
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLA-V3: SPATIAL LINKABILITY-AWARE AND
NOVELTY-ENCOURAGING STATE HEURISTIC FOR
EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration continues to be a pivotal challenge in reinforcement learn-
ing (RL), particularly in environments characterized by sparse rewards. While
intrinsic motivation (IM) has proven effective for tackling hard exploration tasks,
current IM approaches often struggle with the detachment-derailment (D-D) prob-
lem. This issue significantly curtails their effectiveness, especially in settings with
extremely sparse rewards. Although methods like Go-Explore address D-D by
explicitly archiving states to ensure revisitation, their dependency on state restora-
tion limits their practical application in procedurally generated environments. In
this paper, we argue that the root cause of the D-D problem lies in the under-
lying topological transition structure of the environment. Specifically, we ob-
serve that certain states become persistently difficult to traverse and revisit reli-
ably when subjected to exploratory noise. To overcome this, we introduce a novel
IM framework centered on state traversal difficulty. Within this framework, we
propose the Spatial Linkability-Aware and Novelty-Encouraging State Heuristic
(SLAANESH), abbreviated as SLA-v3. SLA-v3 tackles the D-D problem by uti-
lizing the shortest-path quasi-metric from the initial state (S0) as a heuristic for
traversal difficulty. This mechanism generates sustainable exploratory incentives,
particularly encouraging visit to hard-to-traverse states. Furthermore, SLA-v3 in-
tegrates a novelty detector, which serves to warm up the heuristic and effectively
prevent stagnation in unproductive dead-end paths. Our extensive experimental
evaluations on MiniGrid and challenging Atari environments (PitFall! and Mon-
tezuma’s Revenge) robustly demonstrate the superior efficacy of SLA-v3.

1 INTRODUCTION

In reinforcement learning (RL), agents primarily rely on reward signals to optimize their policies.
However, in sparse-reward environments, traditional algorithms Mnih et al. (2016; 2013); Schul-
man et al. (2017); Schrittwieser et al. (2020) frequently struggle to make meaningful policy updates.
Instead, they often default to uniformly random exploration until a reward is accidentally encoun-
tered. This leads to a detrimental vicious cycle: uniformly random policies seldom discover sparse
rewards, and without these critical signals, policies cannot effectively improve. Consequently, effi-
cient exploration methods become indispensable for progress in such settings.

Intrinsic motivation (IM) has emerged as a prominent and successful framework for addressing the
sparse reward problem in reinforcement learning Ladosz et al. (2022). This approach enhances the
reward signal by leveraging historical experience replay, thereby facilitating more effective policy
optimization. Contemporary high-performance IM methods are generally categorized into two dis-
tinct paradigms: novelty/curiosity-driven mechanisms and diversity-oriented approaches. Novelty-
based methods Burda et al. (2018); Zhang et al. (2021b); Pathak et al. (2017); Pecháč et al. (2023);
Guo et al. (2022); Zhang et al. (2021a) primarily incentivize the exploration of under-visited states,
while diversity-oriented methods Henaff et al. (2022); Badia et al. (2020); Jiang et al. (2025); Wan
et al. (2023); Raileanu & Rocktäschel (2020); Yuan et al. (2022) focus on enforcing diverse state
visitation over shorter temporal horizons.
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Figure 1: Overview of SLA-v3. (Left) SLA Heuristic: The shortest-path quasi-metric from the
initial state S0 serves as a traversal difficulty heuristic. States with higher quasi-metric values from
S0 are typically less frequently covered by a uniformly random exploratory policy. (Middle) The
heuristic model, whose architecture can be a value model or a novelty detector, is optimized to
predict the minimum episodic timestamp a state has been reached within the replay buffer. (Right)
The intrinsic reward generated by SLA-v3 promotes visiting both hard-to-traverse states (distant
from S0) and novel states, guiding the agent away from well-explored initial regions towards high-
novelty areas.

