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ABSTRACT

We introduce Attention Free Transformer (AFT), an efficient variant of Trans-
formers (Vaswani et al., 2017) that eliminates the need for dot product attention.
AFT offers great simplicity and efficiency compared with standard Transform-
ers, where the multi-head attention operation is replaced with the composition of
element-wise multiplications/divisions and global/local pooling. During training
time, AFT has linear time and space complexity w.r.t. both the sequence length
and feature dimension; in the autoregressive decoding mode, AFT has constant
memory and time complexity per step. We show that, surprisingly, we are able
to train AFT effectively on challenging benchmarks, and also to match or surpass
the standard Transformer counterparts and other efficient variants. In particu-
lar, AFT achieves the state-of-the-art result on CIFAR10 autoregressive modeling
with much reduced complexity, and also outperforms several efficient Transformer
variants on Enwik8.

1 INTRODUCTION

Attention mechanisms, represented by Transformers (Vaswani et al., 2017), have driven the advance-
ment of various machine learning problems, including language modeling (Devlin et al., 2018; Rad-
ford et al.), image modeling (Chen et al.), and set modeling (Lee et al., 2019). Different from other
well known model architectures such as Convolutional Neural Nets (CNNs) or Recurrent Neural
Nets (RNNs), Transformers enable direct interaction between every pair of elements within a se-
quence, which makes them especially powerful at capturing long term dependencies.

However, Transformers require high computational costs. The root cause of this challenge is the
need to perform attention operations that have quadratic time and space complexity w.r.t the context
size. This makes it especially difficult for Transformers to scale to inputs with large context sizes.
A number of recent works have been dedicated to addressing the scalability issue of Transformers
(Child et al., 2019; Kitaev et al., 2020; Rae et al., 2020; Wang et al., 2020b; Katharopoulos et al.,
2020; Tay et al., 2020a; Choromanski et al., 2020). While the techniques adopted in the literature
range from sparsity, locality sensitive hashing, low rank decomposition, kernel approximation and
etc., most of them are trying to approximate the full attention operation.

In this paper, we take a bolder step towards the same goal, by proposing a computational module
that does not use or approximate the standard dot product attention. We hence name our model
the attention free transformer (AFT). Similar to dot product attention, AFT is composed of the
interaction of three quantities, namely the query, key and value. What’s different, however, is that
AFT operates solely based on element-wise operations. To be more concrete, they key and value are
first multiplied element-wise, the result of which is then pooled over the context dimension (in the
causal model, this corresponds to a cumulative sum). The query is then multiplied with the reduced
key-value representation element-wise to produce the final output. See Figure 1a for an illustration.

AFT maintains the full advantage of dot product attention, namely direct interaction between any
two elements in a sequence (up to proper masking). However, the computational cost is drastically
reduced to a O(Td) complexity for time and space, where T, d are the context length and feature
dimension, respectively. In the autoregressive decoding mode, AFT also provides constant decoding
time and space complexity per step, compared to O(T ) for standard transformers. To the best of our
knowledge, AFT is the first model that achieves such efficiency in the context of Transformers. See
Table 1 for the complexity analysis of AFT in comparison to other variants.
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Table 1: Complexity comparison with different Transformers: Reformer (Kitaev et al., 2020), Syn-
thesizer (Tay et al., 2020a), Linear Transformer (Katharopoulos et al., 2020) (only variants that
support the causal mode are shown). Here T, d denote the sequence length and feature dimension,
respectively.

Model Time @ train Space @ train Time/step @ decode Space/step @ decode
Full Attention O(T 2d) O(T 2 + Td) O(Td) O(Td)
Reformer O(T log Td) O(T log T + Td) O(log T + d) O(Td)
Synthesizer O(T 2d) O(T 2 + Td) O(Td) O(Td)
Linear Transformer O(Td2) O(Td+ d2) O(d2) O(d2)
AFT (ours) O(Td) O(Td) O(d) O(d)

We show that we can interpret AFT as an extreme case of multi head dot product attention (MHA).
In particular, we show that by 1) setting the number of heads equal to the feature dimension in
MHA and 2) using relu in place of softmax as the non-linearity, MHA can be decomposed into
the summation of two AFT modules (see Equation 6). However, this relationship is not true in a
general sense, i.e., by varying the non-linearity injected after the query and key in AFT, we can
obtain models that do not have a MHA counterpart. This realization allows us to freely explore
the design choices (e.g., nonlinearity) of AFT to achieve the best performance. This philosophy is
in direct contrast with previous and concurrent “linearized attention” works (Katharopoulos et al.,
2020; Choromanski et al., 2020), which are constrained by the design space of MHA.

