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ABSTRACT

Artificial intelligence (AI) systems hold great promise for advancing various scien-
tific disciplines, and are increasingly used in real-world applications. Despite their
remarkable progress, further capabilities are expected in order to achieve more
general types of intelligence. A critical distinction in this context is between factual
knowledge, which can be evaluated against true or false answers (e.g., “what is the
capital of England?”), and probabilistic knowledge, which reflects probabilistic
properties of the real world (e.g., “what is the sex of a computer science gradu-
ate in the US?”). Much of previous work on evaluating large language models
(LLMs) focuses on factual knowledge, while in this paper, our goal is to build a
benchmark for understanding the capabilities of LLMs in terms of knowledge of
probability distributions describing the real world. Given that LLMs are trained on
vast amounts of text, it may be plausible that they internalize aspects of these distri-
butions. Indeed, this idea has gained traction, with LLMs being touted as powerful
and universal approximators of real-world distributions. At the same time, classi-
cal results in statistics, known under the term curse of dimensionality, highlight
fundamental challenges in learning distributions in high dimensions, challenging
the notion of universal distributional learning. In this work, we develop the first
benchmark to directly test this hypothesis, evaluating whether LLMs have access
to empirical distributions describing real-world populations across domains such
as economics, health, education, and social behavior. Our results demonstrate that
LLMs perform poorly overall, and do not seem to internalize real-world statistics
naturally. This finding also has important implications that can be interpreted in
the context of Pearl’s Causal Hierarchy (PCH). Our benchmark demonstrates that
language models do not contain knowledge on observational distributions (Layer 1
of the PCH), and thus the Causal Hierarchy Theorem implies that interventional
(Layer 2) and counterfactual (Layer 3) knowledge of these models is also limited.

1 INTRODUCTION

Artificial intelligence (AI) systems hold great potential to accelerate many scientific disciplines
including healthcare (Jiang et al., 2017; Shaheen, 2021), education (Holmes & Tuomi, 2022), and
economics (Bickley et al., 2022). Automated systems based on AI are also increasingly used in a
wide variety of real-world settings. Yet, despite rapid progress and broad adoption of these systems,
many core capabilities required for robust and reliable AI still need to be developed further, on the
path to reaching artificial human intelligence (Bubeck et al., 2023; Kaplan et al., 2020). One of
the hallmark features expected from AI systems is the ability to reason probabilistically about the
world, and not only to mimic human intuition and language. Such capabilities are needed for systems
capable of assisting scientific discovery, advancing our understanding of complex phenomena, and
help societal decision-making.

In this context, it is helpful to distinguish between two types of knowledge embedded in AI systems:
factual knowledge, which can be evaluated based on true or false answers based on questions for
which there is an agreed upon answer (e.g., “what is the capital of England?”); and probabilistic
knowledge, which reflects the inherent uncertainties of the world we operate in (e.g., question such as
“what is the sex of a computer science graduate in the US?”). Much of the current evaluations of large
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language models (LLMs), currently the prevailing paradigm in AI research (Bommasani et al., 2021),
has focused on factual knowledge, i.e., question answering, fact recall, etc. At the same, the degree to
which LLMs encode probabilistic knowledge about the real world remains relatively underexplored.

In this work, our focus is on observational probabilistic knowledge, where the term observational
refers to the first layer of Pearl’s Causal Hierarchy (PCH, for short) Pearl (2000); Bareinboim et al.
(2022). The PCH distinguishes different types of probabilistic knowledge, corresponding to different
cognitive capabilities of (AI) systems: Layer 1 of observation (seeing), which includes reasoning
about observed events and correlations between variables; Layer 2 of intervention (doing), which
includes inferences about systems in which causal interventions are performed; and Layer 3 of
counterfactual reasoning (imagining, see Fig. 2 left), which allows inference for hypothesized events
for which the required pre-conditions may not have materialized in reality. Important results from
previous work demonstrate that, in absence of appropriate assumptions, moving across different
layers of PCH is provably impossible. The result known as the Causal Hierarchy Theorem (CHT,
(Bareinboim et al., 2022)) states that observational knowledge (Layer 1) about a system underdeter-
mines its interventional (Layer 2) and counterfactual (Layer 3) behavior. With causal modeling and
assumptions, inferences across layers may become feasible. A classical example is causal modeling
that uses observational data, combined with structural assumptions, to infer interventional or coun-
terfactual distributions Pearl (2000); Bareinboim & Pearl (2016). Therefore, if one can show that
LLMs do not have access to observational knowledge (Layer 1), based on the CHT, one may also be
skeptical of these models’ capabilities for reliable statements about interventions or counterfactuals.

Given the abundance of observational data, it is plausible that LLMs, trained on vast corpora of text
data, have internalized aspects of real-world observational distributions. Indeed, strong claims in
this debate have emerged, with OpenAI’s CEO Sam Altman suggesting that “humanity has found
a universal way to approximate distributions,” (Altman, 2024) implying that large models serve as
powerful approximators of the world, and may have access to any kind of Layer 1 knowledge.

While LLMs have been tremendously successful at various tasks, some caution is nonetheless
warranted. Classical results in statistics highlight fundamental limitations of learning distributions
in higher dimensions: the famous curse of dimensionality results demonstrate theoretically that
learning distributions becomes exponentially harder (in terms of required samples) as dimensionality
grows. Seminal work by Charles Stone Stone (1982) establishes that estimation rates degrade sharply
with dimensionality, with the optimal rate of convergence for an unknown differentiable regression
function f being O(n− 1

2+d ) in any Lp norm, where d is the dimension of the input of f . Such results
challenge the notion of universal distributional learning in higher dimensions, in stark contrast with
the notion of LLMs working as universal approximators.
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Figure 1: Benchmark leaderboard.

This tension raises a natural question: should one
believe the optimism of universal approximation put
forward by Sam Altman, or the caution grounded in
statistical theory, such as the results of Charles Stone?
In this paper, we attempt to shed light on this debate
and examine different aspects of LLMs’ capabilities
in approximating distributions. We introduce a bench-
mark specifically designed to assess whether LLMs
have access to observational distributions describ-
ing real-world populations, across various domains
including economics, health, education, crime, and
social behavior. This is why our approach can be
termed as epidemiology, from Greek epi (fall upon) +
demos (population) + logos (knowledge) – the knowledge of what falls upon populations.

1.1 CONTRIBUTIONS

Our contribution in this work is to construct a benchmark for evaluating the capabilities of large
language models in terms of access to knowledge about observational distributions in the real-world.

(i) We curate a total of 10 datasets, ranging from healthcare, health behavior, and education, to
labor, consumer spending, and crime statistics. For each large scale dataset, which describes
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Data Source Task Example Prompt

Census: Age What is the age of a person living in the
United States?

Census: Sex by Age What is the sex of a person living in the
United States who is {} years old?

Department of Education:
Sex by Degree

What is the sex of a person who gradu-
ated with a degree in physical sciences?

Department of Education:
Race by Degree

What is the race of a person who gradu-
ated with a degree in physical sciences?

Department of Labor: Sex
by Occupation

What is the sex of a person working as
a software engineer?

Department of Labor:
Race by Occupation

What is the race of a person who is
working as a librarian?

Table of Tasks
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Figure 2: Overview figure for our benchmark.

the population level statistics in the United States, we extract a set of questions to test whether
a language model has knowledge about the population encoded in the respective dataset.

(ii) We design a modular evaluation framework that facilitates easy benchmarking of additional
models, making it straightforward to add datasets, questions, or models to our benchmark.

A preview of our results is shown in Fig. 1, indicating that over a range of models, the performance of
the current generation of LLMs in terms of knowledge of real-world distributions is quite poor. As we
argue later in the text, access to observational distributions is a fundamental step towards performing
interventional (Layer 2) or counterfactual (Layer 3) inference, implying that are our results also
implicitly challenge the abilities of LLMs in higher layers of Pearl’s Hierarchy.

Related Literature. A growing body of literature investigates aspects of knowledge and gener-
alization abilities of LLMs. The two works most related to ours are that of Santurkar et al. (2023),
which examines the responses on language models on Pew Research Center’s American Trends
Panel (Pew Research Center, 2024), in order to investigate if LLMs exhibit responses of a specific
demographic group. Another related work is that of Dominguez-Olmedo et al. (2024), that examines
the responses of language models on the American Community Survey (ACS) (U.S. Census Bureau,
2024), and compares them to the real responses of individual. Our work takes a broader view, and
attempts to build a benchmark for systematically analyzing the knowledge of models on observational
distributions (Layer 1 of the PCH), across a wide range of datasets, and distributions over variables
with different dimensions.

