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Abstract

Language models are often trained to maximize the likelihood of the next token given past
tokens in the training dataset. However, during inference time, they are utilized differently,
generating text sequentially and auto-regressively by using previously generated tokens as
input to predict the next one. Marginal differences in predictions at each step can cascade
over successive steps, resulting in different distributions from what the models were trained
for and potentially leading to unpredictable behavior. This paper proposes two simple
approaches based on model own generation to address this discrepancy between the training
and inference time. Our first approach is Batch-Scheduled Sampling, where, during training,
we stochastically choose between the ground-truth token from the dataset and the model’s
own generated token as input to predict the next token. This is done in an offline manner,
modifying the context window by interleaving ground-truth tokens with those generated by
the model. Our second approach is Reference-Answer-based Correction, where we explicitly
incorporate a self-correction capability into the model during training. This enables the
model to effectively self-correct the gaps between the generated sequences and the ground
truth data without relying on an external oracle model. By incorporating our proposed
strategies during training, we have observed an overall improvement in performance compared
to baseline methods, as demonstrated by our extensive experiments using summarization,
general question-answering, and math question-answering tasks.

1 Introduction

The common approach to training auto-regressive models is known as teacher forcing (Williams & Zipser,
1989). In this method, the ground truth token from the previous time step is utilized as the input for the
model at the current time step. This technique allows the model to learn relationships between tokens more
effectively, facilitating faster convergence during the training process. While this training technique has been
widely adopted in previous works (Cho et al., 2014; Gregor et al., 2014; Bahdanau et al., 2015; Vinyals et al.,
2015; Parmar et al., 2018; Fakoor et al., 2017; 2018; 2020; Esser et al., 2020; Chang et al., 2022; Li et al.,
2024; Liu et al., 2024), it can also lead to overfitting and undesirable behavior (Bengio et al., 2015; Bachmann
& Nagarajan, 2024). In particular, when a model is solely trained on the provided ground truth tokens, it
may fail to behave reliably when encountering its own generations later, which can include unseen tokens.
This occurs because, during inference, the model must rely solely on its own previous generations/predictions
rather than the actual ground truth; hence, any small error can propagate through subsequent time steps,
resulting in compounding errors and, therefore, unpredictable behavior. This issue is commonly known as
exposure bias (Bengio et al., 2015; Ranzato et al., 2015; Schmidt, 2019; He et al., 2019).

Current transformer-based (Vaswani et al., 2017) methods for aligning large language models (LLMs) with
human preferences, such as Reinforcement Learning from Human Feedback (RLHF), are also auto-regressive
models (Ziegler et al., 2020; Ouyang et al., 2022; OpenAI, 2023; Gemini-Team, 2024). Supervised Fine-Tuning
(SFT) is employed to fine-tune the pre-trained model using human demonstrations (utilizing teacher forcing)
as the initial step of this alignment method. This fine-tuned model is then further refined using reinforcement
learning through a reward model that serves as a proxy for human preferences (Ouyang et al., 2022). Since
SFT is used as a standalone alignment method and also serves as the initialization for other steps in RLHF,
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such as the RL step that exclusively uses its own generations, having an SFT model that can utilize its
own generations during training to develop tolerance for the shift between ground-truth data and its own
generations seems both necessary and increasingly important. Therefore, it is important to develop an SFT
model that is not solely trained on ground-truth data, which is more prone to overfitting and, consequently,
to training-inference discrepancies, but also incorporates its own self-generated data during training to closely
align with what it encounters during inference.

To bridge the discrepancies between how the model is trained and how it is used during inference, we propose
two approaches that both leverage the model’s own generations to address this issue. First, we train the
model in a manner akin to how samples are generated during inference. Specifically, instead of relying
solely on ground-truth tokens during training (teacher forcing), we expose the model to its own generations,
adopting the scheduled sampling (Bengio et al., 2015) for LLMs but in offline and batch manner, particularly
during SFT training. While scheduled sampling and its variants have been popular with smaller models,
especially recurrent-based ones (Lamb et al., 2016; Goyal et al., 2017; Li et al., 2020), they have not been
widely adopted for LLMs due to their complexity and the practical challenges of incorporating them during
training. We propose an offline and batch version of scheduled sampling called Batch-scheduled Sampling
(BASH), which is more practical and can be easily adopted during SFT training. Despite its effectiveness,
one of the main problems with BASH is that the model’s own generated tokens at each time step can deviate
from the ground-truth tokens. When interleaved with ground-truth tokens, the resulting sequence can differ
significantly from the ground truth, complicating training and ultimately leading to slower training time,
which negatively impacts results. To address this, we introduce Reference-Answer-based Correction (RAC),
where we explicitly incorporate a self-correction capability into the model. This approach resembles Dataset
Aggregation (Ross et al., 2011) in imitation learning but employs a self-supervised objective without relying
on an external oracle model.

