
Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Wentao Guo 1 2 Jikai Long 3 Yimeng Zeng 4 Zirui Liu 5 Xinyu Yang 6 Yide Ran 3

Jacob R. Gardner 4 Osbert Bastani 4 Christopher De Sa 2 Xiaodong Yu 3 Beidi Chen 6 Zhaozhuo Xu 3

Abstract
Zeroth-order optimization (ZO) is a memory-
efficient strategy for fine-tuning Large Language
Models using only forward passes. However,
the application of ZO fine-tuning in memory-
constrained settings such as mobile phones and
laptops is still challenging since full precision
forward passes are infeasible. In this study, we
address this limitation by integrating sparsity and
quantization into ZO fine-tuning of LLMs. Specif-
ically, we investigate the feasibility of fine-tuning
an extremely small subset of LLM parameters
using ZO. This approach allows the majority of
un-tuned parameters to be quantized to accom-
modate the constraints of limited device memory.
Our findings reveal that the pre-training process
can identify a set of “sensitive parameters” that
can guide the ZO fine-tuning of LLMs on down-
stream tasks. Our results demonstrate that fine-
tuning 0.1% sensitive parameters in the LLM with
ZO can outperform the full ZO fine-tuning perfor-
mance, while offering wall-clock time speedup.
Additionally, we show that ZO fine-tuning target-
ing these 0.1% sensitive parameters, combined
with 4 bit quantization, enables efficient ZO fine-
tuning of an Llama2-7B model on a GPU device
with less than 8GiB of memory and notably re-
duced latency.

1. Introduction
Large language models (LLMs) have demonstrated supe-
rior performance in general-purpose language generation
(Brown et al., 2020; Radford et al., 2019; Liu et al., 2019).
Despite their success, it remains necessary to fine-tune
LLMs for specific tasks to achieve optimal results. However,

1Princeton University 2Cornell University 3Stevens Institute
of Technology 4University of Pennsylvania 5Rice University
6Carnegie Mellon University. Correspondence to: Wentao Guo
<wg0420@princeton.edu>, Zhaozhuo Xu <zxu79@stevens.edu>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

fine-tuning LLMs often requires much more memory com-
pared to the inference process. Specifically, there are mainly
four parts that occupy the memory during fine-tuning LLMs:
(1) the weight parameter itself; (2) the optimizer state, which
contains the information about the past gradient (Kingma
& Ba, 2015); (3) the weight gradient used to update the
parameters; (4) the activation cached to calculate the weight
gradient (Liu et al., 2024b); In previous work like QLoRA
(Dettmers et al., 2023), it can reduce both (1) and (2) by
combining weight quantization and low-rank adaption (Hu
et al., 2021), which enables fine-tuning huge LLMs under
data-center level GPUs. However, on memory-constrained
hardware like cell phones, the memory of caching (3) weight
gradient and (4) activation required by backpropagation still
cannot be overlooked. The disparity between the demand of
LLM fine-tuning and hardware capacity limits the adaptabil-
ity of LLMs, especially when personalizing them for edge
devices.

Exploring Zeroth-Order Optimization in LLM Fine-
Tuning. Recently, there has been a resurging interest in
zeroth-order (ZO) optimization methods for LLM fine-
tuning (Malladi et al., 2023a; Liu et al., 2024a; Chen et al.,
2024). ZO optimization method perturbs model parameters
in random directions and utilize the loss value difference to
compute the gradient direction for parameter update. One
advantage of ZO methods in LLM fine-tuning is that they
do not require backpropagation procedures, which signif-
icantly saves the computation and memory. In this way,
ZO is backpropagation-free and does not need to cache (3)
weight gradients and (4) activations during fine-tuning. In
practice, ZO methods have demonstrated the potential to
achieve performance comparable to first-order methods in
LLM fine-tuning, which opens the doors for various efficient
LLM adaptation strategies.

Efficient ZO LLM Fine-Tuning with Sparsity. Although
ZO methods remove the need for backpropagation, a signif-
icant drawback of these methods is the slow convergence
rate (Zhao et al., 2024; Liu et al., 2024a). A recent approach
addresses this by fine-tuning with a sparse mask (Liu et al.,
2024a; Zhang et al., 2024), achieving approximately ∼ 75%
sparsity. Nonetheless, this sparsity level barely reduces
computational overhead, as the latency during the forward
pass with even ∼ 90% sparsity is still comparable to that of

1

mailto:wg0420@princeton.edu
mailto:zxu79@stevens.edu

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Sensitive
0.1%

Random
10%

0.0

0.5

1.0

1.5

S
ec

/f
or

w
ar

d

Training

Sensitive
0.1%

Random
10%

0.0

0.2

0.4

0.6

S
ec

/t
ok

en

Inference
sparse
other
dense mm

Figure 1: Training & inference speed of Llama2-7B. As the
sensitive sparse fine-tuning method achieves great perfor-
mance via optimizing only 0.1% parameters (performance
comparable to ZO full fine-tuning and 10% random subsets),
during inference we achieve an end-to-end 1.49× speedup,
with 2.15× speedup at sparse operations.

dense matrix operations. This latency increase can greatly
impact user experience on applications such as personal
assistants, where even a twofold increase in latency is per-
ceptible. In addition, merging the sparse weights back into
the base model is impractical on these devices due to mem-
ory constraints prohibiting dequantization and quantization.
Empirical evidence suggests that higher sparsity levels can
significantly decrease the time required for sparse matrix
operations, as shown in Figure 1. This raises the question:

Is it possible to leverage the benefits of higher sparsity levels
in reducing inference latency while preserving performance
on downstream tasks? If so, how far can sparsity be pushed
in this context?

Our Proposal: ZO LLM Fine-Tuning with Fisher-
Informed, Transferable Sparsity. In this paper, we answer
the raised research question by proposing an efficient sparse
ZO LLM fine-tuning strategy. We observe an extreme spar-
sity pattern in LLM parameters: a subset, determined by
selecting the top k magnitude entries from the diagonal of
empirical Fisher information matrix, is effective for ZO
fine-tuning. Moreover, we find this sparsity pattern can
be obtained through LLM’s continuous pre-training pro-
cess and be transferred to various downstream tasks without
modification.

Summary of Contributions. Building on these insights,
our work proposes a comprehensive framework for ZO fine-
tuning, making the following contributions:

• We identify that only an extremely small portion (0.1%)
of LLM parameters should be updated during ZO
LLM fine-tuning. Moreover, we utilize this insight to
guide the memory-efficient on-device personalization of
LLMs by low-bit quantization of model parameters.

• We observe the sparsity pattern observed in LLM pre-
training can be transferred across different downstream

tasks while still maintaining good ZO performance.
Based on this observation, we develop a computa-
tional framework to perform parameter-efficient ZO
fine-tuning of LLMs.

• We conduct extensive experiments across various LLMs
and demonstrate that our method achieves competitive
performance across various downstream tasks.

2. Background and Related works
In this section, we present the formulation for ZO optimiza-
tion. We also discuss related works about sparsity in LLMs.

2.1. Zeroth-Order Optimization

ZO surrogate gradient estimator. ZO optimizers have
been studied widely in the machine learning community.
Given a dataset D = {(x1, y1), . . . , (xn, yn)} and a loss
function f with model parameters w ∈ Rd, ZO optimizer
will estimate the gradient at w via ZO surrogate gradient
estimator. Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) (Spall, 1992) is such an estimator that would
first sample a random vector z ∈ Rd and uses the loss value
difference to scale the update direction. z is usually sampled
from an Gaussian distribution N (0, Id).
Definition 2.1 (Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) (Spall, 1992)). SPSA estimates the
gradient w.r.t. w with a data example (x, y), a small con-
stant ϵ ∈ R, and a sampled random vector z ∈ Rd as
follows:

ĝ(w, (x, y), z) =
f(w + ϵz; (x, y))− f(w − ϵz; (x, y))

2ϵ
z

(1)

There are other ZO surrogate gradient estimators available
(Liu et al., 2020; Ohta et al., 2020), but in practice SPSA
achieves good performance in ZO optimization, particu-
larly when fine-tuning LLMs. Some ZO algorithms such as
DeepZero (Chen et al., 2024) would utilize the parameter-
wise finite difference of loss values to derive parameter-wise
update directions. This would yield O(d) query costs per
training step even when combining with certain sparse mask-
ing methods and not practical for LLM fine-tuning scenarios.
We therefore select SPSA with random Gaussian perturba-
tion as our ZO gradient estimator.

