

SLA-v3: SPATIAL LINKABILITY-AWARE AND NOVELTY-ENCOURAGING STATE HEURISTIC FOR EXPLORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Efficient exploration continues to be a pivotal challenge in reinforcement learning (RL), particularly in environments characterized by sparse rewards. While intrinsic motivation (IM) has proven effective for tackling hard exploration tasks, current IM approaches often struggle with the detachment-derailment (D-D) problem. This issue significantly curtails their effectiveness, especially in settings with extremely sparse rewards. Although methods like Go-Explore address D-D by explicitly archiving states to ensure revisit, their dependency on state restoration limits their practical application in procedurally generated environments. In this paper, we argue that the root cause of the D-D problem lies in the underlying topological transition structure of the environment. Specifically, we observe that certain states become persistently difficult to traverse and revisit reliably when subjected to exploratory noise. To overcome this, we introduce a novel IM framework centered on state traversal difficulty. Within this framework, we propose the **Spatial Linkability-Aware and Novelty-Encouraging State Heuristic (SLAANESH)**, abbreviated as **SLA-v3**. SLA-v3 tackles the D-D problem by utilizing the shortest-path quasi-metric from the initial state (S_0) as a heuristic for traversal difficulty. This mechanism generates sustainable exploratory incentives, particularly encouraging visit to hard-to-traverse states. Furthermore, SLA-v3 integrates a novelty detector, which serves to warm up the heuristic and effectively prevent stagnation in unproductive dead-end paths. Our extensive experimental evaluations on MiniGrid and challenging Atari environments (PitFall! and Montezuma’s Revenge) robustly demonstrate the superior efficacy of SLA-v3.

1 INTRODUCTION

In reinforcement learning (RL), agents primarily rely on reward signals to optimize their policies. However, in sparse-reward environments, traditional algorithms Mnih et al. (2016; 2013); Schulman et al. (2017); Schrittwieser et al. (2020) frequently struggle to make meaningful policy updates. Instead, they often default to uniformly random exploration until a reward is accidentally encountered. This leads to a detrimental vicious cycle: uniformly random policies seldom discover sparse rewards, and without these critical signals, policies cannot effectively improve. Consequently, efficient exploration methods become indispensable for progress in such settings.

Intrinsic motivation (IM) has emerged as a prominent and successful framework for addressing the sparse reward problem in reinforcement learning Ladosz et al. (2022). This approach enhances the reward signal by leveraging historical experience replay, thereby facilitating more effective policy optimization. Contemporary high-performance IM methods are generally categorized into two distinct paradigms: **novelty**/curiosity-driven mechanisms and **diversity**-oriented approaches. Novelty-based methods Burda et al. (2018); Zhang et al. (2021b); Pathak et al. (2017); Pecháć et al. (2023); Guo et al. (2022); Zhang et al. (2021a) primarily incentivize the exploration of under-visited states, while diversity-oriented methods Henaff et al. (2022); Badia et al. (2020); Jiang et al. (2025); Wan et al. (2023); Raileanu & Rocktäschel (2020); Yuan et al. (2022) focus on enforcing diverse state visitation over shorter temporal horizons.

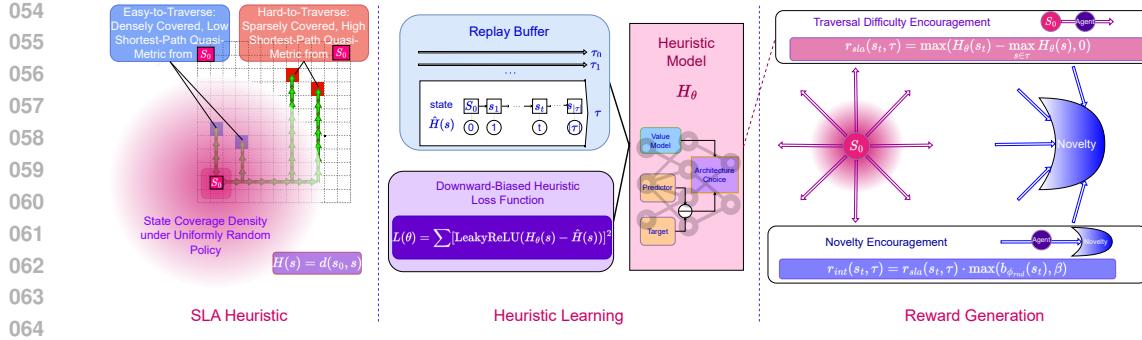


Figure 1: Overview of SLA-v3. (Left) SLA Heuristic: The *shortest-path quasi-metric* from the initial state S_0 serves as a traversal difficulty heuristic. States with higher quasi-metric values from S_0 are typically less frequently covered by a uniformly random exploratory policy. (Middle) The heuristic model, whose architecture can be a value model or a novelty detector, is optimized to predict the minimum episodic timestamp a state has been reached within the replay buffer. (Right) The intrinsic reward generated by SLA-v3 promotes visiting both hard-to-traverse states (distant from S_0) and novel states, guiding the agent away from well-explored initial regions towards high-novelty areas.

Despite their successes, a critical limitation of existing IM methods is their susceptibility to the Detachment-Derailment (D-D) problem Ecoffet et al. (2021), which significantly impedes exploration efficacy. More precisely, Derailment occurs when exploratory noise inadvertently disrupts the agent’s ability to reliably visit potentially rewarding states. Detachment, on the other hand, manifests as a divergence between the actual state visitation space and the region deemed highly intrinsically motivating (i.e., the exploration frontier). Current state-of-the-art IM methods often fall short in adequately addressing this D-D problem: novelty-based approaches tend to suffer from diminishing exploration guidance and an exhaustible reward signal, whereas diversity-based methods prioritize exploration breadth at the expense of depth, often leading to suboptimal exploration strategies.

