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Abstract

In this paper, we investigate the online allocation
problem of maximizing the overall revenue sub-
ject to both lower and upper bound constraints.
Compared to the extensively studied online prob-
lems with only resource upper bounds, the two-
sided constraints affect the prospects of resource
consumption more severely. As a result, only lim-
ited violations of constraints or pessimistic com-
petitive bounds could be guaranteed. To tackle the
challenge, we define a measure of feasibility ξ∗

to evaluate the hardness of this problem, and esti-
mate this measurement by an optimization routine
with theoretical guarantees. We propose an on-
line algorithm adopting a constructive framework,
where we initialize a threshold price vector using
the estimation, then dynamically update the price
vector and use it for decision-making at each step.
It can be shown that the proposed algorithm is(
1−O( ε

ξ∗−ε )
)

or
(
1−O( ε

ξ∗−
√
ε
)
)

competitive
with high probability for ξ∗ known or unknown
respectively. To the best of our knowledge, this
is the first result establishing a nearly optimal
competitive algorithm for solving two-sided con-
strained online allocation problems with a high
probability of feasibility.

1. Introduction
Online resource allocation is a prominent paradigm for se-
quential decision making during a finite horizon subject to
the resource constraints, increasingly attracting the wide
attention of researchers and practitioners in theoretical com-
puter science (Mehta et al., 2007; Devanur & Jain, 2012; De-
vanur et al., 2019), operations research (Agrawal et al., 2014;
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Li & Ye, 2021) and machine learning communities (Balseiro
et al., 2020; Li et al., 2020). In these settings, the requests
arrive online and we need to serve each request via one of
the available channels, which consumes a certain amount
of resources and generates a corresponding service charge.
The objective of the decision maker is to maximize the cu-
mulative revenue subject to the resource capacity constraints.
Such problem frequently appears in many applications in-
cluding online advertising (Mehta et al., 2007; Buchbinder
et al., 2007), online combinatorial auctions (Chawla et al.,
2010), online linear programming (Agrawal et al., 2014;
Buchbinder & Naor, 2009), online routing (Buchbinder &
Naor, 2006), online multi-leg flight seats and hotel rooms
allocation (Talluri et al., 2004), etc.

The aforementioned online resource allocation framework
only considers the capacity (upper bound) constraints for
resources. As a measure of fairness for resources expendi-
ture, the requirements for guaranteeing a certain amount of
resource allocation play important roles in real-world appli-
cations (Haitao Cui et al., 2007; Zhang et al., 2020) ranging
from contractual obligations and group-level fairness to
load balance. We give several examples in Appendix A for
completeness. Recently, some attempts come out to allevi-
ate the difficulties introduced by lower bound constraints.
For instance, Lobos et al. (2021) propose an online mir-
ror descent method to address this new online allocation
problem with O(

√
T ) asymptotic regret as well as O(

√
T )

violation of lower bounds in expectation, where T is the
number of requests. Meanwhile, Balseiro et al. (2021) con-
sider a more general regularized setting to satisfy fairness
requirements by non-separable penalties, which also leads
to O(

√
T ) asymptotic regret for the regularized reward.

That is, Balseiro et al. (2021) only guarantee a gap of the
order O(

√
T ) for the sum of the regret of revenues and the

violation of lower-bound constraints. All these studies con-
sider the lower bound requirements as soft threshold, i.e.,
there is no guarantee on the satisfaction of lower bound con-
straints, which remains an open problem for online resource
allocation.

In this paper, we investigate the online resource allocation
problem under stochastic setting, where requests are drawn
independently from some unknown distribution, and arrive
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sequentially. The goal is to maximize the total revenue sub-
ject to the two-sided resource constraints. In the beginning,
the decision maker is endowed with a limited and unre-
plenishable amount of resources, and agrees a minimum
consumption on each resource. The decision maker can
access the information of the current request and requests
that have been processed before, but it is unable to get the
information of future requests until their arrivals. Once ob-
serving an online request, the decision is made irrevocably
to assign one available channel to serve the request, where
we assume there is an oracle that determines the revenue and
the amount of consumed resources depending on (request,
channel) pair for convenience. A formal definition can be
found in Section 3.

To address the challenges brought by two-sided resource
constraints, we first define a problem dependent quantity
γ to represent i). the maximum fraction of revenue or re-
source consumption per request, ii). the pessimism about
the satisfaction of lower bound constraints. Generally, large
γ will rule out good competitive ratio across different set-
tings (Mehta et al., 2007; Buchbinder et al., 2007; Agrawal
et al., 2014; Devanur et al., 2019). Meanwhile, we find that
the margins between lower and upper bounds directly affect
the hardness of the online allocation problem in stochastic
setting. Inspired by the Slater’s condition and its applica-
tions (Slater, 2014; Boyd et al., 2004), we define a measure
of feasibility ξ∗ to evaluate the hardness of constraints and
present an estimator with sufficient accuracy. In the end,
the proposed algorithm integrates several estimators to com-
pensate undiscovered information. Our contribution can be
summarized as follows:

1. Under the gradually improved assumptions, we pro-
pose three algorithms that return 1 − O( ε

ξ∗−ε ) com-
petitive solutions satisfying the two-sided constraints
w.h.p., if γ is at most O

(
ε2

ln(K/ε)

)
, where ξ∗ ≫ ε is

the measure of feasibility and K is the number of re-
sources. To the best of our knowledge, this is the first
result establishing a competitive algorithm for solving
two-sided constrained online allocation problems fea-
sibly, which is nearly optimal according to (Devanur
et al., 2019).

2. To tackle the unknown parameter ξ∗, we propose an
optimization routine in Algorithm 5. Through merging
the estimate method into the previous framework, a
new algorithm is proposed in Algorithm 6 with a solu-
tion achieving 1−O( ε

ξ∗−
√
ε
) competitive ratio when

ξ∗ is an unknown and problem dependent constant.
3. Our analytical tools can be used to strengthen the exist-

ing models (Mehta et al., 2007; Devanur et al., 2019;
Lobos et al., 2021) for online resource allocation prob-
lems.

2. Related Works
Online allocation problems have been extensively studied in
theoretical computer science and operations research com-
munities. In this section, we overview the related literature.

When the incoming requests are adversarially chosen, there
is a stream of literature investigating online allocation prob-
lems. Mehta et al. (2007) and Buchbinder et al. (2007) first
study the AdWords problem, a special case of online allo-
cation, and provide an algorithm that obtains a (1 − 1/e)
approximation to the offline optimal allocation, which is
optimal under the adversarial input model. However, the
adversarial assumption may be too pessimistic about the re-
quests. To consider another application scenarios, Devanur
& Hayes (2009) propose the random permutation model,
where an adversary first selects a sequence of requests which
are then presented to the decision maker in random order.
This model is more general than the stochastic i.i.d. setting
in which requests are drawn independently and at random
from an unknown distribution. In this new stochastic model,
Devanur & Hayes (2009) revisit the AdWords problem and
present a dual training algorithm with two phases: a training
phase where data is used to estimate the dual variables by
solving a linear program and an exploitation phase where
actions are taken using the estimated dual variables. Their
algorithm is guaranteed to obtain a 1 − o(1) competitive
ratio, which is problem dependent. Feldman et al. (2010)
show that this training-based algorithm could resolve more
general linear online allocation problems. Pushing these
ideas one step further, Agrawal et al. (2014) consider primal
and dual algorithm that dynamically updates dual variables
by periodically solving a linear program using the data col-
lected so far. Meanwhile, Kesselheim et al. (2014) take
the same policy and only consider renewing the primal
variables. Recently, Devanur et al. (2019) take other innova-
tive techniques to geometrically update the price vector via
some decreasing potential function derived from probability
inequalities. These algorithms also obtain 1− o(1) approx-
imation guarantees under some mild assumptions. While
the algorithms described above usually require solving large
linear problems periodically, there is a recent line of work
seeking simple algorithms that does not need to solve a large
linear programming. Balseiro et al. (2020) study a simple
dual mirror descent algorithm for online allocation problems
with concave reward functions and stochastic inputs, which
attains O(

√
KT ) regret, where K and T are the number

of resources and requests respectively, i.e., updating dual
variables via mirror descent algorithm and avoids solving
large auxiliary linear programming. Simultaneously, Li et al.
(2020) present a similar fast algorithm that updates the dual
variable via projected gradient descent in every round for
linear rewards. It is worth noting that all of these literature
only consider the online allocation with capacity constraints.
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3. Preliminaries and Assumptions
In this section, we introduce some essential concepts and
assumptions that are adopted in our framework.

3.1. Two-sided Resource Allocation Framework

We consider the following framework for offline resource al-
location problems. Let K be the set of K kinds of resources.
There are J different types of requests. Each request j ∈ J
(|J | = J) could be served via some channel i ∈ I, which
will consume aijk amount of resource k ∈ K and gener-
ate wij amount of revenue. For each resource k ∈ K, Lk

and Uk denote the lower bound requirement and capacity,
respectively. The objective of the two-sided resource allo-
cation is to maximize the revenue subject to the two-sided
resource constraints. The following is the offline integer
linear programming for resource allocation where the entire
sequence of T requests is given in advance:

WR =max
x

∑
i∈I,t∈[T ]

wiR(t)xit

s.t. Lk ≤
∑

i∈I,t∈[T ]

aiR(t)kxit ≤ Uk,∀k ∈ K

∑
i∈I

xit ≤ 1,∀t ∈ [T ]

xit ∈ {0, 1},∀i ∈ I, t ∈ [T ]

(1)

where [T ] = {1, 2, . . . , T} and the function R(t) : [T ] →
J to record the types of requests, i.e., the type of t-th re-
quest is R(t). As a common relaxation in online resource
allocation literature (Agrawal et al., 2014; Devanur et al.,
2019; Li et al., 2020; Balseiro et al., 2020), not picking any
channel is permitted in ILP (1). We denote the no picking
channel option by ⊥∈ I , where a⊥jk = 0 and w⊥j = 0 for
all j ∈ J and k ∈ K.

3.2. Assumptions and Concepts

To facilitate the analysis in following sections, we hereby ex-
plain the detailed assumptions for two-sided online resource
allocation problem.

In practice, it’s impossible to know all incoming requests
ahead of time. We therefore assume:

Assumption 1. The requests arrive sequentially and are
independently drawn from some unknown distribution P :
J → [0, 1], where P(j) denotes the arrival probability of
request j ∈ J and we denote pj = P(j), ∀j ∈ J .

To demonstrate the performance of our proposed algorithms,
we also need to make some extra requirements about the
parameters, which are widely adopted in literature.

Assumption 2. In stochastic settings, we make the follow-
ing reasonable assumptions:

i. When the algorithm is initialized, we know the lower
and upper bound requirements Lk and Uk regarding
every resource k ∈ K and the number of requests T .

ii. Without loss of generality, the revenues wij and con-
sumption of resources aijk are finite, non-negative
and revealed when each request arrives, ∀i ∈ I, j ∈
J , k ∈ K. Moreover, we know w̄ = supi∈I,j∈J wij

and āk = supi∈I,j∈J aijk,∀k ∈ K.

Under Assumption 1- 2, we denote the expected Linear
Programming problem with lower bound Lk + βT āk for
every resource k ∈ K by E(β), i.e.,

Wβ =max
x

∑
i∈I,j∈J

Tpjwijxij

s.t. Lk + βT āk ≤
∑

i∈I,j∈J
Tpjaijkxij ≤ Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ J

xij ≥ 0,∀i ∈ I, j ∈ J
(2)

where β is a deviation parameter of lower bound con-
straints and Wβ is the optimal value for problem E(β).
Meanwhile, we denote the optimal solution for E(β) as
{x(β)∗ij ,∀i ∈ I, j ∈ J }. Under Assumption 1, if we
take the same policy for every request j ∈ J in ILP (1),
i.e., xit = x(β)∗ij when R(t) = j, it can be verified that

E
[∑

i∈I,j∈[T ] aiR(t)kxit

]
=

∑
i∈I,t∈J Tpjaijkx(β)

∗
ij

and E
[∑

i∈I,t∈[T ] wiR(t)xit

]
=
∑

i∈I,j∈J Tpjwijx(β)
∗
ij .

Therefore, when β = 0, we could view the LP (2) as a
relaxed version of the expectation of ILP (1). Moreover, W0

is an upper bound of the expectation of the optimal reward
WR in ILP (1).

Lemma 3.1. W0 ≥ E [WR].

The proof of the above lemma is deferred to Appendix C. As
a result, if an algorithm attains (1− o(1))W0, we can infer
that this algorithm also achieves at least (1− o(1))E [WR].

We also make an assumption on the margin of resource
constraints.

Assumption 3. (Strong feasible condition)

There exists a ξ > 0 making the linear constraints of the
following problem feasible,

ξ∗ = max
ξ≥0,x

ξ

s.t. Lk + ξT āk ≤
∑

i∈I,j∈J
Tpjaijkxij ≤ Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ J

xij ≥ 0,∀i ∈ I, j ∈ J .
(3)

3



Nearly Optimal Competitive Ratio for Online Allocation Problems with Two-sided Resource Constraints and Finite Requests

The motivation for adding ξT ᾱk to the lower bound is to
measure the size of the original feasible space with lower
bound Lk and upper bound Uk. Intuitively, it is relatively
easy to satisfy the lower-bound requirements in the wide
feasible space at the end of T -round decisions. Therefore,
we call the optimal ξ∗ the measure of feasibility and assume
ξ∗ ≫ ε for simplicity, where ε > 0 is a predefined error
parameter.

Due to limited space, we present some frequently used con-
centration inequalities to predigest the theoretical analysis
in Appendix B.

4. Competitive Algorithms for Online
Resource Allocation with Two-sided
Constraints

In this section, we propose a series of online algorithms for
resource allocation with two-sided constraints by progres-
sively weakening the following assumptions.

4.1 and 4.2. With known distribution;

4.3. With known optimal objective;

4.4. Completely unknown distribution.

4.1. With Known Distribution

In this section, we assume that we have the complete knowl-
edge of the distribution P . We first propose a high-level
overview of our algorithm and outcomes as follows.

High-level Overview:

1. With the knowledge of P , we could directly solve
the expected problem E(τ) and obtain the optimal
solution {x(τ)∗ij ,∀i ∈ I, j ∈ J }, where the deviation
parameter τ = ε

1−ε . For each fixed request j ∈ J ,
if x(τ)∗i1j ≥ x(τ)∗i2j , we tend to assign this type of
request to channel i1 rather than i2. Motivated by this
intuition, we design the Algorithm P̃ in Algorithm 1,
which assigns request j ∈ J to channel i ∈ I with
probability (1− ε)x(τ)∗ij .