ZO-SGD algorithm. ZO-SGD is an optimizer similar to
SGD but replaces the FO gradient with ZO surrogate gradi-
ent estimate per training step, as defined below:
Definition 2.2 (ZO-SGD update rule). ZO-SGD is an opti-
mizer that uses ZO surrogate gradient to update parameters
wt with learning rate ηt and a data example (xt, yt) sampled
at timestep t:

wt+1 = wt − ηtĝw(wt, (xt, yt), zt) (2)

2

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

MeZO (Malladi et al., 2023a) is a ZO-SGD algorithm that
uses the “random seed trick” to save the need of caching
ZO surrogate gradient. The choice of optimizer (SGD) is
orthogonal to ZO optimization techniques, but in our pre-
liminary experiments we find adaptive optimizers such as
Adam (Kingma & Ba, 2015) would not necessarily acceler-
ate ZO convergence in LLM fine-tuning scenarios. There
are other ZO optimizers aware of the parameter-wise het-
erogeneity of loss curvatures to accelerate the optimization
convergence (Zhao et al., 2024), and we leave how to com-
bine our method with theirs as future works.

2.2. Sparsity in LLMs

Sparsity-driven techniques are widely adopted in improv-
ing ML model’s efficiency (Tan et al., 2024a; Xia et al.,
2023; Liu et al., 2023; Peng et al., 2013; Frankle & Carbin,
2019) and robustness (Zhong et al., 2024; 2021). Frankle
& Carbin (2019) showed that within large feed-forward
networks, there exists a subnetwork that, when trained in
isolation, can achieve test accuracy comparable to that of
the original network. In the foundation models era, Liu et al.
(2023) demonstrated that transformer-based models, such
as OPT (Zhang et al., 2022), exhibit great sparsity (≥ 95%)
in activations. Moreover, Panigrahi et al. (2023) discovered
that for RoBERTa (Liu et al., 2019), fine-tuning a very small
subset of parameters (∼ 0.01%) can yield performance ex-
ceeding 95% of that achieved by full fine-tuning.

In the context of ZO optimization, Liu et al. (2024a) and
Zhang et al. (2024) also suggest that sparsity would poten-
tially accelerate ZO optimization convergence. We believe
that ZO has an intrinsic need for sparse training, as the
procedure of ZO gradient estimator usually requires uni-
form coordinate-wise scale (in expectation) perturbation
which grows with d. In tradition, people usually resolve
this with knowledge from parameter-wise loss curvature
heterogeneity (replace z with Σ1/2z where Σ1/2 serves as
a Hessian-informed preconditioner) (Ye et al., 2018; Zhao
et al., 2024). However, they do not provide a comprehensive
investigation on massive parameter models like LLMs. In
particular, we also observe that during first-order (FO) fine-
tuning of LLMs, the FO gradient can be quite sparse. We
will elaborate more on this insight in the following section
(see Figure 2 and Figure 7). We would like to explore how
sparsity can benefit the ZO LLM fine-tuning.

3. Chasing Extreme Sparsity in ZO LLM
Fine-Tuning

In this section, we describe the extreme sparsity pattern we
observed in LLMs and how we utilize it for efficient ZO
fine-tuning including on-device personalization of LLMs.

3.1. Extreme Sparsity Pattern in LLM

ZO optimization with sensitive parameters. Given model
parameters w, a loss function f , a data example (x, y),
sensitive parameters are defined as parameters whose cor-
responding FO coordinate-wise gradient square values are
maximized.

Definition 3.1 (Sensitive parameter mask). A sensi-
tive sparse mask mk ∈ {0, 1}d with k nonzero entries
(
∑

i m(i) = k) is defined as

mk = argmaxm∥m⊙∇f(w; (x, y))∥22. (3)

In the context of ZO optimization, we will update sensi-
tive parameters only. Denote that z̄ = z ⊙ mk. We will
modify the SPSA gradient estimator from ĝ(w, (x, y), z) to
ĝ(w, (x, y), z̄), and accordingly:

Definition 3.2 (Sensitive sparse ZO-SGD update rule).

wt+1 = wt − ηtĝw(wt, (xt, yt), z̄t) (4)

The theoretical support of sensitive parameters can be de-
rived from the lens of SPSA gradient estimator and Fisher
information matrix as follows:

• Maximum zeroth-order loss value changes, from the
lens of SPSA estimator.
The square (account for negativity) of loss value difference
for ĝw(wt, (xt, yt), z̄t) is as follows:

Ez̄{f(w + ϵz̄; (x, y))− f(w − ϵz̄; (x, y))}2

≈ Ez̄{2ϵz̄⊤∇wf(w; (x, y))}2

= 4ϵ2∥mk⊙∇wf(w; (x, y))∥22

Since by Definition 3.1 our sensitive mask would maximize
∥mk ⊙ ∇wf(w; (x, y))∥2 for a given sparsity ratio, we
would expect our sensitive mask to maximize the magnitude
of the loss value difference for any given sparsity ratio.
• Maximum coverage of Hessian diagonal, from the lens
of Fisher matrix.
LLMs are often pre-trained on large text corpus1 to reach
low perplexity before entering the fine-tuning stage. In
this case, we would assume pLLM(y|x) ∼ pD(y|x), which
implies the empirical Fisher F̂ should be close to the (true)
Fisher matrix F as follows:

F = Ex∼pD,ŷ∼pLLM(·|x)∇w log pLLM(ŷ|x)(∇w log pLLM(ŷ|x))⊤

≈ F̂ = E(x,y)∼pD∇w log pLLM(y|x)(∇w log pLLM(y|x))⊤

As we assume the empirical Fisher matrix approximates
Fisher, which also approximates the Hessian, and empirical

1Here we assume data examples (x, y) ∼ pD in fine-tuning
datasets after verbalization would also appear in the large text
corpus during pre-training.

3

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.00

0.25

0.50

0.75

1.00

C
um

u.
no

rm
.

su
m

of
[∇
F

(w
)]

2 i RTE

mean ± std
0.5
0.2

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

Figure 2: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers during Llama2-7B
(Touvron et al., 2023) fine-tuning. For each linear layer, we first sort parameters by the decreasing order of their gradient
square value [∇F(w)]2i , i ∈ [dlayer], and we take the cumulative sum and normalize it to draw a blue curve, and the
red-shaded region is the mean ± std of all blue curves. More similar figures are in Figure 7. We observe that roughly 0.1%
parameters in all linear layers contribute about 50% gradient norm square ∥∇F(w)∥22.

Fisher’s diagonal is equal to the coordinate-wise gradi-
ent square vector when computing with downstream task-
specific loss, our sensitive parameters would cover a large
fraction of the largest Hessian diagonal entries.

This idea of sensitive parameters has been studied in the
quantization community (Kim et al., 2023; Guo et al., 2023)
and FO optimization (Sung et al., 2021). However, we are
the first one to leverage the extremely sparse sensitive pa-
rameters in LLM fine-tuning to accelerate ZO fine-tuning
with LLMs. When we have perturbation and updating in
the scale of billion parameters, finding which parameters
to fine-tune would be important for improving ZO perfor-
mance. Notice that here we use sensitive masks mk for
understanding purposes. In Section 3.4, we will discuss how
to transform Definition 3.2 to a parameter-efficient optimiza-
tion pipeline by optimizing fixed sensitive parameters.

3.2. Theoretical Convergence Rate

We would investigate the theoretical convergence of sen-
sitive sparse ZO-SGD on sensitive parameters under the
non-convex optimization settings. Our assumptions are in-
cluded in Appendix B.2.

Theorem 3.3 (Convergence rate of sensitive sparse
ZO-SGD (Definition 3.2)). If we pick ηt = 1/(L(k + 2)),
under Assumptions B.1 (bounded gradient error), B.2 (Lip-
schitz smoothness), and B.4 (sparse sensitive parameters),
we would have

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤

O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2. (5)

Moreover, if we still pick ηt = 1/(L(k + 2)), with an extra
Assumption B.3 (P.L. condition), we would have

Ez̄,(x,y){F(wT)−F∗} ≤(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)
.