Despite their successes, a critical limitation of existing IM methods is their susceptibility to the
Detachment-Derailment (D-D) problem Ecoffet et al. (2021), which significantly impedes explo-
ration efficacy. More precisely, Derailment occurs when exploratory noise inadvertently disrupts the
agent’s ability to reliably visit potentially rewarding states. Detachment, on the other hand, manifests
as a divergence between the actual state visitation space and the region deemed highly intrinsically
motivating (i.e., the exploration frontier). Current state-of-the-art IM methods often fall short in
adequately addressing this D-D problem: novelty-based approaches tend to suffer from diminishing
exploration guidance and an exhaustible reward signal, whereas diversity-based methods prioritize
exploration breadth at the expense of depth, often leading to suboptimal exploration strategies.

The Go-Explore framework Ecoffet et al. (2021) offers a compelling solution to the D-D problem
by maintaining a comprehensive archive of all visited states. This mechanism guarantees state re-
visitation and subsequent exploration, effectively circumventing the D-D issue through exhaustive
state memorization. However, its practical applicability is severely constrained by its fundamental
reliance on complete state recoverability, which is inherently unattainable in procedurally generated
environments Küttler et al. (2020).

This context naturally leads to a fundamental question: Can we develop an exploration algorithm that
effectively mitigates the D-D problem without imposing the strict requirements of state recovery?
We assert that the environment’s underlying topological transition structure is the root cause of
the D-D problem. Our analysis reveals that states exhibit inherent asymmetric traversal difficulty:
some states remain easily revisitable despite exploratory noise, while others necessitate sustained
exploration incentives and minimal noise for reliable access.

Building upon this insight, we propose a novel intrinsic motivation paradigm grounded in state
traversal difficulty. By utilizing temporal distance from the initial state S0 as a robust traversal
difficulty heuristic, we introduce the Spatial Linkability-Aware and Novelty-Encouraging State
Heuristic (SLAANESH, abbreviated as SLA-v3), which is visually summarized in Figure 1. Our
approach makes four key contributions: First, we formally define the shortest-path quasi-metric
from S0 as a heuristic metric to quantitatively assess detachment and derailment risk. Second, we
develop a Go-Explore-inspired intrinsic reward mechanism that strategically guides the agent to go
to the most hard-to-traverse known state and then explore extensively from that established frontier.
Third, we integrate a novelty detector to facilitate heuristic warm-up and effectively prevent stagna-
tion within local dead-end paths during a single trajectory. Fourth, we present extensive experimen-
tal results in MiniGrid and challenging Atari environments (specifically PitFall! and Montezuma’s
Revenge), which convincingly demonstrate the superior effectiveness of SLA-v3.
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2 RELATED WORKS

2.1 INTRINSIC MOTIVATION

Intrinsic Motivation (IM) serves to augment sparse rewards by employing domain-agnostic heuris-
tics and leveraging trajectory history. This field is currently advancing through three principal
methodological approaches:

Novelty-based (or curiosity-driven/visit-count-based) IMs aim to promote exploration of under-
visited states. They achieve this through various novelty quantification techniques, including density
estimation Ostrovski et al. (2017); Bellemare et al. (2016), prediction variance Pathak et al. (2019),
prediction error Burda et al. (2018); Pecháč et al. (2023); Pathak et al. (2017); Guo et al. (2022);
Zhang et al. (2021b), variational objectives Zhang et al. (2021a), and information gain Kim et al.
(2019); Bai et al. (2021); Kim et al. (2018); Houthooft et al. (2016); Mazzaglia et al. (2022). Never-
theless, novelty-based intrinsic motivation methods remain susceptible to the Detachment problem
Ecoffet et al. (2021), where the exploration policy often fails to adequately cover intrinsically moti-
vated states.

Diversity-based IMs are designed to promote short-term state space coverage across multiple tem-
poral scales. These include transition-level approaches Raileanu & Rocktäschel (2020), episodic
methods Badia et al. (2020); Henaff et al. (2022); Wan et al. (2023); Jiang et al. (2025), and inter-
episodic strategies Yuan et al. (2022). Such approaches typically rely on state similarity metrics,
ranging from simple hashing techniques Raileanu & Rocktäschel (2020); Zhang et al. (2021b); Flet-
Berliac et al. (2021) to more advanced representation learning like inverse dynamics Pathak et al.
(2017); Badia et al. (2020); Henaff et al. (2022); Raileanu & Rocktäschel (2020) and temporal dis-
tance Myers et al. (2024); Jiang et al. (2025). Inherently, diversity-based methods prioritize breadth
over depth in exploration, potentially limiting their ability to effectively solve challenging explo-
ration problems that demand deep state space traversal.