Other works investigate the ability of models to perform correct probabilistic inferences, given
information in forms of probability tables or probability conditionals (He-Yueya et al., 2023; Jin
et al., 2023; Nafar et al., 2024). This line of work is distinct from ours, since our benchmark aims to
evaluate the availability of the true probabilities to the model, rather than the validity of inferences
over these probabilities. We also mention the work of Zhao et al. (2023), aimed at testing factual
correctness of model responses on various domains, including knowledge about the world, math,
or reasoning. In parallel, other lines of work use the term faithfulness while evaluating language
models, usually referring to faithfulness of model responses to the the actual source material where
the information is available. For instance, (Zhou et al., 2023) investigates whether responses of
models are affected by knowledge conflict, and whether they exhibit appropriate response abstentions.
This work is focused on testing factual knowledge, as opposed to descriptive knowledge investigated
by our benchmark. Another body of work looks at faithfulness of model explanations, that is, whether
the explanation cited by the model is in fact compatible with the model’s actual reasoning steps
(Agarwal et al., 2024; Matton et al., 2025), differing from the approach and the goal of our work.
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2 BENCHMARK AXES

We use the language of structural causal models (SCMs) (Pearl, 2000). An SCM is a tupleM :=
⟨V,U,F , P (u)⟩ , where V , U are sets of endogenous (observable) and exogenous (latent) variables,
respectively, F is a set of functions fVi , one for each Vi ∈ V , where Vi ← fVi(pa(Vi), UVi) for
some pa(Vi) ⊆ V and UVi ⊆ U . The assignment mechanisms F determine how each variable attains
its value, and the set pa(Vi) is called the parent set of Vi. Together with the probability distribution
P (u) over the exogenous variables U , the SCM specifies the entire behavior of the underlying
phenomenon, meaning that it fully specifies all observational, interventional, and counterfactual
distributions (Bareinboim et al., 2022).

The remainder of the section is organized according to Fig. 2, and the different axes appearing therein.
We first discuss observational knowledge and its different dimensionalities (Sec. 2.1), followed by
the description of datasets that are used (Sec. 2.2), and then the tasks constructed for eliciting models’
capabilities (Sec. 2.2.1). In Sec. 2.3, we discuss different models currently included in the benchmark.

2.1 AXIS 1: DIMENSIONALITY OF LAYER 1 (OBSERVATIONAL) KNOWLEDGE

Our focus in this paper is on evaluating observational (Layer 1) knowlege available in AI systems.
The observational distribution of the underlying phenomenon can be defined through the SCM itself:
Definition 1 (Observational Distribution (Bareinboim et al., 2022)). An SCMM that is a 4-tuple
⟨V,U,F , P (u)⟩ induces a joint probability distribution P (V ) such that for each Y ⊆ V ,

PM(Y = y) =
∑
u

1
(
Y (u) = y

)
P (U = u), (1)

where Y (u) is the solution for Y after evaluating F with U = u.

In the above definition, Y ⊆ V should be thought of as multidimensional. A fixed value of exogenous
U = u is called a unit, and can be thought of as a individual in the population. To obtain the
observational distribution P (Y = y), we go over all units u, and add up the probability mass
P (U = u) of all units for which Y attains the value y. The observational distribution P (V ) captures
all probabilistic relationships among observed variables under passive observation. On top of the
distribution, we can also consider other types of quantities, such as (conditional) moments. In
particular, we may consider different types of knowledge, such as:

(i) Marginal expectations: e.g., E[V1], the average value of a single variable.
(ii) Marginal distributions: e.g., P (V1), the full distribution of a variable.

(iii) Conditional expectations: e.g., E[V1|V2], the average value conditioned on another variable.
(iv) Conditional distributions: e.g., P (V1|V2), the distribution of one variable given another.
(v) Joint distributions: e.g., P (V1, . . . , Vk), the distribution of over the variables V1, . . . , Vk.

The above types of knowledge can be viewed as a hierarchy, with the level of required knowledge
being progressively more refined. Our goal can be described as follows: we design tasks probing the
above types of knowledge, based on large-scale datasets describing populations. For instance, we
refer to a dataset D, and consider the distribution over covariates P (V ) implied by D. Then, we elicit
responses from an LLM about the same distribution. The model’s distribution is labeled P̃ (V ). Our
goal is to then compare various aspects of P̃ (V ) and P (V ), according to types of knowledge (i)-(v).
In this way, we can systematically evaluate whether LLMs internalize such quantities over real-world
populations. In fact, we can formally argue that testing knowledge on observational distributions is a
critical first step for understanding knowledge on causal capabilities more broadly:
Proposition 1 (Causal Hierarchy Theorem (Bareinboim et al., 2022)). LetM be an SCM, P (V ) be
its observational distribution, and A a set of causal assumptions encoded in the form of a causal
diagram (Bareinboim et al., 2022) or ignorability statements (Rubin, 1974; Pearl, 2000). Then,

(a) in absence of A, P (V ) underdetermines interventional and counterfactual distributions,

(b) in absence of P (V ), A underdetermines interventional and counterfactual distributions.
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The first part of the above proposition is the one commonly considered in the causal inference
literature – in short, it states that, in absence of causal assumptions, it is generally impossible to
provide any guarantees for inference over interventional or counterfactual distributions. The second
part states that in absence of the observational distribution, no inferences can be made for higher
layers of the PCH, leading to the following important corollary:

Corollary 2 (No Observational Distribution =⇒ No Layer 2/3 Inference). If a model’s distribution
P̃ (V ) differs from the true P (V ), no guarantees can be provided for the validity of the model’s
interventional or counterfactual inferences.

The above corollary captures an important motivation for the benchmark constructed in this paper –
even if we assume that an LLM has access to correct causal knowledge (a point we do not investigate
in this manuscript), it still may not be able to perform causal inferences in case its observational
distribution does not match the one in the real world. Therefore, testing whether language models
have access to observational knowledge (required for causal reasoning) is an important first step since
a negative answer warrants skepticism about the model’s capabilities for performing claims in higher
layers of the PCH.

2.2 AXIS 2: DATASETS DESCRIBING POPULATIONS

As mentioned in the previous section, we will leverage large-scale datasets that describe population
level statistics in order to establish the ground truth observational distribution P (V ). After this,
we will probe the language model’s distribution P̃ (V ) to draw comparisons. In this work, for
the observational distributions P (V ), we make use of ten large, publicly available datasets that
collectively describe diverse aspects of the US population, and are often considered representative of
the national level statistics:

(1) American Community Survey (ACS) 2023 (U.S. Census Bureau, 2023): Conducted by the
US Census Bureau, the ACS collects detailed demographic, social, economic, and housing data
annually. Our focus is on income, education, and employment information across demographics.

(2) National Health and Nutrition Examination Survey (NHANES) 2021-2023 (National Center
for Health Statistics, 2023): Administered by the Centers for Disease Control and Prevention
(CDC), NHANES combines interviews and physical exams to assess health and nutrition of
individuals in the US. We investigate obesity, diabetes, and dietary habits across demographics.

(3) Behavioral Risk Factor Surveillance System (BRFSS) 2023 (Centers for Disease Control
and Prevention, 2023): A telephone survey system run by the CDC, tracking health-related
risk behaviors and conditions. We investigate exercise habits, diabetes, blood pressure, asthma,
cholesterol, visual/auditive impairments by US states.

(4) Medical Expenditure Panel Survey (MEPS) 2023 (Agency for Healthcare Research and
Quality, 2023): A set of surveys conducted by the Agency for Healthcare Research and Quality
(AHRQ), measuring health services use, expenditures, and insurance coverage. We investigate
healthcare expenditure, utilization, and insurance across demographics.

(5) National Survey on Drug Use and Health (NSDUH) 2023 (Substance Abuse and Mental Health
Services Administration, 2023): Collected by Substance Abuse and Mental Health Services
Administration (SAMHSA), the NSDUH provides information on substance use and mental
health in the US. We investigate alcohol and drug use across demographics.