The Go-Explore framework Ecoffet et al. (2021) offers a compelling solution to the D-D problem by maintaining a comprehensive archive of all visited states. This mechanism guarantees state revisit and subsequent exploration, effectively circumventing the D-D issue through exhaustive state memorization. However, its practical applicability is severely constrained by its fundamental reliance on complete state recoverability, which is inherently unattainable in procedurally generated environments Kütter et al. (2020).

This context naturally leads to a fundamental question: Can we develop an exploration algorithm that effectively mitigates the D-D problem without imposing the strict requirements of state recovery? We assert that the environment’s underlying topological transition structure is the root cause of the D-D problem. Our analysis reveals that states exhibit inherent asymmetric traversal difficulty: some states remain easily revisitable despite exploratory noise, while others necessitate sustained exploration incentives and minimal noise for reliable access.

Building upon this insight, we propose a novel intrinsic motivation paradigm grounded in state traversal difficulty. By utilizing temporal distance from the initial state S_0 as a robust traversal difficulty heuristic, we introduce the Spatial Linkability-Aware and Novelty-Encouraging State Heuristic (SLAANESH, abbreviated as SLA-v3), which is visually summarized in Figure 1. Our approach makes four key contributions: First, we formally define the shortest-path quasi-metric from S_0 as a heuristic metric to quantitatively assess detachment and derailment risk. Second, we develop a Go-Explore-inspired intrinsic reward mechanism that strategically guides the agent to **go** to the most hard-to-traverse known state and then **explore** extensively from that established frontier. Third, we integrate a novelty detector to facilitate heuristic warm-up and effectively prevent stagnation within local dead-end paths during a single trajectory. Fourth, we present extensive experimental results in MiniGrid and challenging Atari environments (specifically PitFall! and Montezuma’s Revenge), which convincingly demonstrate the superior effectiveness of SLA-v3.

108
109

2 RELATED WORKS

110
111

2.1 INTRINSIC MOTIVATION

112
113
114
Intrinsic Motivation (IM) serves to augment sparse rewards by employing domain-agnostic heuristics and leveraging trajectory history. This field is currently advancing through three principal methodological approaches:115
116
117
118
119
120
121
122
123

Novelty-based (or curiosity-driven/visit-count-based) IMs aim to promote exploration of under-visited states. They achieve this through various novelty quantification techniques, including density estimation Ostrovski et al. (2017); Bellemare et al. (2016), prediction variance Pathak et al. (2019), prediction error Burda et al. (2018); Pecháč et al. (2023); Pathak et al. (2017); Guo et al. (2022); Zhang et al. (2021b), variational objectives Zhang et al. (2021a), and information gain Kim et al. (2019); Bai et al. (2021); Kim et al. (2018); Houthooft et al. (2016); Mazzaglia et al. (2022). Nevertheless, novelty-based intrinsic motivation methods remain susceptible to the Detachment problem Ecoffet et al. (2021), where the exploration policy often fails to adequately cover intrinsically motivated states.

124
125
126
127
128
129
130
131
132
133

Diversity-based IMs are designed to promote short-term state space coverage across multiple temporal scales. These include transition-level approaches Raileanu & Rocktäschel (2020), episodic methods Badia et al. (2020); Henaff et al. (2022); Wan et al. (2023); Jiang et al. (2025), and inter-episodic strategies Yuan et al. (2022). Such approaches typically rely on state similarity metrics, ranging from simple hashing techniques Raileanu & Rocktäschel (2020); Zhang et al. (2021b); Flet-Berliac et al. (2021) to more advanced representation learning like inverse dynamics Pathak et al. (2017); Badia et al. (2020); Henaff et al. (2022); Raileanu & Rocktäschel (2020) and temporal distance Myers et al. (2024); Jiang et al. (2025). Inherently, diversity-based methods prioritize breadth over depth in exploration, potentially limiting their ability to effectively solve challenging exploration problems that demand deep state space traversal.

134
135
136
137
138
139

Topology-Based IMs exploit the environmental transition topology to guide exploration within sparse-connected transition structures. Key approaches in this category include spectral decomposition of state spaces Machado et al. (2017a;b); Klissarov & Machado (2023); Von Luxburg (2007) and successor/predecessor feature analysis Yu et al. (2024) for identifying bottlenecks. Our SLA-v3 framework also adopts the paradigm of topology modeling to identify and encourage the revisit of hard-to-traverse states, specifically to counter the D-D problem.

140
141
142

2.2 GO-EXPLORE

143
144
145
146
147
148
149
150
151
152
153
The Go-Explore framework Ecoffet et al. (2021) represents the state-of-the-art for hard exploration problems. It has achieved unparalleled performance in notoriously challenging benchmarks, such as Montezuma’s Revenge and PitFall! (though relying on sophisticated domain-specific knowledge). The efficacy of Go-Explore stems from two key mechanisms: (1) an exhaustive state archive that guarantees revisit through either simulator-assisted state restoration or goal-conditioned policies, which effectively eliminates detachment by ensuring persistent access to promising states; and (2) archive-based state sampling, which circumvents derailment by resetting exploration from strategically selected initial states. Subsequent improvements to Go-Explore Höftmann et al. (2023); Gallouédec & Dellandréa (2023); Jia et al. (2024) have further enhanced its scalability, often through latent space archiving and density-based sampling techniques. However, Go-Explore’s fundamental reliance on perfect state recoverability significantly limits its applicability to procedurally generated environments.154
155
156
157

3 SLA-V3: SPATIAL LINKABILITY-AWARE AND NOVELTY-ENCOURAGING STATE HEURISTIC

158
159
3.1 SLA HEURISTIC: SHORTEST-PATH QUASI-METRIC FROM S_0 160
161
We propose a principled heuristic for state traversal difficulty that addresses two key requirements: (1) Detachment Risk Awareness, which quantifies the probability of state rediscovery under uniform

random policies when intrinsic rewards become uninformative; and (2) Derailment Risk Awareness, which measures susceptibility to exploratory noise during state visitation.