We perform experiments with AFT on several benchmarks, including unconditional image model-
ing, image super-resolution, language modeling, machine translation and point cloud generation. We
show that AFT works very well as an alternative to the standard Transformer, providing competitive
results as well as excellent efficiency.

To summarize, our contributions are as follows:

• We propose AFT, a new family of Transformer models that achievesO(Td) time and space
complexity in training, as well asO(d) time and space complexity in autoregressive decod-
ing.

• We show strong performance of AFT as a drop in replacement of MHA on various bench-
marks, including setting the state-of-the-art result on CIFAR10 in the standard setting and
outperforming other efficient Transformer variants.

2 MULTI-HEAD ATTENTION

At the core of Transformers is the Multi-Head Attention (MHA) operation. Given three sequences,
namely the query Q ∈ RT×d, key K ∈ RT×d and value V ∈ RT×d, and the number of heads h,
MHA performs a scaled dot product attention for each head i, defined as:

fi(Q,K, V ) = σ(
Q′i(K

′
i)

T

√
dk

)V ′i , s.t. Q′i = QWQ
i ,K

′
i = KWK

i , V ′i = VWV
i , (1)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dvare linear transformations for head i, and σ is

the non-linearity by default set as the softmaxr function (subscript r indicates softmax is applied
to each row of a matrix). dk, dv are dimensions for key and value, respectively. MHA concatenates
the output of h attention heads along the channel dimension, resulting in feature dimension hdv .
Unless otherwise mentioned, we assume dk = dv and h = d

dk
. This means the query, key and value

are the same dimension within each head, and output dimension matches that of the input.

3 METHODOLOGY

3.1 ATTENTION FREE TRANSFORMER

We now define Attention free transformer (AFT), which provides an alternative to MHA. Given
Q,K, V , AFT first linearly transforms them into Q′ = QWQ, K ′ = KWK , V ′ = VWV , then
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performs following operation:

f(Q,K, V ) = σq(Q
′)�

T∑
t=1

(
σk(K

′)� V ′
)
t
, (2)

where � is the element-wise product, with support for broadcasting when the operands’ dimensions
don’t exactly match 1; σq, σk are nonlinearities applied to the query and key, respectively. Explained
in words, the key and value are first combined with an element-wise multiplication, the result of
which is then pooled over the context dimension, yielding a fixed length context vector ∈ Rd. This
context vector is then multiplied with each row of the query, which forms the final output of an AFT
layer.

One particularly useful variant of MHA is masked attention, oftentimes presented in the form of
causal attention. Specifically, in auto-regressive models, queries are constrained to not be able
to interact with keys and values beyond the curret position. In standard attention, this is usually
implemented with an explicit binary masking matrix of shape T×T , with non-causal entries masked
as 0. We show that it is also straightforward to extend AFT to the causal mode while maintaining
its efficiency. We denote an AFT layer’s output as Yt = f(Q≤t,K≤t, V≤t), t = 1, ..., T 2. We
formulate the casual AFT as:

Yt = σq(Q
′
t)�

t∑
t′=1

(
σk(K

′
≤t)� V ′≤t

)
t′
, t = 1, ..., T, (3)

where the subscript Xt indexes the tth row of matrix X .

Discussions: The design philosophy of AFT is to promote extreme efficiency, while keeping the
benefit of standard Transformers. Concretely, AFT enables direct interaction of any two elements
within the sequence, which is arguably the biggest advantage of Transformers over other types of
models such as RNNs and ConvNets. However, AFT gets rid of the need of performing the costly
spatial dot product attention, by computing a reduced value representation with the weights only
depending on the keys. The resulting operation has an extremely efficiency of O(Td) w.r.t. both
time and space, which is the first model that achieves linear complexity along both context and
feature dimensions. Moreover, the causal mode of AFT has an additional advantage of a constant
decoding cost per step, similar to (Katharopoulos et al., 2020). To see this, from Equation 3, we have
a simple recursion of Yt = σq(Q

′
t)� (σk(K

′
t)�V ′t +KVt−1) with KVt =

∑t
t′=1

(
σk(K

′
t′)�V ′t′

)
,

assuming σq, σk are both element-wise functions. One thus only need to keep KVt in memory, and
update it with constant cost per step.