(6) Survey of Consumer Finances (SCF) 2022 (Board of Governors of the Federal Reserve System,
2022): Sponsored by the Federal Reserve Board, the SCF provides detailed data on US household
finances. We analyze food expenditure, home ownership, assets, and debt across demographics.

(7) General Social Survey (GSS) 2022 (NORC at the University of Chicago, 2022): Conducted by
the National Opinion Research Center (NORC) at the University of Chicago, the GSS collects
data on social attitudes, behaviors, and demographics of US adults. We investigate political views
and party identification across age, sex, race, education, and income.

(8) Department of Education (IPEDS) (U.S. Department of Education, National Center for Educa-
tion Statistics, 2023): The Integrated Postsecondary Education Data System (IPEDS) collects
data from colleges, universities, and technical schools. We investigate college degrees by sex.
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(9) Department of Labor BLS Data 2023 (U.S. Bureau of Labor Statistics, 2023): The Bureau of
Labor Statistics of the US Department of Labor provides detailed information about occupations,
including worker demographics. We investigate occupations by sex and race.

(10) Federal Bureau of Investigation (FBI) Arrest Statistics (UCR Program): Compiled by the
FBI’s Uniform Crime Reporting Program (UCR), this dataset contains arrest statistics across the
US. We investigate crime rates by race and sex.

Each of the datasets either reports national-level statistics, or provides data on individuals. When
individual data is available, sample weights are provided (determining how many persons in the
overall US population the individual represents), allowing one to obtain representative results at
the national level. Together, these datasets allow for a broad evaluation of models’ abilities to
approximate population-level observational distributions across social, economic, educational, health,
and behavioral domains. We next describe how different tasks in our benchmark are constructed.

2.2.1 AXIS 2 TASKS: RESPONSES AND SCORING

Our benchmark consists of different tasks, and each task is associated with a dataset. The task is
defined by the pair VY , VX , representing the conditional distribution P (VY | VX) (here, VX could be
possibly empty). Each task is also accompanied by a natural language prompt template π (which
takes a value of VX = vX and returns a natural language question), and a set of valid answers in the
domain of VY , labeled dom(VY ).
Example 1 (NSDUH: Marijuana Usage by Age). The NSDUH dataset tracks various aspects of
addiction and mental health for the US population. Suppose that VY represents whether a person ever
used marijuana, and VX represents age. In the benchmark, we are interested whether the LLM has
access to the conditional distribution P (VY | VX). To test this, the accompanying prompt template π
for the task is given by:

π(vX) = “Has a person aged {vX} ever used marijuana?" (2)

Once a specified value vX = 16 is chosen, this results in a prompt “Has a person aged 16 ever used
marijuana?", which is given to the model. In the prompt, the model is provided with a set of possible
answers, which in this case amounts to dom(VY ) = {no, yes}. For open-weights models, we can
inspect the probabilities associated with each of the responses in the model’s next-token prediction.
Alternatively, for closed models, the same question can be repeated multiple times, and we record all
the provided answers, allowing us to reconstruct the distribution over answers. Finally, we compare
the model’s distribution with the true P (VY | VX) distribution from the NSDUH dataset. □

Intuitively, the difficulty of the task should increase with larger dimensions of VY and VX . For
instance, if |VY | = 1, |VX | = 0, our task is to recover the 1-dimensional marginal distribution
P (VY ). If |VY | = 1, |VX | > 0, we are trying to recover a 1-dimensional conditional distribution
P (VY | VX). The question templates π are carefully designed, to reflect the original questions
asked to individuals during data acquisition. In total, we constructed 75 tasks across 10 datasets for
|VY | = 1, |VX | = 1 (we refer to this as the low-dimensional setting), and 94 tasks across 4 datasets
for |VY | = 1, |VX | ∈ {2, 3, 4, 5} and VY binary (referred to as the high-dimensional setting). Fig. 2
(bottom left) offers some further examples, in addition to Ex. 1, while Appendix A contains the full
list of tasks. We remark here that an alternative way of eliciting the model’s knowledge also exists,
captured by the following example:
Example 1 (continued – NSDUH: Marijuana Usage by Age). For the task of eliciting the distribution
of marijuana usage by age group, a template prompt

πprob(vX) = “What is the probability that a person aged {vX} ever used marijuana?" (3)

may be used instead, representing an alternative way of eliciting P̃ (VY | VX). □

The comparison of the two prompting approaches (probabilistic vs. Q&A) is discussed in Appendix E,
while in the main text we focus on Q&A prompt templates as in Eq. 2.

Eliciting Responses. As mentioned, for each question the model is asked, there is a specific range of
possible responses. Our approach to obtain the model answers is to label each response in dom(VY )
with labels A,B,C, . . . , and then inspect the conditional probability associated with tokens A,B,C,
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etc. Let A(vY ) denote the letter of the answer vY . The model’s probability associated with each
answer vY ∈ dom(VY ) corresponding to label A(vY ) in the prompt is then simply computed as

P̃ (VY = vY | VX = vX)
∆
=

P̃ nt(answer A(vY ))∑
ṽY ∈dom(VY ) P̃

nt(answer A(ṽY ))
, (4)

where P̃ nt is the model’s next-token probability function given the prompt.

Example 1 (continued – NSDUH: Marijuana Usage by Age). Suppose that following the prompt

Has a person aged 16 years ever used marijuana? A. yes B. no

we find the model’s next-token probabilities to be P̃ nt(answer A) = 0.01, P̃ nt(answer B) = 0.03.
Then, the model’s probability is computed as P̃ (VY = 1 | VX = 16) = 0.01

0.01+0.03 = 25%. □

This is a known strategy for eliciting model responses, used in numerous works on question answering
(Dominguez-Olmedo et al., 2024; Hendrycks et al., 2020; Santurkar et al., 2023). To mitigate
ordering bias (Dominguez-Olmedo et al., 2024), we average over different answer permutations. For
open-source models we use next-token probabilities; for closed models we use Monte Carlo bin-
counting. The ground truth observational distribution P (VY | VX) is estimated based on the available
dataset, using bin-counting in low-dimensional settings and lightgbm plus cross-validation in
high-dimensional settings. See Appendix D for more details on eliciting responses.

Scoring Strategy. We next develop a scoring strategy for each task based on the true distribution
P (VY | VX) and the model’s distribution P̃ (VY | VX). For this purpose, we use the L1-norm (instead
of KL divergence, to avoid sensitivity to low-probability events and support mismatch (Gibbs & Su,
2002)), and define the following distributional distance:

D(P̃ ||P ;VY , VX) =
∑
vX

∑
vY

∣∣∣P (VY = vY | VX = vX)− P̃ (VY = vY | VX = vX)
∣∣∣P (VX = vX) (5)

The above notion of distance allows the evaluation of how far P, P̃ are for the specific conditional
VY | VX . To obtain a normalized score, we compare the distance D(P ||P̃ ) to the distance of P from
a uniform distribution over the answers, labeled P unif, defined as

P unif(VY = vY | VX = vX)
∆
=

1

|dom(VY )|
∀vX , vY . (6)

In this context, we refer to the P unif distribution as a random baseline. In the high-dimensional case,
which focuses on binary VY , we add another baseline, namely a fixed 0/1 prediction depending
on the dataset mean, given by P 0/1(VY = 1 | VX = vX)

∆
= 1(EP [VY ] > 0.5) for all vY , vX ,

where EP [VY ] represent the true distribution mean. Therefore, the 0/1 baseline predicts a constant
probability of 0 for all conditioning sets for outcomes with a marginal incidence EP [VY ] ≤ 0.5,
and predicts a constant 1 whenever the marginal incidence is EP [VY ] > 0.5. Such a baseline also
corresponds to effectively no probabilistic knowledge. With these baselines in place, our scoring
system is described next (illustrated in Fig. 3a). As many datasets consist of samples of the population
(and do not survey the entire population), there is some uncertainty on the ground truth distribution
P . In the scoring, we account for this fact, and proceed as follows. We draw bootstrap samples of
size |D| (size of the dataset) labeled D(b), and extract the bootstrap ground truth distribution P (b).
We then look at the distance D(P ||P (b)) of P (based on the available data) and P (b) (obtained from
bootstrapped data), across different samples (see green density in Fig. 3a). The upper 5% quantile of
the spread of D(P ||P (b)) is labeled with the perfect score S = 100 – meaning that the score 100 is
assigned if a model’s distribution cannot be statistically distinguished from the ground truth at the
5% significance level. For setting the score of 0, we use the minimum of the distances D(P ||P unif),
D(P ||P 0/1), with the latter only considered for binary outcomes. The model’s final score is then
linearly interpolated between S = 0 and S = 100, as follows:

ST = 100×max
(
1− D(P̃∥P )

min {D(P unif∥P ), D(P 0,1∥P )} , 0
)
. (7)
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Distance from P

D
en

si
ty bootstrap samples from P

S100 S0

(cannot distinguish
from P )

(cannot distinguish
from random guessing)

STj linearly interpolated
between S0 and S100

(a) Scoring strategy. (b) Model leaderboard.