Our core heuristic, which we term the SLA Heuristic, is based on a shortest-path quasi-metric that quantifies the minimum number of temporal steps from the initial state S_0 to any given state s . It is formally expressed as:

$$H_{\text{sla}}(s) = d(s_0, s) = \min\{t \geq 0 : s_t = s\} \quad (1)$$

This $H_{\text{sla}}(s)$ value inherently serves as a measure of traversal difficulty. The choice of this quasi-metric is motivated by the observation that states requiring more sequential actions to reach from S_0 inherently exhibit greater sensitivity to perturbations from exploratory noise at each decision point. For singleton environments, S_0 directly corresponds to the episodic starting state. In procedurally generated environments, it represents the abstract initial configuration from which concrete environment instances are sampled before the first observation is generated.

3.2 LEARNING AND APPROXIMATION OF THE SLA HEURISTIC

The ground truth shortest-path quasi-metric for each state is generally unavailable unless the true transition dynamics are known. Consequently, we approximate the heuristic using transition dynamic information derived from episodic trajectories within the replay buffer. For any state s_t within an episodic trajectory with step count t , the ground truth shortest-path quasi-metric serves as an upper bound t , assuming a deterministic environment. Therefore, we use the episodic step count as the target for heuristic approximation and employ a downward-focused optimization strategy. This ensures the heuristic is optimized towards the minimum value observed across all trajectories.

$$\mathcal{L}(\theta) = \sum_{\tau \in \mathcal{D}} \sum_{s_t \in \tau} f_{\text{relu}}(H_{\theta}(s_t) - t)^2, \quad (2)$$

where f_{relu} implements a leaky-ReLU Xu et al. (2015) style gradient weighting defined as:

$$f_{\text{relu}}(x) = \begin{cases} x & \text{if } x \geq 0, \\ \epsilon x & \text{if } x < 0, \end{cases} \quad (3)$$

with $0 < \epsilon \ll 1$ controlling the gradient scale.

Given that the approximator of the SLA heuristic (referred to as the *heuristic model* throughout the remainder of this paper) maps from the state space to a scalar, it is functionally equivalent to the value model used in PPO Schulman et al. (2017). Therefore, the neural architecture for our heuristic model can be directly determined by applying the same selection criteria as for the PPO value model, without necessitating neural architecture search or additional components (e.g., contrastive models or normalization schemes).

3.3 FIRST MAXIMIZE, THEN EXPLORE

In each episode, the agent is designed to first **go** to the known hardest-to-traverse state and then **explore** from this established frontier. To achieve this behavior, SLA-v3 employs an implicit dual-phase reward mechanism: it initially encourages the agent to maximize the state heuristic value, followed by a phase of unguided exploration without additional intrinsic reward once the hardest-to-traverse frontier state has been reached. The heuristic component of the intrinsic reward is formally defined as:

$$r_{\text{sla}}(s_t, \tau) = \max \left(H_{\theta}(s_t) - \max_{i \in [1..t-1]} H_{\theta}(s_i), 0 \right), \quad (4)$$

where τ denotes the episodic trajectory and H_{θ} represents the heuristic model. This non-negativity constraint prevents performance degradation that could arise from heuristic underestimation, particularly for states that are indistinguishable (in a partial observability setting) or unexplored hard-to-traverse states.

3.4 INTEGRATION OF NOVELTY DETECTOR

We incorporate a novelty detector into SLA-v3 through two distinct mechanisms. First, it acts as a reward modulator to prevent exploration stagnation in local dead-end paths. The complete intrinsic

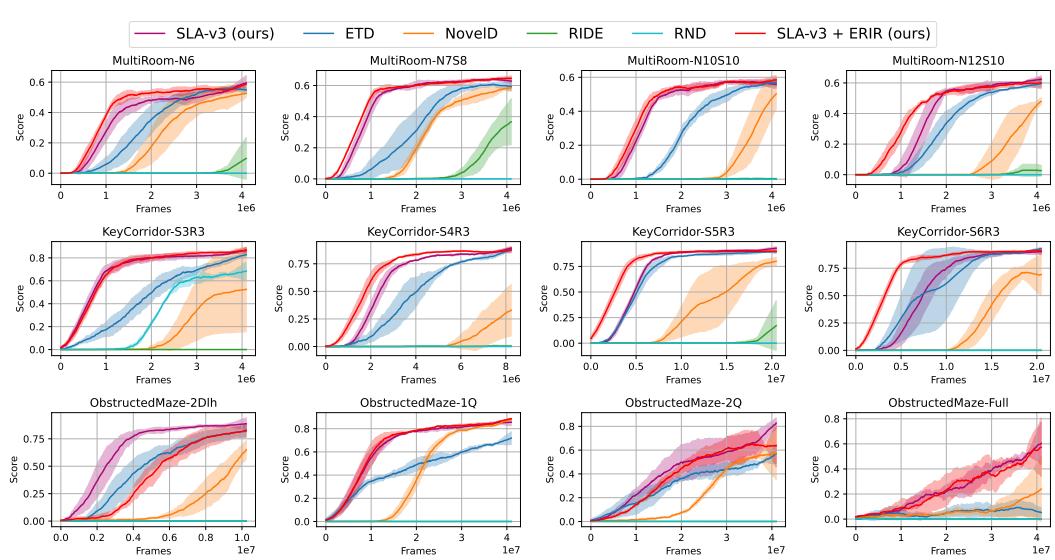


Figure 2: Training performance in the MiniGrid environments. SLA-v3 achieves better performance compared to baselines across most evaluated environments.