Selecting nonlinearies: σq, σk provide additional nonlinearity which helps to increase model’s
capacity. Empirically, we have found that one particularly strong setting is to let σk = softmax
which is normalized along the context dimension. This choice brings an interesting benefit especially
in the causal mode, which we can explicitly write as:

Yt = σq(Q
′
t)�

(
gt(t)� V ′t +

t−1∑
t′=1

gt(t
′)� V ′t′

)
, gt(t

′) =
exp(K ′t)∑t

t′=1 exp(K
′
t′)
. (4)

Here gt(t) acts as a role similar to that of an input gate in an LSTM, and gt(t′) is operating like the
forget gate, which depends on the input of time t, dynamically downweights the contribution of past
time steps. When augmented with standard position embeddings as commonly used in Transformers,
this allows the model to be able to learn the notion of recency at the same time of having access to
the full context in the history. From this view, σq can also be interpreted as the output gate, for
which we found that both sigmoid and relu work well, with the former being slightly better. Also
note that the same space and time complexity still holds for σk = softmax, both in training and
decoding. In our experiments, unless otherwise mentioned, we use the sigmoid+ softmax setting
for σq and σk by default.

Relation to MHA: Although AFT performs fundamentally different operations than standard atten-
tion, we show that the two family of models overlap in the extreme case. To see this, we explore

1We adopt Numpy styled broadcasting convention: https://numpy.org/doc/stable/user/theory.broadcasting.html
2We assume here that Yt includes input information at the current position t, the version where the current

position is excluded can be obtained by shifting the outputs to the right.
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the limit of number of heads in MHA, which amounts to letting dk = 1 for each head. In this case,
the dot product operation within each head reduces to a scalar product. Next, we set σ to be relu
instead of softmax in Equation 1. In this case, we have:

fi(Q,K, V ) = [Q′i(K
′
i)

T ]+V
′
i =

(
[Q′i]+[(K

′
i)

T ]+ + [−Q′i]+[−(K ′i)T ]+
)
V ′i

= [Q′i]+
(
[K ′i]

T
+V
′
i

)
+ [−Q′i]+

(
[−KT

i ]+V
′
i

)
,

(5)

where [·]+ denotes the relu operator, and Q′i,K
′
i, V

′
i ∈ RT×1 by definition. The concatenated

output of the attention heads can then be concisely written as:

f(Q,K, V ) = [Q′]+ �
T∑

t=1

(
[K ′]+ � V ′

)
t
+ [−Q′]+ �

T∑
t=1

(
[−K ′]+ � V ′

)
t
, (6)

which consists of two terms, each of which is an AFT operation, with σq = σk = [·]+ and σq =
σk = [−·]+, respectively. However, note that this correspondence is not general, i.e., AFT does not
need to approximate any MHA counterpart and can indeed have very different inductive biases than
that of a standard Transformer.

Relation to Linearized Attention: There are a few recent works proposing to linearize the dot
product attention (Linear Attention) from the view of kernel approximation, first proposed in
Katharopoulos et al. (2020) and also in concurrent work (Choromanski et al., 2020). (Katharopoulos
et al., 2020) proposes the linear attention operation in the form:

Yt =
φ(Q′t)

∑T
t′=1

(
φ(K ′t′)

TV ′t′
)

φ(Q)′t
∑t

t′−1 φ(K
′
t)

T
, (7)

where Q′t,K
′
t, V

′
t are all row vectors of Rd. Equation 7 is similar to AFT, in the sense that the key

and value are first combined and reduced in both cases. However AFT differs in two aspects: 1)
the time complexity of Linear Attention is O(Td2), which is linear in the sequence length but has
difficulty scaling to wide networks 2) Linear Attention is designed to approximate MHA, where the
nonlinearity on query and key are shared. In AFT however, we show that it is beneficial to search
for different nonlinearities for both the query and key.

3.2 LOCAL CAUSAL AFT

In autoregressive modeling, locality is a strong and effective inductive bias, as has been explored in
Chen et al.; Child et al. (2019). We similarly propose an augmented version of causal AFT, where
we rewrite Equation 3 as

Yt = σq(Q
′
t)

t∑
t′=1

wt,t′
(
σk(K

′
≤t)� V ′≤t

)
t′
, t = 1, ..., T, (8)

where wt,t′ ∈ R is a locality masking scalar. We consider two strategies of constructing w, the
first being the hard local mask where we have wt,t′ = 1 if t − t′s and 0 otherwise, with s being
the desired window size (for 2d inputs such as images, we can similarly construct 2d windows, see
Appendix for details). The second one, which works better in practice, is to learn a position based
local bias, while still assigning non-zero weights to out of window contexts. More concretely, we
let wt,t′ =

exp(I(t−t′<s)uT
t vt′ )∑t

t′=1
exp(I(t−t′<s)uT

t vt′ )
, where I(·) is an indicator function, and u, v ∈ RT×duare two

sets of low dimensional learnable position embeddings, independently learned per layer. Note that
in this case, we maintain dense connection between every t, t′ pair, but rather introduce learnable
biases for more recent contexts. We typically set du to be a small number (e.g., 64) which greatly
reduces the amount of additional parameters compared to learning a full matrix. The learned version
also adds very little overhead to both the time and space complexity, as w is sparse and static, whose
memory cost is marginalized out across batches during training. We denote the two versions as
AFT-local-hard and AFT-local-learned, respectively.