Topology-Based IMs exploit the environmental transition topology to guide exploration within
sparse-connected transition structures. Key approaches in this category include spectral decompo-
sition of state spaces Machado et al. (2017a;b); Klissarov & Machado (2023); Von Luxburg (2007)
and successor/predecessor feature analysis Yu et al. (2024) for identifying bottlenecks. Our SLA-v3
framework also adopts the paradigm of topology modeling to identify and encourage the revisitation
of hard-to-traverse states, specifically to counter the D-D problem.

2.2 GO-EXPLORE

The Go-Explore framework Ecoffet et al. (2021) represents the state-of-the-art for hard exploration
problems. It has achieved unparalleled performance in notoriously challenging benchmarks, such
as Montezuma’s Revenge and PitFall! (though relying on sophisticated domain-specific knowl-
edge). The efficacy of Go-Explore stems from two key mechanisms: (1) an exhaustive state archive
that guarantees revisitation through either simulator-assisted state restoration or goal-conditioned
policies, which effectively eliminates detachment by ensuring persistent access to promising states;
and (2) archive-based state sampling, which circumvents derailment by resetting exploration from
strategically selected initial states. Subsequent improvements to Go-Explore Höftmann et al. (2023);
Gallouédec & Dellandréa (2023); Jia et al. (2024) have further enhanced its scalability, often through
latent space archiving and density-based sampling techniques. However, Go-Explore’s fundamental
reliance on perfect state recoverability significantly limits its applicability to procedurally generated
environments.

3 SLA-V3: SPATIAL LINKABILITY-AWARE AND NOVELTY-ENCOURAGING
STATE HEURISTIC

3.1 SLA HEURISTIC: SHORTEST-PATH QUASI-METRIC FROM S0

We propose a principled heuristic for state traversal difficulty that addresses two key requirements:
(1) Detachment Risk Awareness, which quantifies the probability of state rediscovery under uniform
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random policies when intrinsic rewards become uninformative; and (2) Derailment Risk Awareness,
which measures susceptibility to exploratory noise during state visitation.

Our core heuristic, which we term the SLA Heuristic, is based on a shortest-path quasi-metric that
quantifies the minimum number of temporal steps from the initial state S0 to any given state s. It is
formally expressed as:

Hsla(s) = d(s0, s) = min{t ≥ 0 : st = s} (1)
This Hsla(s) value inherently serves as a measure of traversal difficulty. The choice of this quasi-
metric is motivated by the observation that states requiring more sequential actions to reach from
S0 inherently exhibit greater sensitivity to perturbations from exploratory noise at each decision
point. For singleton environments, S0 directly corresponds to the episodic starting state. In proce-
durally generated environments, it represents the abstract initial configuration from which concrete
environment instances are sampled before the first observation is generated.

3.2 LEARNING AND APPROXIMATION OF THE SLA HEURISTIC

The ground truth shortest-path quasi-metric for each state is generally unavailable unless the true
transition dynamics are known. Consequently, we approximate the heuristic using transition dy-
namic information derived from episodic trajectories within the replay buffer. For any state st within
an episodic trajectory with step count t, the ground truth shortest-path quasi-metric serves as an up-
per bound t, assuming a deterministic environment. Therefore, we use the episodic step count as
the target for heuristic approximation and employ a downward-focused optimization strategy. This
ensures the heuristic is optimized towards the minimum value observed across all trajectories.

L(θ) =
∑
τ∈D

∑
st∈τ

flrelu (Hθ(st)− t)
2
, (2)

where flrelu implements a leaky-ReLU Xu et al. (2015) style gradient weighting defined as:

flrelu(x) =

{
x if x ≥ 0,

ϵx if x < 0,
(3)

with 0 < ϵ ≪ 1 controlling the gradient scale.

Given that the approximator of the SLA heuristic (referred to as the heuristic model throughout the
remainder of this paper) maps from the state space to a scalar, it is functionally equivalent to the
value model used in PPO Schulman et al. (2017). Therefore, the neural architecture for our heuristic
model can be directly determined by applying the same selection criteria as for the PPO value model,
without necessitating neural architecture search or additional components (e.g., contrastive models
or normalization schemes).