reward is defined as:

$$r_{\text{int}}(s_t) = r_{\text{sla}}(s_t, \tau) \cdot \max(b_\phi(s_t), \beta), \quad (5)$$

where $\beta > 0$ guarantees a minimum exploration incentive (we set $\beta = 0.06$ for the main experiments), and b_ϕ represents the novelty detector’s output.

Second, the novelty detector serves as an alternative heuristic model architecture to accelerate heuristic adaptation. The heuristic model, as defined by Equation 3, exhibits an inherent slow upward adjustment tendency, which can lead to delayed correction of underestimation for previously unseen hard-to-traverse states. By leveraging the novelty detector’s architecture, which typically provides high initial value outputs for unseen states, we utilize it to mitigate this slow correction issue and effectively warm up the heuristic.

In this paper, we employ Random Network Distillation (RND) Burda et al. (2018) as our novelty detector. Its output is computed as the L_2 norm of the difference between the prediction network and target network outputs: $\|\phi_{\text{pred}}(s) - \phi_{\text{target}}(s)\|_2$.

4 EXPERIMENTS

We evaluate the effectiveness of SLA-v3 across two benchmark families: MiniGrid, representing procedurally generated environments, and the challenging Atari suite, specifically PitFall! and Montezuma’s Revenge for their extremely hard-exploration characteristics. Our implementation is built upon PPO Schulman et al. (2017) as the foundational reinforcement learning algorithm. To manage intrinsic and extrinsic rewards, we employ separate value functions with distinct discount factors, consistent with prior work Burda et al. (2018); Kazemipour (2020). All environments utilize shaped rewards, defined as $\max(\text{sign}(r), 0)$. All results are averaged across three random seeds, with 1σ error bars consistently depicted in all figures. More details about the environment and the experiment setting are available in the Appendix.

4.1 MINIGRID ENVIRONMENTS

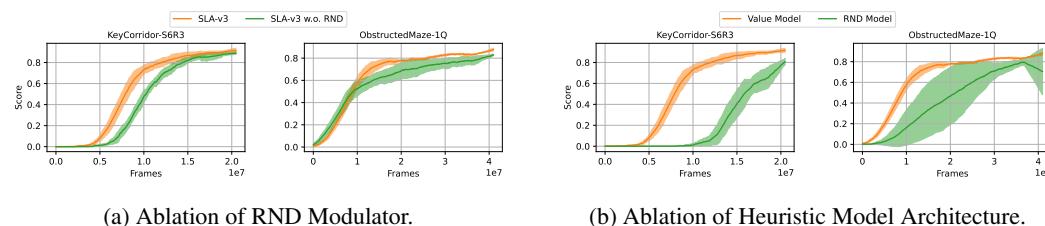
The MiniGrid benchmark Chevalier-Boisvert et al. (2018) consists of procedurally generated grid-world environments. We conducted evaluations on three high-sparsity environments: (1) Multi-Room (MR), (2) Key Corridor (KC), and (3) Obstructed Maze (OM).

270 In MiniGrid environments, Episodic Restriction on Intrinsic Reward (ERIR Zhang et al. (2021b))
 271 has shown effectiveness by utilizing hash-based episodic visit counts, $\mathbf{I}(N_{eps}(s) = 1)$, to modulate
 272 rewards. Building upon this, we also implemented SLA-v3+ERIR, a variant of SLA-v3 with a
 273 modified intrinsic reward defined as $r_{int}(\cdot) = [r_{sla}(\cdot) + \alpha \mathbf{I}(N_{eps}(s) = 1)] \cdot \max(b(\cdot), \beta)$, where
 274 we fixed $\alpha = 0.05$ for all experiments. Our experiments compare SLA-v3 against four baselines:
 275 RND Burda et al. (2018), RIDE Raileanu & Rocktäschel (2020), NovelD Zhang et al. (2021b),
 276 and ETD Jiang et al. (2025). It is important to note that a direct comparison with Go-Explore was
 277 not feasible due to fundamental incompatibilities with procedurally generated environments, a point
 278 further elaborated in Section 2.2. All methods process raw partial observations as inputs for both the
 279 policy and intrinsic reward models, reserving full observations exclusively for ERIR computation,
 280 as in Zhang et al. (2021b).

281 **Results.** As depicted in Figure 2, SLA-v3 consistently demonstrates substantial performance advantages
 282 over baseline methods, significantly outperforming RND, RIDE, ETD, and NovelD in most scenarios.
 283 These findings affirm that the exploration strategy of SLA-v3 effectively generalizes to
 284 procedurally generated environments, with its heuristic model exhibiting robust adaptation to novel
 285 environment instances sampled from the underlying distribution. While the inclusion of ERIR offers
 286 additional performance benefits, our experiments indicate that the fundamental SLA-v3 method
 287 alone achieves competent performance, underscoring the inherent effectiveness of its core design.

