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Abstract

The out-of-distribution (OOD) generalization
problem in federated learning (FL) has recently
attracted significant research interest. A common
approach, derived from centralized learning, is
to extract causal features which exhibit causal re-
lationships with the label. However, in FL, the
global feature extractor typically captures only
invariant causal features shared across clients and
thus discards many other causal features that are
potentially useful for OOD generalization. To
address this problem, we propose FedUni, a sim-
ple yet effective architecture trained to extract all
possible causal features from any input. FedUni
consists of a comprehensive feature extractor, de-
signed to identify a union of all causal feature
types in the input, followed by a feature compres-
sor, which discards potential inactive causal fea-
tures. With this architecture, FedUni can benefit
from collaborative training in FL while avoiding
the cost of model aggregation (i.e., extracting only
invariant features). In addition, to further enhance
the feature extractor’s ability to capture causal fea-
tures, FedUni add a causal intervention module
on the client side, which employs a counterfac-
tual generator to generate counterfactual exam-
ples that simulate distributions shifts. Extensive
experiments and theoretical analysis demonstrate
that our method significantly improves OOD gen-
eralization performance.
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1. Introduction
Federated Learning (FL) has emerged as a privacy-
preserving framework for collaborative learning across dis-
tributed clients. A practical problem, how to enable the
FL model to robustly generalize to target clients with un-
known distributions, referred to as the out-of-distribution
(OOD) generalization problem, has recently attracted sig-
nificant research attention. Unfortunately, deep learning
models are prone to relying on non-causal relationships
(i.e., shortcuts) for prediction (Geirhos et al., 2020), leading
to significant performance degradation when the test dis-
tributions fall outside the training scope. For instance, in
Fig. 1, ‘dogs’ and ‘grass’ exhibit high statistical dependence
in the training dataset of Client A, which can easily mis-
lead the model into making predictions based on the grass
background (non-causal features) rather than the shape of
dogs (causal features). Recent works in centralized learning
scenarios have proposed addressing the OOD generalization
problem through the lens of causality, focusing on learning
causal features that maintain an invariant causal relationship
to the output label across various data distributions. It is
widely recognized that causal features are far more robust
to distribution shifts compared to non-causal ones.

However, in FL, the global feature extractor is typically
trained to extract causal features that remain invariant across
all clients (Zhang et al., 2021; Nguyen et al., 2022; Tang
et al., 2022; Guo et al., 2023b; Liao et al., 2024). Although
these invariant features are generally robust and reliable,
many valuable causal features that are potentially useful
for OOD generalization are inevitably discarded. This lim-
itation becomes more pronounced in the presence of data
heterogeneity, where only a small subset of invariant causal
features are shared across clients. As an illustrative example,
consider the task of learning a global model for dog classifi-
cation in FL, as shown in Fig. 1. In this setup, Client A has
real-world photos of dogs, while Client B’s dataset consists
of dog sketches. The global feature extractor, trained to
capture invariance across clients, preserves only invariant
causal features like shape while discarding client-specific
ones such as details of the dog’s mouth and tail. When
the test data distribution matches that of Client A’s training
data, discarding these detailed causal features can lead to
suboptimal generalization. In contrast, preserving all causal
features enables clients to flexibly select those most relevant
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Figure 1. Taking dog classification as an example to illustrate Fe-
dUni. FedUni preserves all causal features present across clients,
rather than only the invariant causal features, thereby achieving
better generalization to unseen target clients.

to their target domain, thereby improving generalization
performance. For instance, the causal features of samples
from the cartoon domain may constitute a combination of
features found in both real-world photos and sketches.

To address the above limitation, we propose that the global
feature extractor in FL should capture the full set of causal
features present across all clients, rather than only the in-
variant subset shared by all. However, this objective is chal-
lenging because different clients possess varying quantities
and types of causal features. Additionally, not all causal fea-
tures are necessarily beneficial for generalization to a given
target client. For example, in Fig. 1, the causal features
extracted by the global feature extractor contain all causal
features from both Client A and Client B. However, when
deployed to a target client whose data distribution is more
similar to Client B’s sketch style, the detailed features of
dogs become irrelevant to the target domain. Retaining these
irrelevant causal features may even degrade generalization
performance.