3.3 FIRST MAXIMIZE, THEN EXPLORE

In each episode, the agent is designed to first go to the known hardest-to-traverse state and then
explore from this established frontier. To achieve this behavior, SLA-v3 employs an implicit dual-
phase reward mechanism: it initially encourages the agent to maximize the state heuristic value,
followed by a phase of unguided exploration without additional intrinsic reward once the hardest-to-
traverse frontier state has been reached. The heuristic component of the intrinsic reward is formally
defined as:

rsla(st, τ) = max

(
Hθ(st)− max

i∈[1..t−1]
Hθ(si), 0

)
, (4)

where τ denotes the episodic trajectory and Hθ represents the heuristic model. This non-negativity
constraint prevents performance degradation that could arise from heuristic underestimation, partic-
ularly for states that are indistinguishable (in a partial observability setting) or unexplored hard-to-
traverse states.

3.4 INTEGRATION OF NOVELTY DETECTOR

We incorporate a novelty detector into SLA-v3 through two distinct mechanisms. First, it acts as a
reward modulator to prevent exploration stagnation in local dead-end paths. The complete intrinsic
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Figure 2: Training performance in the MiniGrid environments. SLA-v3 achieves better performance
compared to baselines across most evaluated environments.

reward is defined as:

rint(st) = rsla(st, τ) ·max(bϕ(st), β), (5)

where β > 0 guarantees a minimum exploration incentive (we set β = 0.06 for the main experi-
ments), and bϕ represents the novelty detector’s output.

Second, the novelty detector serves as an alternative heuristic model architecture to accelerate heuris-
tic adaptation. The heuristic model, as defined by Equation 3, exhibits an inherent slow upward
adjustment tendency, which can lead to delayed correction of underestimation for previously unseen
hard-to-traverse states. By leveraging the novelty detector’s architecture, which typically provides
high initial value outputs for unseen states, we utilize it to mitigate this slow correction issue and
effectively warm up the heuristic.

In this paper, we employ Random Network Distillation (RND) Burda et al. (2018) as our novelty
detector. Its output is computed as the L2 norm of the difference between the prediction network
and target network outputs: ||ϕpred(s)− ϕtarget(s)||2.

4 EXPERIMENTS

We evaluate the effectiveness of SLA-v3 across two benchmark families: MiniGrid, representing
procedurally generated environments, and the challenging Atari suite, specifically PitFall! and Mon-
tezuma’s Revenge for their extremely hard-exploration characteristics. Our implementation is built
upon PPO Schulman et al. (2017) as the foundational reinforcement learning algorithm. To manage
intrinsic and extrinsic rewards, we employ separate value functions with distinct discount factors,
consistent with prior work Burda et al. (2018); Kazemipour (2020). All environments utilize shaped
rewards, defined as max(sign(r), 0). All results are averaged across three random seeds, with 1σ er-
ror bars consistently depicted in all figures. More details about the environment and the experiment
setting are available in the Appendix.

4.1 MINIGRID ENVIRONMENTS

The MiniGrid benchmark Chevalier-Boisvert et al. (2018) consists of procedurally generated grid-
world environments. We conducted evaluations on three high-sparsity environments: (1) Multi-
Room (MR), (2) Key Corridor (KC), and (3) Obstructed Maze (OM).
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In MiniGrid environments, Episodic Restriction on Intrinsic Reward (ERIR Zhang et al. (2021b))
has shown effectiveness by utilizing hash-based episodic visit counts, I(Neps(s) = 1), to modulate
rewards. Building upon this, we also implemented SLA-v3+ERIR, a variant of SLA-v3 with a
modified intrinsic reward defined as rint(·) = [rsla(·) + αI(Neps(s) = 1)] · max(b(·), β), where
we fixed α = 0.05 for all experiments. Our experiments compare SLA-v3 against four baselines:
RND Burda et al. (2018), RIDE Raileanu & Rocktäschel (2020), NovelD Zhang et al. (2021b),
and ETD Jiang et al. (2025). It is important to note that a direct comparison with Go-Explore was
not feasible due to fundamental incompatibilities with procedurally generated environments, a point
further elaborated in Section 2.2. All methods process raw partial observations as inputs for both the
policy and intrinsic reward models, reserving full observations exclusively for ERIR computation,
as in Zhang et al. (2021b).