288 **Analysis.** Figure 3 illustrates
 289 the effectiveness of the *SLA*
 290 *Heuristic* in assigning high
 291 reward values to critical states
 292 within the KeyCorridor-S6R3
 293 environment. Four key interaction
 294 stages—key observation,
 295 key acquisition, approaching a
 296 locked door with the key, and
 297 door unlocking—consistently
 298 correspond to monotonically
 299 increasing heuristic values.
 300 This precisely reflects the pre-
 301 requisite relationships among
 302 these sequential behaviors, con-
 303 fIRMing SLA-v3’s capability to
 304 implicitly generate an automatic
 305 curriculum. Importantly, even
 306 under partial observability con-
 307 straints, SLA-v3 successfully
 308 captures essential information
 309 regarding environmental traver-
 310 sal difficulty by effectively lever-
 311 aging the limited yet informative
 312 landmarks available in partial
 313 observations.

314 4.2 ABLATION STUDIES IN MINIGRID



317 **Figure 4: Ablation study on the integration of RND.**

RND Integration. Our comprehensive ablation study examined RND integration from two perspectives: its role as a reward modulator and its application in the heuristic model architecture. Figure 4a demonstrates that while the RND modulator benefits SLA-v3’s performance, the standalone SLA heuristic achieves comparable results. This is likely due to MiniGrid’s depth-focused structure; limited deep branching paths (beyond extrinsic rewards) prevent the SLA heuristic from being trapped in suboptimal, reward-lacking deep branches. Figure 4b further reveals that the RND-based heuristic model architecture underperforms the standard value network architecture. This suggests that in MiniGrid’s relatively simple environments, RND’s architectural instability may not be fully offset by its heuristic warm-up advantages.

Hyperparameter Sensitivity. We also performed an ablation study to examine the sensitivity of key hyperparameter choices: the minimum RND modulator parameter β and the downward-biased heuristic loss parameter ϵ . Figure 5 illustrates that the choice of parameter β has a limited effect on performance. Figure 6 indicates that the parameter ϵ should be carefully selected—neither too high nor too low—to achieve an optimal trade-off between overestimation avoidance and heuristic learning speed.

4.3 CHALLENGING ATARI

We selected the notoriously challenging Atari environments PitFall! and Montezuma’s Revenge (MR) to evaluate the depth-focused exploration capability of SLA-v3.

PitFall! is characterized by extreme reward sparsity across 255 interconnected rooms, many of which contain hazardous elements that instantly terminate an episode. Successful navigation requires precise, long-horizon action sequences, with a minimum of six consecutive rooms to traverse for even the most accessible extrinsic reward. Historically, only a handful of methods, such as Go-Explore Ecoffet et al. (2021), have successfully solved PitFall!, with most failing to achieve any non-zero extrinsic reward. Montezuma’s Revenge presents a similar hard-exploration challenge with three levels, each comprising 24 interconnected rooms with analogous hazardous elements.

Following Go-Explore Ecoffet et al. (2021), we integrate carefully designed domain knowledge for the Pitfall! and the MR environment, utilizing room indices and agent positional information. This knowledge serves two primary purposes: (1) as an input feature for the heuristic model and (2) for pruning sub-optimal branching paths. These modifications establish an optimized testbed for evaluating SLA-v3’s sustained deep exploration ability. We employ a value model architecture for

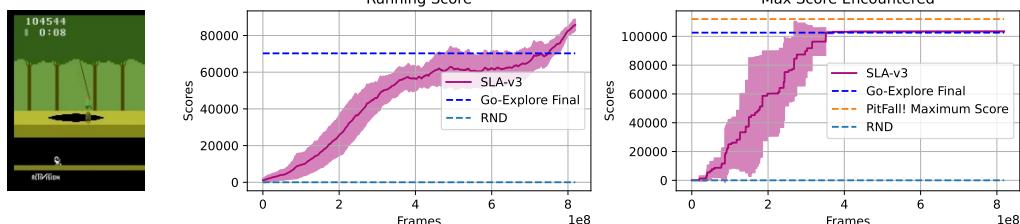


Figure 7: Results for PitFall!. (Left) A rendered view of the PitFall! environment, illustrating SLA-v3 achieving over 100,000 episodic scores. (Middle) Running episodic scores during the rollout process. (Right) Maximum episodic scores encountered during the rollout process.

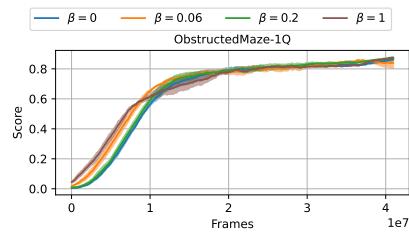


Figure 5: Ablation of RND Modulator parameter β .

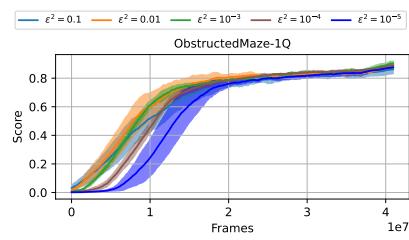


Figure 6: Ablation of heuristic loss parameter ϵ .

