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ABSTRACT

Cancer is increasingly a global health issue. Seconding cardiovascular diseases,
cancers are the second biggest cause of death in the world with millions of people
succumbing to the disease every year. According to the World Health Organiza-
tion (WHO) report, by the end of 2020, more than 7.8 million women have been
diagnosed with breast cancer, making it the world’s most prevalent cancer. In this
paper, using the Nightingale Open Science dataset of digital pathology (breast
biopsy) images, we leverage the capabilities of pre-trained computer vision mod-
els for the breast cancer stage prediction task. While individual models achieve
decent performances, we find out that the predictions of an ensemble model are
more efficient. We also provide analyses of the results and explore pathways for
better interpretability and generalization.

1 INTRODUCTION

Overall 2.3 million women have been diagnosed with breast cancer (BC) in 2020, and 685000 glob-
ally died from the disease. These statistics, coupled with the ones of the five last years, bring up
to 7.8 million, the number of women alive who were diagnosed with BC by the end of 2020: more
women have lost their lives due to BC than any other type of cancer, making it the most prevalent
cancer in the world 1. The treatment of BC can be efficient when the disease is detected at a very
early stage, and there are mainly five stages of BC (Stage 0, Stage 1, Stage 2, Stage 3, and Stage 4).
One of the most popular ways of detecting BC is mammography, which is a detailed X-ray scanning
(or screening) of the breast with Magnetic Resonance Imaging (MRI). Another approach is breast
biopsy: a biopsy is a medical process during which samples of cell tissues are collected to be exam-
ined in the laboratory with a microscope. A biopsy helps to locate the presence, cause, or extent of
the disease.

Thanks to recent advances in Artificial Intelligence (AI), especially Deep Learning (DL), there has
been a rise in research efforts to leverage the potential of DL-based systems to help in breast cancer
detection. Gastounioti et al. (2022) provided a narrative review of AI in mammographic screening
of breast cancer risk: the recent initiatives made use of pretrained Computer Vision (CV) models
like ResNets He et al. (2016), DenseNets Huang et al. (2017), AlexNet Krizhevsky (2014), U-
Net Ronneberger et al. (2015), cGAN Mirza & Osindero (2014), Szegedy et al. (2015), MobileNet
Sandler et al. (2018), Inception Szegedy et al. (2016), and RetinaNet Lin et al. (2017). All of these
methods were applied to Full-Field Digital Mammography (FFDM) in which X-rays mammograms
are converted into electrical signals, in a binary classification (detecting BC or not BC) setting.

In this work, after briefly describing the Nightingale Open Science Dataset of Digital Pathology
(NOSDDP) Bifulco et al. (2021); Mullainathan & Obermeyer (2022), we use slides from each biopsy
digital image and pretrained CV models, to predict the stage of cancer of a patient (see Figure 1).

2 DATASETS

Existing works have demonstrated the ability of DL-based systems to predict the type of cancer
based on X-ray scans and mammograms. DL-based algorithms also focus on features that some-

1Breast Cancer (WHO): https://www.who.int/news-room/fact-sheets/detail/
breast-cancer
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times get overlooked or neglected by specialists (for instance the nature of the non-cancerous tissue
surrounding the tumor) Beck et al. (2011). However, there are currently very few to no datasets, that
link biopsy images to the cancer stage of the patients, and the respective outcomes: the NOSDDP
is an attempt to bridge that gap. The NOSDDP contains 72400 biopsy slide images, from 4335
breast biopsies of 3425 unique patients, observed from 2014 to 2020. These slide images are linked
to cancer stages and information about the mortality of patients (see Figure 1). Figure 2 presents
the statics across the dataset, and its different splits (train and evaluation). The main takeaway is
that most patients across the dataset are respectively in BC Stages 1, 2, and 0. Stages 1, and 0 are
considered early, while Stage 2 can already be the characteristic of a very advanced BC. It is also
important to notice that there are biopsies without stages (i.e. biopsies that have not been labeled
with a specific cancer stage). In the next section, after describing our experimental setups which
are: (1) the preprocessing of slide images, and (2) the pretrained CV models we use, we present the
results and analyses from the different pretrained CV models.

Figure 1: Description of the task: a biopsy generates slide images, that can be considered as different
patches (parts) of the original biopsy. The cancer stage for the entire biopsy is the average of the
individual stage prediction of each slide image.

Figure 2: Statistics of the dataset: (a): Distribution of biopsies per cancer stage, (b): Distribution of
labeled biopsies and non-labeled biopsies across the different dataset splits, (c): Number of patients
used for each dataset split, and (d): Number of slide images corresponding to biopsies collected
across the different dataset splits.
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3 EXPERIMENTS AND RESULTS

We make complete use of available data by assigning to the unlabeled biopsies, Cancer Stage 1 (the
most frequent cancer stage). We then downsampled the high-resolution slide images to (224, 224),
as supported by many existing pretrained CV models. The original training set has been split into
two subsets (with 80:20 ratio): DTrain and DEval, while the initial evaluation set is used as a test
dataset, we denote it DTest. Image samples from DTrain have been augmented using randomized
cropping and horizontal flipping, then normalized. The image samples from DEval and DTest have
only been normalized.