Results. As depicted in Figure 2, SLA-v3 consistently demonstrates substantial performance advan-
tages over baseline methods, significantly outperforming RND, RIDE, ETD, and NovelD in most
scenarios. These findings affirm that the exploration strategy of SLA-v3 effectively generalizes to
procedurally generated environments, with its heuristic model exhibiting robust adaptation to novel
environment instances sampled from the underlying distribution. While the inclusion of ERIR of-
fers additional performance benefits, our experiments indicate that the fundamental SLA-v3 method
alone achieves competent performance, underscoring the inherent effectiveness of its core design.

Figure 3: Visualization of the SLA Heuristic in the MiniGrid
KeyCorridor-S6R3 environment. The monotonically increasing
heuristic values for key observation, key acquisition, approaching
a locked door with the key, and door unlocking align with their
prerequisite relationships, showcasing SLA-v3’s implicit auto-
matic curriculum generation.

Analysis. Figure 3 illustrates
the effectiveness of the SLA
Heuristic in assigning high
reward values to critical states
within the KeyCorridor-S6R3
environment. Four key interac-
tion stages—key observation,
key acquisition, approaching a
locked door with the key, and
door unlocking—consistently
correspond to monotonically
increasing heuristic values.
This precisely reflects the pre-
requisite relationships among
these sequential behaviors, con-
firming SLA-v3’s capability to
implicitly generate an automatic
curriculum. Importantly, even
under partial observability con-
straints, SLA-v3 successfully
captures essential information
regarding environmental traver-
sal difficulty by effectively leveraging the limited yet informative landmarks available in partial
observations.

4.2 ABLATION STUDIES IN MINIGRID
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(a) Ablation of RND Modulator.
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Figure 4: Ablation study on the integration of RND.
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Figure 5: Ablation of RND Modulator
parameter β.

RND Integration. Our comprehensive ablation study ex-
amined RND integration from two perspectives: its role
as a reward modulator and its application in the heuris-
tic model architecture. Figure 4a demonstrates that while
the RND modulator benefits SLA-v3’s performance, the
standalone SLA heuristic achieves comparable results.
This is likely due to MiniGrid’s depth-focused structure;
limited deep branching paths (beyond extrinsic rewards)
prevent the SLA heuristic from being trapped in subop-
timal, reward-lacking deep branches. Figure 4b further
reveals that the RND-based heuristic model architecture
underperforms the standard value network architecture.
This suggests that in MiniGrid’s relatively simple envi-
ronments, RND’s architectural instability may not be fully offset by its heuristic warm-up advan-
tages.
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Figure 6: Ablation of heuristic loss pa-
rameter ϵ.

Hyperparameter Sensitivity. We also performed an ab-
lation study to examine the sensitivity of key hyperpa-
rameter choices: the minimum RND modulator param-
eter β and the downward-biased heuristic loss parame-
ter ϵ. Figure 5 illustrates that the choice of parameter β
has a limited effect on performance. Figure 6 indicates
that the parameter ϵ should be carefully selected—neither
too high nor too low—to achieve an optimal trade-off
between overestimation avoidance and heuristic learning
speed.

4.3 CHALLENGING ATARI

We selected the notoriously challenging Atari environ-
ments PitFall! and Montezuma’s Revenge (MR) to eval-
uate the depth-focused exploration capability of SLA-v3.
PitFall! is characterized by extreme reward sparsity across 255 interconnected rooms, many of
which contain hazardous elements that instantly terminate an episode. Successful navigation re-
quires precise, long-horizon action sequences, with a minimum of six consecutive rooms to traverse
for even the most accessible extrinsic reward. Historically, only a handful of methods, such as
Go-Explore Ecoffet et al. (2021), have successfully solved PitFall!, with most failing to achieve
any non-zero extrinsic reward. Montezuma’s Revenge presents a similar hard-exploration challenge
with three levels, each comprising 24 interconnected rooms with analogous hazardous elements.