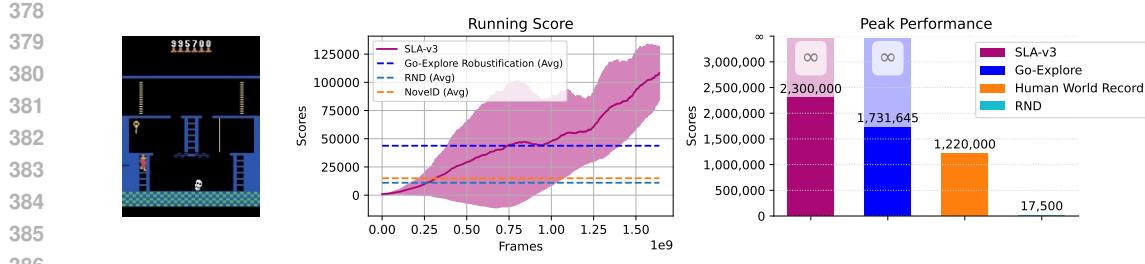


Figure 8: Results for Montezuma’s Revenge (MR). (Left) A rendered view of the MR environment, showing SLA-v3 achieving nearly 1 million episodic scores. (Middle) Running episodic scores during the rollout process. (Right) Peak performance of SLA-v3 with greedy action selection and a released episodic step limit. Notably, both SLA-v3 and Go-Explore demonstrate the potential to achieve infinite scores, given the level-3 cyclical property inherent in the MR environment.

our heuristic model. Notably, we omit the RND reward modulator in this setting, as sub-optimal branching paths are already pruned.

Experimental Results. As illustrated in Figure 7, SLA-v3 achieves significant performance gains in Pitfall!, attaining an average score of 80,000, with maximum scores exceeding 100,000. These results substantiate SLA-v3’s capacity for effective, depth-focused exploration in challenging sparse-reward environments. Furthermore, all three trials occasionally surpassed 100,000 during the rollout, indicating potential for high-reward discovery and sustained performance. For Montezuma’s Revenge, SLA-v3 also achieves average scores over 100,000 during training, though limited by the 18,000-frame episodic step limit. We also applied a simple post-processing method to the trained policy network, using a greedy policy and releasing the episodic step limit (to 180,000 training frames). This increased the maximum score to over 2,300,000, aligning with the maximum scores reported in the Go-Explore paper (1,700,000+). It is important to elaborate on the potential for infinite scores in MR for both SLA-v3 and Go-Explore. The environment is deterministic and features only three level maps. Agents progress from Level 1 to 2, then to 3. Crucially, completing Level 3 restarts the agent at the beginning of Level 3. This cyclical, deterministic design allows for continuous score accumulation once an optimal greedy policy for completing Level 3 is learned. Thus, with the episodic step limit removed and no undiscovered bugs, both SLA-v3 and Go-Explore could theoretically achieve infinite scores.

Analysis. To elucidate the challenges of sustained exploration and the advantages of SLA-v3, we examine the Pitfall! Atari environment. As depicted in Figure 9, successful learning in Pitfall! fundamentally involves the sequential traversal of multiple rooms to reach a final objective. For instance, advancing from Room 1 to Room 7 (the yellow objective) via intermediate Rooms 3, 4, and 5 poses significant hurdles. Even assuming consistent visitation of Room 3, reaching Room 5 from Room 4 and subsequently Room 7 requires fulfilling three critical conditions: (1) robust traversal to Room 4 by consistently executing a low-fault-tolerance action sequence through hazardous areas like the tar pit in Room 3; (2) effective exploration within Room 4 to discover and execute precise, low-fault-tolerance actions to bypass quicksand and crocodiles, gaining access to Room 5; and (3) sustained visitation of Room 5 for continued progress toward the ultimate goal.

The stringent, low-error-tolerance action sequencing inherent in Pitfall!, combined with persistent exploratory noise, collectively generates significant derailment risks that frequently hinder the agent from consistently reaching Room 4 from Room 3. Furthermore,

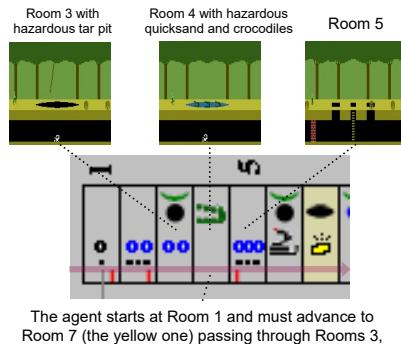


Figure 9: Key rooms in Pitfall! illustrating traversal challenges and derailment risks. A detailed map with explanation is available in Appendix.

432 these challenges, often exacerbated by training-induced policy oscillations, lead to temporal detachment,
 433 where the agent loses the ability to reliably return to previously visited critical states such
 434 as Room 4. SLA-v3 effectively addresses these challenges by introducing sustainable exploration
 435 incentives. Specifically, because Room 4 is located at a higher *shortest-path quasi-metric* from the
 436 episodic initial state (Room 1) than Room 3, its SLA heuristic value is inherently higher. Success-
 437 ful visitation of Room 4 from Room 3 therefore increases the maximum observed heuristic value,
 438 generating a positive intrinsic reward for the agent. This mechanism fosters persistent advancement
 439 toward the exploration frontier, simultaneously demonstrating resilience to derailment and enabling
 440 consistent recovery from detachment events.

441

442 5 DISCUSSIONS

443

444 **Robustness to Noisy-TV.** We evaluated the robustness of SLA-v3 in a modified PitFall! environ-
 445 ment subjected to uniformly random noise. As depicted in Figure 10, SLA-v3 consistently maintains
 446 non-zero rewards even under random noise, albeit with a slight performance degradation. This be-
 447 havior is attributed to the fact that uniformly random noise lacks landmarks for traversal difficulty
 448 and contributes minimally to the heuristic value approximation. Consequently, the relative ordering
 449 of state traversal difficulty, and its approximation, is preserved. These results collectively demon-
 450 strate that SLA-v3 exhibits robustness to random noise when such noise contains no meaningful
 451 information.

