)) is equivalent to sampling from562

D(o, o′; g), assuming there is no embedding collision (i.e., ϕ(o) ̸= ϕ(o′),∀o ̸= o′), which can563

be satisfied by simply augmenting any ϕ by concatenating the input to the end. Then, we have our564

desired expression:565

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]]
(21)

566

E.2 VIP Implicit Time Contrast Learning Derivation567

This section provides all intermediate steps to go from (13) to (14). First, we have568

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[−V ∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]
.

(22)
We can equivalently write this objective as569

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[− log eV

∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]

.

(23)
Then,570

min
ϕ

Ep(g)

[
(1− γ)Eµ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g)) − logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)] −1
1−γ

]]

=min
ϕ

(1− γ)Ep(g),µ0(o;g)

log e−V ∗(ϕ(o);ϕ(g))

ED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)] −1
1−γ

 .

(24)
This is (14) in the main text.571

E.3 VIP Implicit Repulsion572

In this section, we formalize the implicit repulsion property of VIP objective ((14)); in particular, we573

prove that under certain assumptions, it always holds for optimal paths.574

Proposition E.2. Suppose V ∗(s; g) := −∥ϕ(s)− ϕ(g)∥2 for some ϕ, under the assumption of575

deterministic dynamics (as in Proposition D.1), for any pair of consecutive states reached by the576

optimal policy, (st, st+1) ∼ π∗, we have that577

∥ϕ(st)− ϕ(g)∥2 > ∥ϕ(st+1)− ϕ(g)∥2 , (25)

Proof. First, we note that578

V ∗(s; g) = max
a

Q∗(s, a; g) (26)

A proof can be found in Section 1.1.3 of Agarwal et al. [36]. Then, due to the Bellman optimality579

equation, we have that580

Q∗(s, a; g) = r(s, g) + γEs′∼T (s,a) max
a′

Q∗(s′, a′; g) (27)
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Given that the dynamics is deterministic and (26), we have that581

Q∗(s, a; g) = r(s, g) + γV ∗(s′; g) (28)

Now, for (st, at, st+1) ∼ π∗, this further simplifies to582

V ∗(st; g) = r(st, g) + γV ∗(st+1; g) (29)

Note that since V ∗ is also the optimal value function, given that r(st, g) = I(st = g)− 1, V ∗(st; g)583

is the negative discounted distance of the shortest path between st ans g. In particular, since584

V ∗(g; g) = 0 by construction, we have that V ∗(st; g) = −
∑K

k=0 γ
k (this also clearly satisfies (29)),585

where the shortest path (i.e., the path π∗ takes) between st and g are K steps long. Now, giving that586

we assume V ∗(st; g) can be expressed as −∥ϕ(st)− ϕ(g)∥2 for some ϕ, it immediately follows that587

588

∥ϕ(st)− ϕ(g)∥2 > ∥ϕ(st+1)− ϕ(g)∥2 , ∀(st, st+1) ∼ π∗ (30)

589

The implication of this result is that at least along the trajectories generated by the optimal policy, the590

representation will have monotonically decreasing and well-behaved embedding distances to the goal.591

Now, since in practice, VIP is trained on goal-directed (human video) trajectories, which are near-592

optimal for goal-reaching, we expect this smoothness result to be informative about VIP’s embedding593

practical behavior and help formalize out intuition about the mechanism of implicit time contrastive594

learning. As confirmed by our qualitative study in Section H.4, We highlight that VIP’s embedding is595

indeed much smoother than other baselines along test trajectories on both Ego4D and on our real-robot596

dataset. This smoothness along optimal paths makes it easier for the downstream control optimizer to597

discover these paths, conferring VIP representation effective zero-shot reward-specification capability598

that is not attained by any other comparison.599

F VIP Training Details600

F.1 Dataset Processing and Sampling601

We use the exact same pre-processed Ego4D dataset as in R3M, in which long raw videos are first602

processed into shorter videos consisting of 60-70 frames each. In total, there are approximately 72000603

clips and 4.3 million frames in the dataset. Within a sampled batch, we first sample a set of videos,604

and then sample a sub-trajectory from each video (Step 3 in Algorithm 2). In this formulation, each605

sub-trajectory is treated as a video segment from the algorithm’s perspective; this can viewed as a606

variant of trajectory data augmentation. As in R3M, we apply random crop at a video level within607

a batch, so all frames from the same video sub-trajectory are cropped the same way. Then, each608

raw observation is resized and center-cropped to have shape 224× 224× 3 before passed into the609

visual encoder. Finally, as in standard contrastive learning and R3M, for each sampled sub-trajectory610