To evaluate the effectiveness of our proposed approaches, we provide a comprehensive empirical comparison and
ablation study of our method across a range of standard benchmark tasks, such as summarization (Stiennon
et al., 2020) and general (Ding et al., 2023) and math question-answering tasks (Cobbe et al., 2021; Hendrycks
et al., 2021). This evaluation is conducted in settings where we have access only to the human demonstrations
data, which is primarily applicable to the SFT stage. Our results, based on win rates against the reference
for the summarization task and length-controlled win rates (Dubois et al., 2024a) on the AlpacaEval 2.0
benchmark (Dubois et al., 2024b) for QA tasks, clearly demonstrate that our proposed approaches are effective
in improving performance. Additionally, we demonstrate that initializing a model trained using our approach,
followed by fine-tuning with preference data through a direct preference alignment method (Rafailov et al.,
2024), leads to better results compared to initializing with a standard SFT model.

2 Background

Given a pre-trained auto-regressive language model parameterized by ω, our objective is to fine-tune this
model using human demonstration (a.k.a. expert) data1 to ensure that it generates text aligned with the
demonstration data. Consider a dataset D = {(xi, yi)}N

i=1 where xi and yi represent a query/prompt and
its corresponding continuation, respectively. Each example is a sequence of tokens xi = (x1

i , . . . , xT
i ) and

yi = (y1
i , . . . , xL

i ), where T and L indicate the lengths of the prompt and continuation, respectively2.

To fine-tune this auto-regressive model with D, we employ a maximum-likelihood objective, defined as follows:

JSFT(θ) = 1
|D|

∑
(x,y)∈D

L∑
j=0

log pθ(yj | x, y<j) (1)

where θ is the model parameters initialized from ω, y<j = (y0, y1, . . . yj−1), y0 shows the beginning-of-sentence
token, L denotes length of the continuation sequence y, and x = (x1, . . . , xT ) indicates a prompt of length T .
To maintain consistency with current literature, we refer to this method as SFT (Ouyang et al., 2022).

1Note that demonstration data does not always need to come from humans, as it can also be synthetically generated from
another model.

2To simplify notation, we drop the subscript i from equations whenever it clears from the context.
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2.1 Auto-regressive Generation

After the model is trained, we use it to perform conditional auto-regressive generation by specifying a prefix
sequence x1:T (i.e. a prompt/query) and sampling the remaining sequence z (i.e. continuation) one token at
the time, using the prefix and the previously generated tokens as a context:

zk ∼ pθ(·|x, z<k), k = 0, · · · , K (2)

where the current context looks as follows:

zT +k+1
context = (x1, . . . , xT︸ ︷︷ ︸

prompt

, z0, z1, . . . , zk︸ ︷︷ ︸
generated tokens so far

)

This process is repeated until the stopping condition is met (i.e., the maximum sequence length is reached or
the end-of-sentence token is generated). Throughout the remainder of this paper, whenever generation is
mentioned, we will utilize the auto-regressive approach explained above.

3 Methods

The objective function in Eq. (1) is known as teacher-forcing (Williams & Zipser, 1989) learning method
for auto-regressive models, where it utilizes the ground-truth token from the previous time step as input
to the model at the current time step. This can help the model learn more quickly, but it can also lead
to overfitting. In particular, models trained exclusively on ground-truth data might exhibit inconsistent
and undesirable behavior when faced with their own generated tokens during inference, especially if the
generated token was not seen during training. Motivated by these challenges and to bridge the gap between
training and inference, we propose two approaches in the following sections to address the shortcomings of
the teacher-forcing method, making training resemble inference as closely as possible.

3.1 Batch-scheduled Sampling

Scheduled sampling. To align the model’s behavior during training with how it functions during inference,
and to account for its auto-regressive nature, we update Eq. (1) so that it consumes its own generated tokens
in addition to the ground truth tokens during training, but in a controlled manner. To achieve this, the
scheduled sampling (SCS) method from Bengio et al. (2015) can be utilized. The goal of the scheduled
sampling method is to stochastically include the model’s generated tokens in an online manner during training:

JSCS(θ) = 1
|D|

∑
(x,y)∈D

L∑
j=0

log pθ(yj | x, g<j) (3)

where g<j is a mixture of ground truth tokens and the model’s own generations. To construct g, we first
sample zj from the model output given the previous context g<j input: zj ∼ pθ(·|x, g<j). Then, gj is created
by randomly selecting either zj or yj as the token with probability β:

gj =
{

zj with prob. β

yj otherwise
(4)

Here, β represents the mixing factor: when it equals 0, g is exactly the same as y. However, when β equals
1, g becomes completely different from y, as every token is auto-regressively generated by the model, and
the ground truth continuation tokens are completely discarded. Notice that, the context g<j in JSCS(θ) is a
function of the current parameter θ, though we do not propagate the gradient through it in the standard SCS.
Remark 1 (Scheduled sampling is not scalable). While SCS (and its variants) has proven effective
with small models (Bengio et al., 2015; Lamb et al., 2016; Goyal et al., 2017; Li et al., 2020), particularly
recurrent-based networks, its computational complexity outweighs its benefits for LLMs. This is why it has
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Algorithm 1 Batch-scheduled Sampling (BASH)
Input: Pre-trained model ω, training datatset D.