Following Go-Explore Ecoffet et al. (2021), we integrate carefully designed domain knowledge for
the Pitfall! and the MR environment, utilizing room indices and agent positional information. This
knowledge serves two primary purposes: (1) as an input feature for the heuristic model and (2)
for pruning sub-optimal branching paths. These modifications establish an optimized testbed for
evaluating SLA-v3’s sustained deep exploration ability. We employ a value model architecture for
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Figure 7: Results for PitFall!. (Left) A rendered view of the PitFall! environment, illustrating SLA-
v3 achieving over 100,000 episodic scores. (Middle) Running episodic scores during the rollout
process. (Right) Maximum episodic scores encountered during the rollout process.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Frames 1e9

0

25000

50000

75000

100000

125000

Sc
or

es

Running Score
SLA-v3
Go-Explore Robustification (Avg)
RND (Avg)
NovelD (Avg)

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000

Sc
or

es

2,300,000

1,731,645

1,220,000

17,500

Peak Performance
SLA-v3
Go-Explore
Human World Record
RND

Figure 8: Results for Montezuma’s Revenge (MR). (Left) A rendered view of the MR environment,
showing SLA-v3 achieving nearly 1 million episodic scores. (Middle) Running episodic scores
during the rollout process. (Right) Peak performance of SLA-v3 with greedy action selection and
a released episodic step limit. Notably, both SLA-v3 and Go-Explore demonstrate the potential to
achieve infinite scores, given the level-3 cyclical property inherent in the MR environment.

our heuristic model. Notably, we omit the RND reward modulator in this setting, as sub-optimal
branching paths are already pruned.

Experimental Results. As illustrated in Figure 7, SLA-v3 achieves significant performance gains
in Pitfall!, attaining an average score of 80,000, with maximum scores exceeding 100,000. These re-
sults substantiate SLA-v3’s capacity for effective, depth-focused exploration in challenging sparse-
reward environments. Furthermore, all three trials occasionally surpassed 100,000 during the roll-
out, indicating potential for high-reward discovery and sustained performance. For Montezuma’s
Revenge, SLA-v3 also achieves average scores over 100,000 during training, though limited by the
18,000-frame episodic step limit. We also applied a simple post-processing method to the trained
policy network, using a greedy policy and releasing the episodic step limit (to 180,000 training
frames). This increased the maximum score to over 2,300,000, aligning with the maximum scores
reported in the Go-Explore paper (1,700,000+). It is important to elaborate on the potential for infi-
nite scores in MR for both SLA-v3 and Go-Explore. The environment is deterministic and features
only three level maps. Agents progress from Level 1 to 2, then to 3. Crucially, completing Level
3 restarts the agent at the beginning of Level 3. This cyclical, deterministic design allows for con-
tinuous score accumulation once an optimal greedy policy for completing Level 3 is learned. Thus,
with the episodic step limit removed and no undiscovered bugs, both SLA-v3 and Go-Explore could
theoretically achieve infinite scores.

Room 3 with
hazardous tar pit

Room 4 with hazardous
quicksand and crocodiles Room 5

The agent starts at Room 1 and must advance to
Room 7 (the yellow one) passing through Rooms 3,

4, and 5 to obtain the easiest extrinsic reward.

Figure 9: Key rooms in Pitfall! illustrat-
ing traversal challenges and derailment
risks. A detailed map with explanation
is available in Appendix.

Analysis. To elucidate the challenges of sustained ex-
ploration and the advantages of SLA-v3, we examine the
Pitfall! Atari environment. As depicted in Figure 9, suc-
cessful learning in Pitfall! fundamentally involves the se-
quential traversal of multiple rooms to reach a final ob-
jective. For instance, advancing from Room 1 to Room 7
(the yellow objective) via intermediate Rooms 3, 4, and 5
poses significant hurdles. Even assuming consistent vis-
itation of Room 3, reaching Room 5 from Room 4 and
subsequently Room 7 requires fulfilling three critical con-
ditions: (1) robust traversal to Room 4 by consistently
executing a low-fault-tolerance action sequence through
hazardous areas like the tar pit in Room 3; (2) effective
exploration within Room 4 to discover and execute pre-
cise, low-fault-tolerance actions to bypass quicksand and
crocodiles, gaining access to Room 5; and (3) sustained
visitation of Room 5 for continued progress toward the
ultimate goal.