To overcome this challenge, we introduce a simple yet effec-
tive architecture, named FedUni, which consists of two key
components: a comprehensive feature extractor followed by
a feature compressor. The former is designed to extract the
union of all causal feature types across clients. Notably, if
a given input lacks a particular type of causal feature, the
corresponding feature is identified as an inactive causal fea-
ture. The feature compressor is then employed to effectively
discard these inactive causal features, mitigating their poten-
tial negative impact on the model’s performance. These two
components are trained simultaneously, so that the feature
extractor can benefit from model aggregation while avoiding
the extraction of only invariant features. In addition, to fur-
ther enhance the feature extractor’s ability to capture causal
features and eliminate non-causal ones, we incorporate a
causal intervention module on the client side. This mod-
ule employs a counterfactual generator to transform images

into counterfactual examples that simulate distribution shift
between source and target domains while preserving the
semantic information. The main contributions of this work
are outlined as follows:

• We formulate a structural causal model (SCM) for the
OOD generalization problem in FL and propose that
the global feature extractor should retain all causal
features rather than limiting itself to only the invariant
ones shared across clients.

• We introduce an effective method, FedUni, which in-
corporates a comprehensive feature extractor to iden-
tify the union of all causal feature types in the input.
This is followed by a feature compressor to discard
potential inactive causal features. To further enhance
the ability to capture causal features, FedUni employs
a counterfactual generator for causal intervention.

• Extensive experiments and theoretical analysis demon-
strate that our method significantly improves OOD
generalization performance.

2. Related Work
Causal Feature Learning. One promising approach to ad-
dressing OOD generalization is leveraging causal features
underlying the observed data (Zhou et al., 2022). A series of
works derived from Invariant Risk Minimization (IRM) (Ar-
jovsky et al., 2019) formulate invariant causal mechanisms
by incorporating information theory and nonlinear predic-
tion functions (Ahuja et al., 2021; Krueger et al., 2021;
Yang et al., 2023). More closely related to our method,
(Chen et al., 2024) reveals that existing methods may still
learn fake causal features and introduces conditional mutual
information to rectify them. Another line of research gen-
erates counterfactual samples and enforces consistency of
causal features between original and augmented samples,
as shown in (Chang et al., 2021; Lv et al., 2022; Noohdani
et al., 2024). However, these methods focus on centralized
scenarios where all training data is accessible.

Federated Learning for OOD Generalization. The OOD
generalization problem in FL has gained significant research
interest. Existing methods extract invariant features via ad-
versarial domain alignment (Zhang et al., 2021; Qi et al.,
2025; 2023; 2024; Meng et al., 2024), feature regulariza-
tion (Nguyen et al., 2022), or inter-client gradient alignment
(Guo et al., 2023b; Wu et al., 2022). However, they primar-
ily focus on inter-client invariance, potentially discarding
valuable client-specific information beneficial for OOD gen-
eralization. Meanwhile, FedSDR (Tang et al., 2023) and
FedPIN (Tang et al., 2024) aim to preserve personalized
causal features. However, these methods are designed for
personalized federated learning (PFL) (Tang et al., 2021;
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2022), where the causal features of each training client are
assumed to be known. Our problem is more challenging
as the types and quantities of causal features for a target
client are unseen during training. Retaining only invariant
features may discard valuable ones, whereas preserving all
causal features could introduce training-specific causal fea-
tures that are irrelevant to the target distribution, potentially
degrading OOD generalization performance.

A more detailed discussion of related work is provided in
Appendix A.

3. Problem Formulation
Notations. Let X , Y and E represent the input, target
and environment space respectively. Suppose there are N
clients, and the local data Dc

ec on the c-th client, which
contains nc samples, is drawn from the training environ-
ment Etr (ec ∈ Etr). For convenience, following (Guo
et al., 2023b), we formalize the model as f = w ◦ ϕ, where
ϕ : X → Z ⊂ Rn is the feature extractor that maps the
input space X to the feature representation space Z and
w : Z → Ŷ is the classifier. The overall model is param-
eterized as fθ(·) = w(ϕ(·)), where θ = (w, ϕ). In the
standard FL paradigm, the goal is to learn a global model
that minimizes the average expected risk over all participat-
ing clients. The global expected empirical loss is denoted as
R(f) :=

∑N
c=1 E(x,y)∈Dc

ec
[l(fθ(x), y)], where l is the loss

function.