1: Initialize θ ← ω
2: for k = 1, 2, . . . , K1 do
3: Sample mini-batch B = {(x, y)} ∼ D
4: ∇θJSFT(θ)← ∇θ

1
|B|

∑
(x,y)∈B

∑
j log pθ(yj | x, y<j)

5: θ ← θ − α∇θJSFT(θ)
6: end for
7: for iteration 1, 2, . . . , H do
8: Construct dataset Ds in offline manner as explained in Sec. 3.1
9: for k = 1, 2, . . . , K2 do

10: Sample mini-batch B = {(x, y, ŷ)} ∼ Ds

11: ∇θJSFT(θ)← ∇θ
1

|B|
∑

(x,y)∈B
∑

j log pθ(yj | x, y<j)
12: ∇θJBASH(θ)← ∇θ

1
|B|

∑
(x,y,ŷ)∈B

∑
j log pθ(yj | x, ŷ<j)

13: θ ← θ − α
(
∇θJSFT(θ) +∇θJBASH(θ)

)
14: end for
15: end for
Output: θ.

not been widely adopted for training large models. Specifically, because LLMs require distributed training
across many GPUs, switching between training and inference modes per tokens would not only significantly
slow down the training but also lead to significant GPU under-utilization and memory related issues.

Mihaylova & Martins (2019) also highlighted the difficulty of applying scheduled sampling to transformer-
based models and proposed structural changes to the transformer through a two-pass decoding strategy. In
the first pass, model predictions are generated without accumulating gradients, and in the second pass, the
generated data is mixed with the ground truth to update the model. Although this approach shows promise
in some tasks, it has not been applied to LLMs. This is due to the required structural changes to the model’s
architecture and the discussed scalability challenges.

Batch-scheduled Sampling. To mitigate the limitations discussed in SCS for large models, we propose a
simple yet effective offline approach. A new dataset, Ds = {(xi, yi, ŷi)}M

i=1, is created offline between training
iterations by current model3. While xi remains identical to the original dataset D, ŷi represents a “mixed”
continuation constructed by stochastically combining ground truth tokens with generated ones from the
model, as described in the previous section (see Eq. (4)). It is important to emphasize that the offline and
batch nature of BASH minimizes the cost of switching between training and inference times by creating Ds

only between each iteration of training. In contrast, SCS switches between training and inference modes at
every gradient step, resulting in significant slowdowns in training time and practical challenges related to
distributed training4:

JBASH(θ) = 1
|Ds|

∑
(x,y,ŷ)∈Ds

L∑
j=0

log pθ(yj | x, ŷ<j) (5)

In practice, to balance optimizing the objective function using generated data and ground-truth data, we
combine Eq. (1) and Eq. (5) (i.e. J = Jsft(θ)+JBASH(θ)), where the only difference is training data. Moreover,
to minimize discrepancies between the current model and the one used for generation, this procedure can
be repeated across different training iterations using the updated model from the most recent iteration. It
is important to note that since the model can generate random tokens at the beginning of training, which

3If we drop ŷi from Ds = {(xi, yi, ŷi)}, we retrieve the original D. Practically, this is useful during training, as Ds can also
function as the original D (when ŷi is dropped), eliminating the need for separate data loaders to train both SFT and BASH.

4See https://huggingface.co/docs/transformers/en/performance to learn about the challenges of distributed training.
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Figure 1: How does RAC correct mistakes in model-generated responses? In this example, SFT model
makes a mistake in calculating 3 ∗ $160, 000 + $2, 000, as shown in yellow. However, RAC corrects the error by
replacing the wrong token, 4, with the correct token, 2. This is achieved by forcing the model to fit z̄ that differ
from the original generated response (highlighted in purple), enabling it to self-correct. This example is based on the
GSM8K dataset (Cobbe et al., 2021).

complicates the training process, we start by first optimizing Eq. (1) alone. After a few iterations, we then
begin including BASH. These steps are detailed in Algorithm 1.

It is worth noting that our method offers a distinct advantage over existing approaches, as it does not
necessitate any modifications to the model structure, unlike methods such as Mihaylova & Martins (2019).
Moreover, our method is scalable and can be applied to LLMs as shown in our experiments.
Remark 2 (Parameter β should be chosen to be small). Depending on the value of β, there may be a
distribution mismatch between the ground truth sequences y and the mixed ones g. This gap can become
larger as the value of β approaches 1, as g increasingly differs from y, not just in terms of a few tokens, but
at the sequence level. Also, since scheduled sampling can result in a biased estimator (Huszár, 2015; Lamb
et al., 2016), the training can get more harder, as the model needs to learn to fit the ground truth data with
the altered continuations which are far from each others. Therefore, it is important to keep the value of β
small to avoid making the optimization problem harder to solve 5.

3.2 Reference-Answer-based Correction

One of the main problems with scheduled sampling, which mixes ground truth tokens yj and the model’s
own generations zj , is that the resulting sequence g can diverge significantly from the ground truth sequence
y. This means that the generated sequence g not only differs in individual tokens but also conveys a context
and meaning that deviate substantially from y. Importantly, since the scheduled sampling approach (both
online and offline) results in a biased estimator (see Remark 2), such significant discrepancies between
the ground truth and generated sequences can further complicate training and ultimately lead to slower
training/convergence time. To give the model ability to recover in such scenarios, we propose Reference-
Answer-based Correction (RAC), where we explicitly incorporate a self-correction capability into the model.