(6)

The proof for Inequality 5 is in Appendix B.2 and the proof
for Inequality 6 is in Appendix B.3. If we choose k = d and
c = 1, both convergence rates trivially reduce to the standard
zeroth-order convergence rate as O(d/T) + O(constant)
and O((1/d)T) + O(constant). As we assume c ≫ k/d,
we know d ≫ k/c and therefore both O((k/c)(1/T)) and
O((c/k)T) are much lower than O(d/T) + O(constant)
and O((1/d)T) + O(constant) that zeroth-order method
will yield.

We want to emphasize that our contributions are more on
empirical LLM fine-tuning instead of general machine learn-
ing tasks, and in Section 4.1 we extensively compare our
sparse ZO methods with other sparse ZO methods and we
demonstrate its superiority during LLM fine-tuning. We do
not use the strict “local r-effective rank” assumption that
Malladi et al. (2023a) uses, and our Assumption B.4 can be
easily observed empirically in Figure 2. Liu et al. (2024a)
and Ohta et al. (2020) also provide similar analysis on the
convergence. However, they do not include our sensitive
sparse mask in their studies.

3.3. Transferability of LLM Pre-Training Sparsity
Pattern in ZO Fine-Tuning

Sparse fine-tuning with fixed sensitive parameters.
Our Theorem 3.3 focuses on dynamic sparse fine-tuning.
However, Panigrahi et al. (2023) notice that in real
LLM fine-tuning scenario, the fine-tuning performance
could be attributed to a sparse subset of weights (∼
0.01%). Malladi et al. (2023b) also find certain fine-
tuning tasks would demonstrate kernel behaviors, which in-
clude “fixed (gradient) features”: ∇wf(wafter FT; (x, y)) ∼
∇wf(wbefore FT; (x, y)).

4

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

The similarity of gradient features during fine-tuning would
imply that we do not need to re-select our sensitive param-
eters during fine-tuning i.e. select once before fine-tuning
should be sufficient. This hypothesis can be validated by
Figure 3 and Figure 5b. In Figure 3, the fact that “task
grad, static” does not vanish and still has a large ratio over
“task grad, dyn.” at the end of training demonstrate that we
can select parameters before fine-tuning. We also include
similar figures for Mistral-7B and OPT-6.7B in Figure 8 in
Appendix C.3. We will describe Figure 5b in Section 4.3.

Surrogate sensitive sparse mask from pre-training
datasets. Another observation from Figure 3 is that the
sensitive parameters derived from pre-training datasets (C4)
would still cover a large fraction of model sensitivity. There-
fore, we could use it as a surrogate sensitive sparse mask
when gradients on downstream tasks are unavailable, partic-
ularly in scenario of on-device personalization. 2

3.4. Our Proposal: ZO LLM Fine-Tuning with
Fisher-Informed, Transferable Sparsity

The sparse optimization on fixed parameters can be im-
plemented as a parameter-efficient optimization workflow,
which will reduce the perturbation and updating time dur-
ing ZO optimization. Suppose we have derived a sensitive
sparse mask mk, and we know it is fixed during fine-tuning.
Instead of applying mk to z, we would apply it directly to
w and extract the nonzero parts as below:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (7)

Denote zk,t ∼ N (0k, Ik) as the Gaussian perturbation sam-
pled in timestep t. We will determine wsparse before fine-
tuning and optimize on wsparse only and leave wdense frozen
during fine-tuning. In this case, our sensitive sparse ZO-
SGD update rule will become:

wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (8)

In Section 3.5, we will describe how this decomposition
would seamlessly combine with existing post-training quan-
tization (PTQ) methods, which creates an opportunity for
on-device personalization. In Appendix C.6, we will discuss
efficient implementations of linear layers after our decom-
position.

2Obtaining gradients of LLMs on edge devices is expensive,
and we usually cannot transfer data from edge devices to the
cloud to compute the gradient on downstream tasks on cloud. In
this case we would need some surrogate gradient information to
derive sensitive sparse masks on cloud. We will discuss this in
Section 3.5.

3.5. An Opportunity for On-Device LLM
Personalization

As LLMs are often pre-trained with user-agnostic public
datasets, personalizing LLMs with individual user’s pref-
erences and meet user’s specific needs before real-world
deployment are vital. (Tan et al., 2024b; Mairittha et al.,
2020) However, transferring the user-specific data to up-
stream cloud before fine-tuning LLMs would raise privacy
concerns. (Xu et al., 2018) On the other hand, personal de-
vices usually have less computational budget and are more
memory-constrained than the cloud (Zhu et al., 2023), and
performing full fine-tuning would easily exceed the device
memory budget.

If we want to fine-tune a 7B model (e.g., Llama2-7B) on
memory-constrained devices, we need to reduce the memory
consumption on model weights, gradients, forward activa-
tions, and optimizer states:

• Model weights. We would quantize the wdense to 4 bits,
which reduces the model size of a Llama-2 7B model from
13.5 to 3.4 GiB.
• Forward activations. ZO optimization already saves the
need of caching activations.
• Gradients. We would use the “random seed trick” same
as MeZO (Malladi et al., 2023a) to reproduce layer-wise
gradients instead of caching them.
• Optimizer states. In this paper we use SGD. Our method
can also be implemented as a parameter-efficient optimiza-
tion method which would also work with other optimizers
(even with Adam).

As a result, our memory consumption is nearly minimum:
we can fine-tune a Llama2-7B model under 8 GiB GPU
memory without any offloading. This would satisfy the
memory constraint by a wide range of edge or mobile de-
vices as illustrated in Table 3.

Integration with quantization. In Section 3.4, we know
that we can obtain surrogate sensitive sparse masks before
fine-tuning. We would first decompose sensitive w to wsparse
and wdense. We will then quantize wdense. During this pro-
cess, we will use surrogate gradient information that many
PTQ algorithms already have: they need gradients to cali-
brate their quantization errors.

In addition, our method does not put strict constraints on
specific choices of quantization algorithms since any algo-
rithm that aims to minimize the least-square quantization
error term (as follows) or its variant would suffice: (Chee
et al., 2024; Nagel et al., 2020; Frantar et al., 2022; Lin
et al., 2023; Kim et al., 2023)

Q(w) = argminQ(w)Ex∥(w −Q(w))x∥22 (9)

On-device personalization workflow. The workflow is il-

5

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

Figure 3: Cumulative normalized gradient square values of Llama2-7B model’s linear layers during fine-tuning. For each
line, the colors represent the fraction of parameters and the line style represents the category. “task grad, dyn.” refers to the
sensitive parameters selected at the given timestep (x-axis), and “task grad, static” refers to the sensitive parameters selected
before fine-tuning. “C4 grad, static” refers to the sensitive parameters selected with gradients taken from causal language
modeling on C4 datasets (Raffel et al., 2019), and we keep it unchanged during fine-tuning. More similar figures are in
Figure 8.

4. Quantize
dense parts

Stay frozen

ready to
serve!

1. Get gradients from
pre-training datasets

2. Get surrogate sensitive
sparse parameter masks

3. Decompose weights to
dense and sparse parts

5. send models to
personal devices

sparse parts
remain in 16-bit

6. on-device
ZO fine-tuning

Pre-trained LLM Apply sensitive sparse masks

Cloud Edge

Figure 4: On-device LLM personalization workflow via integrating sensitive sparse ZO optimization with quantization.

lustrated in Figure 4. The high-level overview is that we use
surrogate gradient information from pre-training datasets
∇wpLLM(y|x) to extract sensitive parameters wsparse and
keep wsparse in 16 bits, while we quantize the remaining
dense weights wdense (Step 1-4). We send wsparse and
Q(wdense) to personal devices (Step 5), and we perform
on-device ZO fine-tuning only on wsparse (Step 6).

4. Experiments
In this section, we want to validate the effectiveness of our
sensitive sparse ZO optimization method. We also inves-
tigate the effectiveness of our on-device personalization
recipe in Figure 4. There are a few research questions we
want to answer:

• RQ1: Is optimizing sensitive parameters more effective
than optimizing other subset of parameters during ZO fine-
tuning? Can we optimize surrogate sensitive sparse parame-
ters when downstream gradient information is unavailable?
• RQ2: Can optimizing extremely sparse and fixed parame-
ters (Equation 8) lead to iteration-wise and total wall-clock
time speedup?
• RQ3: Can we match the full performance of ZO full fine-
tuning by employing our on-device personalization recipe
(Figure 4)?