Figure 3: Scoring strategy and model performance across task groups.

2.3 AXIS 3: MODELS

Models we consider can be divided in two groups: open-weight models, whose trained parameters
are publicly available, and closed-weight models, whose parameters remain proprietary and can be
accessed only via an API. We focus mainly on open models, but also consider some closed models
to ensure our benchmark covers a broad range of state-of-the-art models. While the benchmark
evaluates zero-shot performance of models, a natural question is whether fine-tuning can help boost
performance. Impact of fine-tuning is investigated in Appendix F.

Open-weight Models. Our open-weight models include both the original pretrained checkpoints,
and instruction-tuned variants, which are further trained on human-generated instruction–response
pairs to improve their ability to follow instructions in user prompts. Particularly, we evaluate the
following models: Mistral 7B (Jiang et al., 2023), LLaMA3 8B (Grattafiori et al., 2024), LLaMA3
70B (Grattafiori et al., 2024), Gemma3 27B (Team et al., 2024), DeepSeek 7B (Bi et al., 2024),
Phi-4 (Abdin et al., 2024), and DeepSeek R1 32B (Bi et al., 2024). In the main text, we focus on
instruction-tuned models, while Appendix B compares instruction-tuned and pretrained models.

Closed-weight Models. Closed-weight models are available only through API-based access to
proprietary weights, and include a state-of-the-art reasoning model. In particular, we evaluate
Reasoning Language Models (RLMs) such as OpenAI’s o4-mini. We also include models with web
access, such as OpenAI’s GPT-4.1. Appendix C analyzes the performance of selected closed models.

2.4 BENCHMARK CONSTRUCTION

Our benchmark is designed with reproducibility and extensibility as key principles. All dataset
constructions are made available, ensuring transparency and verifiability. The modular structure of
the benchmark allows easy addition of both new datasets and new models, facilitating broader future
evaluations. Furthermore, model evaluation is streamlined: any model available through Hugging
Face (Wolf et al., 2019) can be benchmarked with a single line of code, allowing for rapid inclusion of
diverse architectures. At the time of submission, our benchmark consists of 10 pre-processed datasets,
169 tasks (75 low-dimensional and 94 high-dimensional), with 12 open-weight models evaluated.

3 KEY INSIGHTS AND OBSERVATIONS

Results summarizing the leaderboards for the low- and high-dimensional settings are shown in
Fig. 3b. They indicate that the observational distributions P̃ (V ) encoded in the LLMs are closer to
the ground truth, real-world observational distributions P (V ) than the uniform distribution P unif(V )
since models achieve scores above zero. All models achieve scores better than uniform guessing,
suggesting some access to L1 knowledge. However, overall, the models’ performance is rather poor,
with the best models scoring an average of 22/100 points in the low-dimensional, and 17/100 in
the high-dimensional setting, respectively. Therefore, capabilities of LLMs for encoding real-world
observational distributions seem limited, and using such knowledge for downstream tasks should be
done with care. Furthermore, Appendix F shows that fine-tuning may offer limited added benefit,
raising interesting questions on how to design approaches for improving the models’ L1 knowledge.
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(a) Performance by dataset (low-dimensional). (b) Performance by dimension.

Figure 4: Model performance across (a) datasets; (b) dimension.

Low-Dimensional Setting & Performance by Dataset. The performance of models on 75 low-
dimensional tasks, comparing P̃ (VY | VX) with the ground truth P (VY | VX) for |VY | = |VX | = 1
is shown in Fig. 3b (purple bars). Among a selection of models from different organizations (Meta,
Microsoft, Google, DeepSeek AI, Mistral AI), the overall performance across models does not exhibit
large differences, and all models perform poorly. Another interesting aspect is the performance
of models across different datasets, visualized in Fig. 4a. The best performance is observed over
the FBI Arrest Statistics (sex/race distributions over crime types), ACS Census data (questions on
employment, education, and income across demographics), and Departments of Education (sex
by graduation degree) and Labor (sex/race by occupation). For three of these four datasets (FBI,
BLS, IPEDS) the detailed statistics we queried are available on their websites, meaning that models
could have had access to the exact probability tables used for constructing our questions. Therefore,
improved performance may correspond to the actual data being available in the model’s training
set. This observation also emphasizes the importance of the high-dimensional setting – in which we
condition on multiple observed variables – as this knowledge is not readily available on the web.

High-Dimensional Setting & Performance by Dimension. The performance of models in the
high-dimensional case, for P (VY | VX) with |VY | = 1, |VX | ∈ {2, 3, 4, 5}, and VY binary, is shown
in Fig. 3b (yellow bars). As the scores indicate, performance is again quite poor across models,
and certainly worse than in the low-dimensional case. We also inspect the model performance with
varying dimension (Fig. 4b). The pattern of the performances does not clearly indicate the curse of
dimensionality, possibly due to the fact that each dimension d has a relatively small number of tasks,
and additional tasks may need to be added to investigate this effect in more detail.

Implications on Causal Inferences. Recovery of high-dimensional conditional distributions inves-
tigated in this work may be seen as related to questions of causal inference. Commonly, to adjust for
confounding by a set of covariates VZ , data analysts compute the propensity of a treatment VX , that
is, reweigh the samples with P (VX = vX | VZ = vZ)

−1 to obtain estimates of a desired potential
outcome (Rubin, 1977; Rosenbaum & Rubin, 1983). Other strategies use a predictive model for
the outcome for the outcome distribution P (VY | VX , VZ) in order to allow for or improve causal
inference (Bang & Robins, 2005). However, if such conditional distributions are not available to a
model, eliciting them may be a futile exercise. Therefore, our work brings into question some recent
approaches claiming to improve causal inferences using foundation models (De Bartolomeis et al.,
2025). In our view, using AI models for causal inference may require a more sophisticated approach.

Limitations & Future Work. A limited number of models are evaluated on our benchmark.
However, by choosing a representative sample of models, we cover a range of models developed
by different organizations. Furthermore, our emphasis on easy access and evaluation of models
will facilitate the benchmarking of other models in future work. Another limitation is that high-
dimensional inference is investigated across 4 datasets, and the number of contexts for evaluation
should grow over time. We further envision that our work will set the basis for evaluating capabilities
of AI models for inference in Layers 2 & 3 of the PCH – to systematically test how observational
distributions available to models affect downstream tasks such as causal or counterfactual inferences.
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Ethics statement. This work introduces a benchmark based on publicly available datasets and
models, with all assets cited and used in accordance with their licenses. No new data collection,
human subjects, or sensitive information are involved. We do not foresee ethical risks such as privacy
violations, bias amplification, or harmful applications beyond those already present in the underlying
datasets and models. In fact, our benchmark may contribute positively by encouraging researchers to
critically evaluate model capabilities for observational knowledge before deployment in downstream
applications such as causal inference.

Reproducibility statement. Strong emphasis is placed on reproducibility. All datasets used are pub-
licly accessible, and we release preprocessing scripts, evaluation code, and instructions to reproduce
every reported result. The benchmark is designed to make reproducing results and evaluating new mod-
els straightforward. We provide all experimental details, including data splits, hyperparameters, evalu-
ation metrics, and compute resources. Code and documentation are made available in the anonymized
code repository https://anonymous.4open.science/r/llm-epidemia-563D.
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Kwaśniewski, Jürgen Müller, Łukasz Flis, Hannes Eberhard, Hubert Niewiadomski, and Torsten
Hoefler. Reasoning language models: A blueprint, 2025. URL https://arxiv.org/abs/
2501.11223.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Steve J Bickley, Ho Fai Chan, and Benno Torgler. Artificial intelligence in the field of economics.
Scientometrics, 127(4):2055–2084, 2022.