To build RAC, we first construct a dataset Dr = {(xi, yi, zi, z̄i)}N
i=1 in an offline manner. Here, z denotes

a sequence of model’s own generated tokens (see Eq. (2)) and z̄ denotes a new target/label sequence, also
composed of the model’s own generated tokens, which is constructed by greedy sampling from model θ at
each time step:

z̄j = arg max
z

pθ(z|f(x, y), z<j)

where f is a prompt template6. The reason for constructing z̄j in this way is to enable the model to leverage
its self-correction capability by incorporating the ground-truth answer y into the input context. Hence, the

5In our experiments in this paper, we select β to be equal to 0.2.
6One example for prompt template f(x, y) is “I will give you a question and a reference response. You need to give a new

response based on the reference response. Question: x. Reference response: y”. See Appendix A.1 for the actual templates used
in experiments
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Algorithm 2 Reference-Answer-based Correction (RAC)
Input: Pre-trained model ω, training dataset D.

1: Initialize θ ← ω
2: for k = 1, 2, . . . , K1 do
3: Sample mini-batch B = {(x, y)} ∼ D
4: ∇θJSFT(θ)← ∇θ

1
|B|

∑
(x,y)∈B

∑
j log pθ(yj | x, y<j)

5: θ ← θ − α∇θJSFT(θ)
6: end for
7: for iteration 1, 2, . . . , H do
8: Dr ← ∅
9: for i = 1, 2, · · · , N do

10: Generate model’s response zi by zj
i ∼ pθ(·|xi, z<j

i ), j = 1, 2, . . .

11: Generate RAC label z̄i by z̄j
i = arg maxz pθ(z|f(xi, yi), z<j

i ), j = 1, 2, . . .
12: Dr ← Dr ∪ {(xi, yi, zi, z̄i)}
13: end for
14: for k = 1, 2, . . . , K2 do
15: Sample mini-batch B = {(x, y, z, z̄)} ∼ Dr

16: ∇θJSFT(θ)← ∇θ
1

|B|
∑

(x,y)∈B
∑

j log pθ(yj | x, y<j)
17: ∇θJRAC(θ)← ∇θ

1
|B|

∑
(x,z,z̄)∈B

∑
j 1(z̄j ̸= zj) log pθ(z̄j | x, z<j)

18: θ ← θ − α
(
∇θJSFT(θ) +∇θJRAC(θ)

)
19: end for
20: end for
Output: θ.

maximum-likelihood objective for RAC can be written as follows:

JRAC0(θ) = 1
|Dr|

∑
(x,y,z,z̄)∈Dr

L∑
j=0

log pθ(z̄j | x, z<j), (6)

In RAC, the model attempts to maximize the likelihood of correction label z̄j conditioned on the original
prompt x and its own generated tokens z. This contrasts with BASH, where ŷ is used instead of z, and
the target token is always yj , i.e., pθ(yj | x, ŷ<j). It is important to note that z̄j is generated using greedy
sampling, conditioned on f(x, y) and z. Conditioning on f(x, y) rather than just x allows for additional
context and guidance during the generation process.

One issue that arises in Eq. (6) is when z̄j becomes identical to the generated token zj . When this occurs, it
can lead to model collapse (Shumailov et al., 2024), as the model is likely to only learn trivial solutions. To
mitigate this issue, we mask out such tokens and rewrite the objective function as follows:

JRAC(θ) = 1
|Dr|

∑
(x,z,z̄)∈Dr

L∑
j=0

1(z̄j ̸= zj) log pθ(z̄j | x, z<j), (7)

Similar to BASH’s algorithm, we combine Eq. (1) and Eq. (7) by first optimizing Eq. (1) alone for several
iterations to avoid relying on model generation at the start of training. After this initial phase, we then
include RAC objective function and jointly optimize with SFT, i.e. J = Jsft(θ) + JRAC(θ). These steps
are detailed in Algorithm 2. Fig. 1 shows an example of how the self-correction capability of RAC helps in
producing correct results.

4 Experiments

In this section, we present a comprehensive empirical comparison of our proposed methods across a range
of standard benchmark tasks, including summarization and question answering (QA). These results show
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that the effectiveness and robustness of our approaches across different settings. See also Appendix A.2 for a
description of our experiments and Appendix A.3 for more ablation studies.

4.1 Setups

4.1.1 Benchmark Tasks and Evaluation Metrics

Summarization task. We use OpenAI TL;DR dataset (Stiennon et al., 2020) for this task, which includes
posts from Reddit forum and their corresponding summaries from human labelers. We evaluate performance
by calculating the win rate against the reference summary and reporting Rouge F1 scores (Lin, 2004) on its
test set.

General QA task. For this task, we use the Ultrachat-200K dataset, a high-quality 200K subset of the
Ultrachat corpus (Ding et al., 2023), which contains approximately 1.4 million general QA dialogues generated
by ChatGPT (3.5) Turbo API. We evaluate performance using the length-controlled (LC) win rate (Dubois
et al., 2024a) on the AlpacaEval 2.0 benchmark (Dubois et al., 2024b).