We focus on 7B-level LLM models (Llama2-7B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023), OPT-6.7B

(Zhang et al., 2022)) as they would fit with common on-
device memory constraints (8 GiB) listed on Table 3 after
applying quantization. We use SST-2 (Socher et al., 2013),
RTE (Wang et al., 2018), CB (De Marneffe et al., 2019),
BoolQ (Clark et al., 2019), WSC (Levesque et al., 2012),
WiC (Pilehvar & Camacho-Collados, 2019), and COPA
(Roemmele et al., 2011) datasets. We follow standard ZO
fine-tuning settings and use the same codebases as in Mal-
ladi et al. (2023a). More details of our experiments (hyper-
parameters, task-specific prompts, etc.) are in Appendix C.

4.1. RQ1: Effectiveness of Sparse ZO Fine-Tuning on
Sensitive Parameters

We first investigate the performance of optimizing our sen-
sitive parameters versus other subsets of parameters. Our
baseline sparsity methods are random subsets and weight
outliers. As illustrated in Figure 5a, we can find that ZO
fine-tuning would benefit from sparse optimization, as all
methods would achieve higher than ZO full fine-tuning at
90% sparsity. However, only sensitive parameters would
maintain its performance as we move to the extreme sparsity
region (> 99%). In fact, the performance curve of sensitive
parameters w.r.t. different sparsity levels is near a flat curve,
which indicates the performance loss by moving from 90%
to 99.9% is minimal. Therefore, we can optimize 100 ×
less parameters compared with random and weight outliers
and still get same performance.

6

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

55.0

57.5

60.0

62.5

65.0

WiC

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

65.0

67.5

70.0

72.5

75.0

100 × sparser

Average

Sensitive (C4 grad, static)
Weights (largest, static)
Random (static)
Full fine-tuning

(a) Optimizing sensitive parameters with C4 dataset gradients versus optimizing weights with the largest
magnitude (outliers) and random subsets of weights. The trainable parameters are all determined before
fine-tuning and other parameters are kept unchanged.

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

55

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

58

60

62

64

66

WiC

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Fraction to optimize

60

65

70

75

Gap is small (1.0)

Gap is large (4.0)

Average

Sensitive (C4 grad, static)
Sensitive (task grad, static)
Sensitive (task grad, dyn.)
Random (static)
Random (dyn.)
Full fine-tuning

(b) Optimizing sensitive parameters with C4 dataset gradients versus gradients on each fine-tuning task.
“Static” means the parameters to optimize are determined before fine-tuning and other parameters are
kept unchanged during fine-tuning. “Dyn.” means the parameters to optimize will be updated every 100
training steps.

Figure 5: Performance of optimizing sensitive parameters in Llama2-7B fine-tuning on RTE, WiC, and COPA tasks.

We also validate whether optimizing fixed and surrogate sen-
sitive parameters should still yield satisfactory performance.
In Figure 5b, we compare the performance of optimizing
sensitive parameters with gradients on C4 dataset with its
theoretical upper bound: fixed sensitive parameters derived
from gradients on each fine-tuning task as the solid line
and its dynamic version as the dash-dotted line. We also
include the fixed and dynamic random subset parameters as
a baseline. We can find that the gap of sensitive parameters
between deriving from gradients on C4 dataset and gradients
on each fine-tuning task at sparsity level 99.9% is small and
blue line is still far above the random and full fine-tuning
baseline. We also present a summary of our approaches with
99.9% sparsity on various datasets and models in Table 1.

Sensitive Full
0

1

2

S
ec

on
ds

/S
te

p

1.21×

RTE

Sensitive Full
0.0

0.5

1.0
1.51×

WiC

Sensitive Full
0.0

0.2

0.4

0.6

2.57×

COPA
forward
perturbation
optimization

0 5 10 15

Time (hr)

0.4

0.6

Tr
ai

n
lo

ss

1.45×

0 2 4 6

Time (hr)

0.65

0.70

0.75

1.25×

0 1 2 3

Time (hr)

1.0

1.5

2.0

2.64×

Sensitive
Full

Figure 6: Iteration-wise & wall-clock convergence time
of sensitive sparse fine-tuning on fixed parameters (“Sen-
sitive”) versus ZO full fine-tuning (“Full”) for Llama2-7B.
Here we use the 16-bit model as the base model for fine-
tuning.

4.2. RQ2: Wall-Clock Time Efficiency

By employing parameter-efficient ZO fine-tuning with ex-
treme sparsity, we also achieve 1.2 - 2.5× wall-clock time
convergence speedup compared with ZO full fine-tuning as
we nearly eliminate the ZO perturbation and optimizer up-
date time, as Figure 6 shows. This also boosts the GPU uti-
lization rate as large-batched ZO forward is often compute-
bounded while the perturbation and optimization steps are
often memory-bounded. Furthermore, the reduced mem-
ory footprint of parameter-efficient ZO fine-tuning allows
for training larger models on the same hardware, poten-
tially leading to even better performance. As a result, we
answer this question that optimizing extremely sparse and
fixed parameters leads to substantial iteration-wise and total
wall-clock time improvements.

4.3. RQ3: On-Device Personalization

We validate whether our sensitive sparse ZO optimization
method would fit with on-device personalization pipeline
described in Section 3.5 with Table 1. We follow the exact
recipe as described Figure 4 to report a number as “Sensitive
(C4, static)”, where we only optimize 0.1% sensitive param-
eters on top of a 4-bit quantized model. As ZO fine-tuning
happens after model is quantized, ablating on extracting
0.1% random subsets of parameters would produce a differ-
ent quantized model according to Figure 4. So we choose
to report the result for optimizing a fixed random subset
on top of the 16-bit model as the “Random (static)” as a

7

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Table 1: Performance of difference methods on Llama2-7B fine-tuning tasks. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2023)), and “ZO” means the model is finetuned
with ZO-SGD optimizer. For each cell, we use the same hyperparameters and repeat it with 3 random seeds. We report the
average and standard deviation of test set accuracy in the format of meanstd. In last 2 columns, “Acc” means the average
test set accuracy and “Rank” means the average rank of test set accuracy among all methods across datasets.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA Acc Rank

Q, ZO Sensitive (C4, static) 94.70.4 74.71.2 66.72.2 83.00.5 57.43.9 65.20.9 85.02.2 75.2 2.43
LoRA 93.80.6 64.71.1 64.94.7 79.71.1 61.52.1 59.80.1 85.70.5 72.9 4.29
Prefix 80.54.3 65.51.2 63.13.0 80.30.2 54.511.4 58.31.3 82.00.8 69.2 5.86

ZO Sensitive (task, static) 94.80.1 73.60.9 69.12.2 83.50.8 57.44.7 64.21.1 83.72.4 75.2 2.29
Random (static) 94.10.3 68.01.7 64.93.4 77.00.7 59.63.6 64.81.1 83.31.7 73.1 4.14
Full fine-tuning 94.60.5 73.35.1 66.70.8 81.90.8 58.04.3 61.90.2 82.71.7 74.2 3.57

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 59.2 7.29
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 74.0 3.43

(b) Mistral-7B

Q, ZO Sensitive (C4, static) 94.00.3 74.22.7 70.22.2 75.12.4 59.64.9 61.20.9 88.31.2 74.7 2.86
LoRA 94.00.4 65.31.3 64.94.5 70.33.7 60.93.7 61.10.4 88.30.5 72.1 3.57
Prefix 86.92.1 57.31.4 63.75.9 62.20.9 60.34.6 49.00.3 81.31.7 65.8 4.86

ZO Sensitive (task, static) 94.70.3 77.10.9 69.00.8 78.42.2 58.04.3 61.40.2 89.31.3 75.4 1.86
Random (static) 87.91.9 50.20.8 66.14.4 60.61.7 57.61.4 57.30.8 82.31.7 66.0 5.29
Full fine-tuning 94.60.1 74.62.1 68.86.2 76.60.2 54.86.2 62.60.5 88.30.5 74.3 2.86

Zero-shot 54.80.0 50.50.0 37.50.0 43.41.8 50.80.0 39.40.0 78.00.0 50.6 7.00
ICL 60.716.7 55.24.7 33.313.1 46.86.5 50.40.6 63.80.9 88.70.5 57.0 5.43

(c) OPT-6.7B

Q, ZO Sensitive (C4, static) 94.90.5 72.83.6 83.35.1 73.10.9 59.35.3 60.90.4 84.01.4 75.5 1.29
LoRA 94.20.2 69.61.6 69.01.7 69.62.0 57.19.1 57.20.8 83.02.2 71.4 4.57
Prefix 93.30.4 71.21.0 72.01.7 68.92.8 62.52.4 59.40.5 80.02.4 72.5 4.14

ZO Sensitive (task, static) 94.50.4 75.51.4 82.13.6 72.50.8 57.45.2 60.61.4 83.31.7 75.1 2.14
Random (static) 87.32.0 68.41.7 70.66.3 66.01.0 58.07.0 56.41.3 79.00.8 69.4 5.71
Full fine-tuning 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 74.1 3.29

Zero-shot 61.00.0 60.70.0 46.40.0 55.71.0 55.50.0 36.50.0 77.00.0 56.1 7.71
ICL 74.014.6 65.811.2 54.85.9 67.92.1 53.21.7 41.04.5 80.72.9 62.5 6.57

theoretically performance upper bound.