Board of Governors of the Federal Reserve System. Survey of Consumer Finances. https:
//www.federalreserve.gov/econres/scfindex.htm, 2022.

10

https://anonymous.4open.science/r/llm-epidemia-563D
https://www.meps.ahrq.gov/
https://www.meps.ahrq.gov/
https://ia.samaltman.com/
https://arxiv.org/abs/2501.11223
https://arxiv.org/abs/2501.11223
https://www.federalreserve.gov/econres/scfindex.htm
https://www.federalreserve.gov/econres/scfindex.htm


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System Survey Data.
https://www.cdc.gov/brfss/, 2023. U.S. Department of Health and Human Services.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Piersilvio De Bartolomeis, Javier Abad, Guanbo Wang, Konstantin Donhauser, Raymond M Duch,
Fanny Yang, and Issa J Dahabreh. Efficient randomized experiments using foundation models.
arXiv preprint arXiv:2502.04262, 2025.

Ricardo Dominguez-Olmedo, Moritz Hardt, and Celestine Mendler-Dünner. Questioning the survey
responses of large language models. Advances in Neural Information Processing Systems, 37:
45850–45878, 2024.

Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International
statistical review, 70(3):419–435, 2002.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
by combining language models with symbolic solvers. arXiv preprint arXiv:2304.09102, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Wayne Holmes and Ilkka Tuomi. State of the art and practice in ai in education. European journal of
education, 57(4):542–570, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong Wang, Qiang Dong, Haipeng
Shen, and Yongjun Wang. Artificial intelligence in healthcare: past, present and future. Stroke and
vascular neurology, 2(4), 2017.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando
Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: Assessing causal
reasoning in language models. Advances in Neural Information Processing Systems, 36:31038–
31065, 2023.

11

https://www.cdc.gov/brfss/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Katie Matton, Robert Osazuwa Ness, John Guttag, and Emre Kıcıman. Walk the talk? measuring the
faithfulness of large language model explanations. arXiv preprint arXiv:2504.14150, 2025.

Aliakbar Nafar, Kristen Brent Venable, and Parisa Kordjamshidi. Probabilistic reasoning in generative
large language models. arXiv e-prints, pp. arXiv–2402, 2024.

National Center for Health Statistics. National Health and Nutrition Examination Survey Data.
https://www.cdc.gov/nchs/nhanes/, 2023. U.S. Department of Health and Human
Services, Centers for Disease Control and Prevention.

NORC at the University of Chicago. General Social Survey (GSS). https://gss.norc.org/,
2022. Accessed April 30, 2025.

OpenAI. Openai o3 and o4-mini system card, 2025. URL https://openai.com/index/
o3-o4-mini-system-card/. Accessed: 2025-05-22.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York,
2000. 2nd edition, 2009.

Pew Research Center. American trends panel, 2024. URL https://www.pewresearch.org/
american-trends-panel/. Accessed: 2025-04-28.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Assignment to treatment group on the basis of a covariate. Journal of educational
Statistics, 2(1):1–26, 1977.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
Whose opinions do language models reflect? In International Conference on Machine Learning,
pp. 29971–30004. PMLR, 2023.

Mohammed Yousef Shaheen. Applications of artificial intelligence (ai) in healthcare: A review.
ScienceOpen Preprints, 2021.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The annals of
statistics, pp. 1040–1053, 1982.

Substance Abuse and Mental Health Services Administration. National Survey on Drug
Use and Health (NSDUH). https://www.samhsa.gov/data/data-we-collect/
nsduh-national-survey-drug-use-and-health, 2023. U.S. Department of Health
and Human Services.

12

https://www.cdc.gov/nchs/nhanes/
https://gss.norc.org/
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://www.pewresearch.org/american-trends-panel/
https://www.pewresearch.org/american-trends-panel/
https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health
https://www.samhsa.gov/data/data-we-collect/nsduh-national-survey-drug-use-and-health


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Team Gemma, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

U.S. Bureau of Labor Statistics. Labor Force Statistics. https://www.bls.gov/, 2023. U.S.
Department of Labor.

U.S. Census Bureau. American Community Survey 1-Year Estimates, 2023. Retrieved from
https://data.census.gov/.

U.S. Census Bureau. American community survey, 2024. URL https://www.census.gov/
programs-surveys/acs/. Accessed: 2025-04-28.

U.S. Department of Education, National Center for Education Statistics. Integrated Postsecondary
Education Data System (IPEDS). https://nces.ed.gov/ipeds, 2023. Accessed April 30,
2025.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Yiran Zhao, Jinghan Zhang, I Chern, Siyang Gao, Pengfei Liu, Junxian He, et al. Felm: Benchmarking
factuality evaluation of large language models. Advances in Neural Information Processing Systems,
36:44502–44523, 2023.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and Muhao Chen. Context-faithful prompting for large
language models. arXiv preprint arXiv:2303.11315, 2023.

13

https://www.bls.gov/
https://data.census.gov/
https://www.census.gov/programs-surveys/acs/
https://www.census.gov/programs-surveys/acs/
https://nces.ed.gov/ipeds


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL FOR Epidemiology of Large Language
Models: A Benchmark for Observational Distribution Knowledge

The source code for reproducing the benchmark can be found in the anonymized code reposi-
tory https://anonymous.4open.science/r/llm-epidemia-563D. The repository
includes a README file explaining all the steps for setting up the benchmark. For the Llama3 8B,
Mistral 7B, and Phi4 models the experiments were run on a single NVIDIA H100 GPU. Evaluating
both the low- and high-dimensional settings required <1 hour per model. Evaluating DeepSeek 7B
(Chat version), Gemma3 27B, and LLama3 70B models was done on a node with four NVIDIA
GH200 Grace Hopper chips, and running both settings required <1 hour of compute per model.

A TASKS

This appendix contains the full list of tasks considered in the benchmark, complementing the
description of task construction from Sec. 2.2.1. In Tab. 1, the 75 tasks for the low-dimensional
setting are listed, which are concerned with recovering P (VY | VX) for univariate VX , VY . Tab. 2
lists all the 94 tasks for the high-dimensional setting, recovering P (VY | VX) for VY univariate and
binary, and |VX | ∈ {2, 3, 4, 5}.

Table 1: Low-dimensional tasks.

Task # Task Name
1 Census: Employment Status by Sex
2 Census: Employment Status by Race
3 Census: Employment Status by Age
4 Census: Employer by Sex
5 Census: Employer by Race
6 Census: Employer by Age
7 Census: Salary by Sex
8 Census: Salary by Race
9 Census: Salary by Age
10 Census: Education by Sex
11 Census: Education by Race
12 Census: Education by Age
13 BRFSS: Exercise by State
14 BRFSS: Diabetes by State
15 BRFSS: High BP by State
16 BRFSS: Asthma by State
17 BRFSS: Cholesterol by State
18 BRFSS: Visual Impairments by State
19 BRFSS: Hearing Impairments by State
20 BRFSS: Heart Attack by State
21 BRFSS: Stroke by State
22 Department of Education: Sex by Type of Degree
23 FBI Crime Statistics: Sex by Crime Type
24 FBI Crime Statistics: Race by Crime Type
25 GSS: Political View by Age
26 GSS: Political View by Race
27 GSS: Political View by Education
28 GSS: Political View by Income
29 GSS: Political View by Sex
30 GSS: Party Affiliation by Age
31 GSS: Party Affiliation by Race
32 GSS: Party Affiliation by Education
33 GSS: Party Affiliation by Income
34 GSS: Party Affiliation by Sex
35 Department of Labor: Sex by Occupation
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Task # Task Name
36 Department of Labor: Race by Occupation
37 MEPS: Expenditure by Age Group
38 MEPS: Office-based Visits by Age Group
39 MEPS: Inpatient Visits by Age Group
40 MEPS: Dental Visits by Age Group
41 MEPS: Has Insurance by Age Group
42 MEPS: Expenditure by Race
43 MEPS: Office-based Visits by Race
44 MEPS: Inpatient Visits by Race
45 MEPS: Dental Visits by Race
46 MEPS: Has Insurance by Race
47 NHANES: Age by BMI Group
48 NHANES: Diabetes by BMI Group
49 NHANES: Diabetes by Age Group
50 NHANES: Weekly Alcohol Consumption by Age Group
51 NSDUH: Alcohol Use in Last Month by Age
52 NSDUH: Cigarette Use in Last Month by Age
53 NSDUH: Marijuana Ever Used by Age
54 NSDUH: Cocaine Ever Used by Age
55 NSDUH: Heroin Ever Used by Age
56 NSDUH: Alcohol Use in Last Month by Race
57 NSDUH: Cigarette Use in Last Month by Race
58 NSDUH: Marijuana Ever Used by Race
59 NSDUH: Cocaine Ever Used by Race
60 NSDUH: Heroin Ever Used by Race
61 SCF: Food Expenditure by Age Group
62 SCF: House Ownership by Age Group
63 SCF: Total Assets by Age Group
64 SCF: Debt by Age Group
65 SCF: Net Worth by Age Group
66 SCF: Food Expenditure by Race
67 SCF: House Ownership by Race
68 SCF: Total Assets by Race
69 SCF: Debt by Race
70 SCF: Net Worth by Race
71 SCF: Food Expenditure by Education
72 SCF: House Ownership by Education
73 SCF: Total Assets by Education
74 SCF: Debt by Education
75 SCF: Net Worth by Education

Table 2: High-dimensional tasks. The third column indicates the task dimension d = |VX |, and the
fourth column indicates whether the task is used for the evaluation of closed models in Appendix C.