452

453 Robustness to Stochasticity.

454 We also evaluated SLA-v3 in
 455 stochastic settings within a
 456 modified PitFall! environment,
 457 incorporating a sticky-action
 458 wrapper. As Figure 10 illus-
 459 trates, SLA-v3 continues to
 460 achieve non-zero extrinsic
 461 rewards, despite our shortest-path
 462 quasi-metric being inherently
 463 defined for deterministic
 464 settings. The SLA Heuristic
 465 remains effective by providing
 466 high-level exploration incentives, where successful guidance primarily requires maintaining correct
 467 ordinal relationships between temporal-abstacted states (e.g., accurately ranking Room 4 as harder
 468 to traverse than Room 3 in PitFall!). The observed performance degradation in this stochastic
 469 setting is primarily due to the low-fault-tolerance nature of the challenging PitFall! environment,
 470 where the agent is not guaranteed to advance to the next room because of potentially incorrect
 471 actions taken under the sticky-action mechanism.

472

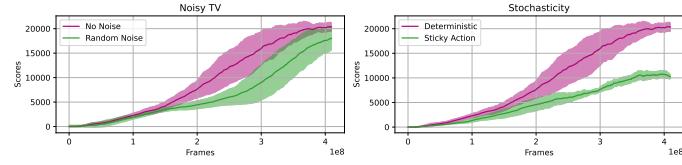
473 6 CONCLUSION

474

475 This paper introduced a novel paradigm for intrinsic motivation grounded in state traversal difficulty,
 476 embodied by our proposed SLA-v3 method. SLA-v3 leverages the shortest-path quasi-metric from
 477 S_0 as a heuristic for traversal difficulty, thereby systematically promoting the visitation of hard-
 478 to-traverse states to mitigate the detachment-derailment problem. Furthermore, SLA-v3 integrates
 479 a novelty detector to facilitate heuristic warm-up and prevent stagnation within single trajectories.
 Extensive experiments conducted in MiniGrid and challenging Atari environments (PitFall! and
 Montezuma’s Revenge) robustly demonstrate the efficacy of SLA-v3.

480

481 However, the current SLA Heuristic implicitly assumes that each action step incurs a uniform cost, as
 482 it quantifies minimum temporal steps. This assumption constraints its effectiveness in environments
 483 where transition costs vary substantially, such as those with intrinsically uncontrollable steps or low-
 484 fault-tolerance actions (e.g., navigating from critical “near-death” states versus performing routine
 485 actions). Therefore, a promising direction for future work involves modeling the heterogeneous
 486 costs of individual steps and incorporating cost-sensitive metrics (e.g., successor distance Jiang et al.
 487 (2025); Myers et al. (2024)) into the heuristic target calculation.



476 Figure 10: Robustness Analysis of SLA-v3 in PitFall! under
 477 Noisy-TV and Stochasticity. (Left) SLA-v3 exhibits resilience
 478 to random noise. (Right) SLA-v3 is robust to stochasticity. Suc-
 479 cess criterion: achieving above-zero episode scores.

486 **7 ETHICS STATEMENT**
 487

488 The authors confirm that this work adheres to the ICLR Code of Ethics. This research focuses on
 489 advancements in reinforcement learning algorithms and does not involve human subjects, sensitive
 490 personal data, or any applications that could lead to direct societal harms. All datasets used are
 491 publicly available and appropriately cited. We have ensured that our methodology and findings con-
 492 tribute positively to the scientific community and align with responsible AI development principles.
 493 No potential conflicts of interest or sponsorship have influenced the research outcomes.

494
 495 **8 REPRODUCIBILITY STATEMENT**
 496

497 To facilitate the reproducibility of our results, we have made every effort to provide comprehensive
 498 details regarding our methodology, experimental setup, and implementation. Our novel algorithm,
 499 SLA-v3, is thoroughly described in Section 3 of the main paper. For all experimental results, includ-
 500 ing hyperparameters, training configurations, and environmental specifications, detailed information
 501 can be found in Section 4 and Appendix. The code for our proposed methods and experiments, along
 502 with instructions for setting up the environments and running the code, is available in the supple-
 503 mentary materials and will be made publicly available upon acceptance.

504
 505 **REFERENCES**
 506

507 Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
 508 Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
 509 give up: Learning directed exploration strategies. *arXiv preprint arXiv:2002.06038*, 2020.

510 Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, and Zhaoran Wang.
 511 Dynamic bottleneck for robust self-supervised exploration. *Advances in Neural Information Pro-
 512 cessing Systems*, 34:17007–17020, 2021.

513 Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
 514 Unifying count-based exploration and intrinsic motivation. *Advances in neural information pro-
 515 cessing systems*, 29, 2016.

516 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
 517 distillation. *arXiv preprint arXiv:1810.12894*, 2018.

518 Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
 519 for openai gym. 2018.

520 Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
 521 explore. *Nature*, 590(7847):580–586, 2021.

522 Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. Ad-
 523 versarially guided actor-critic. *ArXiv*, abs/2102.04376, 2021. URL <https://api.semanticscholar.org/CorpusID:231847288>.

524 Quentin Gallouédec and Emmanuel Dellandréa. Cell-free latent go-explore. In *International Con-
 525 ference on Machine Learning*, pp. 10571–10586. PMLR, 2023.