4 RELATED WORK

Since the Transformer was introduced, there have been numerous attempts to address the major
source of inefficiency in the architecture, the quadratic cost of the attention operation. Improving this
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(a) Causal attention free operation.
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(b) Local causal attention free operation.

Figure 1: AFT blocks require only element-wise and pooling operations.

operation can enable larger context sizes and more efficient implementations. For a comprehensive,
recent survey of efficient transformers, see (Tay et al., 2020c).

Approximating the dot product. Katharopoulos et al. (2020); Choromanski et al. (2020) both
propose to approximate the exponential kernel with inner product of projections, which leads to a
linearized attention operation of complexity O(Td2). AFT is similar but offers greater efficiency
of O(Td) due to the exclusive use of element-wise operations, as well as more design flexibility.
Reformers (Kitaev et al., 2020) apply LSH as an approximation to the dot product, whereas AFT
completely gets rid the need of dot product.

Sparse, local attention. Sparse Transformers (Child et al., 2019) and Image Transformer (Parmar
et al., 2018) proposes to use fixed sparse or local context patterns. Attention models in vision tasks
(often combined with convolutions) use image structure to help handcraft relevant spatial patterns to
attend (Wang et al., 2020a; Huang et al., 2019b; Zhu et al., 2019; Huang et al., 2019a; Ramachandran
et al., 2019). AFT also borrows the locality idea, but we put it as a bias rather than hard constraint
(see AFT-local-learned) . Also AFT is a standalone module, where it works as a plug in replacement
of MHA in autoregressive tasks.

Context compression. Other approaches try to learn context patterns. Adaptive-Span Transformers
(Sukhbaatar et al., 2019) learn a range for each attention head within which to attend. Routing
transformers (Roy et al., 2020) use clustering to compute dot-product attention only over a subset
of elements within the same cluster. The Linformer (Wang et al., 2020b) reduces the length of the
context by compressing the keys and values with a linear layer. Compressive Transformers (Rae
et al., 2020) compute and update reduced representations of the input that are far enough back in
the input sequence, and attend to those compressed representations. AFT is largely complementary
to these approaches, as our focus is to improve the complexity of any given sequence from the
operation level.

Eliminating dot product attention. Instead of limiting the number of comparisons, other methods
change the operation used to compute attention. The Synthesizer (Tay et al., 2020a) uses attention
weights predicted from inputs, rather than derived from dot-product interactions. The LightConv
module introduced in (Wu et al., 2019) proposes to replace the dot product self-attention with dy-
namic lightweight depthwise convolution, where the weights are normalized across temporal dimen-
sion. The Sinkhorn Transformer (Tay et al., 2020b) uses a differentiable sorting operation to identify
relevant comparisons that may not be local in the original sequence order. AFT can be viewed as a
more drastic version in this direction, where the we adopt a single global ”attention mask” (w) of all
ones (vanilla AFT) or with a few learnable entries (AFT-local-learned).

Gated RNNs. AFT is also related to the classic line of work on gated RNN variants, including
LSTMs Hochreiter & Schmidhuber (1997), GRUs (Chung et al., 2014) and QuasiRNNs (Bradbury
et al., 2016). AFT maintains the benefit of RNN models (linear complexity w.r.t. sequence length,
constant decoding cost), but offers great parallelism and effectiveness, thanks to the use of a simple
context reduction operation, which is amendable to a fully parallel implementation during training.
We believe that AFT also offers new perspectives for rethinking the success and limitations of gated
RNNs.

Dynamic Convolution. AFT is also related to dynamic convolution (Wu et al., 2019) when applied
to auto-regressive tasks, where the reduced key-value representation can be interpreted as a per
sequence convolutional kernel. However, AFT operates in an extreme case where the dimension of
the kernel is 1 along both the feature and spatial dimensions, again presenting superior efficiency.
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Figure 2: Comparisons of efficiency between models for a forward and backward pass with batchsize
of 4 on a single GPU with 32 GB of RAM.
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Figure 3: Comparisons of efficiency between models for decoding sequences.

5 EXPERIMENTS

We conduct experiments on five tasks: unconditional image modeling (Sec. 5.2), language modeling
(Sec. 5.3), machine translation (Sec. 5.4), image super resolution (Sec. B.2) and point cloud
generation (Sec. B.3). We focus on the causal mode of AFT, while leaving systematic evaluation of
the non-causal version as future work. Unless otherwise mentioned, all experiments are conducted
on 8×V100 GPU machines.