{oit, ..., oik, oik+1, ..., o
i
T }, we also sample additional 3 negative samples (õj , õj+1) from separate611

video sequences to be included in the log-sum-exp term in L(ϕ).612

F.2 VIP Hyperparameters613

Hyperparameters used can be found in Table 2.614

F.3 VIP Pytorch Pseudocode615

In this section, we present a pseudocode of VIP written in PyTorch [38], Algorithm 3. As shown, the616

main training loop can be as short as 10 lines of code.617
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Table 2: VIP Architecture & Hyperparameters.

Name Value

Architecture Visual Backbone ResNet50 [18]
FC Layer Output Dim 1024

Hyperparameters Optimizer Adam [37]
Learning rate 0.0001
L1 weight penalty 0.001
L1 weight penalty 0.001
Mini-batch size 32
Discount factor γ 0.98

Algorithm 3 VIP PyTorch Pseudocode

# D: offline dataset
# phi: vision architecture

# training loop
for (o_0 , o_t1 ,o_t2 , g) in D:

phi_g = phi(o_g)
V_0 = - torch.linalg.norm(phi(o_0), phi_g)
V_t1 = - torch.linalg.norm(phi(o_t1), phi_g)
V_t2 = - torch.linalg.norm(phi(o_t2), phi_g)
VIP_loss = (1-gamma)*-V_0.mean() + torch.logsumexp(V_t1+1-gamma*V_t2)
optimizer.zero_grad ()
VIP_loss.backward ()
optimizer.step()

G Simulation Experiment Details.618

G.1 FrankaKitchen Task Descriptions619

In this section, we describe the FrankaKitchen suite for our simulation experiments. We use 12 tasks620

from the v0.1 version2 of the environment.621

We use the environment default initial state as the initial state and frame for all tasks in the Hard622

setting. In the Easy setting, we use the 20th frame of a demonstration trajectory and its corresponding623

environment state as the initial frame and state. The goal frame for both settings is chosen to be the624

last frame of the same demonstration trajectory. The initial frames and goal frame for all 12 tasks and625

3 camera views are illustrated in Figure 5-6. In the Easy setting, the horizon for all tasks is 50 steps;626

in the Hard setting, the horizon is 100 steps. Note that using the 20th frame as the initial state is a627

crude way for initializing the robot, and for some tasks, this initialization makes the task substantially628

easier, whereas for others, the task is still considerably difficult. Furthermore, some tasks become629

naturally more difficult depending on camera viewpoints. For these reasons, it is worth noting that630

our experiment’s emphasis is on the aggregate behavior of pre-trained representations, instead of631

trying to solve any particular task as well as possible.632

G.2 In-Domain Representation Probing633

In this section, we describe the experiment we performed to generate the in-domain VIP vs. TCN634

comparison in Figure 4. We fit VIP and TCN representations using 100 demonstrations from the635

FrankaKitchen sdoor_open task (center view). For TCN, we use R3M’s implementation of the636

TCN loss without any modification; this also allows our findings in Figure 4 to extend to the main637

experiment section. The visual architecture is ResNet34, and the output dimension is 2, which enables638

us to directly visualize the learned embedding. Different from the out-of-domain version of VIP, we639

also do not perform weight penalty, trajectory-level random cropping data augmentation, or additional640

2https://github.com/vikashplus/mj_envs/tree/v0.1real/mj_envs/envs/relay_kitchen
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(a) ldoor_close (left) (b) ldoor_close (center) (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (center) (f) ldoor_open (right)

(g) rdoor_close (left) (h) rdoor_close (center) (i) rdoor_close (right)

(j) rdoor_open (left) (k) rdoor_open (center) (l) rdoor_open (right)

(m) sdoor_close (left) (n) sdoor_close (center) (o) sdoor_close (right)

(p) sdoor_open (left) (q) sdoor_open (center) (r) sdoor_open (right)

Figure 5: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.

negative sampling. Besides these choices, we use the same hyperparameters as in Table 2 and train641

for 2000 batches.642

G.3 Trajectory Optimization643

We use a publicly available implementation of MPPI3, and make no modification to the algorithm or644

the default hyperparameters. In particular, the planning horizon is 12 and 32 sequences of actions645

are proposed per action step. Because the embedding reward ((4)) is the goal-embedding distance646

difference, the score (i.e., sum of per-transition reward) of a proposed sequence of actions is equivalent647

to the negative embedding distance (i.e., Sϕ(ϕ(oT );ϕ(g))) at the last observation.648