Math QA task. We also compare the language model’s ability in mathematical calculation and reasoning. To
do this, we use two commonly used math QA datasets: GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021), and evaluate the accuracy on their respective test sets.

4.1.2 Baselines Methods

Considering the setting of this paper, which applies in cases where access is limited only to human demonstra-
tion data, we compare our methods against existing approaches that also rely exclusively on demonstration
data: SFT (Ouyang et al., 2022), NEFTune (Jain et al., 2023), and SPIN (Chen et al., 2024). These methods
represent a strong set of supervised approaches based on demonstration data. NEFTune introduces noise to
input token embeddings to improve the model’s robustness, and SPIN utilizes self-replay to ensure that the
generated outputs remain indistinguishable from the reference demonstrations.

4.1.3 Training

We use Pythia-1B as the pre-trained model for the summarization experiments and Mistral-7B-v0.1 for the
general QA and math QA experiments. Additionally, we use Mistral-7B-sft-beta as the SFT model for the
general QA task, as it is a fine-tuned version of Mistral-7B-v0.17. Therefore, we report its performance as
SFT model and use it to fine-tune SPIN and our methods. For the summarization and math QA tasks,
following SPIN (Chen et al., 2024), we first perform SFT on the pre-trained models and then train SPIN,
BASH, and RAC on top of them. See Appendix A.2 for more details on the baselines and our methods.

4.2 Main results

4.2.1 Summarization Task

For this task, we train SFT and NEFTune for two epochs, starting from the Pythia-1B base model, and
then continue fine-tuning SFT model with SPIN, BASH, and RAC for one more epoch, as no noticeable
improvements were observed beyond that point. We compare their performance based on the win rate of the
generated outputs against the reference responses on the test set, evaluated by the GPT-4 Turbo model. The
evaluation prompt template is provided in Appendix A.1. To ensure more comprehensive results, we repeat
the training with three different random seeds and report the win rates along with the Rouge F1 scores(Lin,
2004) in Table 1.

As Table 1 shows, although our methods outperform the others, the improvement is not particularly significant.
This could be attributed to the nature of the summarization task, where the prompts and queries are quite
long, but the generated responses are very brief. Since our method operates directly on the response space,
the relatively short length of the responses means that there is less to correct during the generation steps.

7See https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
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Table 1: Comparison of the performance (higher is better) of our methods against others on the
summarization task. We train each method using three different seeds and report the average win rate across them
in addition to Rouge scores. The gray denotes the standard deviations.

win rate (%) Rouge 1 Rouge 2 Rouge L
SFT 27.03±0.38 31.69 11.02 24.53
NEFTune 27.21±0.40 31.97 11.16 24.73
SPIN 21.07±1.31 30.46 10.09 22.55
BASH (ours) 28.12±0.43 32.00 11.27 24.89
RAC (ours) 28.02±0.39 32.01 11.20 24.80

Table 2: Comparison of the performance (higher is better) of our methods against others in the General
QA task using the length-controlled win rate on the AlpacaEval 2.0 benchmark. These results shows that
our method consistently stands out, maintaining its effectiveness across different generation strategies.

Temperature=0.7 (%) Greedy (%)
Generation 1 Generation 2 Generation 3 Average

SFT 7.90 8.45 7.74 8.03±0.30 7.06
NEFTune 7.60 6.99 7.56 7.38±0.28 6.64

SPIN iter-1 8.76 9.27 9.41 9.15±0.28 8.66
iter-2 8.44 8.89 8.17 8.50±0.30 7.64

BASH (ours) iter-1 8.77 8.56 8.48 8.60±0.12 7.31
iter-2 8.73 9.38 9.10 9.07±0.27 8.42

RAC (ours) iter-1 9.95 9.15 9.49 9.53±0.33 9.04
iter-2 10.68 10.54 9.89 10.37±0.34 9.41

Despite the inherent limitations of the task, our method still improves the base models, demonstrating its
applicability across different tasks.

4.2.2 General QA task

Following SPIN (Ouyang et al., 2022), we randomly sample 50K prompts from the full training set to generate
offline datasets Ds and Dr for our methods and then use these datasets to train our BASH and RAC as
explained in Sec. 3.

To provide a comprehensive view of the results, we use the length-controlled win rate on AlpacaEval 2.0
as our evaluation metric, which compares the generated outputs against those from GPT-4, following the
standard AlpacaEval prompt template. For each method, we evaluate performance using two types of
generation: 1) Sampling-based generation with a temperature of 0.7, aligning with the default settings of
the Mistral-7B model and its derivative, Zephyr-7B-Beta (Tunstall et al., 2023), on AlpacaEval8. Given the
inherent randomness in single generation evaluations, we repeat the generation three times and report the
average evaluation for each generation. 2) Greedy generation, which selects the next token by choosing the
one with the highest probability.