2. In the Algorithm P̃ , if we define the r.v. X P̃
k for re-

source k consumed by one request sampled from dis-
tribution P and r.v. Y P̃ for the revenue, it is easy to
obtain that (1− ε)Lk

T + εāk ≤ E(X P̃
k ) ≤ (1− ε)Uk

T

and E[Y P̃ ] = (1− ε)Wτ

T . Because the expectation of
resource consumption about one sample is restricted to
the interval [Lk

T , Uk

T ], in Theorem 4.3 we could prove
that the Algorithm P̃ generates a feasible solution with
high probability for online resource problem with two-
sided constraints ILP (1) via the Bernstein inequalities
in Lemma B.1. This is the reason for enlarging the
lower bound Lk by τT āk and scaling the solution with

Algorithm 1 Algorithm P̃

1: Input: τ = ε
1−ε

, P
2: Output: {xij}i∈I,j∈[T ]

3: {x(τ)∗ij}i∈I,j∈J = argmax{x}E(τ).
4: When a type j ∈ J request comes, we assign this request to

channel i with probability (1− ε)x(τ)∗ij . That is, If assigning
the type j request to channel i, we set xij = 1, otherwise
xij = 0.

a factor 1 − ε. Meanwhile, we also verify that the
accumulative revenue will be no less than (1− 2ε)Wτ

w.p. 1− ε in Lemma 4.1.
3. Since we have lifted the lower resource constraints

from Lk to Lk + τT āk in Algorithm P̃ , it would cause
the change of baseline when analyzing the accumu-
lative revenues. We have to derive the relationship
between Wτ and W0. By taking a sensitive analy-
sis in Section 4.2, we obtain Wτ ≥

(
1 − τ

ξ∗

)
W0 in

Theorem 4.2 under the Assumption 3, where ξ∗ is
the measure of feasibility. Finally, we could prove
the Algorithm P̃ achieves an objective value at least
(1−O(ϵ))W0 in Theorem 4.3.

Similar to (Devanur et al., 2019), we first consider the com-
petitive ratio that Algorithm 1 could achieve for a surrogate
LP problem E(τ) with optimal objective Wτ according to
Definition (2).

Lemma 4.1. Under Assumption 1-3, if ∀ε > 0 and
γ = max

(
āk

Uk
, āk

T āk−Lk
, w̄
Wτ

)
= O( ε2

ln(K/ε) ), Algorithm 1
achieves an objective value at least (1−2ε)Wτ and satisfies
the constraints w.p. 1− ε.

The proof is deferred to Appendix E. From Lemma 4.1, we
have verified the cumulative revenue is at least (1− 2ε)Wτ ,
w.p. 1 − ε. Thus, in order to compare the revenue with
W0, we should derive the relationship between Wτ and
W0. However, due to the deviation τT āk, it is hard to
directly obtain this relationship. We will tackle this sensitive
problem in the next subsection.

4.2. Sensitive Analysis

In this subsection, we demonstrate the relationship between
Wτ and W0. Before introducing the details, we first notice
the difference between the problem E(τ) and the problem
E(0). Specifically, we enlarge the lower bound for every
resource k ∈ K by an extra amount of τT āk.

Through a sensitive analysis, we finally found that the mea-
sure of feasibility ξ∗ controls the decline ratio of the E(τ)
objective value. The result can be summarized by follows.

Theorem 4.2. Under the strong feasible condition in As-

4



Nearly Optimal Competitive Ratio for Online Allocation Problems with Two-sided Resource Constraints and Finite Requests

sumption 3, the optimal objective of E(τ) satisfies that

Wτ ≥
(
1− τ

ξ∗

)
W0,

where τ = ε
1−ε .

We prove Theorem 4.2 from a geometrical perspective.

Proof. Let x
′

ij = (1 − τ
ξ∗ )x(0)

∗
ij + τ

ξ∗x(ξ
∗)∗ij , ∀i ∈ I

and j ∈ J , then x
′

ij is a convex combination between the
optimal solutions of E(0) and E(ξ∗). According to the
constraint set of problem E(0) and E(ξ), we can verify that
x

′

ij is non-negative and satisfies
∑

i∈I,j∈J Tpjaijkxij ≤
Uk,∀k ∈ K,

∑
i∈I xij ≤ 1,∀j ∈ J .

Meanwhile,∑
i∈I,j∈J

Tpjaijkx
′

ij

≥
∑

i∈I,j∈J
Tpjaijk

(
(1− τ

ξ∗
)x(0)∗ij +

τ

ξ∗
x(ξ∗)∗ij

)
≥ (1− τ

ξ∗
)Lk +

τ

ξ∗
(Lk + ξ∗T āk)

≥ Lk + τT āk,∀k ∈ K.

(4)

Thus x
′

ij is feasible to E(τ), and

Wτ ≥
∑

i∈I,j∈J
Tpjwijx

′

ij ≥ (1− τ

ξ∗
)W0.

This completes the proof of Theorem 4.2.

In practical problems, the influence of ξ∗ on competitive
ratio may be far better than the worst case bound in The-
orem 4.2, since constraints usually represent different re-
source requirements and only affect a part of requests. It
is worth mentioning that our initial proof of Theorem 4.2
was based on analyzing a factor-revealing fractional linear
programming problem motivated by (Jain et al., 2003). Al-
though the above geometric proof of Theorem 4.2 is simpler,
the factor-revealing prospective tells more relationship about
the dual value

∑
k∈K ākβk, W0 and ξ∗, which plays a key

role in deriving Theorem 4.5 (See the end of Lemma G.1).
We put this analysis in Appendix D due to the space limit
and wish to provide more insights.

Combining Lemma 4.1 with Theorem 4.2, we can show that
the cumulative revenue obtained by Algorithm P̃ is larger
than (1 − 2ε)Wτ ≥ (1 − 2ε)(1 − τ

ξ∗ )W0 ≥
(
1 − (2 +

1
ξ∗ )ε

)
W0. Therefore, we have the following theorem.

Theorem 4.3. Under Assumption 1-3, if ε > 0, τ = ε
1−ε

and γ = O
(

ε2

ln(K/ε)

)
, Algorithm 1 achieves an objective

value of at least
(
1− (2 + 1

ξ∗ )ε
)
W0 and satisfies the con-

straints w.p. 1− ε.

Although P̃ is an impractical algorithm owing to the com-
plete knowledge of distribution P , it builds a bridge to the
desired competitive ratio. In the following subsections, we
will release the unavailable knowledge by replacing P̃ in a
constructive way.

4.3. With Known Wτ

In this section, we only assume the knowledge of the opti-
mal value Wτ and abandon the assumption of knowing the
distribution P . Based on this assumption, we design an al-
gorithm A only using Wτ in Algorithm 2, which achieves at
least

(
1−(2+ 1

ξ∗ )ε
)
W0 objective and satisfies the two-sided

constraints w.p. 1− ε.

Intuitively, we hope to construct a new algorithm A through
Algorithm P̃ , which performs no worse than P̃ and only
need the knowledge of Wτ . We still use the r.v. XA

jk for
resource k consumed by the j-th request, which is deter-
mined by algorithm A, and r.v. Y A

j for the revenue. In
general, the key to our theoretical analysis is bounding
the probabilities of three bad events: i) the violation of
lower-bound constraints, such as,

∑T
j=1X

A
jk ≤ Lk; ii) the

violation of capacity constraints, e.g.,
∑T

j=1X
A
jk ≥ Uk; iii)

the cumulative revenue is less than (1−O(ϵ))W0, namely,∑T
j=1 Y

A
j ≤ (1−O(ϵ))W0.

Note that, under the strong knowledge of the distribution
P , we have presented a simple yet powerful algorithm P̃
(Algorithm 1) and also verified its effectiveness in the Theo-
rem 4.3, i.e.,

P (

T∑
j=1

Y P̃
j ≤ (1−O(ϵ))W0) +

K∑
k=1

P (

T∑
j=1

X P̃
jk /∈ [Lk, Uk])

≤ (2K + 1) exp(− ϵ2

2γ
) ≤ ϵ.

Therefore, to devise efficient algorithms with weaker as-
sumptions, a natural idea is to construct a new algorithm A
throughout Algorithm P̃ , which only needs the knowledge
of Wτ and performs no worse than P̃ . Next, we demon-
strate how to put this thought into effect. First, we consider
a one-step hybrid algorithm MP̃T−1, which runs M for
the first request and P̃ for the rest T − 1 requests. Due to
the theoretical result of P̃ on T -round allocation problems,
if selecting an appropriate M , we may expect an excellent
performance of MP̃T−1. Then, after complicated computa-
tions (see Appendix F), the probability of all bad events of
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MP̃T−1 is bounded by F(MP̃T−1):

F(MP̃T−1) =
(
E
[∑
k∈K

exp(
− ln(1− ε)

āk
(XM

1k − Uk

T
))

+
∑
k∈K

exp(− ln(1− ε)

āk
(
Lk

T
−XM

1k ))

+ exp(
− ln(1− ε)

w̄
(
(1− 2ϵ)Wτ

T
− YM

1 ))
])

exp(−T − 1

T

ε2

2γ
).

Notably, whenM = P̃ , F(P̃T ) ≤ (2K+1) exp(− ϵ2

2γ ) ≤ ϵ
(see Appendix E). As a result, we can conclude that the best
choice M̃ satisfies F(M̃P̃T−1) = minM F(MP̃T−1) ≤
F(P̃T ) ≤ ϵ. Since we have finite J different types of
requests, we also can show

min
M

F(MP̃T−1)

=
(
E
[
min
i∈I

(∑
k∈K

exp(
− ln(1− ε)

āk
(ai1k − Uk

T
))

+
∑
k∈K

exp(− ln(1− ε)

āk
(
Lk

T
− ai1k))

+ exp(
− ln(1− ε)

w̄
(
(1− 2ϵ)Wτ

T
− wi1))

)])
exp(−T − 1

T

ε2

2γ
).

(5)
From line 6 in Algorithm A (Algorithm 2) and Equation (5),
we could check that M̃ is equal to the decision of A for the
first request, so F(AP̃T−1) = F(M̃P̃T−1) ≤ F(P̃T ) ≤
ϵ. Therefore, we ensure that Algorithm AP̃T−1 achieves
an objective value at least (1 − O(ϵ))W0 and satisfies the
constraints w.p. 1− ϵ.

Like the previous policy, based on AP̃T−1, we also con-
struct another two-step hybrid algorithm AMP̃T−2 which
runs A for the first request, M for the second one and P̃
for the rest. Similarly, the probability of its bad events is
less than some F(AMP̃T−2). Moreover, we know the best
M̃1 satisfying F(AM̃1P̃

T−2) ≤ F(AP̃T−1) ≤ ϵ and M̃1

is the same with the second iteration of A. Continuing these
iterations, we finally get a T -step hybrid method AT sat-
isfying the constraints and attaining an objective value at
least (1−O(ϵ))W0 w.p. 1− ϵ. This AT is in accord with
all iterations of our Algorithm 2.

Theorem 4.4. Under Assumption 1-3, if ε > 0, τ and γ
are defined as Theorem 4.3, the Algorithm 2 achieves an
objective value at least

(
1− (2+ 1

ξ∗ )ε
)
W0 and satisfies the

constraints w.p. 1− ε.

The proof is deferred to Appendix F.

4.4. With Known ξ∗ but Unknown Distribution

In this section, we consider the completely unknown dis-
tribution setting. Under this setting, we first divide the
incoming T requests into multiple stages and run an inner

Algorithm 2 Algorithm A

1: Input: ε, Wτ

2: Output: {xij}i∈K,j∈[T ]

3: Set c1k = − ln(1−ε)
āk

,∀k ∈ K and c2 = − ln(1−ε)
w̄

4: Initiate ϕ0k = 1, φ0
k = 1,∀k ∈ K, and ψ0 = 1

5: for j = 1, . . . , T do
6: compute the optimal i∗ by

i∗ = argmin
i∈I

∑
k∈K

ϕj−1
k exp

(
c1k
(
aijk − Uk

T

))
+
∑
k∈K

φj−1
k exp

(
c1k
(Lk

T
− aijk

))
+ ψj−1 exp

(
c2
( (1− 2ε)Wτ

T
− wij

))
7: Set XA

jk = ai∗jk,Y A
j = wi∗j

8: Update ϕjk = ϕj−1
k exp

(
c1k(X

A
jk − Uk

T )
)
,∀k ∈ K

9: Update φj
k = φj−1

k exp
(
c1k(

Lk

T −XA
jk)
)
,∀k ∈ K

10: Update ψj = ψj−1 exp
(
c2(

(1−2ε)Wτ

T − Y A
j )
)

11: end for

loop similar to Algorithm 2 with the estimate of the opti-
mal objective value in each stage. More specifically, the
differences between the inner loop and Algorithm 2 are
three-fold: i). choose the deviation parameter β = ε instead
of τ , where ε is an error parameter defined in Theorem 4.5;
ii). pessimistically reduce the estimated objective value
from W r−1 to Zr in each stage for boosting the chance
of success, where W r−1 is estimated by Algorithm 3; iii).
consider the relative error of objective and the maximum
relative error of constraints as εy,r and εx,r separately in
each stage, instead of using the global error parameter ε. We
consider that ϵy,r describes the error we care about the most
(objective) and ϵx,r describes the rest errors (constraints and
objective estimates). Distinguishing these error terms allows
for more refined results, but will lead to the competitive ratio
of the same order in our settings. In Algorithm 4, we name
the proposed algorithm by A1 to facilitate the analysis.

The high-level ideas can be summarized as follows. There
are three types of errors that have to be restrained, 1). the
error |Zr −Wϵ| from estimating deviant objective value,
2). the error ϵx,r from guaranteeing the satisfaction of con-
straints, and 3). the error ϵy,r from Algorithm A1 affected
by the randomness in the objective. We use an iterative
learn-and-predict strategy to periodically reduce relative
errors caused by insufficient samples. Let Ŵ r be the ob-
jective obtained by Algorithm A1 in stage r. According to
the previous sections, if objective Zr is reachable, we could
prove that the loss ℓr := |Ŵ r − Zr| is upper bounded by
O( trT ϵy,rZr) in each stage. We also need Zr to be a good
estimate for the objective. Zr ≥ (1 − O(ϵx,r−1))Wϵ en-

6
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Algorithm 3 Objective Estimator({requestj}r, tr, β)
1: Input: requests from r-th stage {requestj}r, request

number tr, deviation parameter β.
2: Output: W r

3: Solve E(β) as

W r =max
x

∑
i∈I

tr∑
j=1

wijxij

s.t.
tr
T
(Lk + βT āk) ≤

∑
i∈I

tr∑
j=1

aijkxij

≤ tr
T
Uk,∀k ∈ K∑

i∈I
xij ≤ 1,∀j ∈ [tr]

xij ≥ 0,∀i ∈ I, j ∈ [tr]

(6)

sures that the objective is not underestimated, and Zr ≤Wϵ

ensures that it is a reachable target and facilitates the proof
for r = 0, . . . , l − 1. Besides the normal stages, a warm-up
stage r = −1 is added to provide an estimate Z−1. Then
the cumulative loss ℓ−1 +

∑l−1
r=0 ℓr will be no greater than

O
( t−1

T W0 +
∑

r
tr(ϵx,r−1+ϵy,r)

T Wϵ

)
. The algorithm is de-

signed to balance the relative error ϵx,r, ϵy,r and their impact
on the requests in each stage.