We also compare with optimizing with LoRA (Hu et al.,
2021) and Prefix Tuning (Li & Liang, 2021) with ZO-SGD
optimizer on top of the same quantized model as “Sensitive
(C4, static)”. The zero-shot inference and in-context learn-
ing (ICL) baselines are also included as the last two rows
in each subtable. We follow the LoRA r and α and prefix
length shown in Malladi et al. (2023a), and for LoRA, we
add it to all linear layers where our sensitive parameters are
extracted. We find that integrating sensitive sparse ZO op-
timization with on-device personalization pipelines would
still yield good performance exceeding all baselines across
models and tasks. Particularly, the performance is higher
than ICL, and ZO full fine-tuning in 16 bits. In addition, we
have surpassed other common ZO-PEFT methods and ran-
dom sparse ZO fine-tuning methods. This demonstrates the
superiority of optimizing sensitive parameters only in ZO
fine-tuning recipes. We also notice that optimizing sensitive
parameters derived from C4 gradients still produce close re-

sults as from task-specific gradients (in average less than 1%
accuracy difference). This indicates optimizing surrogate
sensitive parameters is still empirically successful.

5. Conclusion
We have shown that the sensitive parameters provided by the
pre-training process can effectively assist in ZO LLMs fine-
tuning. Our experiments suggest that the ZO fine-tuning
guided by 0.1% sensitive parameters in the LLM can even
perform better than the full parameter ZO fine-tuning. The
experiment results also demonstrate that the quantization
of parameters other than sensitive parameters allows us to
perform ZO fine-tuning of an LLM on limited memory
devices.

8

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. Quip: 2-bit
quantization of large language models with guarantees.
Advances in Neural Information Processing Systems, 36,
2024.

Chen, A., Zhang, Y., Jia, J., Diffenderfer, J., Liu, J.,
Parasyris, K., Zhang, Y., Zhang, Z., Kailkhura, B.,
and Liu, S. Deepzero: Scaling up zeroth-order op-
timization for deep model training. In International
Conference on Learning Representations, 2024. doi:
10.48550/arXiv.2310.02025.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

De Marneffe, M.-C., Simons, M., and Tonhauser, J. The
commitmentbank: Investigating projection in naturally
occurring discourse. In Proceedings of Sinn und Bedeu-
tung, pp. 107–124, 2019.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 10088–10115. Cur-
ran Associates, Inc., 2023.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.
doi: 10.48550/arXiv.1803.03635.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gim, I. and Ko, J. Memory-efficient dnn training on mobile
devices. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Ser-
vices, pp. 464–476, 2022.

Guo, H., Greengard, P., Xing, E., and Kim, Y. Lq-lora: Low-
rank plus quantized matrix decomposition for efficient
language model finetuning. In The Twelfth International
Conference on Learning Representations, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015. doi: 10.48550/arXiv.1412.6980.

Levesque, H., Davis, E., and Morgenstern, L. The winograd
schema challenge. In Thirteenth international confer-
ence on the principles of knowledge representation and
reasoning, 2012.

Li, L., Qian, S., Lu, J., Yuan, L., Wang, R., and Xie, Q.
Transformer-lite: High-efficiency deployment of large
language models on mobile phone gpus. arXiv preprint
arXiv:2403.20041, 2024.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III,
A. O., and Varshney, P. K. A primer on zeroth-order
optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Sig-
nal Processing Magazine, 37(5):43–54, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

9

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Liu, Y., Zhu, Z., Gong, C., Cheng, M., Hsieh, C.-J., and
You, Y. Sparse mezo: Less parameters for better perfor-
mance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024a.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Liu, Z., Wang, G., Zhong, S. H., Xu, Z., Zha, D., Tang,
R. R., Jiang, Z. S., Zhou, K., Chaudhary, V., Xu, S., et al.
Winner-take-all column row sampling for memory effi-
cient adaptation of language model. Advances in Neural
Information Processing Systems, 36, 2024b.

Mairittha, N., Mairittha, T., and Inoue, S. Improving activ-
ity data collection with on-device personalization using
fine-tuning. In Adjunct Proceedings of the 2020 ACM
International Joint Conference on Pervasive and Ubiq-
uitous Computing and Proceedings of the 2020 ACM
International Symposium on Wearable Computers, pp.
255–260, 2020.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. Fine-tuning language models
with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023a.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. In In-
ternational Conference on Machine Learning, pp. 23610–
23641. PMLR, 2023b.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2016.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

Ohta, M., Berger, N., Sokolov, A., and Riezler, S. Sparse per-
turbations for improved convergence in stochastic zeroth-
order optimization. In Machine Learning, Optimization,
and Data Science: 6th International Conference, LOD
2020, Siena, Italy, July 19–23, 2020, Revised Selected
Papers, Part II 6, pp. 39–64. Springer, 2020.

Panigrahi, A., Saunshi, N., Zhao, H., and Arora, S. Task-
specific skill localization in fine-tuned language models.
In International Conference on Machine Learning, pp.
27011–27033. PMLR, 2023.

Peng, Z., Yan, M., and Yin, W. Parallel and distributed
sparse optimization. In 2013 Asilomar conference on sig-
nals, systems and computers, pp. 659–646. IEEE, 2013.

Pilehvar, M. T. and Camacho-Collados, J. Wic: the word-in-
context dataset for evaluating context-sensitive meaning
representations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 1267–1273,
2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Spall, J. C. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
transactions on automatic control, 37(3):332–341, 1992.

Sung, Y.-L., Nair, V., and Raffel, C. A. Training neural
networks with fixed sparse masks. Advances in Neural
Information Processing Systems, 34:24193–24205, 2021.

Tan, Z., Chen, T., Zhang, Z., and Liu, H. Sparsity-guided
holistic explanation for llms with interpretable inference-
time intervention. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 21619–21627, 2024a.

Tan, Z., Zeng, Q., Tian, Y., Liu, Z., Yin, B., and Jiang,
M. Democratizing large language models via person-
alized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024b.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp.
353–355, 2018.

10

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Xi, H., Li, C., Chen, J., and Zhu, J. Training transform-
ers with 4-bit integers. Advances in Neural Information
Processing Systems, 36:49146–49168, 2023.

Xia, H., Zheng, Z., Li, Y., Zhuang, D., Zhou, Z., Qiu, X.,
Li, Y., Lin, W., and Song, S. L. Flash-llm: Enabling
cost-effective and highly-efficient large generative model
inference with unstructured sparsity. In Proceedings of
the VLDB Endowment, Vol. 17, No. 2, 2023. doi: 10.
14778/3626292.3626303.

Xu, M., Qian, F., Mei, Q., Huang, K., and Liu, X. Deep-
type: On-device deep learning for input personalization
service with minimal privacy concern. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(4):1–26, 2018.

Ye, H., Huang, Z., Fang, C., Li, C. J., and Zhang, T. Hessian-
aware zeroth-order optimization for black-box adversarial
attack. arXiv preprint arXiv:1812.11377, 2018.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng,
W., Chen, P.-Y., Lee, J. D., Yin, W., Hong, M.,
et al. Revisiting zeroth-order optimization for memory-
efficient llm fine-tuning: A benchmark. arXiv preprint
arXiv:2402.11592, 2024.

Zhao, Y., Dang, S., Ye, H., Dai, G., Qian, Y., and Tsang,
I. W. Second-order fine-tuning without pain for llms: A
hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

Zhong, S., Zhang, G., Huang, N., and Xu, S. Revisit kernel
pruning with lottery regulated grouped convolutions. In
International Conference on Learning Representations,
2021.