As shown in Table 2, our RAC achieves the highest win rate in both sampling-based and greedy generation
settings. Additionally, BASH also demonstrates consistent improvements compared to other methods, except
for SPIN. It is important to note that our methods show nearly monotonic improvements and consistent
behavior across different iterations, unlike methods such as SPIN 9. This consistency highlights the applicability

8See https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/models_configs/zephyr-7b-beta/configs.yaml.
9We observe a decrease in the LC win rate of SPIN in the second iteration, primarily due to a significant increase in generation

length while the content remains similar. Since the length-controlled win rate accounts for output length, this results in a
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Table 3: Comparison of the test accuracy (higher is better) of our methods against baseline algorithms
on GSM8K and MATH tasks, averaged across three different generations used for evaluation.

GSM8K MATH
SFT 56.76±0.09 13.11±0.12
NEFTune 55.85±0.38 12.13±0.03
SPIN 46.31±0.97 6.85±0.08
BASH (ours) 60.22±0.31 14.59±0.09
RAC (ours) 59.41±0.73 13.75±0.17

of our approach beyond a single iteration, suggesting that it can be effectively utilized with larger models
and in more iterations, resulting in consistent improvements over time.

4.2.3 Math QA task

In this setting, we train SFT and NEFTune for two epochs, starting from the Mistral-7B-v0.1 base model,
and then continue fine-tuning SFT model with SPIN, BASH, and RAC for one more epoch. We prompt the
model to generate answers in the GSM8K and MATH test sets with query template attached in Appendix A.1.
We then calculate the strict match accuracy of the generated answers with the ground truth. We use
sampling-based generation with a temperature of 0.1, repeating the generation three times, and report the
average accuracy in Table 3. As the results show, BASH and RAC outperform other methods on both
GSM8K and MATH benchmarks. These results further demonstrate the effectiveness of our methods across
diverse set of tasks.

4.2.4 Alignment with preference data

In this experiment, we further demonstrate that our model can serve as a more effective initialization than
standard SFT throughout the alignment pipeline. Specifically, we show that using our method to initialize a
model, followed by fine-tuning with preference data via DPO (Rafailov et al., 2024), leads to better results
than initializing with a standard SFT model. For this, we closely follow the settings of the zephyr-7b-beta
model (Tunstall et al., 2023) and use the preprocessed UltraFeedback dataset (Cui et al., 2024) as the
preference data. The results of this experiment, presented in Table 4, illustrate the importance of our
approach in enabling downstream alignment methods to achieve improved performance when initialized with
our method instead of standard methods like SFT.

Table 4: Comparison of the performance (higher is better) of DPO initialized with our methods versus
others on the AlpacaEval 2.0 benchmark. These results clearly demonstrate the effectiveness of our method and
provide further evidence of its applicability throughout the alignment pipeline.

Temperature=0.7 (%) Greedy (%)
Generation 1 Generation 2 Generation 3 Average

SFT + DPO 14.17 14.74 13.28 14.06±0.60 14.22
BASH + DPO 14.66 13.34 13.61 13.87±0.57 14.39
RAC + DPO 16.40 15.21 15.95 15.85±0.49 15.35

4.3 Qualitative Analysis

Visualization. To illustrate how our methods address the training-inference gap in autoregressive model
training, we evaluate the discrepancy between model-generated responses and reference responses on the
UltraChat dataset. We begin by selecting two queries from both the training and test sets and then use

performance drop. Similarly, the win rate for greedy generation is lower than for random sampling at a temperature of 0.7, as
greedy generation tends to be more verbose.
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Figure 2: Visualization of the embedding distance between generated and reference responses. The left
two figures are based on queries from the training set of the UltraChat-200K dataset, while the right two figures are
from the test set. Corresponding queries for each figure are summarized at the bottom, with full queries available
in Appendix A.3. We generate 256 responses from models and compute their embedding distances to the reference
responses. Each violin plot includes an inner box plot that displays the maximum, third quartile, median (indicated by
a white line), first quartile, and minimum distances, while the shape of the violin represents the estimated probability
density of the embedding distance.

models fine-tuned with different methods to generate 256 responses by sampling with a temperature of 0.7.
To measure the deviation of the generated responses from the reference responses, we first utilize Sentence
Transformer10 (Reimers & Gurevych, 2019) to extract the embeddings for each response. We then compute
the distance between the embeddings of each generated response and its corresponding reference response,
which we refer to as sentence distance. The distribution of these distances is visualized in Fig. 2. As shown
in these plots, BASH and RAC reduce the discrepancy between the generated responses and the reference
ones, except for the question with very open answers such as “write a story” in test example 2, indicating
that our approach effectively narrows the gap between training and inference time.