G.3.1 Robot and Object Pose Error Analysis649

In this section, we visualize the per-step robot and object pose L2 error with respect to the goal-image650

poses. We report the non-cumulative curves (on the success rate as well) for more informative651

analysis.652

3https://github.com/aravindr93/trajopt/blob/master/trajopt/algos/mppi.py
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(a) micro_close (left) (b) micro_close (center) (c) micro_close (right)

(d) micro_open (left) (e) micro_open (center) (f) micro_open (right)

(g) knob1_on (left) (h) knob1_on (center) (i) knob1_on (right)

(j) knob1_off (left) (k) knob1_off (center) (l) knob1_off (right)

(m) light_on (left) (n) light_on (center) (o) light_on (right)

(p) light_off (left) (q) light_off (center) (r) light_off (right)

Figure 6: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.

Figure 7: Trajectory optimization results with pose errors.
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Table 3: Real-world robotics tasks descriptions.
Environment Object Type Dataset Success Criterion

CloseDrawer Articulated Object 10 demos + 20 failures the drawer is closed enough that the spring loads.
PushBottle Transparent Object 20 demonstrations the bottle is parallel to the goal line set by the icecream cone.
PlaceMelon Soft Object 20 demonstrations the watermelon toy is fully placed in the plate.
FoldTowel Deformable Object 20 demonstrations the bottom half of the towel is cleanly covered by the top half.

Figure 8: Real-robot setup.

G.4 Reinforcement Learning653

We use a publicly available implementation of NPG4, and make no modification to the algorithm or654

the default hyperparameters. In the Easy (resp. Hard) setting, we train the policy until 500000 (resp.655

1M) real environment steps are taken. For evaluation, we report the cumulative maximum success656

rate on 50 test rollouts from each task configuration (50*108=5400 total rollouts) every 10000 step.657

H Real-World Robot Experiment Details658

H.1 Task Descriptions659

The robot learning environment is illustrated in Figure 8; a RealSense camera is mounted on the660

right edge of the table, and we only use the RGB image stream without depth information for data661

collection and policy learning.662

We collect offline data Dtask for each task via kinesthetic playback, and the object initial placement663

is randomized for each trajectory. On the simplest CloseDrawer task, we combine 10 expert664

demonstrations with 20 sub-optimal failure trajectories to increase learning difficulty. For the other665

three tasks, we collect 20 expert demonstrations, which we found are difficult enough for learning666

good policies. Each demonstration is 50-step long collected at 25Hz. The initial state for the robot is667

fixed for each demonstration and test rollout, but the object initial position is randomized. The task668

success is determined based on a visual criterion that we manually check for each test rollout. The669

full task breakdown is described in Table 3.670

Each task is specified via a set of goal images that are chosen to be the last frame of all demonstrations671

for the task. Hence, the goal embedding used to compute the embedding reward ((4)( for each task is672

the average over the embeddings of all goal frames.673

The tasks (in their initial positions) using a separate high-resolution phone camera are visualized in674

Figure 9. Sample demonstrations in the robot camera view are visualized in Figure 10.675

4https://github.com/aravindr93/mjrl/blob/master/mjrl/algos/npg_cg.py
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(a) CloseDrawer (b) PushBottle (c) PickPlaceMelon (d) FoldTowel

Figure 9: Side-view of real-robot tasks using a high-resolution smartphone camera.

(a) CloseDrawer

(b) PushBottle

(c) PickPlaceMelon

(d) FoldTowel

Figure 10: Real-robot task demonstrations (every 10th frame) in robot camera view. The first and last frames in
each row are representative of initial and final goal observaions for the respective task.