More precisely, Algorithm A1 geometrically divides T re-
quests into l + 1 stages, where the number of requests are
tr = ε2rT for r = 0, . . . , l− 1 and t−1 = εT . In the initial
stage r = −1, we use the first tr = εT requests to estimate
Wε and obtain W−1, assuming that none of the requests
are served in worst case. In stage r ∈ {0, 1, . . . , l − 1}, the
requests from stage r−1 are used to provide more and more
accurate estimate W r−1 of Wε. By Union Bound, we set
the failure probability as δ = ε

3l and reduce the estimate
W r−1 to Zr = TW r−1

tr(1+O(εx,r−1))
, which is promised between

[(1−O(εx,r−1))Wε,Wε] w.p. 1− 2δ.

Then in each stage r, define the error parameters for ob-

jective and constraints as εy,r = O

(√
T ln(K/δ)

trZr

)
and

εx,r = O

(√
γ1T ln(K/δ)

tr

)
respectively. We construct a

surrogate Algorithm P̃2 that achieves tr
T (1− εy,r)Z

r cumu-
lative revenue with the consumption of every resource k be-
tween

[
tr(1+εx,r)

T

(
Lk + (ε− εx,r

1+εx,r
)T āk

)
,
tr(1+εx,r)

T Uk

]
with probability at least 1 − δ. Similar to previous sec-
tions, the connection between the inner loop of Algorithm
A1 and Algorithm P̃2 is built to minimize the upper bound
of failure probabilities. Finally, with probability at least
1 − δ, the cumulative revenue is at least

∑l−1
r=0

trZr

T (1 −

εy,r) and the cumulative consumed resource of k ∈ K
is between

∑l−1
r=0

tr(1+εx,r)
T (Lk + (ε − εx,r

1+εx,r
)T āk) and∑l−1

r=0
tr(1+εx,r)

T Uk. Letting γ1 = O( ε2

ln(K/ε) ), we could

keep
∑l−1

r=0
tr
T (1 + εx,r)Uk ≤ Uk ,

∑l−1
r=0

tr(1+εx,r)
T (Lk +

(ε − εx,r

1+εx,r
)T āk) ≥ Lk and

∑l−1
r=0

trZr

T (1 − εy,r) ≥(
1−O( ε

ξ∗−ε )
)
W0.

The most tricky part of Algorithm A1 is estimating W r in
Algorithm 3. Since the lower bound Lk cannot upper bound
the mean of Xjk as Uk does, it brings a great challenge
to the theoretical analysis. To address this issue, we solve
a biased LP problem, uplifting Lk by ϵT āk, at the end of
each stage. It helps the satisfaction of the lower bound in
the next stage, and the influence on the objective can be
determined by Theorem 4.2. This completes the high-level
overview of the analysis of Algorithm A1. The theoretical
result of Algorithm A1 is presented in Theorem 4.5 with
explicit requirements of parameters.

Theorem 4.5. Under Assumption 1-3, if ε > 0

τ1 =
√
ε

1−
√
ε

such that τ1 + ε ≤ ξ∗ and γ1 =

max
(
āk

Uk
, āk

(1−ε)T āk−Lk
, w̄
Wε+τ1

)
= O

(
ε2

ln(K/ε)

)
, Algorithm

A1 defined in Algorithm 4 achieves an objective value of
at least

(
1−O( ε

ξ∗−ε )
)
W0 and satisfies the constraints w.p.

1− ε.

The proof of the theorem is deferred to Appendix G.

Remark:

1. It can be shown that the problem dependent parameter
ξ∗ restricts the capacity of Algorithm A1 by affecting
ε, τ1, and γ1. This is consistent with our intuition that
the problem with two-sided constraints becomes harder
if ξ∗ decreases.

2. It is worth noting that the competitive ratio obtained
in this paper reflects the high-probability performance
of the proposed algorithms under a finite T , so it is
difficult to compare with the regret bound for dual-
mirror-descent methods rigorously due to the different
settings. But if T is given and the linear growth of
lower and upper bound is assumed, i.e. Lk and Uk are
both O(T ), ξ∗ turns to be a problem-dependent con-
stant, which leads the proposed algorithm towards an
Õ(
√
T ln (KT )) regret w.h.p., where we hide the po-

tential log log-term in Õ(·). In real-world applications
with massive constraints, such as guaranteed advertis-
ing delivery (Zhang et al., 2020) with hundreds of thou-
sands of ad providers, the proposed algorithm could
exceed existing O(

√
KT ) averaged regrets (Balseiro

et al., 2020; 2021; Lobos et al., 2021) with respect to
the number of constraints K. More comparisons can
also be found in (Devanur et al., 2019).

3. Although an LP is solved at the beginning of each

7
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Algorithm 4 Algorithm A1

1: Input: ε, γ1, ξ∗

2: Output: {xij}i∈K,j∈[T ]

3: Set l = log2(
1
ε
), tr = ε2rT , t−1 = εT and δ = ε

3l
4: for r = 0 to l-1 do
5: Set W r−1 =Objective Estimator({requestj}r−1, tr−1, ε)

6: Set Zr = TWr−1

(1+(2+ 1
ξ∗−ε

)εx,r−1)tr−1

7: Set εx,r =

√
4Tγ1 ln( 2K+1

δ
)

tr
, εy,r =

√
4T ln( 2K+1

δ
)w̄

Zrtr

8: Set c1k,r =
ln(1+εx,r)

āk
and c2,r =

ln(1+εy,r)

w̄

9: Initialize ϕ0
k = exp

(
−(tr−1)ε2x,r

4γ1T

)
,

φ0
k = exp

(
−(tr−1)ε2x,r

4γ1T

)
,ψ0 = exp

(
−(tr−1)ε2y,rZ

r

4w̄T

)
10: for j = 1, . . . , tr do
11: compute the optimal i∗ by

i∗ =argmin
i∈I

{∑
k∈K

ϕj−1
k exp

(
c1k,r

(
− (1 + εx,r)Uk

T

+ aijk
))

+
∑
k∈K

φj−1
k exp

(
c1k,r

(
āk − aijk−

(1 + εx,r)((1− ε)T āk − Lk)

T

))
+

ψj−1 exp
(
c2,r

( (1− εy,r)Z
r

T
− wij

))}
12: Set XA1

jk = ai∗jk,Y A1
j = wi∗j , ZA1

jk = āk − ai∗jk
13: Update

14: ϕj
k = ϕj−1

k exp
(
c1k,r(X

A1
tk − (1+εx,r)Uk

T
) +

ε2x,r

4Tγ1

)
,

15: φj
k = φj−1

k exp
(
− c1k,r(

(1+εx,r)((1−ε)T āk−Lk)

T
−

ZA1
jk ) +

ε2x,r

4Tγ1

)
,

16: ψj = ψj−1 exp
(
c2,r(

(1−εy,r)Zr

T
− Y A

j ) +
ε2y,rZr

4Tw̄

)
17: end for
18: end for

stage, according to the proof of Theorem G.2, we can
use the revenue obtained from previous stage as a good
approximation of W r−1 before Algorithm 3 returning
it in practice for r = 1, . . . , l − 1. Thus, the online
property of Algorithm 4 will not be hurt severely.

However, sometimes ξ∗ is inaccessible in practice when
Algorithm 4 is initialized. We will address the unknown
measurement ξ∗ in the next section.

5. Exploring the Measure of Feasibility
As shown in previous sections, the constant ξ∗ measures
the feasibility of the original problem, and plays a central
role in Algorithm A1. ξ∗ can hardly be obtained in practice.
Motivated by Algorithm 3, we propose Algorithm 5 for
estimating ξ∗ to provide a more complete analysis. In this
section, we investigate the strong feasible condition, i.e.,
Assumption 3. Recalling the definition ofE(β) in Section 3,
we can conclude the following results.

Algorithm 5 Feas Estimator({requestj}r, tr, γ2, δ)
1: Input: requests from r-th stage {requestj}r , request number
tr , relative error εx,r , problem dependent quantity γ2, failure
probability δ.

2: Output: ξ̂ = ξmax − 2εx,r

3: Compute εx,r =

√
4γ2T ln(K

δ
)

tr
4: Set

ξmax = max
ξ,x

ξ

s.t.
tr
T
(Lk + ξT āk) ≤

∑
i∈I

tr+1∑
j=tr+1

aijkxij ≤ tr
T
Uk, ∀k ∈ K

∑
i∈I

xij ≤ 1, ∀j = tr + 1, . . . , tr+1

xij ≥ 0, ∀i ∈ I, j = tr + 1, . . . , tr+1

(7)

Algorithm 6 Algorithm A2

1: Input: ε, Lk, Uk, γ1, γ2 = O
(

ϵ2

ln(K/ε)

)
, āk

2: Output: {xij}i∈K,j∈[T ]

3: Set l = log2(
1
ε ), tr = ε2rT , t−1 = εT and δ = ε

3l+2

4: Set ξ̂0=Feas Estimator({requestj}−1, t−1, γ2, δ)
5: Execute the Algorithm A1(ϵ, γ1, ξ̂0)

Proposition 5.1. According to the definition of ξ∗ in LP (3),
we have

1. When ξ∗ ≥ 0, the problem E(0) is feasible. Otherwise,
it is infeasible.

2. When ξ∗ > 0 and 0 < ξ ≤ ξ∗, the problem E(ξ) is
feasible.

We omit the proof of the proposition for simplicity. From
Proposition 5.1, with the knowledge of ξ∗, we could eas-
ily check the feasibility of E(0). Next, we show how to
estimate the ξ∗ from served requests in Algorithm 5.

Theorem 5.2. Under Assumption 1-3, if γ2 =

max( āk

Uk
, āk

T āk−Lk
) = O( ϵ2

ln(K/ε) ), Algorithm 5 with tr i.i.d.

requests outputs ξ̂ such that

ξ̂ ∈ [ξ∗ − 4ϵx,r, ξ
∗]

w.p. 1− 2δ, where ϵx,r =
√

4γ2T ln(K/δ)
tr

.

The proof is deferred to Appendix H.

Now ξ̂r can be viewed as a good estimate for ξ∗ from
stage 0. Based on the estimation of ξ∗, we propose an
algorithm A2 in Algorithm 6. Like the previous methods,
we geometrically divide T requests into l + 1 stages for
r = −1, 0, . . . , l − 1, where the initial stage r = −1 and
the first stage r = 0 have εT requests. Besides the estimate
W−1, the estimate ξ̂0 for ξ∗ is obtained by Algorithm 5 at
the end of the initial stage r = −1. Then we consider the

8
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new expected problemE
(
ξ̂0
)

and run AlgorithmA1 defined
in Algorithm 4 for the rest requests.
Theorem 5.3. Under Assumption 1-3, if ε > 0, τ1 =√

ε
1−

√
ε

such that τ1 + 4
√
ε + ε ≤ ξ∗ and γ1 =

max
(
āk

Uk
, āk

(1−ϵ)T āk−Lk
, w̄
Wϵ+τ1

)
= O

(
ε2

ln(K/ε)

)
, Algo-

rithm 6 achieves an objective value of at least
(
1 −

O( ε
ξ∗−4

√
ε−ϵ

)
)
W0 and satisfies the constraints, w.p. 1− ε.

The proof can be found in Appendix I.

Until now, we have dropped the knowledge of the entire
distribution P , the objective value Wτ for problem E(τ)
and the strong feasible constant ξ∗ step by step. In practice,
the only hyperparameter ϵ can be well approximated by
solving a polynomial approximation of the transcendental
equation between γ1 and ϵ in Theorem 5.3. We regard the
proposed Algorithm 6 as a practical algorithm for two-sided
constrained online resource allocation problems.

6. Conclusion
In this paper, we have developed a method for online alloca-
tion problems with two-sided resource constraints, which
has a wide range of real-world applications. By designing a
factor-revealing linear fractional programming, a measure
of feasibility ξ∗ is defined to facilitate our theoretical anal-
ysis. We prove that Algorithm 4 holds a nearly optimal
competitive ratio if the measurement is known and large
enough compared with the error parameter, i.e. ξ∗ ≫ ε. An
estimator is also presented in the paper for the unknown ξ∗

scenario. We will investigate more efficient extensions of
this work in the near future.
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A. The Examples of Resource Lower Bounds
In this section, we give three practical instances showing the necessity of lower bound constraints in real-world applications.

1. Guaranteed Advertising Delivery: In the online advertising scenario, the advertising publishers will sell the ad
impressions in advance with the promise to provide each advertiser an agree-on number of target impressions over a
fixed future time period, which is usually written in the contracts. Furthermore, the advertising platform considers
other constraints, such as advertisers’ budgets and impressions inventories, and simultaneously maximizes multiple
accumulative objectives regarding different interested parties, e.g. Gross Merchandise Volume (GMV) for ad providers
and publisher’s revenue. This widely used guaranteed delivery advertising model is generally formulated as an online
resource allocation problem with two-sided constraints (Zhang et al., 2020).

2.1. Fair Channel Constraints: We consider the online orders assignment in an e-commerce platform, where the platform
allocates the orders (or called packages in logistics) to different warehouses providers. Due to the governmental
regulations and contracts between platforms and providers, the platform usually tends to set lower bounds to the daily
accepted orders for special channels, such as new/small-scale providers or those in developing areas. Besides, it can
be shown that when providers are concerned about fairness, the platform can use a simple wholesale price above its
marginal cost to coordinate this channel in terms of both achieving the maximum channel profit and attaining the
maximum channel utility (Haitao Cui et al., 2007).

2.2. Timeliness Achievement Constraints: The delivery time for orders is highly related with the customers’ shopping
experience. Thus, the online shopping platforms also take the time-effectiveness of parcel shipment into account. For
every parcel, platforms usually use the timeline achievement rate ruov ∈ [0, 1] to denote the probability of arriving at
the destination in required u days if we assign the order of type o to one channel v, which could be estimated by the
historical data and features of order and channel/logistics providers. As we know, long delivery time will impair the
consumer’s shopping experience, but reducing delivery time means increasing cost. In order to balance the customers’
shopping experience and transportation costs, platforms always set a predefined lower threshold to the average timeline
achievement rate of daily orders, which can be modeled as lower bound constraints in order assignment task.