Task # Task Name d Closed Eval
1 BRFSS: Diabetes by Sex, Race 2 ✔
2 BRFSS: Diabetes by Age, Income 2 ✔
3 BRFSS: Diabetes by Age, Race 2 ✔
4 BRFSS: Diabetes by Sex, Income 2 ✔
5 BRFSS: Diabetes by Age, Sex, Race 3 ✔
6 BRFSS: Diabetes by Age, Race, Income 3 ✘
7 BRFSS: Diabetes by Age, Education, Income 3 ✔
8 BRFSS: Diabetes by Age, Sex, Income 3 ✔
9 BRFSS: Diabetes by Age, Education, Sex, Race 4 ✘

10 BRFSS: Diabetes by Age, Sex, Race, Income 4 ✘
11 BRFSS: Diabetes by Age, Education, Race, Income 4 ✘
12 BRFSS: Diabetes by Age, Education, Sex, Income 4 ✘
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Task # Task Name d Closed Eval
13 BRFSS: Diabetes by Age, Education, Sex, Race, Income 5 ✘
14 BRFSS: High Blood Pressure by Education, Race 2 ✔
15 BRFSS: High Blood Pressure by Age, Race 2 ✔
16 BRFSS: High Blood Pressure by Sex, Income 2 ✔
17 BRFSS: High Blood Pressure by Race, Income 2 ✔
18 BRFSS: High Blood Pressure by Age, Sex, Income 3 ✔
19 BRFSS: High Blood Pressure by Sex, Race, Income 3 ✔
20 BRFSS: High Blood Pressure by Age, Education, Race 3 ✔
21 BRFSS: High Blood Pressure by Education, Sex, Income 3 ✔
22 BRFSS: High Blood Pressure by Age, Sex, Race, Income 4 ✘
23 BRFSS: High Blood Pressure by Age, Education, Sex, Income 4 ✘
24 BRFSS: High Blood Pressure by Age, Education, Sex, Race 4 ✘
25 BRFSS: High Blood Pressure by Age, Education, Race, Income 4 ✘
26 BRFSS: High Blood Pressure by Age, Education, Sex, Race, Income 5 ✘
27 BRFSS: Depression by Race, Income 2 ✔
28 BRFSS: Depression by Sex, Race 2 ✔
29 BRFSS: Depression by Age, Income 2 ✔
30 BRFSS: Depression by Education, Race 2 ✔
31 BRFSS: Depression by Age, Race, Income 3 ✘
32 BRFSS: Depression by Education, Sex, Income 3 ✔
33 BRFSS: Depression by Age, Sex, Income 3 ✔
34 BRFSS: Depression by Sex, Race, Income 3 ✔
35 BRFSS: Depression by Age, Education, Sex, Race 4 ✘
36 BRFSS: Depression by Age, Education, Sex, Income 4 ✘
37 BRFSS: Depression by Education, Sex, Race, Income 4 ✘
38 BRFSS: Depression by Age, Sex, Race, Income 4 ✘
39 BRFSS: Depression by Age, Education, Sex, Race, Income 5 ✘
40 MEPS: Health Insurance by Education, Sex 2 ✔
41 MEPS: Health Insurance by Age, Sex 2 ✔
42 MEPS: Health Insurance by Age, Race 2 ✘
43 MEPS: Health Insurance by Education, Race 2 ✔
44 MEPS: Health Insurance by Age, Education 2 ✘
45 MEPS: Health Insurance by Sex, Race 2 ✔
46 MEPS: Health Insurance by Education, Sex, Race 3 ✔
47 MEPS: Health Insurance by Age, Sex, Race 3 ✘
48 MEPS: Health Insurance by Age, Education, Sex 3 ✘
49 MEPS: Health Insurance by Age, Education, Race 3 ✘
50 MEPS: Health Insurance by Age, Education, Sex, Race 4 ✘
51 NSDUH: Cigarette Use (Last 30d) by Education, Sex 2 ✔
52 NSDUH: Cigarette Use (Last 30d) by Age, Sex 2 ✔
53 NSDUH: Cigarette Use (Last 30d) by Age, Race 2 ✔
54 NSDUH: Cigarette Use (Last 30d) by Education, Race 2 ✔
55 NSDUH: Cigarette Use (Last 30d) by Age, Education 2 ✔
56 NSDUH: Cigarette Use (Last 30d) by Sex, Race 2 ✔
57 NSDUH: Cigarette Use (Last 30d) by Education, Sex, Race 3 ✔
58 NSDUH: Cigarette Use (Last 30d) by Age, Sex, Race 3 ✔
59 NSDUH: Cigarette Use (Last 30d) by Age, Education, Sex 3 ✔
60 NSDUH: Cigarette Use (Last 30d) by Age, Education, Race 3 ✘
61 NSDUH: Cigarette Use (Last 30d) by Age, Education, Sex, Race 4 ✘
62 NSDUH: Marijuana Use by Education, Sex 2 ✔
63 NSDUH: Marijuana Use by Age, Sex 2 ✔
64 NSDUH: Marijuana Use by Age, Race 2 ✔
65 NSDUH: Marijuana Use by Education, Race 2 ✔
66 NSDUH: Marijuana Use by Age, Education 2 ✔
67 NSDUH: Marijuana Use by Sex, Race 2 ✔
68 NSDUH: Marijuana Use by Age, Education, Race 3 ✘
69 NSDUH: Marijuana Use by Age, Sex, Race 3 ✔
70 NSDUH: Marijuana Use by Education, Sex, Race 3 ✔
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Task # Task Name d Closed Eval
71 NSDUH: Marijuana Use by Age, Education, Sex 3 ✔
72 NSDUH: Marijuana Use by Age, Education, Sex, Race 4 ✘
73 NSDUH: Cocaine Use by Education, Race 2 ✔
74 NSDUH: Cocaine Use by Education, Sex 2 ✔
75 NSDUH: Cocaine Use by Age, Race 2 ✔
76 NSDUH: Cocaine Use by Age, Education 2 ✔
77 NSDUH: Cocaine Use by Sex, Race 2 ✔
78 NSDUH: Cocaine Use by Age, Sex 2 ✔
79 NSDUH: Cocaine Use by Age, Sex, Race 3 ✔
80 NSDUH: Cocaine Use by Age, Education, Race 3 ✘
81 NSDUH: Cocaine Use by Age, Education, Sex 3 ✔
82 NSDUH: Cocaine Use by Education, Sex, Race 3 ✔
83 NSDUH: Cocaine Use by Age, Education, Sex, Race 4 ✘
84 SCF: Home Ownership by Education, Sex 2 ✔
85 SCF: Home Ownership by Age, Sex 2 ✔
86 SCF: Home Ownership by Age, Race 2 ✔
87 SCF: Home Ownership by Education, Race 2 ✔
88 SCF: Home Ownership by Age, Education 2 ✔
89 SCF: Home Ownership by Sex, Race 2 ✔
90 SCF: Home Ownership by Education, Sex, Race 3 ✔
91 SCF: Home Ownership by Age, Sex, Race 3 ✔
92 SCF: Home Ownership by Age, Education, Sex 3 ✔
93 SCF: Home Ownership by Age, Education, Race 3 ✘
94 SCF: Home Ownership by Age, Education, Sex, Race 4 ✘
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B COMPARISON OF BASE & INSTRUCTION-TUNED MODELS

In this appendix, we compare the performance of base models vs. instruction-tuned models optimized
via either self-instruction (Wang et al., 2022) or supervised fine-tuning (Ouyang et al., 2022) followed
by reinforcement learning with human feedback (RLHF) (Christiano et al., 2017). In the main text,
we analyzed the performance of instruction-tuned models on our benchmark: Mistral 7B (Jiang
et al., 2023), LLaMA3 8B (Grattafiori et al., 2024), LLaMA3 70B (Grattafiori et al., 2024), Gemma3
27B (Team Gemma et al., 2025), DeepSeek 7B (Bi et al., 2024), and Phi-4 (Abdin et al., 2024).
For each of these models, we compare the model’s performance against the corresponding base
(pre-trained) model. The only exception is the Phi-4 model, for which a base model is not released
due to safety concerns (Abdin et al., 2024).