Zhong, S. H., You, Z., Zhang, J., Zhao, S., LeClaire, Z., Liu,
Z., Zha, D., Chaudhary, V., Xu, S., and Hu, X. One less
reason for filter pruning: Gaining free adversarial robust-
ness with structured grouped kernel pruning. Advances
in Neural Information Processing Systems, 36, 2024.

Zhu, L., Hu, L., Lin, J., Chen, W.-M., Wang, W.-C., Gan, C.,
and Han, S. Pockengine: Sparse and efficient fine-tuning
in a pocket. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 1381–
1394, 2023.

11

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Appendix
In Section A we describe all notations used in this paper. In Section B, we include the assumption and exact proof on
the convergence rate (Theorem 3.3). In Section C, we describe all details in our experiments and provide a high-level
recommendation on how to efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers with
existing quantization methods or training / inference workflow.

A. Notations
We present the notations used in this work as follows.

Table 2: Notations used in this paper

Term/Symbol Explanation
f loss function
t optimization timestep t

d number of model parameters

dlayer number of parameters in one linear layer. This means the total number of parameters per each linear
layer as the number of rows times the number of columns in each linear layer.

(xt, yt) a data example sampled at timestep t as a pair of input vector and training target

wt ∈ Rd weight/parameter vector at optimization timestep t

f(w; (x, y)) training loss of w evaluated at a single data example (x, y)

F(w) = E(x,y)f(w; (x, y)) full-batched training loss of w

ϵ a small perturbation scaling constant (close to 0)

zt ∈ Rd random Gaussian perturbation vector sampled at timestep t

ĝ(w, (x, y), z) estimated ZO surrogate gradient for w with a data example (x, y) and a sampled Gaussian perturbation
vector z (Definition 2.1)

ηt learning rate for ZO-SGD optimizer (Definition 2.2) at timestep t

mk ∈ {0, 1}d a sensitive sparse mask with k nonzero entries (Definition 3.1)

mk,t ∈ {0, 1}d a sensitive sparse mask with k nonzero entries, and it is derived at optimization timestep t

Id Identity matrix with shape Rd×d

Ĩd,mk Ĩd,mk is equal to the identity matrix Id with the main diagonal masked by mk

z̄t = zt ⊙mk a sampled Gaussian perturbation vector zt at timestep t that is masked by mk

Notice that z̄ is equivalent as being sampled from N (0d, Ĩd,mk)

1d a vector of size d with all entries equal to 1

Tr trace operation

Q(w) parameter vector w that is quantized by Q

F (true) Fisher information matrix

F̂ empirical Fisher information matrix
pLLM LLM as a probabilistic model
pD true data distribution
wsparse = w ⊙mk sensitive parameters with positions as the nonzero entries sensitive sparse mask mk (Equation 7)

L Lipschitz constant in Assumption B.2
µ PL condition number in Assumption B.3

σ2 stochastic gradient error term in Assumption B.1

WK weight matrix of linear projection for the key embedding matrix K in attention layers

WV weight matrix of linear projection for the value embedding matrix V in attention layers

12

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

B. Theoretical Convergence Rate
B.1. Assumptions

We start with listing standard assumptions in nonconvex optimization literature:

Assumption B.1 (Bounded stochastic gradient errors). For any data example (x, y) ∈ D and for any w ∈ Rd, denote the
full-batched loss function F(w) = E(x,y)∈Df(w; (x, y)), we have

∥∇wf(w; (x, y))−∇wF(w)∥2 ≤ σ2. (10)

Assumption B.2 (Lipschitz smoothness). We assume that f(w,x) is L-Lipschitz smooth (L > 0): for any w,w′ ∈ Rd,

∥∇wf(w; (x, y))−∇wf(w′; (x, y))∥ ≤ L∥w −w′∥. (11)

Assumption B.3 (PL inequality). We assume that F(w) fulfills the Polyak-Lojasiewicz (PL) condition: there exists some
µ > 0, for any w ∈ Rd

1

2
∥∇wF(w)∥2 ≥ µ(F(w)−F∗), F∗ is the minimum value F∗ = inf

w
F(w). (12)

Inspired by Figure 7, we would assume the sensitive parameters of w are sparse.

Assumption B.4 (Sensitive parameters are sparse). We assume at timestep t ∃mt ∈ {0, 1}d with the number of nonzero
entries as k, ∃c ∈ [0, 1] such that

∥mt ⊙∇wf(wt; (xt, yt))∥2 = c∥∇wf(wt; (xt, yt))∥2.
Here we assume c ≫ k/d. 3

B.2. Proof for Equation 5, Theorem 3.3

We will start with formulating the expectation of sensitive sparse ZO surrogate gradient norm square in terms of its
corresponding stochastic gradient norm square.

Lemma B.5 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄[∥ĝ(wt, (xt, yt), z̄t)∥2] = (2 + k)c∥∇wf(w, (xt, yt))∥2

Proof for Lemma B.5. We know that our z̄ can be considered as being sampled from N (0, Ĩd,mk
) where Ĩd,mk

is the
identity matrix Id with the main diagonal masked by mk.

We expand the sensitive sparse ZO surrogate gradient covariance matrix Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤ as follows:

Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), z̄)⊤

= Ez̄i
[z̄iz̄

⊤
i

(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
z̄iz̄

⊤
i]

= 2
(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
+ ∥mk ⊙∇wf(w; (x, y))∥2Ĩd,mk

Then the sensitive sparse ZO surrogate gradient norm square is the square of the diagonal of its corresponding covariance
matrix:

Ez̄[∥ĝ(wt,xt, z̄t)∥2] = diag
(
Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤

)2
= 2c∥∇wf(w, (xt, yt))∥2 + kc∥∇wf(w, (xt, yt))∥2

= (2 + k)c∥∇wf(w, (xt, yt))∥2

3From Figure 7, we know that for c ∼ 0.5, we only need k/d ∼ 0.001. In this case k/c ∼ 0.002d.

13

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Then we are in good shape of deriving the convergence rate under the Lipschitz smoothness condition:

Proof for Equation 5, Theorem 3.3.

f(wt+1,xt) ≤ f(wt; (xt, yt)) + ⟨∇f(wt; (xt, yt)),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

≤ f(wt; (xt, yt))− ηt⟨∇f(wt; (xt, yt)), ĝ(wt,xt, z̄t)⟩+
Lη2t
2

∥ĝ(wt,xt, z̄t)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− ηtEz̄∥mk,t ⊙∇f(wt; (xt, yt))∥2 +
Lη2t
2

Ez̄∥ĝ(wt,xt, z̄)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− cηtEz̄∥∇f(wt; (xt, yt))∥2 +
Lη2t
2

c(k + 2)Ez̄∥∇wf(wt; (xt, yt))∥2

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− cηt∥∇wF(wt)∥2 + cσ2ηt +
Lη2t
2

c(k + 2)∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)σ2}

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
(
cηt −

Lη2t
2

c(k + 2)

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

Lη2t
2

c(k + 2)σ2

)
}

Denote α = Lc(k + 2), we will have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− ηt

(
c− α

2
ηt

)
∥∇wF(wt)∥2 +

(
cσ2ηt +

α

2
σ2η2t

)
}

Set ηt <
c

α
=

1

L(k + 2)
, we have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

If we apply our sparse ZO update rule recursively for T steps,

1

T

T−1∑
t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ 2α

Tc2
(F(w0)−F∗) +

1

T

T−1∑
t=0

(
cσ2ηt +

α

2
σ2η2t

)
cηt
2

≤ 2α

Tc2
(F(w0)−F∗) + (2σ2 + σ2)

≤ 2L(k + 2)

c

1

T
(F(w0)−F∗) + 3σ2

≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + 3σ2

B.3. Proof for Equation 6, Theorem 3.3

We can derive a convergence rate of sensitive sparse ZO-SGD optimization method under PL inequality and Lipschitz-
smoothness as follows (this proof resumes from our prior proof with the Lipschitz-smoothness condition alone):

Proof for Equation 6, Theorem 3.3. Denote κ as the condition number κ =
µ

L
.

14

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
cηt
2

∥∇F(wt)∥2 +
(
cσ2ηt +

α

2
σ2η2t

)
}

≤ Ez̄,(x,y){F(wt)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y){(F(wt)−F∗)− cµηt(F(wt)−F∗) +
(
cσ2ηt +

α

2
σ2η2t

)
}

Plugging in ηt ≤
c

α
and applying recursively for T iterations.