B. Useful Concentrations
In this section, we present the classical concentration inequalities for completeness.

Lemma B.1. (Bernstein, 1946)

i. Suppose that |X| ≤ c and E[X] = 0. For any t > 0,

E
[
exp(tX)

]
≤ exp

(
σ2

c2
(
etc − 1− ct

))
where σ2 = V ar(X).

ii. If X1, X2, . . . , Xn are independent r.v., E[Xi] = µ and P(|Xi − µ| ≤ c) = 1 ,∀i = 1, . . . , n, then ∀ε > 0 following
inequality holds

P

(∣∣∣∑n
i=1Xi

n
− µ

∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2

2σ2 + 2cε
3

)
where σ2 =

∑n
i=1 V ar(Xi)

n .

The first result, Lemma B.1.i., is a well-known intermediate result of Bennett’s inequality. We go a few steps further to
construct the algorithm.

C. Proof for Lemma 3.1
Lemma 3.1. W0 ≥ E [WR].

11
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Proof. : We consider two linear programming problem, the linear relaxation of sampled integer linear programming (1), i.e.

max
x

∑
i∈I,j∈[T ]

wijxij

s.t. Lk ≤
∑

i∈I,j∈[T ]

aijkxij ≤ Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ [T ]

xij ≥ 0,∀i ∈ I, j ∈ [T ]

(S.I I)

and the linear programming that considers the samples from the type of requests perspective, i.e.

max
x

∑
i∈I,j∈J

∣∣{j′|j′ ∈ [T ], j′ = j}
∣∣wijxij

s.t. Lk ≤
∑

i∈I,j∈J

∣∣{j′|j′ ∈ [T ], j′ = j}
∣∣aijkxij ≤ Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ J

xij ≥ 0,∀i ∈ I, j ∈ J

(S.I II)

where |·| denote the cardinality of a given set.We use theWR1 andWR2 to denote the optimal value of Sample Instance (S.I I)
and (S.I II)) respectively. Because the LP (S.I I) is a relaxation version of ILP (1), we know thatWR1

≥WR. For any optimal

solution {x∗ij ∀i ∈ I, j ∈ [T ]} of LP (S.I I), it’s easy to verify that the solution
{
xij |xij =

∑
j′=j,j′∈[T ] x

∗
ij′∣∣{j′|j′∈[T ]:j′=j}
∣∣ ,∀i ∈ I, j ∈ J

}
is feasible for LP (S.I II), so that WR2 ≥WR1 . Moreover, the average of optimal solution for all possible LP (S.I II) is a
feasible solution for LP (2), β = 0, whose optimal solution is W0. Thus W0 ≥ E[WR2

] ≥ E[WR1
] ≥ E[WR].

D. Proof of Theorem 4.2
Theorem 4.2. Under the strong feasible condition in Assumption 3, the optimal objective of E(τ) satisfies that

Wτ ≥
(
1− τ

ξ∗

)
W0,

where τ = ε
1−ε .

Proof. The dual problem of the expected instance, i.e., problem E(0), is

min
α,β,ρ

∑
k∈K

αkUk −
∑
k∈K

βkLk +
∑
j∈J

ρj

s.t.
∑
k∈K

(αk − βk)Tpjaijk − Tpjwij + ρj ≥ 0,

∀i ∈ I, j ∈ J ,
αk, βk, ρj ≥ 0, k ∈ K, j ∈ J ,

(8)

and the dual problem of E(τ) is

min
α,β,ρ

∑
k∈K

αkUk −
∑
k∈K

βk(Lk + τT āk) +
∑
j∈J

ρj

s.t.
∑
k∈K

(αk − βk)Tpjaijk − Tpjwij + ρj ≥ 0,

∀i ∈ I, j ∈ J ,
αk, βk, ρj ≥ 0, k ∈ K, j ∈ J .

(9)

It can be observed that LP (8) and LP (9) share the same feasible set, while LP (9) has an extra term −
∑

k∈K τT ākβk in the

12
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objective. It is necessary to study the relationship between
∑

k∈K τT ākβk and
∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj
under the dual constraints if we want to obtain the ratio of Wτ to W0. Motivated by (Jain et al., 2003), we propose a
Factor-Revealing Linear Programming method for this analysis.

In order to derive the competitive ratio of the cumulative revenue obtained by the Algorithm P̃ to W0, we need to find a
number c ∈ (0, 1) which makes Wτ ≥ (1− c)W0 always hold. Considering the dual LP (8) and LP (9), if we can show
that

∑
k∈K

ε
1−εT ākβk ≤ c(

∑
k∈K αkUk −

∑
k∈K βkLk +

∑
j∈J ρj) for any dual feasible solution, it will give us that

Wτ ≥ (1− c)W0. Hence this question can be translated to solving the following linear fractional programming

max
α,β,ρ

∑
k∈K

ε
1−εT ākβk∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj

s.t.
∑
k∈K

(αk − βk)Tpjaijk − Tpjwij + ρj ≥ 0,

∀i ∈ I, j ∈ J
αk, βk, ρj ≥ 0, k ∈ K, j ∈ J .

(10)

Since
∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj ≥ W0 > 0 for any dual feasible solution, we can do the following
transformation

α̃k =
αk∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj

β̃k =
βk∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj

ρ̃j =
ρj∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj

z =
1∑

k∈K αkUk −
∑

k∈K βkLk +
∑

j∈J ρj
.

In this way, we transfer the linear fractional programming (10) into

max
α̃,β̃,ρ̃

∑
k∈K

ε

1− ε
T ākβ̃k

s.t.
∑
k∈K

(α̃k − β̃k)Tpjaijk − Tpjwijz + ρ̃j ≥ 0,

∀i ∈ I, j ∈ J∑
k∈K

α̃kUk −
∑
k∈K

β̃kLk +
∑
j∈J

ρ̃j = 1

α̃k, β̃k, ρ̃j , z ≥ 0, k ∈ K, j ∈ J .

(11)

We investigate the dual problem of LP (11) as follows

min
t,d

t

s.t.
∑
i∈I

dij ≤ t∑
i∈I,j∈J

dijTpjaijk ≤ tUk∑
i∈I,j∈J

dijTpjaijk ≥ tLk +
ε

1− ε
T āk

∀dij ≥ 0, t ∈ R,∀i ∈ I, j ∈ J .

(12)

By the first constraint of LP (12), it can be observed that t ≥ 0 holds. With the auxiliary variable zij which makes

13
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dij = tzij ,we reformulate LP (12) into

t∗ = min
t,z

t

s.t. t

(∑
i∈I

zij − 1

)
≤ 0

t

( ∑
i∈I,j∈J

zijTpjaijk − Uk

)
≤ 0

t

( ∑
i∈I,j∈J

zijTpjaijk − Lk

)
≥ ε

1− ε
T āk

∀zij ≥ 0, t ≥ 0,∀i ∈ I, j ∈ J .

(13)

According to the strong feasible condition Assumption 3, there exists a feasible solution {x′ij |x′ij ≥ 0} to LP (3) such that∑
i∈I,j∈J x

′
ijTpjaijk ≤ Uk,

∑
i∈I,j∈J Tpjaijkx

′
ij ≥ Lk + ξ∗Tak and

∑
i∈I x

′
ij ≤ 1, ∀k ∈ K. Therefore, t = τ

ξ∗ and
zij = x′ij ∀i ∈ I, j ∈ J is a feasible solution to LP (13). As a result, we have t∗ ≤ τ

ξ∗ . Since LP (10) has the same
optimum as LP (13), we have that∑

k∈K

αkUk −
∑
k∈K

βk

(
Lk +

ε

1− ε
T āk

)
+
∑
j∈J

ρj

=
∑
k∈K

αkUk −
∑
k∈K

βkLk +
∑
j∈J

ρj −
∑
k∈K

ε

1− ε
T ākβk

≥
(
1− τ

ξ∗

)(∑
k∈K

αkUk −
∑
k∈K

βkLk +
∑
j∈J

ρj

)
under the constraint of LP (8). Therefore, Wτ ≥ (1− τ

ξ∗ )W0.

The factor-revealing linear fractional programming analysis shows the way we develop the definition of ξ∗ and enlightens
the design of feasibility estimator in Algorithm 5. Besides, the proof framework is reused in proving Lemma G.1.

E. Proof of Lemma 4.1 and Theorem 4.3
We restate the Lemma 4.1 as follows.

Lemma 4.1. Under Assumption 1-3, if ∀ε > 0 and γ = max
(
āk

Uk
, āk

T āk−Lk
, w̄
Wτ

)
= O( ε2

ln(K/ε) ), Algorithm 1 achieves an
objective value at least (1− 2ε)Wτ and satisfies the constraints w.p. 1− ε.

Proof. We first prove that, for every resource k, the consumed resource is below the capacity Uk w.h.p..

P

 T∑
j=1

X P̃
jk ≥ Uk


= P

 T∑
j=1

(
X P̃

jk − E[X P̃
jk]
)
≥ Uk − TE[X P̃

jk]


≤ exp

−

(
Uk − TE[X P̃

jk]
)2

2Tσ2 + 2
3 āk

(
Uk − TE[X P̃

jk]
)


= exp

−
Uk − TE[X P̃

jk]

2 Tσ2

Uk−TE[XP̃
jk]

+ 2
3 āk



(14)

14
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≤ exp

{
− ε2

2(1− 2
3ε)

āk

Uk

}

≤ exp

{
− ε2

2(1− 2
3ε)γ

}
≤ ε

2K + 1

where the first equality follows from E[X P̃
1j ] = E[X P̃

2j ] = · · · = E[X P̃
T j ]; the first inequality from Lemma B.1 and

setting σ2 = V ar(X P̃
jk); in the second inequality, it can verified that σ2 ≤ E[(X P̃

jk)
2] ≤ ākE[X P̃

jk] ≤ (1−ε)ākUk

T ,

Uk − TE[X P̃
jk] ≥ εUk and Tσ2

Uk−TE[XP̃
ij ]

≤ āk
1−ε
ε so that − Uk−TE[XP̃

jk]

2 Tσ2

Uk−TE[XP̃
jk

]
+ 2

3 āk

≤ − εUk

2āk
1−ε
ε + 2

3 āk
= − ε2

2(1− 2
3 ε)

āk
Uk

; the third

inequality from γ ≥ āk

Uk
; the final inequality from γ = O( ε2

ln(K/ε) ).

Next, we verify that the Algorithm P̃ satisfies the lower resource bound with high probability.

P

 T∑
j=1

X P̃
jk ≤ Lk


= P

 T∑
j=1

(
E[X P̃

jk]−Xjk

)
≥ TE[X P̃

jk]− Lk


≤ exp

−

(
TE[X P̃

jk]− Lk

)2
2Tσ2 + 2

3 āk

(
TE[X P̃

jk]− Lk

)


= exp

{
−

(TE[X P̃
jk]− Lk)

2 Tσ2

TE(Xjk)−Lk
+ 2

3 āk

}

≤ exp

{
− ε2

2(1− 2
3ε)

āk

T āk−Lk

}
≤ ε

2K + 1

(15)

where the first inequality from Lemma B.1 and setting σ2 = V ar(X P̃
jk); in the second inequality, we could verify that σ2 =

V ar(X P̃
jk) = V ar(āk −X P̃

jk) ≤ E[(āk −X P̃
jk)

2] ≤ ākE[āk −X P̃
jk] ≤

(1−ε)āk(T āk−Lk)
T , TE[X P̃

jk]− Lk ≥ ε(T āk − Lk),

and Tσ2

TE[XP̃
jk]−Lk

≤ āk
1−ε
ε so that − (TE[XP̃

jk]−Lk)

2 Tσ2

TE[XP̃
jk

]−Lk

+ 2
3 āk

≤ − ε(T āk−Lk)

2āk
1−ε
ε + 2

3 āk
= − ε2

2(1− 2
3 ε)

āk
T āk−Lk

; the final inequality from

γ = O( ε2

ln(K
ε )

).

Therefore, from the previous outcomes, the consumed resource k satisfies our lower and upper bound requirements, w.h.p.
Next, we investigate the revenue the Algorithm P̃ brings.

P

 T∑
j=1

Y P̃
j ≤ (1− 2ε)Wτ


= P

 T∑
j=1

(
E[Y P̃

j ]− Y P̃
j

)
≥ TE[Y P̃

j ]− (1− 2ε)Wτ


≤ exp

−

(
TE[Y P̃

j ]− (1− 2ε)Wτ

)2
2Tσ2

1 +
2
3 w̄
(
TE[Y P̃

j ]− (1− 2ε)Wτ

)


(16)

15



Nearly Optimal Competitive Ratio for Online Allocation Problems with Two-sided Resource Constraints and Finite Requests

= exp

−
TE[Y P̃

j ]− (1− 2ε)Wτ

2
Tσ2

1

TE[Y P̃
j ]−(1−2ε)Wτ

+ 2
3 w̄


≤ exp

{
− ε2

2(1− 2
3ε)

w̄
Wτ

}
≤ ε

2K + 1

where the first equality follows from E[Y P̃
1 ] = E[Y P̃

2 ] = · · · = E[Y P̃
T ]; the first inequality from Lemma B.1 and setting

σ2
1 = V ar(Y P̃

j ); in the second inequality, we could easily verify that σ2
1 ≤ E[(Y P̃

i )2] ≤ w̄E[Y P̃
j ] ≤ (1−ε)w̄Wτ

T and

E[Y P̃
j ] = (1 − ε)Wτ

T so that − TE[Y P̃
j ]−(1−2ε)Wτ

2
Tσ2

1

TE[Y P̃
j

]−(1−2ε)Wτ

+ 2
3 w̄

≤ − εWτ

2w̄ 1−ε
ε + 2

3 w̄
= − ε2

2(1− 2
3 ε)

w̄
Wτ

; the final inequality follows from

γ = O( ε2

ln(K
ε )

).

From equation (14)-(16),

P (
T∑

j=1

Y P̃
j ≤ (1− 2ε)Wτ )+

∑
k∈K

P (

T∑
j=1

X P̃
jk /∈ [Lk, Uk])

≤ (2K + 1)
ε

2K + 1
≤ ε

(17)

when γ = O( ε2

ln(K
ε )

), where γ = max( w̄
Wτ

, āk

T āk−Lk
, āk

Uk
).