5.1 EFFICIENCY

To support our analysis in Table 1, we benchmarked an implementation of AFT on a single forward
and backward pass on random data with a batch size of 4. We compared AFT with the self-attention
from Transformers, a linear attention mechanism from (Katharopoulos et al., 2020), and a Reformer
(Kitaev et al., 2020). For all of these, we used a base architecture with 12 layers, 8 heads (except
for AFT, where there are no heads), feature dimension of either 256 or 1024, and context lengths up
to 10,000. We used the code from the fast transformers library to perform the evaluations 3. Results
in terms of runtime and peak GPU usage are in Figure 2. Where data-points do not exist in the
figure, the model exhausted GPU memory. We see from this that compared to Transformers and
Reformers, AFT and linear attention require far fewer computational resources as context increases.
In addition, we see that AFT is not as sensitive to the feature dimension as the linear attention, which
expands the design space for feasible models. In all settings, AFT performs best. Additionally, we

3https://github.com/idiap/fast-transformers
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Figure 4: Proof of concept experiments for AFT-relu2, AFT-relu and AFT-softmax, tested on CI-
FAR10. All three versions train well with standard optimization settings. AFT-relu2 and AFT-relu
perform similarly, while AFT-relu-softmax and AFT-sigmoid-softmax are more stable and yields
significantly better results.

examine decoding speed in the same benchmark. Figure 3, we see that the total runtime of AFT
increases linearly with the context length, and is faster than linear attention and Transformers with
self-attention.

5.2 UNCONDITIONAL IMAGE MODELING

In our first set of experiments, we consider the problem of image modeling by minimizing the
negative log likelihood (NLL). Similar to Parmar et al. (2018), we represent an RGB image as a
sequence of length H×W × 3, with H,W being the height and width, respectively. Each sub-pixel
is represented as a 256-way discrete variable. We use CIFAR10 for image density modeling.

Feasibility study and choice of nonlinearities. We first conduct experiments validating the legit-
imacy of AFT and its four nonlinearity variants. Our reference Transformer design largely follows
that of Chen et al., where a transformer block consists of an attention layer (AFT layer in our cae)
with residual connection and a 2 layer MLP with residual connections. Layer Normalization (LN)
(Ba et al., 2016) is applied in a “pre-act” fashion. We adopt learned position embeddings, and use a
set of shared token embeddings and prediction heads across RGB.

Our base architecture consists of 24 Transformer blocks, each with d=256 dimensional features. The
hidden layer of the MLP per block has 4 dimensionality of its input. We use Adam, and follow a
standard warmup learning rate schedule as in Vaswani et al. (2017). We use an initial learning rate
of 3 × 10−3 and a weight decay of 0.1 applied to all linear transformations weights, and a dropout
of 0.1.

We adopt simple data augmentation. During training, we first randomly flip each image horizontally,
then add or subtract a value in the range [−10, 10] from all its subpixels, and clip resulting pixel
values to [0, 255]. We use cross entropy loss, and a default batch size of 128 for 200 training
epochs. We train three versions of AFT, namely AFT-relu2 (Equation 6), AFT-relu (σq = σk =
relu), AFT-relu-softmax: (σq = relu, σk = softmax), AFT-sigmoid-softmax (σq = sigmoid,
σk = softmax), all of which use full contexts. We show the training and test loss curves in Figure
4. All versions of AFT are trainable with standard optimization techniques for Transformers. In
particular, AFT-relu2 performs slightly worse than AFT-relu, and both are significantly worse than
AFT-relu-softmax and AFT-sigmoid-softmax. AFT-sigmoid-softmax also outperforms the strong
PixelCNN++ baseline (Salimans et al., 2017). Based on this observation, we use AFT-sigmoid-
softmax as the default setting for all remaining experiments, unless otherwise mentioned.

Comparing with the state of the art. CIFAR10 is a crowded benchmark for image autoregres-
sive modeling, and we compare with a few competitive baselines, as shown in Table 2. Note that
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Table 2: NLL results on CIFAR10, evaluated by bits/dim, the lower the better. Speed and memory
are measured during training time, with a batch size of 32 across 8 V100 GPUs. AFT achieve the
state-of-the-art result in this setting, with much fewer parameters, better speed and significantly less
memory.