3.1. FL OOD Generalization

The goal of FL OOD generalization is to learn a global
model fθ with D =

{
Dc
ec | c ∈ [1, N ], c ∈ Z

}
to enable

prediction on samples drawn from arbitrary environments
in E . This objective can be formulated as a min-max opti-
mization problem as follows:

RE(f) := max
e∼E

min
θ

[Re(fθ)]. (1)

Obviously, the optimization problem in Eq. (1) cannot be
solved directly, as only the training environment Etr instead
of E is accessible during training. A common assumption
in FL OOD generalization is that there exist latent causal
variables (features) ZC ∈ Rd, which possess the following
environment-invariant property (Arjovsky et al., 2019):

Pθ(Y |ZC , E = e) = Pθ(Y |ZC , E = e′),∀e, e′ ∈ E . (2)

To enable the global feature extractor f to extract ZC , FL
methods extract inter-client invariant features from distri-
butions (Liu et al., 2021), representations (Nguyen et al.,
2022), and gradients (Guo et al., 2023b). However, these
methods focus only on the invariance of causal features,
without considering their completeness. Retaining only an
invariant subset of causal features may discard useful in-
formation for OOD generalization, leading to suboptimal

E Y U

X

(a) Existing SCM

E Y U

X

(b) Restructured SCM

Figure 2. SCMs for FL OOD generalization. (The solid circle
represents observed variables, the dashed circle represents latent
variables, the solid arrow indicates causal dependency, and the
dashed arrow represents Markov dependency.)

generalization performance. We propose to solve the OOD
generalization problem in FL through the lens of causality.

3.2. A Causality Viewpoint to FL OOD Generalization

It is known that OOD generalization is possible under prac-
tical causal assumptions (Ahuja et al., 2021).

Existing SCM. Recently, some works have formulated
SCM in FL considering the distribution heterogeneity
among clients (Tang et al., 2023; 2024), as shown in Fig. 2a,
where E is the Environment variables, and U ∈ {1, · · ·, N}
is the User/Client indicator. ZS denotes non-causal vari-
ables. The causal variables are divided into two compo-
nents: the shared/global causal variables ZgC and the person-
alized/local causal variables ZUC . The personalized causal
variables ZUC include both ZgC and additional invariant in-
formation derived from U .
Assumption 3.1 (Existing SCM illustrated in Fig. 2a).

ZS := fspu(E, Y ), ZU
C := finv(U,Z

g
C),

X := fgen(ZS , Z
g
C , Z

U
C ), Y := ω(Zg

C , Z
U
C ).

According to Assumption 3.1, existing methods assume that
the global model should extract invariant causal variables
ZgC =

{⋂N
u=1 Z

U=u
C

}
shared across clients. However, as

shown by Lemma 3.2, this objective may lead to the ex-
tracted invariant features being incomplete.

Lemma 3.2. If the data generating process of each client
follows the SCM assumption illustrated in Fig. 2a, the global
invariance ZgC is incomplete from two perspectives:

• Y ̸⊥ U | ZgC: Under ZgC , the prediction of Y is still
influenced by the client indicator U .

• Y ⊥ [U,E] | ZgC , ZUC : Given ZgC and ZUC , Y is con-
ditionally independent of the environment variable E
and user indicator U .
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The first claim in Lemma 3.2 suggests that the global
model may exhibit inconsistent performance across differ-
ent ID/OOD data distributions. The second claim indicates
that combining ZgC and ZUC can further reduce the empirical
risk, and that ZUC should be retained for better inference
performance. This indicates that existing SCMs are not well
suited for the OOD generalization problem in FL, where
the global model is expected to exhibit fairness and robust
adaptability across heterogeneous data distributions.

Restructured SCM. To better address the FL OOD gen-
eralization problem, we propose a reconstructed SCM, as
shown in Fig. 2b. A key distinction in our formulation lies
in the definition of the global causal variable ZgC . Unlike ex-
isting approaches that define ZgC as the intersection of client-

specific causal variables, we define ZgC =
{⋃N

u=1 Z
U=u
C

}
as the union of ZUC across all clients for any given input.
In addition, since the global causal variable may contain
information that is not required for the current task, we
introduce ZUF to represent these Inactive causal features,
which are causal features specific to certain distributions but
non-causal for the target task. Formally, we define this as
ZUF = ZgC/Z

U
C .

Assumption 3.3 (Our Restructured SCM illustrated in
Fig. 2b).

ZS := fspu(E, Y ), Zg
C := finv(Z

U
F ), ZU

F := finv(U,Z
g
C),

X := fgen(ZS , Z
g
C , Z

U
F ), Y := ω(Zg

C).

Lemma 3.4. If the data generating process of each client
follows the SCM assumption illustrated in Fig. 2b, then the
following three statements hold:

• ZS ⊥ [ZgC , Z
U
F ] | Y : Given Y , both the ZgC and ZUF

are conditionally independent of ZS .

• Y ⊥ [U,E] | ZgC: Considering that ZUF ⊊ ZgC , com-
ponents in [U,E] are conditionally independent of the
target Y given ZgC and ZUF .

• Y ̸⊥ ZgC |ZS , ZUF : Y is not conditionally independent
of ZgC given ZS and ZUF .