For evaluating the models on our benchmark, we focus on the 94 tasks in the high-dimensional
setting (see Sec. 2.2.1 and Tab. 2 for details). The results of comparing base vs. instruction-tuned
models are shown in Fig. 5a, which again indicates poor performance across all models. We note
that, for all families of models (here, a family refers to a pair of base and instruction-tuned models),
instruction-tuned models perform equal or better than base models. Furthermore, a comparison of
base model’s vs. instruction-tuned model’s scores for each task is shown in Fig. 5b. The figure
indicates that for a number of tasks, instruction-tuning improves performance from a zero score to a
non-zero score. Less commonly, instruction tuning makes performance worse (some instances are
observed for DeepSeek and Gemma 3 model families).

(a) Comparing the performance of base and instruct models on high-dimensional tasks.

(b) Performance of base and instruct models by task and model family.

Figure 5: Performance of base vs. instruction-tuned models.
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C CLOSED MODELS PERFORMANCE

In this appendix, we look at how the performance of closed models compares to the performance of
open-weight models. In particular, we evaluate two closed models from OpenAI – GPT-4.1 (Achiam
et al., 2023) and o4-mini (OpenAI, 2025), where the latter model is a reasoning language model
(RLM) (Besta et al., 2025). Since these models require access to an API, we evaluate them on a
subset of the tasks in the high-dimensional setting (consisting of tasks with a univariate binary VY ,
and |VX | ∈ {2, 3, 4, 5}). In particular, we select 63 out of 94 tasks (the selected tasks are indicated
in the Closed Eval column of Tab. 2), focusing on tasks for which at most 250 queries need to be
evaluated on the model.

To elicit the model’s distribution P̃ (VY | VX), we use the likelihood-prompting technique, described
in detail in Appendix E. We choose likelihood prompting, since closed models such as GPT-4.1 and
o4-mini do not provide access to next-token prediction probabilities, meaning that question/answer-
prompting used in the main text becomes possible only via Monte Carlo sampling. This, however,
would increase the number of queries sent to the models and the associated cost by at least two
orders of magnitude. This is due to the fact that even with nmc = 100 Monte Carlo samples, the
95% confidence interval for a probability P̃ (VY = 1 | VX = vX) ∈ [0, 1] is only guaranteed to be
reduced to a width of approximately 0.1, still reflecting a high level of uncertainty.

The performance of GPT-4.1 and o4-mini models on the 63 selected tasks is shown in Fig. 6. The

Figure 6: Performance of closed OpenAI models GPT-4.1 and o4-mini.

figure shows that GPT-4.1 and o4-mini outperform the evaluated open-weights models. This may
be explained by the fact that GPT-4.1 is the largest model we evaluated, in terms of the parameter
count (even though the number of parameters is not officially published). Even though OpenAI’s
models outperform the evaluated open-weights models, they still do not perform well. In Fig. 6,
the orange line indicates the performance of the so-called mean-baseline, which outputs the overall
population mean Pmean(VY = 1 | VX = vX) = EP [VY ] for all values vX ∈ dom(VX) (and
extended discussion on this baseline can be found in Appendix E.1). Therefore, none of the models
are able to outperform such a baseline.

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020). Retrieval-augmented generation
(RAG) is a technique in which an LLM is combined with an external retriever (Lewis et al., 2020).
In this case, the model does not have to rely only on its internal knowledge, but relevant documents
can be fetched from a collection of texts. To investigate the impact of RAG on our benchmark, we
used the GPT 4.1 model with web access (the model can search the web for each query). To test how
RAG affects performance, we focused on 11 tasks on which the GPT 4.1 model without web-based
RAG had a score of 0 (corresponding to task indices 40, 43, 57, 62, 63, 64, 65, 66, 67, 70, and 71 in
Tab. 2). Here, the expectation is that RAG would help the model performance, and would result in a
higher score. However, the results for the GPT 4.1 model with web-based RAG still showed a zero
score for each task. Therefore, perhaps surprisingly, for these tasks RAG did not result in improved
performance. This finding warrants further investigation of how RAG may improve the performance
of models on our benchmark. This investigation is left for future work.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D DETAILS ON RESPONSES AND SCORING

As mentioned in Sec. 2.2.1, we use a known strategy for eliciting model responses from previous
works on question answering (Dominguez-Olmedo et al., 2024; Hendrycks et al., 2020; Santurkar
et al., 2023). As models may exhibit ordering bias (Dominguez-Olmedo et al., 2024), we consider all
of the different |dom(VY )|! permutations of labels A,B,C, . . . , over the answers vY ∈ dom(VY ),
and average the probabilities accordingly (if the number of permutations |dom(VY )|! > 120, we
consider 120 random permutations). The above way of eliciting responses may be used for all models
with open-source weights, which allows us to access next-token prediction probabilities. For the
ground truth distribution P , in the low-dimensional setting we use a simple bin-counting estimator on
the available dataset, whereas in the high-dimensional case we fit the distribution P (VY | VX) using
lightgbm (Ke et al., 2017), with actual values P (VY = vY | VX = vx) obtained out-of-sample,
using 5-fold cross-validation.
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E LIKELIHOOD VS. QUESTION-ANSWERING PROMPTS

In this appendix, we discuss an alternative way of eliciting model distributions P̃ (VY | VX). We
recall Ex. 1 from the main text, in which we were interested in marijuana usage (VY ) over age groups
(VX ). For this task, we used a prompt template

π(vX) = “Has a person aged {vX} ever used marijuana?", (8)

which for different values of age vX creates different questions posed to the model. With the question,
the model is also given the choice of answers yes/no, which are labeled with letters A, B. For
extracting the model’s probability P̃ (VY = 1 | VX = vX), we investigate the probabilities associated
with letters A, B in the model’s next-token prediction distribution P̃ nt.

However, this approach, which we refer to as question/answer-prompting (QA-prompting, for short),
is not the only way to elicit the model’s distribution P̃ (VY | VX). An alternative way of eliciting this
distribution is to use a different prompting strategy, which asks for the probability directly:

πprob(vX) = “What is the probability that a person aged {vX} ever used marijuana?" (9)

This strategy, which we refer to as likelihood-prompting, is investigated in this appendix. To elicit a
probability from the model, a range of responses is offered, namely responses in the following form:

A. 0%
B. 0%-5%
C. 5%-10%
...
U. 95%-100%
V. 100%

We then again inspect the next-token prediction probabilities in P̃ nt, and choose the response with
the highest probability:

Aresp = argmax
A∈{A,...,V }

P̃ nt(answer A). (10)

The chosen response letter Aresp is then mapped to either an interval, or a fixed value of 0% or 100%.
For assigning the final predicted probability, for intervals, we take the midpoint. For instance, if the
answer B. 0%-5% is chosen, we set the predicted probability to 0.025, and so on. In this way, we
elicit the probability P̃ (VY = 1 | VX = vX) of the model.