Theorem 4.3. Under Assumption 1-3, if ε > 0, τ = ε
1−ε and γ = O

(
ε2

ln(K/ε)

)
, Algorithm 1 achieves an objective value of

at least
(
1− (2 + 1

ξ∗ )ε
)
W0 and satisfies the constraints w.p. 1− ε.

With Assumption 3, Theorem 4.2 and Lemma 4.1, the cumulative revenue is larger than (1−2ε)Wτ ≥ (1−2ε)(1− τ
ξ∗ )W0 ≥

(1− (2 + 1
ξ∗ )ε)W0. We finish the proof of Theorem 4.3.

F. Proof of Theorem 4.4
Theorem 4.4. Under Assumption 1-3, if ε > 0, τ and γ are defined as Theorem 4.3, the Algorithm 2 achieves an objective
value at least

(
1− (2 + 1

ξ∗ )ε
)
W0 and satisfies the constraints w.p. 1− ε.

Proof. We consider the good event defined by

G :=


s∑

j=1

XA
jk +

T∑
j=s+1

X P̃
jk ≤ Uk,∀k ∈ K

 ∩


s∑

j=1

XA
jk +

T∑
j=s+1

X P̃
jk ≥ Lk,∀k ∈ K


∩


s∑

j=1

Y A
j +

T∑
j=s+1

Y P̃
j ≥ (1− 2ε)Wτ


=G1 ∩G2 ∩G3,

which means the hybrid Algorithm AsP̃T−s can achieve at least (1 − 2ε)Wτ revenue while satisfying the two-side
constraints. We will show that the probability of the complement event Gc can be bounded by some moment generating
functions.
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For the first bad event Gc
1, we have

P (

s∑
j=1

XA
jk +

T∑
j=s+1

X P̃
jk ≥ Uk)

≤ min
t>0

E

exp(t( s∑
j=1

XA
jk +

T∑
j=s+1

X P̃
jk − Uk))


= min

t>0
E

exp(t( s∑
j=1

XA
jk − s

T
Uk) + t(

T∑
j=s+1

X P̃
jk − T − s

T
Uk))


= min

t>0
E

ϕsk(t) exp(t( T∑
j=s+1

(X P̃
jk − E[X P̃

jk])) +
T − s

T
t(TE[X P̃

jk]− Uk))


≤ min

t>0
E
[
ϕsk(t) exp((T − s)

σ2

ā2k
(etāk − 1− tāk) +

−(T − s)tεUk

T
)

]
≤ min

t>0
E
[
ϕsk(t) exp(

T − s

T

(1− ε)Uk

āk
(etāk − 1− tāk − t

ε

1− ε
āk))

]
≤ E

[
ϕsk(

− ln(1− ε)

āk
) exp(− (1− ε)(T − s)Uk

T āk
((1 + η) ln(1 + η)− η))

]
≤ E

[
ϕsk(

− ln(1− ε)

āk
) exp(−T − s

T

ε2

2γ(1− 2
3ε)

)

]

(18)

where the first inequality follows from exp(t(
∑s

j=1X
A
jk+

∑T
j=s+1X

P̃
jk−Uk)) ≥ 1 when

∑s
j=1X

Aj

jk +
∑T

j=s+1X
P̃
jk ≥ Uk;

in the second equality, we set ϕsk(t) = exp(t(
∑s

j=1X
Aj

jk − s
T Uk)); the second inequality from Lemma B.1 and TE[X P̃

jk] ≤
(1− ε)Uk; the third inequality from σ2 = V ar(X P̃

jk) ≤
(1−ε)ākUk

T ; in the fourth inequality, we set t = − ln(1−ε)
āk

, η = ε
1−ε ;

then the last inequality from (1 + η) ln(1 + η)− η ≥ η2

2+ 2
3η

and the definition of γ.

Next,for the bad event Gc
2, we have

P (

s∑
j=1

XA
jk +

T∑
j=s+1

X P̃
jk ≤ Lk)

≤ min
t>0

E

exp(t(Lk −
s∑

j=1

XA
jk −

T∑
j=s+1

X P̃
jk))


= min

t>0
E

exp(t( s
T
Lk −

s∑
j=1

XA
jk) + t(

T − s

T
Lk −

n∑
j=s+1

X P̃
jk))


(19)

= min
t>0

E

φs
k(t) exp(t

T∑
j=s+1

(E[X P̃
jk]−X P̃

jk) +
T − s

T
t(Lk − TE[X P̃

jk]))


≤ min

t>0
E
[
φs
k(t) exp((T − s)

σ2

ā2k
(etāk − 1− tāk)−

(T − s)ε(T āk − Lk))

T
t

]
≤ min

t>0
E
[
φs
k(t) exp(

(1− ε)(T − s)(T āk − Lk)

āk
(etāk − 1− tāk − t

ε

1− ε
āk))

]
≤ E

[
φs
k(

− ln(1− ε)

āk
) exp(− (1− ε)(T − s)(T āk − Lk)

āk
((1 + η) ln(1 + η)− η))

]
≤ E

[
φs
k(

− ln(1− ε)

āk
) exp(−T − s

T

ε2

2γ(1− 2
3ε)

)

]
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where in the second equality, we set φs
k(t) = exp(t( s

T Lk −
∑s

j=1X
A
jk)); the second inequality from Lemma B.1 and

TE[X P̃
jk] ≥ (1 − ε)Lk + εT āk; the third inequality from σ2 = V ar(X P̃

jk) = V ar(āk − X P̃
jk) ≤ ākE[āk − X P̃

jk] ≤
āk

(1−ε)(T āk−Lk)
T ; in the fourth inequality, we set t = − ln(1−ε)

āk
, η = ε

1−ε ; The last inequality from (1+ η) ln(1+ η)− η ≥
η2

2+ 2
3η

and the definition of γ.

Finally, we bound the probability of event Gc
3 by

P

 s∑
j=1

Y A
j +

T∑
j=s+1

Y P̃
j ≤ (1− 2ε)Wτ


≤ min

t>0
E

exp(t((1− 2ε)Wτ −
s∑

j=1

Y A
j −

T∑
j=s+1

Y P̃
j ))


= min

t>0
E

exp(t( s
T
(1− 2ε)Wτ −

s∑
j=1

Y A
j ) + t(

T − s

T
(1− 2ε)Wτ −

T∑
j=s+1

Y P̃
j ))


= min

t>0
E

ψs(t) exp(t

T∑
j=s+1

(E[Y P̃
j ]− Y P̃

j ) +
T − s

T
t((1− 2ε)Wτ − TE[Y P̃

j ]))


≤ min

t>0
E
[
ψs(t) exp((T − s)

σ2
1

w̄2
(etw̄ − 1− tw̄) +

−(T − s)tεWτ

T
)

]
≤ min

t>0
E
[
ψs(t) exp(

(1− ε)(T − s)Wτ

Tw̄
(etw̄ − 1− tw̄ − ε

1− ε
tw̄))

]
≤ E

[
ψs(

− ln(1− ε)

w̄
) exp(− (1− ε)(T − s)Wτ

Tw̄
((1 + η) ln(1 + η)− η))

]
≤ E

[
ψs(

− ln(1− ε)

w̄
) exp(−T − s

T

ε2

2(1− 2
3ε)γ

)

]

(20)

where in the second equality, we set ψs(t) = exp(t( s
T (1− 2ε)Wτ −

∑s
j=1 Y

A
j )); the second inequality from Lemma B.1

and TE[Y P̃
j ] = (1− ε)Wτ ; the third inequality from σ2

1 = V ar(Y P̃
j ) ≤ w̄E[Y P̃

j ] ≤ (1−ε)w̄Wτ

T ; in the fourth inequality, we

set t = − ln(1−ε)
w̄ , η = ε

1−ε ; The last inequality from (1 + η) ln(1 + η)− η ≥ η2

2+ 2
3η

and the definition of γ.

With the inequalities (18)-(20) and union bound in probability theory, we can show that P (Gc) ≤ F(AsP̃T−s) where
F(AsP̃T−s) is defined by

F(AsP̃T−s) =E
[∑
k∈K

ϕsk(
− ln(1− ε)

āk
) exp(−T − s

T

ε2

2(1− 2
3ε)γ

) +
∑
k∈K

φs
k(−

ln(1− ε)

āk
) exp(−T − s

T

ε2

2(1− 2
3ε)γ

)

+ ψs(
− ln(1− ε)

w̄
) exp(−T − s

T

ε2

2(1− 2
3ε)γ

)

]

In Lemma 4.1, we have proven that F(P̃T ) = (2K + 1) exp
(
− ε2

2(1− 2
3 ε)γ

)
≤ ε, and we will show that F(AsP̃T−s) ≤

F(As−1P̃T−s+1) in the Lemma F.1. Thus, we have that F(AT ) ≤ F(P̃T ) ≤ ε by induction. Substituting τ = ε
1−ε and

Wτ ≥ (1− τ
ξ∗ )W0 in Theorem 4.3, we complete the proof of Theorem 4.4 .

Lemma F.1. F(AsP̃T−s) ≤ F(As−1P̃T−s+1)
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Proof. By the definition of F(AsP̃T−s), we have that

F(AsP̃T−s) =

(
E
[∑
k∈K

ϕs−1
k (

− ln(1− ε)

āk
) exp((− ln(1− ε)

āk
)(XA

jk − Uk

T
))

+
∑
k∈K

φs−1
k (− ln(1− ε)

āk
) exp((− ln(1− ε)

āk
)(
Lk

T
−XA

jk))

+ψs−1(
− ln(1− ε)

w̄
)) exp((

− ln(1− ε)

w̄
)(
(1− 2ε)Wτ

T
− Y A

s ))

])
exp(−T − s

T

ε2

2(1− 2
3ε)γ

).

(21)

According to algorithm A in Algorithm 2, we allocate the s-th request to the channel i∗ where

i∗ =argmin
i∈I

∑
k∈K

ϕs−1
k (− ln(1− ε)

āk
) exp(− ln(1− ε)

āk
(aisk − Uk

T
))

+
∑
k∈K

φs−1
k (− ln(1− ε)

āk
) exp(− ln(1− ε)

āk
(
Lk

T
− aisk))

+ ψs−1(− ln(1− ε)

w̄
) exp(− ln(1− ε)

w̄
(
(1− 2ε)Wτ

T
− wis))

(22)

which means that

F(AsP̃T−s) ≤
(
E
[∑
k∈K

ϕs−1
k (

− ln(1− ε)

āk
) exp((− ln(1− ε)

āk
)(X P̃

sk − Uk

T
))︸ ︷︷ ︸

1⃝

+
∑
k∈K

φs−1
k (− ln(1− ε)

āk
) exp((− ln(1− ε)

āk
)(
Lk

T
−X P̃

sk))︸ ︷︷ ︸
2⃝

+ ψs−1(
− ln(1− ε)

w̄
) exp((

− ln(1− ε)

w̄
)(
(1− 2ε)Wτ

T
− Y P̃

s ))︸ ︷︷ ︸
3⃝

])
exp

(
− T − s

T

ε2

2(1− 2
3ε)γ

)
.

(23)

For the term 1⃝, we have

1⃝ = E
[
exp

(
− ln(1− ε)

āk

(
(X P̃

sk − E[X P̃
sk]) + (E[X P̃

sk]−
Uk

T
)
))]

≤ E
[
exp

(
σ2

ā2k

(
e− ln(1−ε) − 1 + ln(1− ε)

)
+
εUk

T āk
ln(1− ε)

)]
≤ E

[
exp

(
(1− ε)Uk

T āk

( 1

1− ε
− 1 + ln(1− ε) +

ε

1− ε
ln(1− ε)

))]
= E

[
exp

(
− (1− ε)Uk

T āk

(
(1 + η) ln(1 + η)− η

))]
≤ exp

(
− 1

T

ε2

2(1− 2
3ε)γ

)
(24)

where the first inequality follows from Lemma B.1 and E[X P̃
sk] ≤ (1 − ε)Uk/T , the second from σ2 = V ar(X P̃

sk) ≤
(1−ε)ākUk

T . Next setting η = ε
1−ε , the last inequality follows from (1 + η) ln(1 + η)− η ≥ η2

2+ 2
3η

and the definition of γ.
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For the term 2⃝, we have

2⃝ = E
[
exp

(
− ln(1− ε)

āk

(
(E[X P̃

sk]−X P̃
sk) + (

Lk

T
− E[X P̃

sk])
))]

≤ E
[
exp

(
σ2

ā2k

(
e− ln(1−ε) − 1 + ln(1− ε)

)
+
ε(T āk − Lk)

T āk
ln(1− ε)

)]
≤ E

[
exp

(
(1− ε)(T āk − Lk)

T āk

( 1

1− ε
− 1 + ln(1− ε) +

ε

1− ε
ln(1− ε)

))]
= E

[
exp

(
− (1− ε)(T āk − Lk)

T āk

(
(1 + η) ln(1 + η)− η

))]
≤ exp

(
− 1

T

ε2

2(1− 2
3ε)γ

)
(25)

where the first inequality follows from Lemma B.1 and E[X P̃
sk] ≤

(1−ε)Lk+εT āk

T , the second from σ2 = V ar(X P̃
sk) ≤

āk
(1−ε)(T āk−Lk)

T . Next setting η = ε
1−ε , the last inequality follows from (1 + η) ln(1 + η)− η ≥ η2

2+ 2
3η

and the definition
of γ.

For the term 3⃝, we have

3⃝ = E
[
exp

(
− ln(1− ε)

w̄

(
(E[Y P̃

s ]− Y P̃
s ) + (

(1− 2ε)Wτ

T
− E[Y P̃

s ])
))]

≤ E
[
exp

(
σ2
1

w̄2

(
e− ln(1−ε) − 1 + ln(1− ε)

)
+
εWτ

Tw̄
ln(1− ε)

)]
≤ E

[
exp

(
(1− ε)Wτ

Tw̄

( 1

1− ε
− 1 + ln(1− ε) +

ε

1− ε
ln(1− ε)

))]
= E

[
exp

(
− (1− ε)Wτ

Tw̄

(
(1 + η) ln(1 + η)− η

))]
≤ exp

(
− 1

T

ε2

2(1− 2
3ε)γ

)
(26)

where the first inequality follows from Lemma B.1 and E[Y P̃
s ] = (1−ε)Wτ

T , the second from σ2
1 = V ar(Y P̃

s ) ≤ (1−ε)w̄Wτ

T .

Next setting η = ε
1−ε , the last inequality follows from (1 + η) ln(1 + η)− η ≥ η2

2+ 2
3η

and the definition of γ. According to
the inequality (24)-(26), we can show that

F(AsP̃T−s) ≤
(
E
[∑
k∈K

ϕs−1
k (

− ln(1− ε)

āk
) +

∑
k∈K

φs−1
k (− ln(1− ε)

āk
)

+ ψs−1(
− ln(1− ε)

w̄
)
])

exp(−T − s+ 1

T

ε2

2(1− 2
3ε)γ

)

=F(As−1P̃T−s+1)

(27)

which completes the proof.