H.2 Training and Evaluation Details676

The policy network is implemented as a 2-layer MLP with hidden sizes [256, 256]. As in R3M’s677

real-world robot experiment setup, the policy takes in concatenated visual embedding of current678

observation and robot’s proprioceptive state and outputs robot action. The policy is trained with a679

learning rate of 0.001, and a batch size of 32 for 20000 steps.680

For RWR’s temperature scale, we use τ = 0.1 for all tasks, except CloseDrawer where we find681

τ = 1 more effective for both VIP and R3M.682

For policy evaluation, we use 10 test rollouts with objects randomly initialized to reflect the object683

distribution in the expert demonstrations. The rollout horizon is 100 steps.684

H.3 Additional Analysis & Context685

Offline RL vs. imitation learning for real-world robot learning. Offline RL, though known686

as the data-driven paradigm of RL [39], is not necessarily data efficient [40], requiring hundreds687

of thousands of samples even in low-dimensional simulated tasks, and requires a dense reward to688

operate most effectively [41, 42]. Furthermore, offline RL algorithms are significantly more difficult689

to implement and tune compared to BC [43, 44]. As such, the dominant paradigm of real-world robot690

learning is still learning from demonstrations [45, 46, 47]. With the advent of VIP-RWR, offline RL691

may finally be a practical approach for real-world robot learning at scale.692
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(a) VIP-RWR (b) VIP-BC (c) REM-RWR (d) REM-RWR

Figure 11: Comparison of failure trajectories on PickPlaceMelon. VIP-RWR is still able to reach the critical
state of gripping watermelon, whereas baselines fail.

Performance of R3M-BC. Our R3M-BC, though able to solve some of the simpler tasks, appears693

to perform relatively worse than the original R3M-BC in Nair et al. [4] on their real-world tasks.694

To account for this discrepancy, we note that our real-world experiment uses different software-695

hardware stacks and tasks from the original R3M real-world experiments, so the results are not696

directly comparable. For instance, camera placement, an important variable for real-world robot697

learning, is chosen differently in our experiment and that of R3M; in R3M, a different camera angle is698

selected for each task, whereas in our setup, the same camera view is used for all tasks. Furthermore,699

we emphasize that our focus is not the absolute performance of R3M-BC, but rather the relative700

improvement R3M-RWR provides on top of R3M-BC.701

H.4 Qualitative Analysis702

In this section, we study several interesting policy behaviors VIP-RWR acquire. Policy videos are703

included in our supplementary video.704

Robust key action execution. VIP-RWR is able to execute key actions more robustly than the705

baselines; this suggests that its reward information helps it identify necessary actions. For example,706

as shown in Figure 11, on the PickPlaceMelon task, failed VIP-RWR rollouts at least have the707

gripper grasp onto the watermelon, whereas for other baselines, the failed rollouts do not have the708

watermelon between the gripper and often incorrectly push the watermelon to touch the plate’s outer709

edge, preventing pick-and-place behavior from being executed.710

Task re-attempt. We observe that VIP-RWR often learns more robust policies that are able to711

perform recovery actions when the task is not solved on the first attempt. For instance, in both712

CloseDrawer and FoldTowel, there are trials where VIP-RWR fails to close the drawer all the way713

or pick up the towel edge right away; in either case, VIP-RWR is able to re-attempt and solves the task714

(see our supplementary video). This is a known advantage of offline RL over BC [48, 39]; however,715

we only observe this behavior in VIP-RWR and not R3M-RWR, indicating that this advantage of716

offline RL is only realized when the reward information is sufficiently informative.717

I Additional Results718

I.1 Value-Based Pre-Training Ablation: Least-Square Temporal-Difference719

While VIP is the first value-based pre-training approach and significantly outperforms all existing720

methods, we show that this effectiveness is also unique to VIP and not to training a value function.721

To this end, we show that a simpler value-based baseline does not perform as well. In particular,722

we consider Least-Square Temporal-Difference policy evaluation (LSTD) [49, 50] to assess the723

importance of the choice of value-training objective:724

min
ϕ

E(o,o′,g)∼D

[(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(s), ϕ(g))

)2
]
, (31)

in which we also parameterize V as the negative L2 embedding distance as in VIP. Given that human725

videos are reasonably goal-directed, the value of the human behavioral policy computed via LSTD726

should be a decent choice of reward; however, LSTD does not capture the long-range dependency727
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Figure 12: VIP vs. LSTD Trajectory Optimization Comparison.