Lemma 3.4 highlights the potential for designing a better FL
method for OOD generalization. Based on the first claim,
the non-causal features can be directly excluded from the
causal ones, and the second claim indicates that the global
invariant features ZgC can be extracted via collaborative
learning among clients. Moreover, the third claim indicates
that we should reconsider the Markov dependency between
ZgC and ZUF , and these variables need to be distinguished
based on their differing roles in label prediction when con-
ditioned on each other. All proofs related to this section are
provided in Appendix B.

4. Methodology
Overview. Inspired by the restructured SCM discussed
above, we propose a novel FL paradigm named FedUni,
consisting of three components: (1) a causal intervention
module on the client side to distinguish causal features
ZgC from non-causal ones ZS (Section 4.1), (2) an inac-
tive causal feature compressor that discards inactive causal
features ZUF from all causal features ZgC specific to the data
distribution (Section 4.2), and (3) A comprehensive feature
extractor designed to capture the union of all causal fea-
ture types present in a given input, achieved by training it
jointly with the other two modules. The comprehensive
feature extractor and inactive causal feature compressor are
uploaded for global aggregation and transferred to the tar-
get clients, while the causal intervention module remains
local to the training clients. The theoretical analysis of the
generalization boundary is presented in Appendix C.

4.1. Causal Intervention Module

We expect the FL model to extract causal features ZgC while
eliminating non-causal ones ZS . Unfortunately, directly re-
constructing the causal features ZgC is impractical. Nonethe-
less, inspired by (Lv et al., 2022), we propose two properties
that these features should satisfy.

Proposition 4.1. Causal variables ZgC should satisfy the
following two properties:

• Invariance under causal intervention: Based on the
first claim in Lemma 3.4, we have ZgC ⊥ E | Y . Thus,
performing an intervention upon E does not make
changes to ZgC .

• Sufficiency of semantic information: The causal vari-
able ZgC should be causally sufficient to the label pre-
diction, i.e. maximizing I(ZgC ;Y ).

Existing methods typically perform predefined data augmen-
tations on samples to serve as a causal intervention module
(Lv et al., 2022; Chen et al., 2023). However, these ap-
proaches lack diversity and are insufficient to simulate the
distribution shifts in the real world. Inspired by recent single
domain generalization (Guo et al., 2023a; Yang et al., 2024),
we employ a trainable counterfactual generator g : X → X ′,
parameterized by ψ, to generate more diverse counterfactual
samples while preserving semantic information. Below, we
propose the optimization objective for g.

(1) Diversify non-causal variables. To increase the diver-
sity of generated counterfactual samples, the generated im-
age x′ should have the minimal correlation with the source
image x. Mutual information (MI), denoted as I(x;x′),
provides a natural measure of this correlation (Wang et al.,
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2021):

I(x;x′) = Ep(x,x′)[log
p(x′|x)
p(x′)

] = H(x′)−H(x′|x), (3)

where H(x′) is the entropy of x′ and H(x′|x) is the condi-
tional entropy of x′ given x. To prevent H(x′) = 0, during
optimization, we employ a normalized variant N(x;x′) of
the mutual information, namely the coefficient of constraint
(Press, 2007):

min
ψ
N(x;x′) = min

ψ

I(x;x′)

H(x′)
= 1−max

ψ

H(x′|x)
H(x′)

, (4)

where N(x;x′) = 0 if and only if x′ and x are independent.
For simplicity, we use a parameter-free approximation to
estimate the solution.
Lemma 4.2. H(x′|x) can be approximated by the condi-
tional probability p(x′|x) as L1-Laplacians, as follows:

H(x′|x) = −Ex′(logP (x′|x)) ≈ Ex[∥x− ψ(x)∥1].

Similarly, H(x′) can be approximated by the marginal dis-
tribution of x′:

H(x′) = −Ex′(logP (x′)) ≈ Ex[∥ψ(x)∥1].

The detailed proof of the above lemma can be found in
Appendix B.4. Based on this approximation, we define the
following information-theoretic loss:

LDIV = max
ψ

H(x′|x)
H(x′)

≈ max
ψ

Ex
∥ψ(x)− x∥1
∥ψ(x)∥1

. (5)

(2) Preserve semantic information. To ensure that the
semantic information of x′ and x does not change drastically,
we impose constraints on the unbounded generation domain.
Lemma 4.3. Maximizing the diversity loss is approximately
equivalent to maximizing the lower bounds of LDIV , which
satisfy the following inequality:

max
ψ

LDIV ≥ max
ψ

Ex(
∣∣∣∣1− ∥x∥1

∥x′∥1

∣∣∣∣).
It can be observed that generating the counterfactual image
x′ essentially involves maximizing ∥∥x′∥1 − ∥x∥1∥p.