We finetuned 10 pretrained CV models: Resnet (18, 50, 152), EfficientNet Tan & Le (2021), Con-
vNext Liu et al. (2022) (M), WideResNet Zagoruyko & Komodakis (2016) (101), VGG Simonyan
& Zisserman (2014), ResNext Xie et al. (2017) (101), RegNet Radosavovic et al. (2020) (X32GF),
Swin Transformer Liu et al. (2021) (B), and MaxVit Tu et al. (2022). These models are all high-
performing computer vision models, and their respective versions (or size) were chosen to cope with
the memory available. For each model, we try various learning rates, with the AdamW optimizer.
Each model was trained with a batch size of 32, and for 50 epochs: those were the efficient values
for those hyperparameters. The predicted cancer stage PCS for a biopsy image B is the average of
the predicted cancer stage for each subsequent slide image S:

PCS(B) =
1

|B|
∑
i

PCS(Si)

where |B| is the number of slides for the biopsy B, and PCS(Si) ∈ {0, 1, 2, 3, 4}: this implies that
the prediction for a biopsy image is a continuous value ∈ [0, 4]. Therefore, to measure the closeness
to the true label which ∈ {0, 1, 2, 3, 4}, we use the Mean Square Error (MSE) metric:

MSE =
1

n

n∑
j=1

(predictedstagej–actualstagej)
2

where the actualstage ∈ {0, 1, 2, 3, 4}. The different performances are summarized in Table 1.

Learning Rate Resnet 18 Resnet 50 Resnet 152 EfficientNet (M) ConvNext (Base) Wide Resnet 101 VGG RegNet SwinT (B) MaxVit

1e-4 1.009611 0.970504 1.005862 0.925831 1.009943 0.931212 0.939045 0.992109 0.898370 0.855656
1e-5 1.001620 1.008508 1.001902 0.987911 0.957443 1.012101 0.994687 0.988756 0.897878 0.893357
4e-4 1.020936 0.986704 1.007281 0.829745 1.110100 1.033937 1.107765 1.000450 1.231371 1.098370

Table 1: MSE of each pretrained CV model. Arranged per column (model), the bold numbers
represent the best performance of each model, with respect to learning rates.

Looking at individual performances, we can see that EfficientNet performs better than other models.
We believe this is due to their architecture, which combines families (like an ensemble) of individual
baseline Neural Networks (NNs). Each NN uses a mobile inverted bottleneck convolution architec-
ture, to optimize their respective accuracy and efficiency via neural architecture search Tan & Le
(2021)2. Following the intuition of EfficientNet, we also tried to create a Deep Ensemble (E) of in-
dividual pretrained CV models (see Figure 3). Therefore, the predicted cancer stage of the ensemble
model E, for a biopsy B is

PCS(B)E =
1

|E|

|E|∑
k=1

PCS(B)k

where PCS(B)k is the PCS(B) of the k-th model, and |E| is the size of E i.e. the number of
model composing E: the predicted cancer stage of the ensemble model E, for a biopsy B is hence
the average of the predictions of each model of the ensemble E for that biopsy B.

We explore two strategies: (a) deep ensemble with all models, and (b) deep ensemble solely with the
models which have an MSE lower than 1. We find out that in setup (a), the MSE is 0.632767 while

2EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling (GoogleAI Blog):
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.
html
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in setup (b) the MSE is 0.5543481. This shows that: (*) Deep Ensembles are better than individual
models. This makes sense because in real-life, obtaining and aggregating the predictions of many
experts (doctors) is better than relying on the opinion of a sole doctor. Moreover, each model learns
different representations and features, which reduces the bias toward specific classes; and (**) the
lower the losses of individual models, the lower the MSE of the Deep Ensemble.

Figure 3: Deep Ensemble of each pretrained CV model: The average prediction for a biopsy is the
average prediction of each model.

4 LOOKING BEYOND PREDICTIONS: EXPLORING CAUSAL INFERENCE FOR
A BETTER INTERPRETABILITY, PERFORMANCE, AND GENERALIZATION

It is fairly known that Neural Networks are black boxes. Many experimental high-performing mod-
els have failed when deployed in real-world settings, due to high distributional variation. Therefore,
many efforts are being made to interpretability, and to enhance robustness. One of the subfields of
ML research fields that could benefit medical imaging (the BC can be considered as a specific type
of Medical Imaging problem) is Causal Inference. Causal Inference is the process of determining
the independent, actual effect of a particular phenomenon that is a component of a larger system.
Causal Inference is very few to not explored in the Medical Imaging field, while its application
could be very beneficial to the field of Medical Imaging. This is particularly important in the Med-
ical Imaging context as it will allow answering the question ”What if action x was performed?”.
This fits well the scope of precision healthcare whose goal is to target the right treatments to the
right patients at the right time. Causal Inference would extremely benefit healthcare and precision
medicine Sanchez et al. (2022); Vlontzos et al. (2022); Kaddour et al. (2022); Pölsterl & Wachinger
(2021); Jesson et al. (2022) as it will enable to estimate of the Average Treatments Effects (ATE)
while reducing structural bias and enhancing fairness across distribution and populations used in
different studies. Causal Inference will also, therefore, increase robustness while allowing medical
practitioners (e.g. doctors) to understand the predictions of the DL-based models, allowing more
”trust”.

5 CONCLUSION

In this work, we explored the applicability of pretrained computer vision models, in the task of pre-
dicting high-risk breast cancer. We observed that Deep Ensemble models offer better performances,
than single models. As future work, we opened discussions to causality in general and in the medical
imaging context particularly; and hypothesized how it could help to build more robust models.
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