5 Conclusion

In this paper, we propose principled methods to bridge the gap between training and inference time in LLMs
by leveraging self-generated tokens. Specifically, this gap arises from the training strategy where the model
uses the ground truth token from the previous time step as the input for the model at the current time
step. While this strategy is effective during training, the model must rely on its own predictions as input for
subsequent steps during inference. This reliance on its own predictions can lead to error accumulation and
degraded performance, particularly when the generated sequences deviate from the conditions encountered
during training. Scheduled sampling has emerged as an alternative approach, where the model is gradually
exposed to its own generated tokens during training, thus more closely simulating the conditions of inference.
Despite its effectiveness, especially with smaller models and particularly in recurrent models, this approach
has not been successfully adopted in training LLMs due to the computational and practical complexities of
incorporating it into the training process. However, our proposed methods are specifically tailored for LLMs
without requiring structural changes to the model. Specifically, our approaches, BASH and RAC, incorporate
the model’s own generations in an offline manner, allowing training that closely mirrors the inference process.
Moreover, RAC also builds in self-correction capability during training, which becomes critical when the
model’s own generations deviate significantly from the ground truth. These methods can be easily integrated
into the training of LLMs without requiring changes to the training process or model architectures, which
was not the case with previous methods. Through a series of comprehensive experiments, we demonstrate
that our method outperforms existing approaches in both summarization and question answering (QA) tasks.
The results indicate that by aligning the training process with the conditions of inference, we can enhance the
model’s performance and reliability, ultimately leading to more accurate and contextually appropriate results.

10We use https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
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A Experiment Details

A.1 Prompt Templates

RAC prompt template f(x, y) in summarization task. In experiment of summarization task, x is the
original post and y is the reference summary from the TL;DR dataset. we will use the below template to
generate RAC label.

[POST]: x
[REFERENCE SUMMARY]: y
Re-write a new summary of the post and cover the main content in the reference summary.
TL;DR:

RAC prompt template f(x, y) in general QA and math QA task. In experiment of QA tasks, x is
query and y is reference answer from the datasets. We will use the below template to generate RAC label.
〈/s〉is the special token indicating the end of sentence.

〈|system|〉
You are a helpful assistant to answer user’s question. Your will be given both a question and reference
response. You need to give a new response to the question and contain the main content in the reference
response.〈/s〉
〈|user|〉
x
Answer this question based on the following reference response: y〈/s〉
〈|assistant|〉

Evaluation prompt template in summarization task. We use the below template to evaluate the win
rate of generated summary against the reference summary with CoT. We also randomly shuffle the order
between generated and reference summary to reduce the evaluation bias. In experiment, we will replace
{post} by the post from test set and replace {summary A}, {summary B} by the shuffled generated and
reference summaries.

Which of the following summaries does a better job of summarizing the most important points in the given
forum post, without including unimportant or irrelevant details? Judge based on accuracy, coverage, and
coherence.
[post]
{post}
[summary A]
{summary A}
[summary B]
{summary B}
Instructions:
FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and why.
SECOND, on a new line, state only A or B to indicate your choice. Your response should use the format:
Comparison: one-sentence comparison and explanation
Preferred: A or B

Evaluation prompt template in math QA task. We use the template below to test the accuracy of
the generated answer. Unlike other benchmarks, we use zero-shot (i.e., no QA examples are provided before
query) and CoT (Wei et al., 2022) to prompt the language model to generate answers. In the experiment, we
will replace {query} by the questions from the test set.

〈|system|〉
〈/s〉
〈|user|〉

14
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{query}
Let’s think step by step.〈/s〉
〈|assistant|〉

A.2 Hyperparameters and More Experiment Settings

More implementation details.

We implement baselines and our methods based on two codebases: summarize-from-feedback11 (for sum-
marization task) and Alignment-Handbook12 (for general QA and math QA tasks), which use DeepSpeed
ZeRO (Rajbhandari et al., 2020) for higher training efficiency and less computation overhead. In summariza-
tion task, we generate the response from the fine-tuned model with temperature=0.01 for win rate evaluation
following the codebase used.

We train SFT models for summarization and math QA tasks from the corresponding base pretrained models.
In particular, we do not pack data during SFT training, which is introduced in the T5 model (Raffel et al.,
2020) and is a default option in alignment-handbook repository. For NEFTune, we adopt the noise scale α = 5
in experiment. For SPIN, we use the official implementation13 and follow all training settings to generate
data and fine-tune based on the SFT model in general QA and math QA tasks. The only difference is that
we adopt Mistral-7B-sft-beta as the base model. In summarization task, we implement SPIN ourselves to be
compatible with the summarization code repository. We also search the hyperparameter β of SPIN among
[0.1, 0.5, 1.0, 5.0] and report the highest win rate. Note that the enumeration starts from 0 in the SPIN paper,
while ours starts from 1. Therefore, iteration 0 in the SPIN paper corresponds to iteration 1 in our paper.

Hyperparameters.

We attach the hyperparameters used in the experiment in table 5.

Table 5: Hyper-parameters used for experiments.

Summarization General QA Math QA
base pretrained model pythia-1B Mistral-7B-v0.1 Mistral-7B-v0.1
precision bfloat16 bfloat16 bfloat16
optimizer AdamW AdamW AdamW
learning rate 3× 10−6 5× 10−6 5× 10−6

learning rate warmup steps no warmup 10% 10%
learning scheduler cosine cosine cosine
global batch size 512 512 512
SFT training epoch 2 / 1
training iteration (BASH&RAC) 1 2 1
training epochs in each iteration (BASH&RAC) 1 [1, 2] 1
mixture coefficient β in BASH generation 0.2 0.2 0.2

A.3 More Experiment Results

Queries used in Fig. 2 for embedding distance computation.

Query of training example 1:

What factors influenced the decision to build the Panama Canal, and how did it transform global trade and
transportation?