The detailed proof of this lemma can be found in Appendix
B.4. Following Lemma 4.3, we constrain the distance be-
tween the generated image and the original image by adding
a penalty on the l1-norm of the samples:

LREG = min
ψ

Ex∥∥x′∥1 − ∥x∥1∥1. (6)

Optimization. The optimization objective for the generator
is defined as follows, where α is a hyper-parameter used to
adjust the strength of the regularization term:

Lg = min
ψ

−LDIV + αLREG. (7)

4.2. Inactive Causal Feature Compressor

We now proceed to discuss how to compress ZUF from ZgC .
Notably, the features extracted by the global feature extrac-
tor consist of the true causal features ZUC given the distribu-
tion U , the inactive causal features ZUF and the non-causal
parts ZS , which can be denoted as:

ϕ(X) = ZUC ∪ ZUF ∪ ZS , where ZUC = ZgC/Z
U
F . (8)

To preserve semantic information, we need to maximize
the conditional mutual information (CMI) to strengthen the
causal path ZUC → Y :

max
ZU

C

I[Y ;ZUC | ZUF , ZS ]. (9)

Similarly, we observe an inactive causal dependency path
between ZUF and Y (ZUF → ZgC → Y ). As the label pre-
diction Y is expected to be conditionally independent of
ZUF , we have Y ⊥ ZUF | ZUC , ZS . To compress the inactive
causal features, we propose minimizing the CMI between
Y and ZUF , conditioned on ZUC and ZS :

min
ZU

F

I[Y ;ZUF | ZUC , ZS ]. (10)

For simplicity, we assume that after the causal intervention
steps, the non-causal features ZS have been removed, i.e.,
ϕ∗(X) = ZUC ∪ ZUF and ZUC = ϕ∗(X)/ZUF . Then, Eq. (9)
and Eq. (10) can be simplified to:

minZU
F
λI[Y ;ZUF | ϕ∗(X)/ZUF ]− I[Y ;ϕ∗(X)/ZUF | ZUF ]. (11)

Lemma 4.4. The CMI admits the following decompositions:

I[Y ;ZUF | ϕ∗(X)/ZUF ] = −H(Y |ϕ∗(X)) +H(Y |ϕ∗(X)/ZUF ),

I[Y ;ϕ∗(X)/ZUF | ZUF ] = −H(Y |ϕ∗(X)) +H(Y |ZUF ).

The proof of this lemma is provided in Appendix B.5. Ac-
cording to Lemma 4.4, Eq. (11) can be decomposed as:

min
ZU

F

H(Y |ϕ∗(X)/ZUF )− λH(Y |ZUF ). (12)

The objective implies that we only need to compress fea-
tures from ϕ∗(X) to strengthen the causal dependency
path ZUC → Y and discourage the inactive causal path
ZUF → ZgC → Y . We propose an inactive causal feature
compressor s : Z → Z ′, which is a simple two-layer archi-
tecture. The compressor s(·) receives the features extracted
by the global feature extractor ϕ(·) and performs soft feature
selection to compress ZUF .

Optimization. The optimization objective of the inactive
causal feature compressor in Eq. (11) can be expressed as
follows:

Ls = min
s,ω

Ex[l(ω(s(ϕ(x))⊙ ϕ(x)), y)]−

λEx[l(ω(1− s(ϕ(x)))⊙ ϕ(x), y)].
(13)
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where λ is a hyper-parameter and ⊙ denotes the element-
wise product and (1− s(ϕ(x)))⊙ ϕ(x) represents the com-
pressed part ZUF .

Algorithm 1 FedUni

1: Input: T,K,N, η, ω0
g(Φ

0
g), s

0
g

2: for t = 0 to T − 1 do
3: Randomly select a client subset St from N clients.
4: Broadcast ω0

g(Φ
0
g), s

0
g to selected clients.

5: for each client c ∈ St do
6: for local steps k to K − 1 do
7: Update counterfactual generator:
8: ψtc = ψtc − η∇Lg
9: Update compressive global model:

10: ωtu,Φ
t
u = ωtu,Φ

t
u − η∇Lf

11: Update feature compressor:
12: stu, ω

t
u = stu, ω

t
u − η∇Ls

13: end for
14: end for
15: Model aggregation:
16: ωg(Φg), sg =

1
|St|

∑
c ω

t
u(Φ

t
u),

1
|St|

∑
c s
t
u

17: end for
18: Return: global model ωg(Φg), sg

4.3. Comprehensive Feature Extractor

The goal of the comprehensive feature extractor is to extract
all causal features from any input across all clients, which
can be achieved by training it simultaneously with the two
aforementioned modules.