The stringent, low-error-tolerance action sequencing in-
herent in Pitfall!, combined with persistent exploratory
noise, collectively generates significant derailment risks
that frequently hinder the agent from consistently reaching Room 4 from Room 3. Furthermore,

8
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these challenges, often exacerbated by training-induced policy oscillations, lead to temporal detach-
ment, where the agent loses the ability to reliably return to previously visited critical states such
as Room 4. SLA-v3 effectively addresses these challenges by introducing sustainable exploration
incentives. Specifically, because Room 4 is located at a higher shortest-path quasi-metric from the
episodic initial state (Room 1) than Room 3, its SLA heuristic value is inherently higher. Success-
ful visitation of Room 4 from Room 3 therefore increases the maximum observed heuristic value,
generating a positive intrinsic reward for the agent. This mechanism fosters persistent advancement
toward the exploration frontier, simultaneously demonstrating resilience to derailment and enabling
consistent recovery from detachment events.

5 DISCUSSIONS

Robustness to Noisy-TV. We evaluated the robustness of SLA-v3 in a modified PitFall! environ-
ment subjected to uniformly random noise. As depicted in Figure 10, SLA-v3 consistently maintains
non-zero rewards even under random noise, albeit with a slight performance degradation. This be-
havior is attributed to the fact that uniformly random noise lacks landmarks for traversal difficulty
and contributes minimally to the heuristic value approximation. Consequently, the relative ordering
of state traversal difficulty, and its approximation, is preserved. These results collectively demon-
strate that SLA-v3 exhibits robustness to random noise when such noise contains no meaningful
information.
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Figure 10: Robustness Analysis of SLA-v3 in PitFall! under
Noisy-TV and Stochasticity. (Left) SLA-v3 exhibits resilience
to random noise. (Right) SLA-v3 is robust to stochasticity. Suc-
cess criterion: achieving above-zero episode scores.

Robustness to Stochasticity.
We also evaluated SLA-v3 in
stochastic settings within a
modified PitFall! environment,
incorporating a sticky-action
wrapper. As Figure 10 illus-
trates, SLA-v3 continues to
achieve non-zero extrinsic re-
wards, despite our shortest-path
quasi-metric being inherently
defined for deterministic set-
tings. The SLA Heuristic
remains effective by providing
high-level exploration incentives, where successful guidance primarily requires maintaining correct
ordinal relationships between temporal-abstracted states (e.g., accurately ranking Room 4 as harder
to traverse than Room 3 in PitFall!). The observed performance degradation in this stochastic
setting is primarily due to the low-fault-tolerance nature of the challenging PitFall! environment,
where the agent is not guaranteed to advance to the next room because of potentially incorrect
actions taken under the sticky-action mechanism.

6 CONCLUSION

This paper introduced a novel paradigm for intrinsic motivation grounded in state traversal difficulty,
embodied by our proposed SLA-v3 method. SLA-v3 leverages the shortest-path quasi-metric from
S0 as a heuristic for traversal difficulty, thereby systematically promoting the visitation of hard-
to-traverse states to mitigate the detachment-derailment problem. Furthermore, SLA-v3 integrates
a novelty detector to facilitate heuristic warm-up and prevent stagnation within single trajectories.
Extensive experiments conducted in MiniGrid and challenging Atari environments (PitFall! and
Montezuma’s Revenge) robustly demonstrate the efficacy of SLA-v3.

However, the current SLA Heuristic implicitly assumes that each action step incurs a uniform cost, as
it quantifies minimum temporal steps. This assumption constraints its effectiveness in environments
where transition costs vary substantially, such as those with intrinsically uncontrollable steps or low-
fault-tolerance actions (e.g., navigating from critical ”near-death” states versus performing routine
actions). Therefore, a promising direction for future work involves modeling the heterogeneous
costs of individual steps and incorporating cost-sensitive metrics (e.g., successor distance Jiang et al.
(2025); Myers et al. (2024)) into the heuristic target calculation.

9
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8 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our results, we have made every effort to provide comprehensive
details regarding our methodology, experimental setup, and implementation. Our novel algorithm,
SLA-v3, is thoroughly described in Section 3 of the main paper. For all experimental results, includ-
ing hyperparameters, training configurations, and environmental specifications, detailed information
can be found in Section 4 and Appendix. The code for our proposed methods and experiments, along
with instructions for setting up the environments and running the code, is available in the supple-
mentary materials and will be made publicly available upon acceptance.
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