Model performances on the benchmark when using likelihood-prompting (compared with QA-
prompting), on the 94 tasks in the high-dimensional setting with a binary one-dimensional VY , and
|VX | ∈ {2, 3, 4, 5}, are shown in Fig. 7. On top of the models used in the main text, we also include a
version of DeepSeek R1 (Guo et al., 2025) distilled using Qwen2.5 32B (Hui et al., 2024). The results

Figure 7: Models’ performance with likelihood-prompting on the 94 high-dimensional tasks.
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in the figure compare the performance of models on the same tasks, where likelihood-prompting is
used instead of QA-prompting used in the main text. We note that the model performances, for some
models, improve with likelihood-prompting (in particular, the Phi4 model moves from an average
score of 17/100 to 33/100, Gemma3 27B from 13/100 to 33/100, LLama3 70B from 7/100 to 27/100).
At the same time, for some models, the performance with likelihood prompting becomes worse
(LLama3 8B). However, overall, model performance is still quite poor, and we further contextualize
this further in the sequel.

E.1 BASELINES – HOW GOOD ARE THE MODELS?

In the evaluation of our benchmark, we used two baselines, which corresponded to the notion of zero
probabilistic knowledge. The first baseline was the uniform baseline P unif, which is in the binary
case given by:

P unif(VY = 1 | VX = vX) =
1

2
∀vX . (11)

This baseline corresponds to random guessing. In the main text, we also discussed the 0/1 baseline,
which outputs either a probability 0 for events with a marginal probability ≤ 0.5, or a probability 1
for events with a marginal probability > 0.5:

P 0/1(VY = 1 | VX = vX) = 1(EP [VY ] > 0.5) ∀vX , (12)

where EP [VY ] is the true mean of VY (in the ground truth distribution P ). In our scoring scheme,
these baselines were used to determine the score S = 0 for a given task (see Sec. 2.2.1). However,
another interesting baseline is the mean-baseline, defined by:

Pmean(VY = 1 | VX = vX) = EP [VY ] ∀vX . (13)

This baseline outputs a fixed value (the marginal mean of the outcome VY ) for each vX ∈ dom(VX).
In words, this baseline is aware of the marginal probability of the event VY , but has no knowledge
about the variation of P (VY = 1 | VX = vX) according to vX around the marginal mean EP [VY ].
This baseline corresponds to some probabilistic knowledge (marginal mean), but without any knowl-
edge over how the probability varies across population subsets. Assigning a score of S = 0 to this
baseline would make high scores on our benchmark even more difficult to achieve, and an argument
could be made for including it in future iterations of the benchmark. In Fig. 7, the performance of the
mean-baseline with respect to the current evaluation is shown (orange horizontal line), indicating an
average score of 46/100. This means that the inclusion of this baseline would effectively render the
scores of all models investigated in this manuscript close to 0. This observation once again confirms
that the current generation of LLMs does not possess knowledge about observational distributions in
the real world, regardless of the strategy (QA- or likelihood-prompting) we choose for eliciting the
model distributions P̃ (VY | VX).
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F DOES FINE-TUNING IMPROVE PERFORMANCE?

In this appendix, we evaluate whether fine-tuning helps the performance of LLMs on our benchmark.
Given the relatively poor performance of models across a range of tasks, a natural question arises
whether additional training could improve models’ knowledge of observational distributions. We
investigate this hypothesis by fine-tuning a LLaMA3 8B instruction-tuned model on synthetic data
generated from our ground truth datasets, and comparing the performance to the baseline pretrained
model.

F.1 SYNTHETIC DATA CREATION

Our first step is to create a synthetic dataset that simulates the type of text a model might be given
access to during its pretraining stage. To generate such that, we use a pretrained Gemma3 27B
instruction model (Team Gemma et al., 2025) and focus on the NSDUH data. Specifically, we sample
different individuals from the dataset, reflecting the observational distribution. Upon selecting an
individual, we generate a text paragraph representing the person and their associated covariates. For
NSDUH data, different tasks look at cigarette, alcohol, marijuana, cocaine, and heroin usage across
demographics and therefore each generated textual note must contain all of this information. In
particular, we use the following prompt template for querying the Gemma3 27B model:

Prompt

You are a data generator. Follow the rules strictly.
RULES:
1) Write a single narrative enclosed in <story>...</story>.
2) Do NOT include headings, lists, analysis, or
any text outside the tags.
3) Mention ALL facts given below exactly once (age, sex, race,

education, cigarette and alcohol last-month use,
marijuana, cocaine, and heroin ever use).

4) Keep it under 200 words.

FACTS:
- age: {age}
- sex: {sex}
- race: {race}
- education: {edu}
- alcohol last month: {alc_monthly}
- cigarettes last month: {cig_monthly}
- alcohol last month: {cig_monthly}
- marijuana ever: {mj_ever}
- cocaine ever: {coc_ever}
- heroin ever: {her_ever}

OUTPUT FORMAT:
<story>
(your narrative here)
</story>

We create a dataset of 2,500 samples. An example of a generated data sample is shown below,
showcasing the type of synthetic data to be used for fine-tuning:
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Example Output

Ethan, a 22-year-old White male, was navigating the complexities of early adulthood. He’d
started some college but hadn’t yet earned a degree, feeling unsure about his path. He worked
part-time at a local bookstore, enjoying the quiet atmosphere and the smell of old paper.
Ethan wasn’t a smoker or a drinker; he hadn’t used cigarettes or alcohol in the last month.
He’d never experimented with marijuana, cocaine, or heroin, preferring to stay clear of
substances. His friends were often surprised by this, but Ethan was content with his choices.
He spent his free time sketching in his notebook, dreaming of becoming an illustrator, and
occasionally volunteering at the animal shelter.

F.2 FINE-TUNING

By fine-tuning a decoder-only model (LLama3 8B or Mistral 7B) on the above dataset, we test
whether a model can internalize observational knowledge by learning to do causal language modeling
on narrative text. An alternative fine-tuning approach would be to update model weights directly
on summarized statistics. However, this way of training would no longer represent embedding
probabilistic knowledge (which our benchmark aims to assess) into the model, and would instead
embed factual knowledge.

Standard supervised finetuning (SFT) is used for both LLama3 8B and Mistral 7B, which updates all
model weights. The cross-entropy loss for next token prediction is optimized. Each model is trained
for 6 epochs using a learning rate of 5 · 10−5 and the AdamW optimizer with β1 = 0.9, β2 = 0.999.
We apply a linear learning rate scheduler and monitor the loss on both training and validation splits.
We save the model checkpoints that achieve the lowest evaluation loss. Loss statistics over the 6
epochs are shown in Fig. 8. As the loss behavior indicates, the fine-tuning approach reduces both

Figure 8: Training and evaluation loss for fine-tuning LLama3 8B on NSDUH-based data.

training and evaluation losses early on, after which overfitting begins, and the training loss continues
to decrease while evaluation loss starts to increase. Model checkpoint saved using early stopping is
indicated with a vertical red line.

F.3 EVALUATION & OBSERVATIONS

In the last step, we evaluate the fine-tuned models on all of the NSDUH tasks, and compare the task
performances to those of pretrained LLama3 8B and Mistral 7B models. The results are shown in
Fig. 9 for both settings (low- and high-dimensional) and prompting techniques (question-answer
and likelihood prompting). Notably, for Q&A prompting, fine-tuning does not seem to improve
performance across either low- or high-dimensional settings – very few and modest score increases
are recorded for both models. At the same time, in the high-dimensional setting, for some tasks where
a pretrained LLama3 8B model scored above 0 the performance drops with fine-tuning.

For likelihood prompting, the impact of fine-tuning is different for low-dimensional and high-
dimensional settings. In the low-dimensional setting, FT increases the performance on 6 out of 10
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(a) LLama3 8B

(b) Mistral 7B

Figure 9: Comparison of pretrained and fine-tuned models on NSDUH-based tasks.

tasks for LLama3 8B and 3 out of 10 for Mistral 7B. In the high-dimensional setting, the performance
is not improved on any of the 33 tasks for either model, so both the pretrained and fine-tuned models
score exactly 0 on each task.

Therefore, some FT gains are observed for likelihood prompting in the low-dimensional setting.
Interestingly, one would perhaps hypothesize that fine-tuning on the task of causal language modeling
would have a greater impact and improve upon performance for the Q&A prompting, since this
prompting technique more directly elicits the model’s internal probability from next token predictions
(instead of asking for a likelihood). However, the results do not show this. Therefore, our investigation
in this appendix offers preliminary evidence showing that fine-tuning models on text generated from
the correct observational distribution does not ensure that models internalize knowledge of these
distributions. Future work is needed to extend these findings to other models and data sources,
and to investigate methods which may improve the abilities of models in terms of probabilistic L1
knowledge.
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