Firstly, with the causal intervention module, ZS can be
eliminated by minimizing the causal effect of environmental
changes. We use the contrastive loss (Chen et al., 2020) as
the objective to enforce the consistency of features between
the original image x and the counterfactual image x′:

LCI = Ex log
ed(ϕ(x),ϕ(x

′))/τ

ed(ϕ(x),ϕ(x′))/τ +
∑
X′∈B′ ed(ϕ(x),ϕ(X

′))/τ
,

(14)
where the original and counterfactual scenes of the same
instance are treated as a positive pair, while the features
drawn from other counterfactual samples are considered
negative pairs. Moreover, the causal features should be
sufficient for the label prediction. We use the ERM loss
(Vapnik, 2013) to optimize the model to learn the semantic
information related to target Y :

LSEM = R(f) + Exl(fθ(gψ(x)), y). (15)

Secondly, with the inactive causal compressor module, we
require that unselected features ZUF still retain some seman-
tically relevant information:

LADV = min
ϕ,ω

Ex[l(ω((1− s(ϕ(x)))⊙ ϕ(x)), y)]. (16)

This encourages the feature extractor to capture richer causal
features. Meanwhile, this can prevent certain feature loca-
tions from being consistently ignored, which could other-
wise lead to the inclusion of non-informative features.

Optimization. The overall optimization objective can be
written in the following form, where β is used to control
the proportion of the causal intervention loss in the training
objective:

Lf = min
ϕ,ω

LSEM + LADV + βLCI . (17)

The detailed optimization procedure is outlined in Algo-
rithm 1.

5. Experiments
5.1. Experimental Settings

Datasets. To evaluate the effectiveness of our method,
we conduct experiments on both the spurious correlation
dataset, i.e. Waterbirds (Sagawa et al., 2019), Colored-
MNIST/FMNIST (Arjovsky et al., 2019; Ahuja et al., 2020)
and the cross-domain datasets, i.e., Digits, PACS (Li et al.,
2017).

Configurations. For Waterbirds and PACS, we use the
ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009) as backbone. With regard to CMNIST and
CFMNIST, an MLP with one hidden layer serves as the
model. The AlexNet (Deng et al., 2009) is selected for
Digits dataset. Unless otherwise mentioned, the local up-
date step is 5 and the mini-batch size is 64. The learning
rate lr = 1.41 × 10−4. In our setting, α, β, λ are set to
0.1, 1, 0.01 respectively. The test results are based on the
model that performs best on the validation set sampled from
the training data with a sampling ratio of 0.2. For more
detailed experimental settings, please refer to Appendix D.

Comparison. We compare our method with 9 state-of-the-
art algorithms: FedAvg (McMahan et al., 2017) which is
a classic FL method; three methods for addressing hetero-
geneity (FedProx (Li et al., 2020), Scaffold (Karimireddy
et al., 2020), MOON (Li et al., 2021b)); and four FL general-
ization methods (FedSR (Nguyen et al., 2022), FedIIR (Guo
et al., 2023b), FedDG-GA (Zhang et al., 2023), FedSDR
(Tang et al., 2023)). It is worth noting that FedSDR is de-
signed for Personalized Federated Learning (PFL); in our
experiments, we use a variant that combines FedSDR with
FedAvg.

5.2. Overall Performance

Effect of spurious correlations. To validate the effective-
ness of the proposed method in eliminating the impact of
spurious correlations and thereby enhancing OOD general-
ization performance, we evaluate the test accuracy of the
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global model on a range of diverse test data distributions
on Waterbirds, CMNIST, and CFMNIST. The worst-case
(’ID-worst’ and ’OOD-worst’) and average-case (’ID-avg’
and ’OOD-avg’) accuracy are summarized in Table 1. Due
to the preservation of richer causal information during train-
ing, our method demonstrates superior performance on both
ID and OOD data distributions compared to other SOTA
methods.

Effect of domain shift. Compared with spurious correla-
tion datasets, the non-causal features (i.e. style) are tightly
coupled with the causal features of images, making them
more difficult to remove. Moreover, the data distributions
across different domains exhibit stronger heterogeneity. As
shown in Table 2, our method demonstrates significantly
better generalization performance across almost all domains,
with reduced variance in cross-domain generalization.