Method Train loss Test loss #params Iters/Sec GB/GPU
PixelCNN 3.08 3.14
PixelCNN++ - 2.92
PixelSNAIL - 2.85
Sparse Transformer strided L=128, d=256 - 2.80 59M
Image Transformer local2d L=12, d=512 - 2.90 40M 1.61 22.3
AFT-full L=24, d=256 2.82 2.89 20M 2.15 9.5
AFT-local2d-hard L=24, d=256 2.81 2.87 20M 2.15 9.5
AFT-local-learned L=12, d=512 2.78 2.80 49M 1.68 11.4
AFT-local-learned L=24, d=256 2.75 2.74 29M 1.67 12.8

CIFAR10 has an unrolled sequence length of 3072, which is already prohibiting to train a full Trans-
former with reasonable size. For example, for a standard 12 layer 512 dimension and 8 head config-
uration, the maximum batch size we can fit in our 8 V100 node is only 16, which makes it infeasible
already. Our closest baseline Image Transformer (Parmar et al., 2018), which restricts attention to
local2d windows of size of 256. We test our AFT-local-learned and aft-local2d-hard variants, with
the same window size, and the same architecture as well as a deeper but narrower one (24 layer and
256 dimensions), which are still fair comparisons. We also compare to Sparse Transformers (Child
et al., 2019), which restrains attention to sparse but global subset of context elements.

From Table2, we see that all AFT variants outperform the Image Transformer baseline. Both AFT lo-
cal versions are better than the full counterpart, with AFT-local-learned being significantly stronger
than others. We also observe that the deeper but narrower architecture is more effective than the
shallow but wide baseline. Our best model also achieves the state-of-the-art result on CIFAR10 in
this setting, outperforming a much larger Sparse Transformer model. Efficiency wise, we bench-
marked Image Transformer against AFT variants on a 8 V100 GPU node 4. All our variants are
faster than Image Transformer, while consuming only half of the memory 5.

5.3 LANGUAGE MODELING

We apply AFT to character level language modeling on Enwik8 (Mahoney, 2011), which is another
popular benchmark for auto-regressive modeling. We follow the standard preprocessing procedures
and training/validation/test splits as in (Dai et al., 2019). Our base Transformer reference is a 12
layer 512 dimensional 8 head architecture with 2048 feed forward dimensions. For the first set of
experiments, we use sequence length of 1024. Our training protocol as largely the same as before,
except that we increase the weight decay to 0.5 and train for 100 epochs with batch size 128 in all
experiments. We evaluate the AFT-local-learned variant with a window size of 32 and du = 256.
We also compare to several efficient Transformer baselines, namely Reformer (Kitaev et al., 2020),
Synthesizer (Tay et al., 2020a) and Linear Transformer (Katharopoulos et al., 2020). From Table 3,
we see that with the base L = 12, d = 512 architecture, AFT achieves the lowest training bits per
character (bpc), indicating its high capacity. Its test performance is slightly worse than that of the
basic Transformer, but outperforms all other three variants. The deeper and narrower architecture of
AFT strikes the best balance across parameter, speed, memory and performance. Its test bpc is only
0.02 away from the full Transformer’s, while only consuming a third of the memory and provides a
44% speedup. In the end, we have also trained the same architecture with a sequence length of 2048,
which results in an improved performance both on the training and test set. This suggests AFT’s
ability to effectively model long range dependencies.

4We use a batch size of 32 which is the largest batch size Image Transformer can fit
5Fair comparison against Sparse Transformer is infeasible, as it relies on a set of advanced implementation

tricks such as mixed precision and gradient checkpointing, whereas AFT is implemented with standard Pytorch
utilities ran in full precision.
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Table 3: Enwik8 results, measured in bits per character (bpc), the lower the better. Baselines com-
pared are Reformer (Kitaev et al., 2020), Synthesizer (Tay et al., 2020a) (it’s best performing dense
version) and Linear Transformer (Katharopoulos et al., 2020). Speed and memory are measured
during training time, with a batch size of 128 on a 8 V100 GPU node.

Method T Train bpc Test bpc #params Iters/Sec GB/GPU
Transformer L=12, d=512 1024 0.977 1.137 39M 1.42 29.4
Reformer L=12, d=512 1024 1.04 1.195 35M 1.05 20.9
Synthesizer L=12, d=512 1024 0.994 1.298 42M 1.49 29.9
Linear Transformer L=12, d=512 1024 0.981 1.207 39M 1.46 10.6
AFT-local-learned L=12, d=512 1024 0.854 1.18 45M 1.85 11.3
AFT-local-learned L=24, d=256 1024 0.973 1.157 32M 2.04 11.2
AFT-local-learned L=24, d=256 2048 0.942 1.139 45M 0.97 21.9

On the local window size. In all our experiments, AFT-local-learned demonstrates superior per-
formance compared to other variants. In order to validate its efficacy, we performed additional
experiments wit the L = 24, d = 256 architecture, fixing everything but varying the local window
size s. We show the results on 4, where we see that both the training and testing bpc forms a U-shape
w.r.t. the window size, with 32 achieving the best performance.