G. Proof of Theorem 4.5
G.1. Concentration of Zr

In the first step, we study the relationship between Zr and Wε.

Lemma G.1. Under Assumption 1-3, if τ1 + ε ≤ ξ∗ and γ1 = max
(
āk

Uk
, āk

(1−ε)T āk−Lk
, w̄
Wε+τ1

)
= O

(
ε2

ln(K/ε)

)
, for given

measure of feasibility ξ∗ , we have

W r ≤ trWε

T

(
1 +

(
2 +

1

ξ∗ − ε

)
εx,r

)
with probability at least 1 − δ, where the predefined parameter ε > 0, τ1 =

√
ε

1−
√
ε
, δ = ε

3l , l = log2(
1
ε ) and εx,r =
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4Tγ1 ln( 2K+1

δ )

tr
.

Proof. We consider the definition of W r:

W r =max
x

∑
i∈I,j∈Sr

wijxij

s.t.
tr
T
(Lk + εT āk) ≤

∑
i∈I,j∈Sr

aijkxij ≤
tr
T
Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ Sr

xij ≥ 0,∀i ∈ I, j ∈ Sr

(28)

where we use Sr to denote the request set in stage r. The dual of LP (28) is

W r = min
α,β,ρ

∑
k∈K

αk
tr
T
Uk −

∑
k∈K

βk
tr
T
(Lk + εT āk) +

∑
j∈Sr

ρj

s.t.
∑
k∈K

(αk − βk)aijk − wij + ρj ≥ 0 ∀i ∈ I, j ∈ Sr

αk, βk, ρj ≥ 0, k ∈ K, j ∈ Sr

(29)

Comparing to the dual of LP (28) with the dual of problem E(ε), which is

min
α,β,ρ

∑
k∈K

αkUk −
∑
k∈K

βk(Lk + εT āk) +
∑
j∈J

Tpjρj

s.t.
∑
k∈K

(αk − βk)aijk − wij + ρj ≥ 0 ∀i ∈ I, j ∈ J

αk, βk, ρj ≥ 0, k ∈ K, j ∈ J

(30)

we can observe that the constraints of LP (29) is a subset of those of LP (30). We denote the primal and dual optimal solution
of E(ε) as {x∗ij} and {α∗

k, β
∗
k , ρ

∗
k}. So {α∗

k, β
∗
k , ρ

∗
k} is feasible for LP (29).

Hence,

W r ≤
∑
k∈K

α∗
k

tr
T
Uk −

∑
k∈K

β∗
k

tr
T
(Lk + εT āk) +

∑
j∈Sr

ρ∗j

=
∑
k∈K

α∗
k(
tr
n
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij)︸ ︷︷ ︸

1⃝

+
∑
k∈K

β∗
k(

∑
j∈Sr,i∈I

aijkx
∗
ij −

tr
T
(Lk + εT āk))︸ ︷︷ ︸

2⃝

+
∑
j∈Sr

(ρ∗j +
∑

i∈I,k∈K

(α∗
k − β∗

k)aijkx
∗
ij)︸ ︷︷ ︸

3⃝

(31)

We have divided the equation (31) into three parts. Next, we will derive the relationship between W r and Wε by controlling
these three parts. To facilitate the analysis, we first present the KKT conditions(Boyd et al., 2004) for the problem E(ε) as
follows ∑

k∈K

(α∗
k − β∗

k)aijkx
∗
ij − wijx

∗
ij + ρ∗tx

∗
ij = 0,∀i ∈ I, j ∈ Sr

ρ∗j (
∑
i∈I

x∗ij − 1) = 0,∀j ∈ Sr

α∗
k(
∑
ij

Tpjaijkx
∗
ij − Uk) = 0,∀k ∈ K

β∗
k(Lk + εT āk −

∑
ij

Tpjaijkx
∗
ij) = 0,∀k ∈ K.

(32)
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For part 1⃝, according to the KKT conditions, if
∑

i∈I,j∈J Tpjaijkx
∗
ij < Uk, then α∗

k = 0. Thus we only consider the
resource k making

∑
i∈I,j∈J Tpjaijkx

∗
ij = Uk. According to the Assumption 1, we have E(

∑
j∈Sr,i∈I aijkx

∗
ij) =

tr
T Uk

∀j ∈ Sr. Thus, we can show that

P

 ∑
j∈Sr,i∈I

aijkx
∗
ij ≤ (1− εx,r)

tr
T
Uk


= P

 ∑
j∈Sr,i∈I

aijkx
∗
ij − E[

∑
j∈Sr,i∈I

aijkx
∗
ij ] ≤ −εx,r

tr
T
Uk


≤ exp

(
−

trU
2
kε

2
x,r/T

2

2V ar(
∑

j∈Sr,i∈I aijkx
∗
ij)/tr +

2
3 ākUkεx,r/T

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 ) āk

Uk

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 )γ1

)

≤ δ

2K + 1

(33)

where the first inequality follows from the Bernstein inequality in Lemma B.1, the second inequality from
V ar(

∑
j∈Sr,i∈I aijkx

∗
ij)/tr ≤ ākE[

∑
j∈Sr,i∈I aijkxij∗ ]/tr = āk

Uk

T , the third inequality from the definition of γ1 and the
last from the definition of εx,r.

For part 2⃝, we only consider the k making
∑

i∈I,j∈J Tpjaijkx
∗
ij = Lk + εT āk, which means E

[∑
j∈Sr,i∈I(āk −

aijkx
∗
ij)
]
= tr

T

(
(1− ε)T āk − Lk

)
. Using Bernstein inequality, we have

P

 ∑
j∈Sr,i∈I

(āk − aijkx
∗
ij) ≤ (1− εx,r)

tr
T
((1− ε)T āk − Lk)


= P

 ∑
j∈Sr,i∈I

(āk − aijkx
∗
ij)− E

[ ∑
j∈Sr,i∈I

(āk − aijkx
∗
ij)
]
≤ −εx,r

tr
T
((1− ε)T āk − Lk)


≤ exp

−
tr

(
(1− ε)T āk − Lk

)2
ε2x,r/T

2

2V ar
(∑

j∈Sr,i∈I(āk − aijkx∗ij)
)
/tr +

2
3 āk

(
(1− ε)T āk − Lk

)
εx,r/T


≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 ) āk

(1−ε)T āk−Lk

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 )γ1

)

≤ δ

2K + 1

(34)

where the second inequality from V ar
(∑

j∈Sr,i∈I(āk − aijkx
∗
ij)
)
/tr ≤ ākE[

∑
j∈Sr,i∈I(āk − aijkx

∗
ij)]/tr =

āk
(1−ε)T āk−Lk

T , the third inequality from the definition of γ1 and the last from the definition of εx,r.

For the last part 3⃝, from KKT conditions, it’s easy to verify that
∑

i∈I,k∈K(α
∗
k − β∗

k)aijkx
∗
ij −

∑
i∈I wijx

∗
ij +

ρ∗j
∑

i∈I x
∗
ij =

∑
i∈I,k∈K(α

∗
k−β∗

k)aijkx
∗
ij−
∑

i∈I wijx
∗
ij+ρ

∗
j = 0, so

∑
i∈I,k∈K(α

∗
k−β∗

k)aijkx
∗
ij+ρ

∗
j =

∑
i∈I wijx

∗
ij ∈

[0, w̄]. Moreover, E[ρ∗j +
∑

i∈I,k∈K(α
∗
k − β∗

k)aijkx
∗
ij ] =

∑
i∈I,j∈J Tpjwijx

∗
ij

T = Wε

T ∀j ∈ Sr. Therefore, following the
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similar analysis as equation (33), we have

P

∑
j∈Sr

(
ρ∗j +

∑
i∈I,k∈K

(α∗
k − β∗

k)aijkx
∗
ij

)
≥ tr
T
Wε(1 + εx,r)


= P (

∑
j∈Sr,i∈I

wijx
∗
ij − E[

∑
j∈Sr,i∈I

wijx
∗
ij ] ≥ εx,r

tr
T
Wε)

≤ exp

(
−

trW
2
ε ε

2
x,r/T

2

2V ar(
∑

j∈Sr,i∈I wijx∗ij)/tr +
2
3 ākWεεx,r/T

)

≤ exp(−
tr
T ε

2
x,r

2(1 +
εx,r

3 ) w̄
Wε

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 )γ1

)

≤ δ

2K + 1

(35)

where the first inequality follows from the Bernstein inequality in Lemma B.1, the second inequality from
V ar(

∑
j∈Sr,i∈I wijx

∗
ij)/tr ≤ w̄E[

∑
j∈Sr,i∈I wijx

∗
ij ]/tr = w̄Wε

T , the third inequality from the definition of γ1 and
the last from the definition of εx,r.

Based on inequality (32)-(34), we have shown that the following inequalities holds with probability at least 1− δ∑
j∈Sr,i∈I

aijkx
∗
ij ≥ (1− εx,r)

tr
T
Uk,∀k ∈ K

∑
j∈Sr,i∈I

(āk − aijkx
∗
ij) ≥ (1− εx,r)

tr
T
((1− ε)T āk − Lk),∀k ∈ K

∑
j∈Sr

(ρ∗j +
∑

i∈I,k∈K

(α∗
k − β∗

k)aijkx
∗
ij) ≤

tr
T
Wε(1 + εx,r),∀k ∈ K.

(36)

Therefore, with probability at least 1− δ, we have

1⃝+ 2⃝+ 3⃝

=
∑
k∈K

α∗
k

( tr
T
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij

)
+
∑
k∈K

β∗
k

( tr
T

(
(1− ε)T āk − Lk

)
−

∑
j∈Sr,i∈I

(āk − aijkx
∗
ij)
)
+ 3⃝

≤ εx,r
∑
k∈K

(
α∗
k

tr
T
Uk + β∗

k

( tr
T

(
(1− ε)T āk − Lk

)))
+ 3⃝

≤ εx,r
∑
k∈K

(
α∗
k

tr
T
Uk + β∗

k

( tr
T

(
(1− ε)T āk − Lk

)))
+
tr
T
Wε(1 + εx,r)

≤ εx,r
( tr
T
Wε +

∑
k∈K

β∗
ktrāk

)
+
tr
T
Wε(1 + εx,r)

≤
(
1 + (2 +

1

ξ∗ − ε
)εx,r

) tr
T
Wε

(37)

where the first inequality from
∑

j∈Sr,i∈I aijkx
∗
ij ≥ (1− εx,r)

tr
T Uk and

∑
j∈Sr,i∈I(āk − aijkx

∗
ij) ≥ (1− εx,r)

tr
T ((1−

ε)T āk−Lk); the second inequality from
∑

j∈Sr
(ρ∗j +

∑
i∈I,k∈K(α

∗
k−β∗

k)aijkx
∗
ij) ≤ tr

T Wε(1+εx,r); the third inequality
from Wε =

∑
k∈K α

∗
kUk −

∑
k∈K β

∗
k(Lk + εT āk) +

∑
j∈J Tpjρ

∗
j ≥

∑
k∈K α

∗
kUk −

∑
k∈K β

∗
k(εT āk + Lk); the final

inequality from
∑

k∈K β
∗
kT āk ≤ 1

ξ∗−εWε, which can be shown if we follow the proof of Theorem 4.2 in Appendix D and
regard the problem E(ε) as an LP with ξ∗ − ε measure of feasibility.

Theorem G.2. Under Assumption 1-3, if τ1 + ε ≤ ξ∗ and γ1 = max
(
āk

Uk
, āk

(1−ε)T āk−Lk
, w̄
Wε+τ1

)
= O

(
ε2

ln(K/ε)

)
, with
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probability 1− 2δ, we have
trWε

T

(
1−

(
2 +

1

ξ∗ − ε

)
εx,r

)
≤W r ≤ trWε

T

(
1 +

(
2 +

1

ξ∗ − ε

)
εx,r

)

where the predefined parameter ε > 0, τ1 =
√
ε

1−
√
ε
, δ = ε

3l , l = log2(
1
ε ) and εx,r =

√
4Tγ1 ln( 2K+1

δ )

tr
.

Proof. RHS: we have proven the right hand side in Lemma G.1.
LHS: For every request in stage r, we consider to imitate Algorithm 1 to design an algorithm P̃1. In Algorithm P̃1, we
first solve the LP problem E(ε+

εx,r

1−εx,r
) to get the LP solution x1∗ij and then assign request j ∈ J to channel i ∈ I with

probability (1− εx,r)x
1∗
ij . Following the similar analysis in the proof of Lemma 4.1, we can prove that , with probability

1− δ,

P

 tr∑
j=1

X P̃1

jk ≥ tr
T
Uk

 ≤ exp

(
−

trε
2
x,r

2(1− 2
3εx,r)T

āk

Uk

)

P

 tr∑
j=1

Y P̃1
j ≤ (1− (2 +

1

ξ∗ − ε
)εx,r)

tr
T
Wε

 ≤ exp

(
−

trε
2
x,r

2(1− 2
3εx,r)T

w̄
Wτ1+ε

)

P

 tr∑
j=1

X P̃1

jk ≤ tr
T
Lk

 ≤ exp

(
−

trε
2
x,r

2(1− 2
3εx,r)T

āk

(1−ε−τ1)T āk−Lk

)
(38)

where the second inequality from the truth that the problem E(ε) is satisfied with the strong feasible condition with the
measure parameter ξ∗ − ε and W εx,r

1−εx,r
+ε ≥Wτ1+ε. Therefore, we have that

P

 tr∑
j=1

Y P̃1
j ≤

(
1− (2 +

1

ξ∗ − ε
)εx,r

) tr
T
Wε

+
∑
k∈K

P

 tr∑
j=1

X P̃1

jk /∈ [
tr
T
Lk,

tr
T
Uk]


≤ (2K + 1) exp(−

trε
2
x,r

4Tγ1
)

≤ δ,

(39)

which means that W r ≥ (1− (2 + 1
ξ∗−ε )εx,r)

tr
T Wτ , w.p. 1− δ. This completes the proof.

G.2. Proof with ξ∗ but without the Knowledge of Distribution

Theorem 4.5. Under Assumption 1-3, if ε > 0 τ1 =
√
ε

1−
√
ε

such that τ1 + ε ≤ ξ∗ and γ1 =

max
(
āk

Uk
, āk

(1−ε)T āk−Lk
, w̄
Wε+τ1

)
= O

(
ε2

ln(K/ε)

)
, Algorithm A1 defined in Algorithm 4 achieves an objective value of

at least
(
1−O( ε

ξ∗−ε )
)
W0 and satisfies the constraints w.p. 1− ε.