5.3. Verification

Analysis of causal and inactive causal features. FedUni
decouples the features extracted by the comprehensive fea-
ture extractor into two parts, causal features ZUC and inac-
tive causal features ZUF . Fig. 3 presents the T-SNE (Van der
Maaten & Hinton, 2008) visualization of causal and inac-
tive causal features on the Digits dataset, where the first row
represents causal features and the second row represents
inactive causal features. The visualization demonstrates that
causal features exhibit higher discriminative characteristics,
as they have a stronger causal relationship with the label
compared to inactive causal features. To provide a quanti-
tative evaluation, we further compute the Fisher Score (Gu
et al., 2012) in Fig. 4, which measures feature discriminabil-
ity by assessing the ratio of inter-class variance to intra-class
variance, formulated as F =

∑
i ni(µi − µ)2/

∑
i niσ

2
i ,

where ni, µi, and σ2
i represent the number of samples, mean,

and variance of the i-th class, respectively. In addition, it is
worth noting that the gap in Fisher Scores between causal
and inactive causal features increases as the dataset com-
plexity rises. This indicates that more comprehensive causal
features are extracted from complex datasets, which contain
a higher proportion of inactive causal features.

MNIST MNISTM SVHN SYN USPS

Figure 3. T-SNE visualization of causal and inactive causal fea-
tures on the Digits dataset.

Analysis of overlapped ratio of causal features. To ana-
lyze the overlap of selected causal features among different
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Digits Fake Causal
Digits Causal
PACS Fake Causal
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Digits Causal
Digits Inactive Causal

Figure 4. Fisher Scores of causal and inactive causal features on
Digits and PACS datasets.

distributions, the inactive causal feature compressor gener-
ates a mask s(ϕ(x)) for each given data distribution, and the
mean of these masks is used as the overall causal features
types for the current data distribution. Fig. 5a shows the
cosine similarity of feature selection masks among training
clients, grouped by dataset origins: MNISTM (1-2), SVHN
(3-4), SYN (5-6), and USPS (7-10). It can be observed
that clients from the same domain exhibit a higher overlap
in the selection of causal features. We further analyze the
similarity in causal feature selection between test data and
the training clients, as shown in Fig. 5b. It is found that
domains present in the training data retain feature selection
consistency within their respective groups. For the unseen
test domain MNIST, its feature selection overlaps more with
MNISTM, which shares similar shape, and USPS, which
shares the same black and white color scheme. These find-
ings further validate the motivation behind FedUni, which
is designed to select task-relevant causal features for differ-
ent data distributions. Furthermore, domains with higher
similarity tend to exhibit more consistent causal feature
selection.
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(a) Training clients.
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Figure 5. Overlapped ratios of causal features.

Analysis of causal features redundancy. We now inves-
tigate how different components of our setup affect the
learned features. In this section, we compare 5 different
methods, which are: (1) Base: FedAvg using ERM update
locally; (2) +CI: Incorporating a causal intervention module
to the base model; (3) +SL: Incorporating inactive causal
feature compressor to the base model; (4) +CI+SL: Incor-
porating both of the aforementioned modules and using the
features extracted by the feature extractor for prediction;
(5) +CI+SL(s): Based on (4), using the features after the
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Datasets Waterbirds CMNIST CFMNIST

Test Acc (%) ID-avg ID-worst OOD-avg OOD-worst ID-avg ID-worst OOD-avg OOD-worst ID-avg ID-worst OOD-avg OOD-worst

FedAvg 87.11 86.30 79.09 71.26 94.11 85.52 68.53 27.63 92.55 64.41 87.48 44.52
FedProx 87.31 86.41 78.80 70.42 94.32 85.42 68.23 26.10 94.43 74.43 86.40 36.82
Scaffold 87.41 86.20 78.41 70.95 93.56 84.54 68.47 29.16 94.01 71.41 86.70 41.10
MOON 85.42 84.69 79.25 73.27 93.77 83.15 73.92 39.62 93.60 69.20 86.64 39.71

FedSR 87.27 86.55 79.86 74.08 95.19 85.70 72.69 37.41 92.87 67.22 86.60 43.12
FedIIR 87.12 86.14 78.67 70.56 93.99 84.91 68.99 28.69 92.92 65.72 87.08 43.21
FedDG-GA 86.50 85.64 79.21 72.16 94.68 88.33 69.02 26.90 92.58 64.32 87.22 44.13
FedSDR 86.93 86.22 80.60 74.59 94.44 83.71 68.72 27.81 94.53 74.10 86.23 40.52

Ours 88.92 88.38 83.29 78.05 95.87 89.53 88.03 56.41 94.43 74.54 88.70 46.25

Table 1. Performance comparison of different methods on Waterbirds, CMNIST and CFMNIST datasets. (Bolded values represent the
best performance in the experiment setting, while underlined values indicate the second-best performance)

Datasets Digits PACS

Test Acc (%) MNIST MNISTM SVHN SYN USPS Avg. Art Cartoon Photo Sketch Avg.