Table 4: Training and testing bpc w.r.t. the local window size for AFT-local-learned.

Window size 0 1 2 4 8 32 64 128 256 512 1024
Train bpc 1.046 1.043 1.009 0.990 0.983 0.973 0.981 0.985 0.986 0.988 0.991
Test bpc 1.209 1.205 1.176 1.165 1.162 1.157 1.160 1.165 1.164 1.171 1.173

5.4 MACHINE TRANSLATION

As a machine translation benchmark, we show experiments with the WMT 2014 English to German
translation task. The training set contains approximately 4.5 million sentence pairs. We compare
against a Transformer architecture baseline using the OpenNMT implementation (Klein et al., 2017).
For translation, the standard architecture is an encoder-decoder structure, where the encoder uses
non-causal attention to encode the input sentence. The decoder uses two different types of attention.
The first, self attention, sequentially attends to the output translation as it is being generated token
by token. The second attends to the translation and the context from the encoder.

In our experiments, we replace the multi-headed decoder self-attention blocks. We compare per-
plexity (PPL), BLEU score, and efficiency between the Transformer base and AFT in Table 5. In
this task, we see that AFT performs on par with the Transformer. As expected for the small context
size, typically around 50 tokens, AFT does not show dramatic improvements in speed or memory.

Table 5: WMT 2014 English-to-German Translation.

Method Training PPL Validation PPL Test BLEU score tokens/sec GB/GPU
Transformer 4.38 4.06 27.32 54.7K 7.80
AFT (Ours) 4.34 4.10 27.70 54.4K 7.54

6 CONCLUSIONS

We have introduced the Attention Free Transformer that replaces attention with an efficient, easy-
to-implement new operation. We have demonstrated strong results on challenging benchmarks,
despite of the simplicity of our design. We believe that our model opens a new design space for
Transformer-like models, and will see impact in various areas where Transformers are applied.
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A APPENDIX

B LOCAL AFT

Algorithm 1: Pseudo code of an efficient, in-place causal AFT-softmax/AFT-softmax-local1d.
Input: Query, key and value Q′,K′, V ′ ∈ RT×d; optionally context size s ∈ {2n, n ∈ N}.
Output: Causal AFT output Y ∈ RT×d.

1 KK = exp(K′) // new memory allocation
2 KV = exp(K′) ∗ V ′ // new memory allocation
// if s is not provided default to dlog2(T )e iterations

3 for j = 1, ...,min(dlog2(T )e, log2(s)) do
4 stride = 2j−1

5 KV[stride:, :] = KV[stride:, :] + KV[:T-stride, :] // in-place op

// now KV [i] =
∑i

k=max(0,i−2j+1)(exp(K
′) ∗ V ′)[k], ∀i

6 KK[stride:, :] = KK[stride:, :] + KK[:T-stride, :] // in-place op

// now KK[i] =
∑i

k=max(0,i−2j+1)(exp(K
′))[k], ∀i

// normalize according to softmaxc and multiply with query
7 Y = relu(Q′) ∗KV/KK

Algorithm 2: Pseudo code of an efficient, in-place causal AFT-softmax-local2d.
Input: Query, key and value Q′,K′, V ′ ∈ RH×Wd, context sizes sh, sw ∈ {2n, n ∈ N+}
Output: Causal AFT output Y ∈ RH×W×d.

1 KK = exp(K′) // new memory allocation
2 KV = exp(K′) ∗ V ′ // new memory allocation
// first aggregate locally across rows; pass if sw ≤ 2.

3 for j = 1, ..., log2(sw)− 1 do
4 stride = 2j−1

5 KV[:, stride:, :] = KV[:, stride:, :] + KV[:, :W-stride, :] // in-place op

// now KV [:, i] =
∑i

k=max(0,i−2j+1)(exp(K
′) ∗ V ′)[:, k], ∀i

6 KK[:, stride:, :] = KK[:, stride:, :] + KK[:, :W-stride, :] // in-place op

// now KK[:, i] =
∑i

k=max(0,i−2j+1)(exp(K
′))[:, k], ∀i

// then aggregate locally across columns
7 for j = 1, ..., log2(sh) do
8 stride = 2j−1

9 KV[stride:, :, :] = KV[stride:, :, :] + KV[:H-stride, :, :] // in-place op
// now

KV [ih, iw] =
∑ih

kh=max(0,ih−2j+1)

∑iw
kw=max(0,iw− sw

2
+1)

(exp(K′) ∗ V ′)[kh, kw], ∀ih, iw
10 KK[stride:, :, :] = KK[stride:, :, :] + KK[:H-stride, :, :] // in-place op