Table 4: Visual Imitation Learning Results.
Self-Supervised Supervised

VIP (E) LSTD (E) R3M-Lang (E) MOCO (I) R3M (E) ResNet50 (I) CLIP (Internet)

Success Rate 53.6 51.5 51.2 45.0 55.9 41.8 44.3

of initial to goal frames (first term in (12)), nor can it obtain a value function that outperforms that728

of the behavioral policy. We train LSTD using the exact same setup as in VIP, differing in only the729

training objective, and compare it against VIP in our trajectory optimization settings.730

As shown in Fig. 12, interestingly, LSTD already works better than all prior baselines in the Easy731

setting, indicating that value-based pre-training is indeed favorable for reward-specification. However,732

its inability to capture long range temporal dependency as in VIP (the first term in VIP’s objective)733

makes it far less effective on the Hard setting, which require extended smoothness in the reward734

landscape to solve given the distance between the initial observation and the goal. These results735

show that VIP’s superior reward specification comes precisely from its ability to capture both long-736

range temporal dependencies and local temporal smoothness, two innate properties of its dual value737

objective and the associated implicit time contrastive learning interpretation. To corroborate these738

findings, we have also included LSTD in our qualitative reward curve and histogram analysis in739

App. I.4, I.6, and I.7 and finds that VIP generates much smoother embedding than LSTD.740

I.2 Visual Imitation Learning741

One alternative hypothesis to VIP’s smoother embedding for its superior reward-specification capabil-742

ity is that it learns a better visual representation, which then naturally enables a better visual reward743

function. To investigate this hypothesis, we compare representations’ capability as a pure visual744

encoder in a visual imitation learning setup. We follow the training and evaluation protocol of [4] and745

consider 12 tasks combined from FrankaKitchen, MetaWorld [51], and Adroit [52], 3 camera views746

for each task, and 3 demonstration dataset sizes, and report the aggregate average maximum success747

rate achieved during training. R3M-Lang is the publicly released R3M variant without supervised748

language training. The average success rates over all tasks are shown in Table 4; the letter inside ()749

stands for the pre-training dataset with E referring to Ego4D and I Imagenet.750

These results suggest that with current pre-training methods, the performance on visual imitation751

learning may largely be a function of the pre-training dataset, as all methods trained on Ego4D, even752

our simple baseline LSTD, performs comparably and are much better than the next best baseline753

not trained on Ego4D. Conversely, this result also suggests that despite not being designed for this754

purely supervised learning setting, value-based approaches constitute a strong baseline, and VIP is755

in fact currently the state-of-art for self-supervised methods. While these results highlight that VIP756

is effective even as a pure visual encoder, a necessary requirement for joint effectiveness for visual757
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reward and representation, it fails to explain why VIP is far superior to R3M in reward-based policy758

learning. As such, we conclude that studying representations’ capability as a pure visual encoder759

may not be sufficient for distinguishing representations that can additionally perform zero-shot760

reward-specification.761

I.3 Embedding and True Rewards Correlation762

In this section, we create scatterplots of embedding reward vs. true reward on the trajectories MPPI763

have generated to assess whether the embedding reward is correlated with the ground-truth dense764

reward. More specifically, for each transition in the MPPI trajectories in Figure 2, we plot its reward765

under the representation that was used to compute the reward for MPPI versus the true human-crafted766

reward computed using ground-truth state information. The dense reward in FrankaKitchen tasks767

is a weighted sum of (1) the negative object pose error, (2) the negative robot pose error, (3) bonus768

for robot approaching the object, and (4) bonus for object pose error being small. This dense reward769

is highly tuned and captures human intuition for how these tasks ought to be best solved. As such,770

high correlation indicates that the embedding is able to capture both intuitive robot-centric and771

object-centric task progress from visual observations. We only compare VIP and R3M here as a proxy772

for comparing our implicit time contrastive mechanism to the standard time contrastive learning.773

The scatterplots over all tasks and camera views (Easy setting) are shown in Figure 13,14, and 15.774

VIP rewards exhibit much greater correlation with the ground-truth reward on its trajectories that775

do accomplish task, indicating that when VIP does solve a task, it is solving the task in a way that776

matches human intuition. This is made possible via large-scale value pre-training on diverse human777

videos, which enables VIP to extract a human notion of task-progress that transfers to robot tasks and778

domains. These results also suggest that VIP has the potential of replacing manual reward engineering,779

providing a data-driven solution to the grand challenge of reward engineering for manipulation tasks.780

However, VIP is not yet perfect in its current form. Both methods exhibit local minima where high781

embedding distances in fact map to lower true rewards; however, this phenomenon is much severe782

for R3M. On 8 out of 12 tasks, VIP at least has one camera view in which its rewards are highly783

correlated with the ground-truth rewards on its MPPI trajectories.784

I.4 Embedding Distance Curves785

In Figure 16, we present additional embedding distance curves for all methods on Ego4D and our786

real-robot offline RL datasets. For Ego4D, we randomly sample 4 videos of 50-frame long (see787