Now, we prove that, at each stage r, Algorithm A1 returns a solution whose cumulative revenue is at least trZ
r

T (1− εy,r).
Meanwhile, the consumed amount of every resource k is between tr

T (Lk + (ε− εx,r

1+εx,r
)T āk)(1 + εx,r) and trUk

T (1 + εx,r)

with probability at least 1− δ.

First step: We design a surrogate Algorithm P̃2 that allocates request j to channel i with probability x(ε)∗ij .

Lemma G.3. In the r-th stage, if γ1 = O( ε2

ln(K
ε )

) and Zr ≤ Wε, the Algorithm P̃2 returns a solution satisfying the∑tr+1

j=tr+1 Y
P̃2
j ≥ (1−εy,r) trn Z

r and
∑tr+1

j=tr+1X
P̃2
j ∈

[
tr
T

(
(1 + εx,r)Lk + (ε(1 + εx,r)− εx,r)T āk

)
,
(1+εx,r)tr

T Uk

]
w.p.

1− δ, where δ = ε
3l , εx,r =

√
4Tγ1 ln( 2K+1

δ )

tr
and εy,r =

√
4T ln( 2K+1

δ )w̄

Zrtr
.

Proof. Following the same technique in the proof of Lemma 4.1, we use Bernstein inequality to bound the probability of
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upper bound violation as follows

P

 tr+1∑
j=tr+1

X P̃2

jk ≥ (1 + εx,r)
tr
T
Uk


≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 ) āk

Uk

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 )γ1

)

≤ δ

2K + 1
.

For the lower bound,

P

 tr+1∑
j=1+tr

X P̃2

jk ≤ tr
T
(Lk + (ε− εx,r

1 + εx,r
)T āk)(1 + εx,r)


= P

 tr+1∑
j=1+tr

(āk −X P̃2

jk ) ≥ (1 + εx,r)
tr
T
((1− ε)T āk − Lk)


≤ exp

(
−

tr
T ε

2
x,r

2(1 + 1
3εx,r)

āk

(1−ε)T āk−Lk

)

≤ exp

(
−

tr
T ε

2
x,r

2(1 +
εx,r

3 )γ1

)

≤ δ

2K + 1
.

For the accumulative revenue in r-th stage,

P

 tr+1∑
j=tr+1

Y P̃2
j ≤ (1− εy,r)

tr
T
Zr


= P

 tr+1∑
j=tr+1

(
E[Y P̃2

j ]− Y P̃2
j

)
≥ tr
T

(
TE[Y P̃2

j ]− (1− εy,r)Z
r
)

≤ exp

−

(
TE[Y P̃2

j ]− (1− εy,r)Z
r
)2
tr

T

(
2Tσ2

1 +
2
3 w̄
(
TE[Y P̃2

j ]− (1− εy,r)Zr
))


= exp

−
tr
T

(
TE[Y P̃2

j ]− (1− εy,r)Z
r
)

2
Tσ2

1

TE[Y P̃2
j ]−(1−2εy,r)Zr

+ 2
3 w̄



≤ exp

−
tr

(
εy,rTE[Y P̃2

j ]
)2

T
(
2TE[Y P̃2

j ]w̄ + 2
3εy,rw̄TE[Y

P̃2
j ]
)


≤ exp

(
−

trε
2
y,r

2(1 +
εy,r

3 )T w̄
Zr

)

≤ δ

2K + 1
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where the second inequality follows σ2
1 = V ar(Y P̃2

j ) ≤ w̄E[Y P̃2
j ] and TE[Y P̃2

j ] − (1 − εy,r)Z
r ≥ εy,rTE[Y P̃2

j ], the

third inequality follows Zr ≤ Wε = TE[Y P̃2
j ] according to the condition of the lemma, and the last inequality from

εy,r =

√
4T ln( 2K+1

δ )w̄

Zrtr
.

Therefore, ∑
k∈K

P

 tr+1∑
j=tr+1

Xjk /∈
[
tr
T

(
(1 + εx,r)Lk − (ε(1 + εx,r)− εx,r)T āk

)
,
(1 + εx,r)tr

T
Ur

]
+ P

 tr+1∑
j=tr+1

Y P̃2
j ≤ (1− εy,r)

tr
T
Zr

 ≤ δ.

Second Step: Applying the same technique in the proof of Theorem 4.4 , we derive a potential function to bound the failure
probability of hybrid Algorithm As

1P̃
tr−s
2 for request in stage r.

We begin with the moment generating function for the event that the consumed resource k ∈ K is larger than (1+ εx,r)
tr
T Uk.

It can be shown that

P

 s+tr∑
j=1+tr

XA1

jk +

tr+1∑
j=s+tr

X P̃2

jk ≥ (1 + εx,r)trUk

T


≤ min

t>0
E

exp(t( s+tr∑
j=1+tr

XA1

jk +

tr+1∑
j=s+tr

X P̃2

jk − (1 + εx,r)trUk

T
))


≤ min

t>0
E

exp(t( s+tr∑
j=1+tr

XA1

jk − (1 + εx,r)sUk

T
) + t(

tr+1∑
j=s+tr

X P̃2

jk − (1 + εx,r)(tr − s)Uk

T
))


≤ min

t>0
E

ϕsk(t) exp(t( tr+1∑
j=s+tr

(XA1

jk − E[X P̃2

jk ])) +
tr − s

T
t(TE[X P̃2

jk ]− (1 + εx,r)Uk))


≤ min

t>0
E

ϕsk(t) exp((tr − s)
V ar(X P̃2

jk )

ā2k
(etāk − 1− tāk) +

−(tr − s)tεx,rUk

T
)


≤ E

[
ϕsk

(
ln(1 + εx,r)

āk

)
exp(− (tr − s)Uk

T āk
((1 + η) ln(1 + η)− η))

]
≤ E

[
ϕsk

(
ln(1 + εx,r)

āk

)
exp(− tr − s

T

ε2x,r
4γ1

)

]

(40)

where ϕsk(t) = exp(t(
∑s+tr

j=1+tr
XA1

jk − (1+εx,r)sUk

T )). It should be noted that most of the above analysis is similar as the

derivation of inequality (18) except that V ar(X P̃2

jk ) ≤ ākE[X P̃2

ik ] ≤ āk
Uk

T .

Next for the lower bound, we set ZP̃2

jk = āk −X P̃2

jk and ZA1

jk = āk −XA1

jk , then we have

P

 s+tr∑
j=1+tr

ZA1

jk +

tr+1∑
j=s+tr

ZP̃2

jk ≥
(1 + εx,r)tr

(
(1− ε)T āk − Lk

)
T


≤ min

t>0
E

exp
t( s+tr∑

j=1+tr

ZA1

jk +

tr+1∑
j=s+tr

ZP̃2

jk −
(1 + εx,r)tr

(
(1− ε)T āk − Lk

)
T

)
(41)
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≤ min
t>0

E

exp
t( s+tr∑

j=1+tr

ZA1

jk −
(1 + εx,r)s

(
(1− ε)T āk − Lk

)
T

)

+t

( tr+1∑
j=s+tr

ZP̃2

jk −
(1 + εx,r)(tr − s)

(
(1− ε)T āk − Lk

)
T

)
≤ min

t>0
E

φs
k(t) exp

t( tr+1∑
j=s+tr

(ZP̃2

jk − E[ZP̃2

jk ])
)
+
tr − s

T
t
(
TE[ZP̃2

jk ]− (1 + εx,r)((1− ε)T āk − Lk)
)

≤ min
t>0

E

φs
k(t) exp

(tr − s)
σ2

ā2k
(etāk − 1− tāk) +

−(tr − s)tεx,r

(
(1− ε)T āk − Lk

)
T


≤ E

[
φs
k

(
ln(1 + εx,r)

āk

)
exp

(
− (tr − s)(1− ε)(T āk − Lk)

T āk

(
(1 + η) ln(1 + η)− η

))]
≤ E

[
φs
k

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s

T

ε2x,r
4γ1

)]
where the third inequality follows from setting φs

k(t) = exp
(
t(
∑s+tr

j=1+tr
ZA1

jk − (1+εx,r)s((1−ε)T āk−Lk)
T )

)
; the fifth

inequality from TE[ZP̃2

jk ] ≤ (1− ε)T āk − Lk and σ2 = V ar(ZP̃2

jk ) ≤ ākE[ZP̃2

jk ].

Then we consider the revenue and have that

P (

s+tr∑
j=1+tr

Y A1
j +

tr+1∑
j=s+1+tr

Y P̃2
j ≤ (1− εy,r)

tr
T
Zr)

≤ min
t>0

E

exp
t((1− εy,r)

tr
T
Zr −

s+tr∑
j=1+tr

Y A1
j −

tr+1∑
j=s+1+tr

Y P̃2
j )
)

≤ min
t>0

E

exp
t( s

T
(1− εy,r)Z

r −
s+tr∑

j=1+tr

Y A1
j

)
+ t
( tr − s

T
(1− εy,r)Z

r −
tr+1∑

j=s+1+tr

Y P̃2
j

)
≤ min

t>0
E

ψs(t) exp

t tr+1∑
j=s+1+tr

(E[Y P̃2
j ]− Y P̃2

j ) +
tr − s

T
t
(
(1− εy,r)Z

r − E[Y P̃2
j ]
)

≤ min
t>0

E
[
ψs(t) exp

(
(tr − s)

σ2
1

w̄2
(etw̄ − 1− tw̄)− (tr − s)tεy,rE[Y P̃2

j ]

)]

≤ E

ψs

(
ln(1 + εy,r)

w̄

)
exp

−
(tr − s)E[Y P̃2

j ]

w̄

(
(1 + η) ln(1 + η)− η

)
≤ E

[
ψs

(
ln(1 + εy,r)

w̄

)
exp

(
− tr − s

T

ε2y,rZ
r

4w̄

)]

(42)

where the third inequality follows from ψs(t) = exp(t( s
T (1 − εy,r)Z

r −
∑s+tr

j=1+tr
Y A1
j )); the fourth inequality from

Zr ≤ TE[Y P̃2
j ]; the fifth inequality from σ2

1 = V ar(Y P̃2
j ) ≤ w̄E[Y P̃2

j ].

With the inequalities (40)-(42), we can bound the failure probability of hybrid Algorithm As
1P̃

tr−s
2 in stage r by
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Fr(A
s
1P̃

tr−s
2 ) which is defined as

Fr(A
s
1P̃

tr−s
2 ) =E

[
ϕsk

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s

T

ε2x,r
4γ1

)
+ φs

k

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ ψs

(
ln(1 + εy,r)

w̄

)
exp

(
− tr − s

T

ε2y,rZ
r

4w̄

)] (43)

Lemma G.4. Fr(A
s
1P̃

tr−s
2 ) ≤ Fr(A

s−1
1 P̃ tr−s+1

2 )

Proof. By the definition of Fr(A
sP̃T−s

2 ), we have that

Fr(A
s
1P̃

tr−s
2 )

= E
[
ϕsk

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s

T

ε2x,r
4γ1

)
+ φs

k

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ ψs

(
ln(1 + εy,r)

w̄

)
exp

(
− tr − s

T

ε2y,rZ
r

4w̄

)]

=E
[
ϕs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
ln(1 + εx,r)

āk

(
XA1

sk − (1 + εx,r)Uk

T

))
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ φs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
ln(1 + εx,r)

āk

(
ZA1

sk − (1 + εx,r)((1− ε)T āk − Lk)

T

))
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ ψs−1

(
ln(1 + εy,r)

w̄

)
exp

(
ln(1 + εy,r)

w̄

( (1− εy,r)Z
r

T
− Y A1

s

))
exp

(
− tr − s

T

ε2y,rZ
r

4w̄

)]
According to algorithm A in Algorithm 2, we allocate the s-th request to the channel i∗ which minimize the Fr(A

s
1P̃

tr−s
2 ).

Thus we have
Fr(A

s
1P̃

tr−s
2 )

≤ E
[
ϕs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
ln(1 + εx,r)

āk

(
X P̃2

sk − (1 + εx,r)Uk

T

))
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ φs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
ln(1 + εx,r)

āk

(
ZP̃2

sk − (1 + εx,r)((1− ε)T āk − Lk)

T

))
exp

(
− tr − s

T

ε2x,r
4γ1

)

+ ψs−1

(
ln(1 + εy,r)

w̄

)
exp

(
ln(1 + εy,r)

w̄

( (1− εy,r)Z
r

T
− Y P̃2

s

))
exp

(
− tr − s

T

ε2y,rZ
r

4w̄

)]
Following the similar analysis in the inequality (40)-(42), we can show that

Fr(A
s
1P̃

tr−s
2 ) ≤E

[
ϕs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s+ 1

T

ε2x,r
4γ1

)

+ φs−1
k

(
ln(1 + εx,r)

āk

)
exp

(
− tr − s+ 1

T

ε2x,r
4γ1

)

+ ψs−1

(
ln(1 + εy,r)

w̄

)
exp

(
− tr − s+ 1

T

ε2y,rZ
r

4w̄

)]
≤Fr(A

s−1
1 P̃ tr−s+1

2 ),

which completes the proof.

In Lemma G.3, we have proven that Fr(P̃
tr
2 ) ≤ δ and we will show that Fr(A

s
1P̃

tr−s
2 ) ≤ Fr(A

s−1
1 P̃ tr−s+1

2 ) in Lemma G.4.
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Thus we have Fr(A
tr
1 ) ≤ Fr(P̃

tr
2 ) ≤ δ by induction. Meanwhile, according to Theorem G.2 we have that

(1− (4 +
2

ξ∗ − ε
)εx,r−1)Wε ≤ Zr ≤Wε

with probability 1− 2δ. During the stage r, the Algorithm A1 return a solution satisfying

tr+1∑
j=tr+1

XA1

jk ≤ (1 + εx,r)tr
T

Ur,∀k ∈ K

tr+1∑
j=tr+1

(āk −XA1

jk ) ≤ (1 + εx,r)tr
T

((1− ε)T āk − Lk),∀k ∈ K

tr+1∑
j=tr+1

Y A1
j ≥ (1− εy,r)

tr
T
Zr ≥ (1− εy,r)

tr
T
(1− (4 +

2

ξ∗ − ε
)εx,r−1)Wε

with probability at least 1− 3δ, since

P

{ tr+1∑
j=tr+1

XA1

jk ∈
[ tr
T

(
(1 + εx,r)Lk − (ε(1 + εx,r)− εx,r)T āk

)
,
(1 + εx,r)tr

T
Ur

]
,∀k ∈ K

}
⋂{ tr+1∑

j=tr+1

Y A1
j ≥ (1− εy,r)

tr
T
Zr

}⋂{
Zr ∈

[ trWε

T

(
1−

(
4 +

1

ξ∗ − ε

)
εx,r

)
,
trWε

T

(
1 +

( 1

ξ∗ − ε

)
εx,r

)]}
≥ (1− δ)(1− 2δ) ≥ 1− 3δ.