Ez̄,(x,y){F(wT)−F∗} ≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c2

2α

≤ (1− cκ

(k + 2)
)T (F(w0)−F∗) +

3σ2c

2L(k + 2)

≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
3σ2c

2L(k + 2)

15

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

C. Supplementary Experiment Details
C.1. On-device memory constraints

We include a table of common memory constraints imposed by edge or mobile devices as Table 3. We can find that a wide
range of these devices impose a memory constraint of 8 GiB as our main main constraint that we consider when we develop
our on-device personalization recipe in Section 3.5.

Table 3: Device memory of some mobile devices or consumer-graded GPUs.

Devices Memory

Nvidia GeForce GTX 1080 Ti 11 GiB
Nvidia GeForce RTX 3060 Ti 8 GiB
Nvidia Jetson TX2 8 GiB
OPPO Find X7 Ultra (Li et al., 2024) 12 GiB
Samsung Galaxy S10 with Mali-G76 GPU (Gim & Ko, 2022) 8 GiB

C.2. Gradient sparsity during LLM fine-tuning

In Figure 2, we explore the FO gradient sparsity of Llama2-7B during fine-tuning (at Epoch 5). Here we follow the identical
setting and plot the FO gradient sparsity for Llama2-7B, Mistral-7B, and OPT-6.7B during epoch 1, 5, and 10 (end of
fine-tuning).

We observe that the gradient sparsity is exhibited throughout the fine-tuning with slightly increasing towards the end.
OPT-6.7B which uses ReLU as the activation function would demonstrate greater sparsity across tasks compared with
Llama2-7B and Mistral-7B which uses SwiGLU and SiLU respectively. Nevertheless, the gradient sparsity pattern holds
across architectures, tasks, and fine-tuning time in general.

16

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(a) Llama2-7B

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(b) Mistral-7B

0.0

0.5

1.0

RTE, Epoch 1

mean ± std
0.5
0.2

RTE, Epoch 5 RTE, End of FT

0.0

0.5

1.0

WiC, Epoch1 WiC, Epoch5 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 5

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

[∇
F

(w
)]

2 i

(c) OPT-6.7B

Figure 7: Cumulative normalized sum of coordinate-wise gradient square [∇F(w)]2i of linear layers for Llama2-7B
(subfigure 7a), Mistral-7B (subfigure 7b), and OPT-6.7B (subfigure 7c) across RTE, WiC, and COPA tasks during FO-
SGD fine-tuning. For each linear layer, we first sort parameters by the decreasing order of their gradient square value
[∇F(w)]2i , i ∈ [dlayer], and we take the cumulative sum and normalize it to draw a blue curve, and the red-shaded region is
the mean ± std of all blue curves.

17

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

C.3. Transferability of gradient features from pre-training datasets to downstream tasks

In Figure 3, we explore the transferability of gradient features from pre-training datasets (C4) to downstream tasks, and here
we will also validate this phenomenon across models, as shown in Figure 8. As there are no solid lines (top-(1e-2,1e-3,1e-4))
parameters with C4 gradient entries prior to fine-tuning) vanish to 0, we know the transferability of gradient features from
C4 datasets to downstream datasets hold across models and downstream tasks. In this case, sensitive parameters determined
from C4 gradients would still be similar to sensitive parameters determined from downstream task-specific gradients across
models.

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(a) Llama2-7B

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(b) Mistral-7B

Before FT
Epoch 1

Epoch 5

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

d
su

m
of

[∇
F

(w
)]

2 i RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT
Epoch 1

Epoch 5

End of FT

WiC

Before FT
Epoch 1

Epoch 5

End of FT

COPA

(c) OPT-6.7B

Figure 8: Cumulative normalized gradient square values of Llama2-7B (subfigure 8a), Mistral-7B (subfigure 8b), and
OPT-6.7B (subfigure 8c)’s linear layers during FO fine-tuning. For a given model and training checkpoint, we report the
average value across all linear layers as a line in each subfigure. For each line, the colors represent the fraction of parameters
(1e-2,1e-3,1e-4) and the line style represents the category. “task grad, dyn.” refers to the sensitive parameters selected at the
given timestep (x-axis), and “task grad, static” refers to the sensitive parameters selected before fine-tuning. “C4 grad, static”
refers to the sensitive parameters selected with gradients taken from causal language modeling on C4 datasets, and we keep
it unchanged during fine-tuning.

18

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

C.4. Hyperparameters in experiments

For all experiments, we use 20,000 training steps with ZO-SGD optimizer (Definition 2.2). We will save a model checkpoint
every 500 steps, and load the checkpoint with the lowest loss on the validation set at the end of the training, and report its
test set accuracy as result. Usually, the training/validation set will be sampled from the original dataset with size 1000/500
respectively and the test set is of size min(1000, |original test set|), except for CB and COPA that we use 100 for the
validation set size. For all ZO experiments (Table 4 and Table 5), we use batch size of 16. This experiment setting is identical
to Malladi et al. (2023a).

Table 4: The chosen hyperparameters for experiments in Table 1. We repeat each hyperparameters for 3 random trials and
report the average and standard deviation in Table 1.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA

Q, ZO Sensitive (C4, static) (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 5e-7 1e-6 1e-6
LoRA (ϵ =1e-3) 1e-5 5e-5 1e-5 2e-5 1e-5 2e-5 1e-5
Prefix (ϵ =1e-2) 1e-4 2e-4 5e-4 5e-4 1e-4 5e-4 2e-4

ZO Sensitive (task, static) (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 1e-6 1e-6 2e-6
Random (static) (ϵ =1e-3) 2e-4 5e-4 2e-4 5e-4 2e-4 5e-4 5e-4
Full fine-tuning (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 2e-7 5e-7 5e-7

ICL (#examples) 16 16 16 8 16 8 8

(b) Mistral-7B

Q, ZO Sensitive (C4, static) (ϵ =1e-4) 2e-8 5e-8 2e-8 2e-8 1e-8 2e-8 2e-8
LoRA (ϵ =1e-4) 2e-6 5e-6 2e-6 2e-6 2e-6 2e-6 2e-6
Prefix (ϵ =1e-3) 1e-3 2e-3 1e-3 1e-2 5e-4 1e-3 5e-4

ZO Sensitive (task, static) (ϵ =1e-4) 5e-8 5e-8 2e-8 2e-8 2e-8 2e-8 2e-8
Random (static) (ϵ =1e-4) 1e-5 2e-6 5e-6 1e-5 1e-6 2e-6 2e-5
Full fine-tuning (ϵ =1e-4) 2e-8 2e-8 1e-8 1e-8 1e-8 1e-8 2e-8

ICL (#examples) 4 8 4 16 4 4 8

(c) OPT-6.7B

Q, ZO Sensitive (C4, static) (ϵ =1e-3) 2e-7 5e-7 5e-7 5e-7 2e-7 5e-7 2e-7
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 2e-5
Prefix (ϵ =1e-2) 2e-3 1e-2 1e-3 5e-3 5e-3 1e-2 5e-3

ZO Sensitive (task, static) (ϵ =1e-3) 2e-7 5e-7 5e-7 2e-7 2e-7 5e-7 2e-7
Random (static) (ϵ =1e-3) 1e-4 5e-5 2e-5 5e-5 2e-4 5e-5 5e-5
Full fine-tuning (ϵ =1e-3) 2e-7 2e-7 2e-7 2e-7 2e-7 2e-7 5e-7

ICL (#examples) 16 4 16 16 16 8 16

Our hyperparameters (learning rate η, perturbation scaling constant ϵ, and the number of ICL examples) for Table 1 is
reported in Table 4 for reproducibility. We use constant η and ϵ throughout our experiments. We also report the chosen
hyperparameter for Figure 5a and Figure 5b in Table 5. For LoRA, we always add to all linear layers with r = 8 and α = 16,
and for Prefix Tuning, we always add to WK and WV with length as 5, as what Malladi et al. (2023a) uses.

19

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

Table 5: The chosen hyperparameters for experiments in Figure 5a and Figure 5b. We repeat each hyperparameters for 3
random trials and report the average to draw a line in Figure 5a and Figure 5b, and we use Llama2-7B for all experiments.
For each subtable, we include the fraction to optimize on its header and report the chosen learning rate on each cell.