// now KK[ih, iw] =
∑ih

kh=max(0,ih−2j+1)

∑iw
kw=max(0,iw− sw

2
+1)

(exp(K′))[kh, kw], ∀ih, iw

// incorporate contexts to the right
11 idx = min(arange(W) + sw

2
, W-1) // arange(W) = [0, 1, ..., W-1]

12 KV[1:, :, :] = KV[1:, :, :] + KV[:H-1, idx, :] // in-place op
13 KK[1:, :, :] = KK[1:, :, :] + KK[:H-1, idx, :] // in-place op

// normalize according to softmaxc and multiply with query
14 Y = relu(Q′) ∗KV/KK

B.1 CIFAR10 VISUALIZATIONS

Here we show the visualizations of our best performing model trained on CIFAR10 (with test
bits/dim 2.81). In Figure 5, we sample 32 test images and mask out the bottom half for each of
them. We then use the model to sample the remaining pixels, one at a time. We see the model
provides consistent completions for most cases.
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(a) Masked images.

(b) Completed images.

(c) Full images.

Figure 5: Image completion with test examples.

B.2 IMAGE SUPER RESOLUTION

We also consider a super-resolution task based on pixel-wise image generation. Following (Dahl
et al., 2017; Parmar et al., 2018), we enlarge an 8× 8 sized image to 32× 32.

We use CelebA dataset (Liu et al., 2015) as the benchmark. Our baseline model is the Image Trans-
former (Parmar et al., 2018) with its encoder and decoder connected through the attention mech-
anism. Both the 1D and 2D local Image Transformer models have L = 12 layers, d = 512 and
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Table 6: Image super resolution results on CelebA. Our AFT mod-
els outperform the PixelRecursive baseline (Dahl et al., 2017) in
bits/dim (the lower the better), and show clear advantages in param-
eter efficiency and memory saving over Image Transformers (Par-
mar et al., 2018), with comparable or even better performance.

Method L d Train Dev Params Iters GB
bits/dim bits/dim /sec /GPU

PixelRecursive - - - 2.81 54M - -
1D local Transformer 12 512 2.54 2.68 39M 2.98 9.5G
2D local Transformer 12 512 2.43 2.61 42M 1.45 21.2G
AFT-local2d (Ours) 32 256 2.39 2.59 25M 1.43 10.4G

dev_NLL

2.5

2.7

2.3

2.9

3.1

3.3

3.5

3.7

3.9

efficient_c1024_d512_l12

vanilla_c1024_d512_l12

Name Smoothed Value
2.8667

2.6198

2.9259
2.6214

8x8 
Input

32x32

G. Truth

2D local

Transformer

AFT-local2d

(Ours)

Figure 6: Upscaled images
from baseline and our 2D lo-
cal transformers on CelebA.

attention heads=8, and are trained under the DMOL (discretized mixture of logistics) loss for 200
epochs. We experimented by replacing the standard attention blocks in decoder with our AFT-
local1d or -local2d, keeping other modules the same. We follow similar training schemes, but with
tuned dropout and learning rate. Evaluation is performed in terms of NLL measured in bits/dim,
with the sampling temperature fixed at 0.8.

Table 6 shows results of our best AFT-local2d model (context size 16 × 16), in comparison to the
PixelRecursive baseline and 1D/2D local Image Transformer models. Note the large consumption
of model capacity and memory from 2D local Image Transformer, while our AFT-local2d shows
clear advantages with no loss in model quality (see Figure 6 for visual comparison).

Figure 7 shows more samples from different models trained on CelebA face images.

8x8 
Input

32x32

G. Truth

AFT-local2d

(Ours)

1D local

Transformer

2D local

Transformer

Figure 7: Upscaled images from baseline 1D/2D local Image Transformers (Parmar et al., 2018) and
our AFT-local2D model trained on CelebA.

B.3 POINT CLOUD GENERATION

In addition to images and text, we explore modeling point clouds randomly sampled from objects
in the ShapeNetCore v2 dataset (Chang et al., 2015). Each point cloud consists of 2048 points.
Following Nash et al. (2020), the points were sorted into a sequence in the order of z, y and x, then
uniformly 8-bit quantized based on their positions. Our preliminary results of point cloud generation
are shown in Table 7, and examples of generated point clouds are shown Figure 8. We see that our
model is able to generate self consistent objects with fine details and great diversity.
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Table 7: Results on ShapeNetCore v2, evaluated by bits/dim, the lower the better.

Class Train bits/dim Test bits/dim
All classes 3.67 3.87
Airplane 3.07 3.14
Chair 3.67 3.96
Car 3.64 3.99

Figure 8: Point clouds generated by AFT trained on airplane point clouds.
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