Now considering all the stages, for the upper bound, we have
l−1∑
r=0

tr+1∑
j=tr+1

XA1

jk ≤
l−1∑
r=0

(1 + εx,r)tr
T

Uk ≤ Uk. (44)

For the lower bound, we have

(1− ε)T āk −
l−1∑
r=0

tr+1∑
j=tr+1

XA1

jk =

l−1∑
r=0

tr+1∑
j=tr+1

(āk −XA1

jk )

≤
l−1∑
r=0

(1 + εx,r)tr
T

((1− ε)T āk − Lk)

≤ (1− ε)T āk − Lk.

(45)

which is equivalent to
l−1∑
r=0

tr+1∑
j=tr+1

XA1

jk ≥ Lk.

And for the revenue, we have
l−1∑
r=0

tr+1∑
j=tr+1

Y A1
j ≥

l−1∑
r=0

(1− εy,r)
tr(1− (4 + 2

ξ∗−ε )εx,r−1

T
)Wε

≥
l−1∑
r=0

(1− εy,r)
tr(1− (4 + 2

ξ∗−ε )εx,r−1)

T
(1− ε

ξ∗
)W0

≥ (1−O(
ε

ξ∗ − ε
))W0.

(46)

since δ = ε
3l , the inequalities (44)-(46) hold with probability at least 1− ε, which completes the proof of Theorem 4.5.
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H. Proof of Theorem 5.2
Theorem 5.2. Under Assumption 1-3, if γ2 = max( āk

Uk
, āk

T āk−Lk
) = O( ϵ2

ln(K/ε) ), Algorithm 5 with tr i.i.d. requests outputs

ξ̂ such that
ξ̂ ∈ [ξ∗ − 4ϵx,r, ξ

∗]

w.p. 1− 2δ, where ϵx,r =
√

4γ2T ln(K/δ)
tr

.

Proof. RHS: This side takes the same techniques as in Lemma G.1. First, the dual of LP (3) in Section 3.1 is

min
α,β,ρ

∑
k∈K

αkUk −
∑
k∈K

βkLk +
∑
j∈J

Tpjρj

s.t.
∑
k∈K

(αk − βk)aijk + ρj ≥ 0 ∀i ∈ I, j ∈ J∑
k∈K

T ākβk = 1

αk, βk, ρj ≥ 0, k ∈ K, j ∈ J .

(47)

We denote the optimal solution of LP (3) in Section 3.1 and LP (47) as (x∗ij , ξ
∗) and (α∗

k, β
∗
k , ρ

∗
k) respectively.

According to the KKT conditions(Boyd et al., 2004), we have that∑
k∈K

(α∗
k − β∗

k)aijkx
∗
ij + ρ∗jx

∗
ij = 0∑

k∈K

T ākβ
∗
k = 1

ρ∗j (
∑
i∈I

x∗ij − 1) = 0

α∗
k(
∑
ij

Tpjaijkx
∗
ij − Uk) = 0

β∗
k(Lk + ξ∗T āk −

∑
ij

Tpjaijkx
∗
ij) = 0

(48)

Similarly, the dual of sampled LP (7) in Algorithm 5 is

min
α,β,ρ

∑
k∈K

αk
tr
T
Uk −

∑
k∈K

βk
tr
T
Lk +

∑
j∈Sr

ρj

s.t.
∑
k∈K

(αk − βk)aijk + ρj ≥ 0 ∀i ∈ I, j ∈ Sr∑
k∈K

trākβk = 1

αk, βk, ρj ≥ 0, k ∈ K, j ∈ Sr

(49)

where Sr denotes the request set in stage r. Since (α∗
k, β

∗
k , ρ

∗
k) is a feasible solution to the LP (47), the solution
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(
Tα∗

k

tr
,
Tβ∗

k

tr
,
Tρ∗

k

tr
) is feasible for the dual of sample LP (49), we have that

ξ̂ + 2ϵx,r =
T

tr

∑
k∈K

α∗
k

tr
T
Uk −

∑
k∈K

β∗
k

tr
T
Lk +

∑
j∈Sr

ρ∗j


=
T

tr

∑
k∈K

α∗
k

 tr
T
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij


︸ ︷︷ ︸

1⃝

+
T

tr

∑
k∈K

β∗
k

 ∑
j∈Sr,i∈I

aijkx
∗
ij −

tr
T
Lk


︸ ︷︷ ︸

2⃝

+
T

tr

∑
j∈Sr

ρ∗j + ∑
i∈I,k∈K

(α∗
k − β∗

k)aijkx
∗
ij


︸ ︷︷ ︸

3⃝

(50)

=
T

tr

∑
k∈K

α∗
k

 tr
T
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij


︸ ︷︷ ︸

1⃝

+
T

tr

∑
k∈K

β∗
k

 ∑
j∈Sr,i∈I

aijkx
∗
ij −

tr
T
Lk


︸ ︷︷ ︸

2⃝
where the final equality follows from the KKT conditions (48), i.e.

∑
k∈K(α

∗
k−β∗

k)aijkx
∗
ij+ρ

∗
jx

∗
ij = 0 and ρ∗j (

∑
i∈I x

∗
ij−

1) = 0, so that
∑

i∈I,k∈K(α
∗
k − β∗

k)aijkx
∗
ij +

∑
i∈I ρ

∗
jx

∗
ij =

∑
i∈I,k∈K(α

∗
k − β∗

k)aijkx
∗
ij + ρ∗j = 0.

For those k such that Lk + ξ∗T āk <
∑

i∈I,j∈J Tpjaijkx
∗
ij < Uk, we know that they have no effect to ξ̂ following the

complementary slackness in (48). For part 1⃝, we only consider the resource k making
∑

i∈I,j∈J Tpjaijkx
∗
ij = Uk. By

Lemma B.1, it is easy to get that

P (
∑

j∈[tr],i∈I

aijkx
∗
ij ≤ (1− ϵx,r)

tr
T
Uk) ≤ exp

(
−

tr
T ϵ

2
x,r

2(1 +
ϵx,r

3 ) āk

Uk

)
(51)

where E(
∑

i∈I aijkx
∗
ij) =

Uk

T , ∀j ∈ J .

Similarly, for part 2⃝, we only consider the constraints k making
∑

i∈I,j∈J Tpjaijkx
∗
ij = Lk + ξ∗T āk. Before that, we

redefine the r.v. Yjk = (1+ ξ∗)āk −
∑

i∈I aijkx
∗
ij . Since ξ∗ ∈ [0, 1] from Assumption 3, we know that |Yjk| ≤ (1+ ξ∗)āk

and E(Yjk) =
T āk−Lk

T . Therefore, by Lemma B.1,

P (
∑
j∈Sr

Yjk ≤ (1− ϵx,r)
tr
T
(T āk − Lk)) ≤ exp

(
−

tr
T ϵ

2
x,r

2(1 +
ϵx,r

3 ) (1+ξ∗)āk

T āk−Lk

)
(52)

Since γ2 = max( āk

Uk
, āk

T āk−Lk
) = O( ϵ2

ln(K
ε )

), and both lower and upper bound are achieved only if Uk = T āk − Lk, we
have that ∑

j∈Sr,i∈I
aijkx

∗
ij ≥ (1− ϵx,r)

tr
T
Uk

∑
j∈Sr

((1 + ξ∗)āk −
∑
i∈I

aijkx
∗
ij) ≥ (1− ϵx,r)

tr
T
(T āk − Lk)

(53)

w.p. at least 1− δ.

31



Nearly Optimal Competitive Ratio for Online Allocation Problems with Two-sided Resource Constraints and Finite Requests

Therefore, with probability at least 1− δ we have that

1⃝+ 2⃝

=
T

tr

∑
k∈K

α∗
k

(
tr
T
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij

)
+
∑
k∈K

β∗
k

( ∑
j∈Sr,i∈I

aijkx
∗
ij −

tr
T
Lk

)
=
T

tr

∑
k∈K

α∗
k

(
tr
T
Uk −

∑
j∈Sr,i∈I

aijkx
∗
ij

)
+
∑
k∈K

β∗
k

(
tr
T
(T āk − Lk)−

∑
j∈Sr

((1 + ξ∗)āk −
∑
i∈I

aijkx
∗
ij)

)

+
∑
k∈K

β∗
kξ

∗trāk

)

≤ T

tr

(
ϵx,r

∑
k∈K

α∗
k

tr
T
Uk + ϵx,r

∑
k∈K

β∗
k

tr
T
(T āk − Lk) +

∑
k∈K

β∗
kξ

∗trāk

)
=
T

tr

(
ϵx,r(

∑
k∈K

α∗
k

tr
T
Uk −

∑
k∈K

β∗
k

tr
T
Lk) + (ϵx,r + ξ∗)

∑
k∈K

β∗
ktrāk

)
≤ T

tr

(
ϵx,rξ

∗ tr
T

+ (ϵx,r + ξ∗)
tr
T

)
= ξ∗ + (ξ∗ + 1)ϵx,r

≤ ξ∗ + 2ϵx,r

(54)

where the first inequality from
∑

j∈Sr,i∈I aijkx
∗
ij ≥ (1 − ϵx,r)

tr
T Uk and

∑
j∈Sr

((1 + ξ∗)āk −
∑

i∈I aijkx
∗
ij) ≥ (1 −

ϵx,r)
tr
T (T āk−Lk); the second inequality from

∑
k∈K β

∗
kT āk = 1 and ξ∗ =

∑
k∈K α

∗
kUk−

∑
k∈K β

∗
kLk+

∑
j∈J Tpjρ

∗
j ≥

α∗
kUk −

∑
k∈K β

∗
kLk; the last inequality follows from the fact ξ∗ ≤ 1.

LHS: We design an algorithm P̃3 by allocating request j to channel i with probability (1− ϵx,r)x
∗
ij , where (x∗ij , ξ

∗)

is the optimal solution for LP (7). Following the very similar proofs in Section 4.1 and letting γ2 = max( āk

Uk
, āk

T āk−Lk
),

εx,r =
√

4γ2T ln(K/δ)
tr

, we have that

P

( tr∑
j=1

X P̃3

jk ≥ tr
T
Uk

)
≤ exp

(
−

trϵ
2
x,r/T

2(1− 2
3ϵx,r)

āk

Uk

)
≤ δ

2K

where the second inequality follows from the definition of tr and γ2 = O
(

ϵ2

ln(K/ε)

)
, which result in εx,r < 1. Defining

Y P̃3

jk = (1− ϵx,r)(1 + ξ∗)āk −X P̃3

jk , we have that E(Y P̃3

jk ) ≤ (1−ϵx,r)(T āk−Lk)
T and |Yjk| ≤ (1− ϵx,r)(1 + ξ∗)āk, since

|X P̃3

jk | ≤ (1− ϵx,r)āk. Therefore, we have

P

( tr∑
j=1

Y P̃3

jk ≥ tr
T
(T āk − Lk)

)
≤ exp

(
−

trϵ
2
x,r/T

2(1− 2
3ϵx,r)

(1−ϵx,r)(1+ξ∗)āk

T āk−Lk

)
≤ δ

2K

Thus, with probability at least 1− δ, we could find a solution whose consumed resource for each k is in
[
tr
T (Lk + (ξ∗ −

2ϵx,r)T āk),
tr
T Uk

]
by Algorithm P̃3. According to the definition of ξ̂ in Algorithm 5, we have that ξ̂ ≥ ξ∗ − 4ϵx,r.

In conclusion, we have that ξ∗ − 4ϵx,r ≤ ξ̂ ≤ ξ∗, w.p. 1− 2δ.

Now ξ̂r can be viewed as an good estimate for ξ∗ from 0, if we have enough data.
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I. Proof of Theorem 5.3
Proof. We mainly consider two events, namely,

G1 =


T∑

j=1

Y A2
j ≥ (1−O(

ε

ξ∗ − 4
√
ε− ε

))W0,

T∑
j=1

XA2

jk ∈ [Lk, Uk]∀k ∈ K

 ,

G2 =
{
ξ∗ − 4

√
ε ≤ ξ̂0 ≤ ξ∗

}
.

Step 1.

When initializing Algorithm 6, we use the first εT incoming requests to estimate the optimal measure of feasibility ξ∗. From
the Theorem 5.2, we have that P

(
{ξ∗ − 4

√
ε ≤ ξ̂0 ≤ ξ∗}

)
≥ 1− 2δ, choosing δ = ε

3l+2 .

Step 2.

We investigate the conditional event G1|G2. Under the assumption
√
ε

1−
√
ε
+ 4

√
ε + ε ≤ ξ∗, if ξ∗ − 4

√
ε ≤ ξ̂0, we have

ξ̂0 ≥ ξ∗ − 4
√
ε ≥

√
ε

1−
√
ε
+ ε. Besides, we know that the domain

Lk + ξ̂0T āk ≤
∑

i∈I,j∈J
Tpjaijkxij ≤ Uk,∀k ∈ K

∑
i∈I

xij ≤ 1,∀j ∈ J

xij ≥ 0,∀i ∈ I, j ∈ J ,
is feasible under the assumption.

When γ3 = O
(

ε2

ln(K/ε)

)
, according to the Theorem 4.5, we have

P

{ T∑
j=1

Y A2
j ≥ (1−O(

ε

ξ̂0 − ε
))W0

}⋂{ T∑
j=1

XA2

jk ∈ [Lk, Uk]

} ≥ 1− 3lδ,

where l = log2
(
1
ε

)
. Due to ξ̂0 ≥ ξ∗ − 4

√
ε, we also could derive that P(G1|G2) ≥ 1− 3lδ.

Step 3.

Now we can verify that

P(Gc
1) = P(Gc

1|G2)P(G2) + P(Gc
1|Gc

2)P(G
c
2)

≤ P(Gc
1|G2) + P(Gc

2)

≤ 3lδ + 2δ = ϵ.

Therefore, P(G1) ≥ 1 − ε, if ε ≥ 0 and τ1 =
√
ε

1−
√
ε

such that τ1 + 4
√
ε + ε ≤ ξ∗ and γ3 = O( ε2

ln(K
ε )

) ≤
max( āk

Uk
, āk

(1−ϵ)T āk−Lk
, w̄
Wϵ+τ1

).
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