(a) RTE

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-5

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 2e-4 5e-5 5e-6
Weight outliers (static) (ϵ =1e-3) 2e-3 1e-3 2e-4 5e-5 1e-5

(b) WiC

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6
Weight outliers (static) (ϵ =1e-3) 1e-3 5e-4 2e-4 1e-4 2e-5

(c) COPA

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Sensitive (task-specific, static) (ϵ =1e-3) 5e-6 2e-6 2e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 1e-2 2e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-3 1e-3 2e-4 2e-5 2e-6
Weight outliers (static) (ϵ =1e-3) 1e-3 5e-4 5e-4 1e-4 1e-5

20

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

C.5. Task-specific prompts in experiments

We describe our task templates in Table 6.

Table 6: Task templates for all experiments. On the left column we include the task name and the model name, and on the
right column we describe the exact prompt with answer candidates.

Task Prompts

SST-2
(Llama2-7B)

Sentence: <text> ### Sentiment: negative/positive

SST-2
(Mistral-7B, OPT-6.7B)

<text> It was terrible/great

RTE
(Llama2-7B)

Suppose "<premise>" Can we infer that "<hypothesis>"? Yes or No?
Yes/No

RTE
(Mistral-7B, OPT-6.7B)

<premise>
Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB
(Llama2-7B, Mistral-7B, OPT-6.7B)

Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or
Maybe?
Yes/No/Maybe

BoolQ
(Llama2-7B)

<passage> <question>? Yes/No

BoolQ
(Mistral-7B, OPT-6.7B)

<passage> <question>?
Yes/No

WSC
(Llama2-7B, Mistral-7B, OPT-6.7B)

<text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>?
Yes or No?
Yes/No

WiC
(Llama2-7B, Mistral-7B, OPT-6.7B)

Does the word "<word>" have the same meaning in these two sentences?
Yes, No?
<sent1>
<sent2>
Yes/No

COPA
(Llama2-7B, Mistral-7B, OPT-6.7B)

<premise> so/because <candidate>

21

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

C.6. Implementation of sparse operations in linear layers

Linear layers in LLMs often contribute most parameters (Kaplan et al., 2020). Since from Equation 7 we know

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk), w = wsparse +wdense (13)

and since wdense would have the same shape (and the same computational intensities) as w, we need to improve wall-clock
time efficiency of wsparsex to improve the computational efficiency of linear layers after extracting the sparse parameters.
In this case, we would have two different methods to implement the forward pass of linear layers (with induced sparse
operation colored in red):

wx = wdensex+wsparsex (14)
= SparseAddMM(DenseMM(wdense,x),wsparse,x) faster with token generation (15)
= (wdense+wsparse)x (16)
= DenseMM(SparseAdd(wsparse,wdense),x) faster with ZO training (17)

0.01% 0.1% 1%

Fraction to optimize

0.01

0.1

1.0

10.0

S
ec

/f
or

w
ar

d

Training
(A6000)
SparseAdd
SparseAddMM

0.01% 0.1% 1%

Fraction to optimize

Training
(A100)

0.01% 0.1% 1%

Fraction to optimize

0

0.1

0.2

0.3
S

ec
/t

ok
en

Inference
(A6000)

0.01% 0.1% 1%

Fraction to optimize

Inference
(A100)

Figure 9: Time of SparseAdd (Equation 17) versus SparseAddMM (Equation 15) in Llama2-7B ZO training forward &
inference. In subfigure 1 and 3, we use Nvidia RTX A6000 and Intel Xeno Gold 6342 CPUs, with PyTorch version 2.2,
HuggingFace version 4.36, and CUDA 12.2. In subfigure 2 and 4, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC
7543P 32-Core CPU with PyTorch version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2
(Dao, 2023) for all 4 subfigures.

The specific choice of employing Equation 15 or Equation 17 needs careful consideration and benchmarking, but here we
can provide a general guideline based on the size of input vector (or arithmetic intensity) and potential integration with
weight quantization method:

Size of input vectors x and arithmetic intensity. wsparsex in Equation 15 would have a computational dependency over
x. During large-batched ZO training, x would be large enough such that Equation 15 would induce large computational
overhead, as shown in subfigure 1 of Figure 9. In contrast, the computational complexity of Equation 17 is independent of x
and when x is large, we would expect Equation 17 is much faster than Equation 15. As an example, we use sequence length
of 512 and batch size 16 sampled from WikiText-2 dataset (Merity et al., 2016) as a representative computational intensity
for ZO training in subfigures 1 and 2 in Figure 9.

However, during autoregressive token generation, on each step we would only append a single token to the previously
cached embeddings, and in this case x is small and computing wdense +wsparse is generally not worthwhile, especially given
that wsparse is already sparse. This is also illustrated in subfigure 3 and 4 in Figure 9. However, we note that the specific
implementation choice is hardware and task dependent and requires thorough benchmarking and we will leave it as a future
work.

We recommend using Equation 17 during large-batched ZO training and Equation 15 during small-batched
autoregressive token generation.

22

Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity

In light of this observation, in our Figure 1, we implement both “SparseAdd” and “SparseAddMM” methods for “Sensitive
(0.1%)” and “Random (10%)”. For each method we report the lowest time out of these 2 implementations: for “Sensitive
(0.1%)” training and “Random (10%)” training and inference, we use “SparseAdd” approach. For “Sensitive (0.1%)”
inference, we use the “SparseAddMM” approach.

Integration with weight quantization method. Weight quantization algorithms can be categorized into 2 categories:
uniform quantization method and non-uniform quantization method. For uniform quantization method, (Xi et al., 2023)
indicates that we could use integer matrix multiplication to compute Q(wdense)x efficiently without first dequantizing
Q(wdense) to 16 bits. However, this creates difficulty on our “SparseAdd” approach as we will violate the constraint of
uniformly-spaced quantization bins by computing SparseAdd(Q(wdense) +wsparse). In this case, we also have 3 different
implementations:

Q(w)x ∼ Q(wdense)x+wsparsex (18)

= SparseAddMM
(
Dequantize

(
IntMM(Q(wdense),x)

)
,wsparse,x

)
fits with integer matmul (19)

= SparseAddMM
(

Dequantize(Q(wdense)),x,wsparse

)
similar to Equation 15 (20)

= (Dequantize(Q(wdense))+wsparse)x (21)
= DenseMM(SparseAdd (wsparse,Dequantize(Q(wdense)),x) similar to Equation 17 (22)

Equation 19 would compute IntMM(Q(wdense),x) before dequantizing it to 16 bits. This would make “SparseAdd”
approach infeasible and we can only employ “SparseAddMM” approach in this case. Notice that both Equation 20 and
Equation 22 would still dequantize Q(wdense) first and the choice of implementation would follow into our discussion of
input vector size x in last paragraph. We leave a practical implementation and thorough benchmarking into a future work.

We recommend using Equation 19 when we use efficient integer matmul to compute Q(wdense)x and in other cases,
using Equation 20 or Equation 22 follows our previous recommendation based on the size of input vectors.

C.7. Hardware, platform, libraries, and other details for fine-tuning and benchmarking

Figure 1, Figure 6, and Figure 9 (subfigure 1 and 3) are trained and evaluated on an internal cluster with 8 Nvidia RTX
A6000 GPUs and 2 Intel Xeon Gold 6342 CPUs, with PyTorch version 2.2, HuggingFace version 4.36, and CUDA 12.2.
In subfigure 2 and 4 in Figure 9, we use Nvidia A100-SXM4 (40 GiB) and AMD EPYC 7543P 32-Core CPU with
PyTorch version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) in HuggingFace
Transformers library throughout our experiments, and the base model for ZO full fine-tuning and benchmarking is always
Llama2-7B with Float16 datatype (torch.float16). We also use the Float16 datatype (torch.float16) for all of our sparse
parameters (sensitive sparse, random subsets, etc.) in ZO fine-tuning experiments. Notice that for all of the FO fine-tuning
demonstrations (Figure 7 and Figure 8) we use the BrainFloat16 datatype (torch.bfloat16) to avoid the NaN issue from the
Float16 datatype.

In Figure 1 and Figure 9, we use sequence length of 512 and batch size 16 sampled from WikiText-2 dataset (Merity
et al., 2016) as a representative computational intensity for ZO training, and for inference we generate 128 tokens with
top-p (p = 0.9) sampling from the prompt “Please describe the effect of sparse zeroth-order optimization methods on
memory-efficient LLM fine-tuning: ”. We still use the Float16 datatype (torch.float16) for both benchmarks.

23