11We implement algorithms based on OpenAI summarize-from-feedback and its clean-up version.
12See link of alignment-handbook.
13See link of SPIN.
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Query of training example 2:

What are the risks associated with IoT devices, and how can they be mitigated?

Query of test example 1:

How did the fall of the Soviet Union impact the economies of Eastern Europe?

Query of test example 2:

Using vivid imagery and descriptive language, write a compelling short story about a time traveler who
finds themselves transported to the year 2077. Explore the world of the future, including advanced technol-
ogy, cultural and societal changes, and environmental shifts. Consider adding a twist or unexpected turn to
the plot to keep your audience engaged. Your story should be between 500-1000 words in length and should
captivate the reader from beginning to end.

The performance comparison with different dataset sizes.

In this experiment, we compare our methods with baselines on training datasets with different sizes in
the summarization task. Specifically, we randomly choose a subset of training data with proportion
10%, 20%, 50%, 100%. Then we keep all other settings the same and train the model for the same steps as the
full dataset training. For example, when training on the 20% data, we will train for 10 epochs for SFT and 5
epochs for BASH or RAC (note that for the full data setting, we train 2 epochs for SFT and 1 epoch for
BASH or RAC). We still report the win rate against the reference summary on the whole test set using the
same evaluation prompt.

Figure 3: The win rates of summarization task with different dataset sizes. Each results are averaged over
three seeds. In each seed, the subset of trainig data is different and we train model on the different subset for SFT,
BASH and RAC. The win rate is evaluated on the whole test set.

The final results are reported in Fig. 3. We observe that there is no notable performance drop when the
dataset size is larger than 20%. When the dataset size becomes smaller, teacher-forcing-style SFT training
suffers from the data insufficiency, leading to a more severe distribution shift between training and inference.
In this case, our methods can mitigate this issue and exhibit a relatively smaller win rate decrease compared
to SFT.

The performance of SFT training for more steps.

We train the SFT fine-tuned model by SFT for more steps as an ablation. We also compare its LC win rate
on AlpacaEval 2.0 with our methods in Fig. 4. More SFT training steps improve the performance of model
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on general QA task. However, there is a performance drop at the third epoch. On the contrary, our methods
keep monotonic increase of LC win rate and can stably outperform the SFT baseline in each iteration.

Figure 4: The AlpacaEval 2.0 LC win rates comparison of our methods and SFT. Each results are averaged
over three generations. We leverage SFT on the UltraChat dataset to continue to train the existing SFT model and
compare its performance with our methods. In the figure, the epoch 1 corresponds to the first iteration and epoch
2&3 correspond to second iteration for BASH and RAC. In the beginning of each iteration, we will offline generate
BASH sequences or RAC labels by current model.

The performance of training without combining the SFT loss.

Table 6: LC win rate comparison w.o. combining the SFT loss. We evaluate the average of three sampled
generation with temperature=0.7. The gray denotes the standard deviation of three evaluations.

with SFT loss w.o. SFT loss
SFT 8.03±0.30
BASH 8.06±0.46 9.07±0.27
RAC 3.24±0.48 10.37±0.34

As shown in Table 6, there will be a large performance drop if we do not include the SFT loss in training. One
potential reason is that the learning objective of BASH or RAC is a biased estimator (Lamb et al., 2016) of
the expert language model, which can be viewed as the underlying model of SFT dataset D. During training,
the language model is enforced to fit the labels conditioned on a student input distribution significantly shifts
from the one in the SFT objective in Eq. (1). Therefore, we include SFT loss, an unbiased behavioral cloning
objective, to train the LM to imitate the underlying expert model of the dataset.

A.4 More analysis of RAC

In this section, we first demonstrate how the RAC correction mechanism operates, followed by an example
illustrating its failure case.

In Fig. 5, we present an example from GSM8K training set to illustrate how RAC leverages in-context learning
to corrects the error in model-generated response by appending the reference response in the query.

We also present a failure case of RAC correction. Despite being augmented by the reference answer, RAC
may struggle to identify complex reasoning errors in the model-generated response. In Fig. 6, the RAC model
attempts to correct the final answer directly; however, this correction is inconsistent with the context of the
preceding tokens and fails to address the underlying errors in the generated response.
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Figure 5: How does RAC correct mistakes in model-generated responses? In this example, SFT model
incorrectly calculates Peter’s age in the initial step, deriving it as 60/2 = 30. However, the model fine-tuned with
RAC produces the correct result. Specifically, the SFT model’s incorrect calculation leads to an age of 30, while the
ground truth is 34. To address this error, RAC labels the next token after "Peter will be 60/2" as "+" instead of
"=," guiding the model towards the correct computation. After training with RAC, the model successfully calculates
Peter’s age accurately, resulting in the correct answer.

Figure 6: An example of RAC failure. Given the reference answer, RAC model labels the next token of 80∗20∗8 =
as 8 to match the ground-truth answer 800. However, such correction is not consistent with the previous context.
Meanwhile, RAC correction fails to find the deeper reasoning error that the entire fence is not 80 long, 20 high or 8
deep and does not correct it when the generated answer multiplies them together.
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