Appendix I.5 for how these short snippets are sampled), and for our robot dataset, we compute the788

embedding distance curves for the 4 sample demonstrations in Figure 10. As shown, on all tasks in789

the real-robot dataset, VIP is distinctively more smooth than any other representation. This pattern790

is less accentuated on Ego4D. This is because a randomly sampled 50-frame snippet from Ego4D791

may not coherently represent a task solved from beginning to completion, so an embedding distance792

curve is not inherently supposed to be smoothly declining. Nevertheless, VIP still exhibits more local793

smoothness in the embedding distance curves, and for the snippets that do solve a task (the first two794

videos), it stands out as the smoothest representation.795

I.5 Embedding Distance Curve Bumps796

In this section, we compute the fraction of negative embedding rewards (equivalently, positive797

slopes in embedding embedding distance curves) for each video sequence and average over all video798

sequences in a dataset. Each sequence in our robot dataset is of 50 frames, and we use each sequence799

without any further truncation. For Ego4D, video sequences are of variable length. For each long800

sequence of more than 50 frames, we use the first 50 frames. We do not include videos shorter than801

50 frames, in order to make the average fraction for each representation comparable between the802

two distinct datasets. Note that for Ego4D, due to its in-the-wild nature, it is not guaranteed that a803

50-frame segment represents one task being solved from beginning to completion, so there may be804

naturally bumps in the embedding distance curve computed with respect to the last frame, as earlier805
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(a) ldoor_close (left) (b) ldoor_close (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (f) ldoor_open (right)

(g) sdoor_close (left) (h) sdoor_close (i) sdoor_close (right)

(j) sdoor_open (left) (k) sdoor_open (l) sdoor_open (right)

Figure 13: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 1.
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(a) rdoor_close (left) (b) rdoor_close (c) rdoor_close (right)

(d) rdoor_open (left) (e) rdoor_open (f) rdoor_open (right)

(g) micro_close (left) (h) micro_close (i) micro_close (right)

(j) micro_open (left) (k) micro_open (l) micro_open (right)

Figure 14: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 2.
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(a) knob1_on (left) (b) knob1_on (c) knob1_on (right)

(d) knob1_on (left) (e) knob1_on (f) knob1_on (right)

(g) light_on (left) (h) light_on (i) light_on (right)

(j) light_off (left) (k) light_off (l) light_off (right)

Figure 15: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 3.
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(a) Ego4D

(b) Real-robot dataset
Figure 16: Additional embedding distance curves on Ego4D and real-robot videos.

Table 5: Proportion of bumps in embedding distance curves.
Dataset VIP (Ours) R3M ResNet50 MOCO CLIP

Ego4D 0.253 ± 0.117 0.309 ± 0.097 0.414 ± 0.052 0.398 ± 0.057 0.444 ± 0.047
In-House Robot Dataset 0.243 ± 0.066 0.323 ± 0.076 0.366 ± 0.046 0.380 ± 0.052 0.438 ± 0.046

frames may not actually be progressing towards the last frame in a goal-directed manner.The full806

results are shown in Table 5. VIP has fewest bumps in Ego4D videos, and this notion of smoothness807

transfer to the robot dataset. Furthermore, since the robot videos are in fact visually simpler and each808

video is guaranteed to be solving one task, the bump rate is actually lower despite the domain gap.809

While this observation generally also holds true for other representations, it notably does not hold for810

R3M, which is trained using standard time contrastive learning.811

I.6 Embedding Reward Histograms (Real-Robot Dataset)812

We present the reward histogram comparison against all baselines in Figure 17. The trend of VIP813

having more small, positive rewards and fewer extreme rewards in either direction is consistent across814

all comparisons.815

I.7 Embedding Reward Histograms (Ego4D)816

We present the reward histogram comparison against all baselines in Figure 18. The histograms are817

computed using the same set of 50-frame Ego4D video snippets as in Appendix I.5. The y-axis is in818

log-scale due to the large total count of Ego4D frames. As discussed, Ego4D video segments are819

less regular than those in our real-robot dataset, and this irregularity contributes to all representations820

having significantly more negative rewards compared to their histograms on the real-robot dataset.821

Nevertheless, the relative difference ratio’s pattern is consistent, showing VIP having far more822

rewards that lie in the first positive bin. Furthermore, VIP also has significantly fewer extreme823

negative rewards compared to all baselines.824

825
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(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 17: Embedding reward histogram comparison on real-robot dataset.

(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 18: Embedding reward histogram comparison on Ego4D videos.
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