526 Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pislar, Bernardo Ávila Pires, Florent Altch'e,
 527 Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, M. Valko,
 528 Rémi Munos, Mohammad Gheshlaghi Azar, and Bilal Piot. Byol-explore: Explo-
 529 ration by bootstrapped prediction. *ArXiv*, abs/2206.08332, 2022. URL <https://api.semanticscholar.org/CorpusID:249712461>.

530 Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
 531 episodic bonuses. *Advances in Neural Information Processing Systems*, 35:37631–37646, 2022.

532 Marc Höftmann, Jan Robine, and Stefan Harmeling. Time-myopic go-explore: Learning a state
 533 representation for the go-explore paradigm. *arXiv preprint arXiv:2301.05635*, 2023.

540 Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
 541 Variational information maximizing exploration. *Advances in neural information processing sys-*
 542 *tems*, 29, 2016.

543 Guopeng Jia, Junzhou Huo, Fan Yang, and Bowen Yang. Latent go-explore with area as unit.
 544 *Information Processing & Management*, 61(2):103582, 2024.

545 Yuhua Jiang, Qihan Liu, Yiqin Yang, Xiaoteng Ma, Dianyu Zhong, Haotian Hu, Jun Yang, Bin
 546 Liang, Bo Xu, Chongjie Zhang, and Qianchuan Zhao. Episodic novelty through temporal
 547 distance. *ArXiv*, abs/2501.15418, 2025. URL <https://api.semanticscholar.org/CorpusID:275921751>.

548 Alireza Kazemipour. An unofficial implementation of exploration by random network distillation.
 549 <https://github.com/alirezakazemipour/PPO-RND>, 2020.

550 Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi: Ex-
 551 ploration with mutual information. *arXiv preprint arXiv:1810.01176*, 2018.

552 Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee Kim. Curiosity-bottleneck:
 553 Exploration by distilling task-specific novelty. In *International Conference on Machine Learning*,
 554 pp. 3379–3388. PMLR, 2019.

555 Martin Klissarov and Marlos C Machado. Deep laplacian-based options for temporally-extended
 556 exploration. *arXiv preprint arXiv:2301.11181*, 2023.

557 Heinrich Köttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
 558 Grefenstette, and Tim Rocktäschel. The nethack learning environment. *Advances in Neural*
 559 *Information Processing Systems*, 33:7671–7684, 2020.

560 Paweł Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
 561 learning: A survey. *Information Fusion*, 2022.

562 Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for op-
 563 tion discovery in reinforcement learning. In *International Conference on Machine Learning*, pp.
 564 2295–2304. PMLR, 2017a.

565 Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
 566 Campbell. Eigenoption discovery through the deep successor representation. *arXiv preprint*
 567 *arXiv:1710.11089*, 2017b.

568 Pietro Mazzaglia, Ozan Catal, Tim Verbelen, and Bart Dhoedt. Curiosity-driven exploration via
 569 latent bayesian surprise. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 570 ume 36, pp. 7752–7760, 2022.

571 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 572 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 573 *arXiv:1312.5602*, 2013.

574 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 575 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 576 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.

577 Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
 578 temporal distances: Contrastive successor features can provide a metric structure for decision-
 579 making. *ArXiv*, abs/2406.17098, 2024. URL <https://api.semanticscholar.org/CorpusID:270711144>.

580 Georg Ostrovski, Marc G Bellemare, Aäron Ord, and Rémi Munos. Count-based exploration with
 581 neural density models. In *International conference on machine learning*, pp. 2721–2730. PMLR,
 582 2017.

583 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 584 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 585 PMLR, 2017.

594 Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
 595 In *International conference on machine learning*, pp. 5062–5071. PMLR, 2019.
 596

597 Matej Pecháč, Michal Chovanec, and Igor Farkaš. Self-supervised network distillation: an effective
 598 approach to exploration in sparse reward environments. *arXiv preprint arXiv:2302.11563*, 2023.
 599

600 Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
 601 procedurally-generated environments. *arXiv preprint arXiv:2002.12292*, 2020.
 602

603 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
 604 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
 605 go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.
 606

607 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 608 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 609

610 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and computing*, 17:395–416, 2007.
 611

612 Shanchuan Wan, Yujin Tang, Yingtao Tian, and Tomoyuki Kaneko. Deir: Efficient and robust
 613 exploration through discriminative-model-based episodic intrinsic rewards. In *International Joint
 614 Conference on Artificial Intelligence*, 2023. URL <https://api.semanticscholar.org/CorpusID:258291756>.
 615

616 Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
 617 convolutional network. *ArXiv*, abs/1505.00853, 2015. URL <https://api.semanticscholar.org/CorpusID:14083350>.
 618

619 Changmin Yu, Neil Burgess, Maneesh Sahani, and Samuel J Gershman. Successor-predecessor
 620 intrinsic exploration. *Advances in Neural Information Processing Systems*, 36, 2024.
 621

622 Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Rewarding episodic visitation discrepancy for
 623 exploration in reinforcement learning. *arXiv preprint arXiv:2209.08842*, 2022.
 624

625 Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E. Gonzalez, and Stu-
 626 art J. Russell. Made: Exploration via maximizing deviation from explored regions. *ArXiv*,
 627 abs/2106.10268, 2021a. URL <https://api.semanticscholar.org/CorpusID:235485250>.
 628

629 Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
 630 dong Tian. Noveld: A simple yet effective exploration criterion. *Advances in Neural Information
 631 Processing Systems*, 34:25217–25230, 2021b.
 632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647