FedAvg 82.38±1.31 34.69±0.69 22.62±0.16 41.07±0.71 80.51±1.16 52.25±0.46 66.27±1.09 61.07±0.66 86.76±0.76 47.69±1.07 65.44±0.21

FedProx 81.54±2.37 34.57±0.55 21.77±0.91 38.00±0.79 77.20±0.94 50.62±0.77 70.69±0.93 64.43±2.88 84.36±1.69 49.51±0.41 67.25±0.08

Scaffold 85.92±0.94 35.09±0.74 22.772±0.10 41.06±0.90 79.82±1.27 52.93±0.41 66.49±0.77 61.16±0.56 87.42±1.20 49.36±1.63 66.11±0.39

MOON 82.85±0.94 34.81±0.72 22.62±0.42 41.81±0.73 78.12±1.09 52.05±0.56 71.07±0.58 66.51±1.02 87.38±1.44 43.11±1.17 67.02±0.53

FedSR 88.94±0.34 36.46±0.66 25.23±0.12 48.09±1.19 87.50±0.78 57.24±0.18 70.53±2.17 64.49±1.84 88.18±0.31 51.64±2.16 68.71±1.07

FedIIR 86.27±0.79 35.87±1.35 22.61±0.30 44.03±1.26 81.43±3.10 54.04±1.19 70.71±0.30 62.89±0.26 87.33±0.82 48.48±0.40 67.35±0.44

FedDG-GA 85.54±0.57 34.49±0.53 23.55±0.85 40.12±0.79 79.54±1.78 52.65±0.38 67.84±1.44 64.96±0.85 87.51±1.20 48.11±0.51 67.11±0.20

FedSDR 89.72±0.50 33.74±0.86 22.98±2.00 44.73±1.27 88.45±0.56 55.92±0.40 70.71±0.23 66.76±0.72 90.40±0.68 49.58±0.74 69.36±0.41

Ours 89.85±0.97 52.40±1.81 35.42±2.45 66.29±0.95 90.48±0.95 66.85±0.64 71.08±0.65 68.76±1.51 89.07±0.89 76.04±1.14 76.24±0.60

Table 2. Performance comparison of different methods on Digits and PACS datasets.

inactive causal feature compressor for prediction.

We calculate the redundancy of features on the Digits dataset
using the formula: R = 1

d2

∑
i

∑
j |ρ(Xi, Xj)|, where

ρ(Xi, Xj) is the Pearson correlation between a pair of fea-
ture dimensions i and j. As shown in Fig. 6, both the
compressor and the causal intervention module can improve
test accuracy as well as feature redundancy. The observed
low test accuracy and feature redundancy in the base model
suggest that it has extracted non-causal features (i.e., short-
cuts) for prediction, while discarding diverse causal features.
The incorporation of the compressor retains client-specific
causal features, while the causal intervention module elimi-
nates spurious correlations. Together, they better preserve
the underlying causal features. However, not all causal
features contribute meaningfully to the test task-some are
inactive. Filtering features through the compressor allows
the model to discard redundant or inactive features, thereby
improving both redundancy metrics and predictive perfor-
mance.

5.4. Ablation Study

Ablation Study on Model Components. We conduct abla-
tion studies to evaluate the individual and combined contri-
butions of FedUni components, as shown in Table 3. Both
the generator and compressor individually enhance perfor-
mance compared to their absence. Notably, their combi-
nation achieves the best performance across all domains,

Figure 6. The relationship between feature redundancy and
ID/OOD test accuracy. Gray and Orange arrows denote changes
due to adding feature compressor and causal intervention module,
respectively.

demonstrating the effectiveness of integrating both compo-
nents.

Components Test Accuracy (%)

−LDIV + LREG Ls MNIST MNISTM SVHN SYN USPS Avg.

✗ ✗
82.39 34.69 22.62 41.07 80.51 52.26
(1.31) (0.69) (0.16) (0.71) (1.16) (0.46)

✓ ✗
86.57 49.20 34.08 59.11 87.89 63.37
(0.47) (2.13) (0.72) (1.04) (0.37) (0.67)

✗ ✓
88.19 36.81 23.90 48.67 87.44 57.00
(0.31) (0.24) (0.38) (0.32) (0.08) (0.14)

✓ ✓
88.65 52.40 35.42 66.29 90.48 66.65
(0.97) (1.81) (2.45) (0.98) (0.95) (0.64)

Table 3. Ablation study on the generator and filter module on Dig-
its dataset. (The gray background represents the variance of re-
peated experiments.)
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Figure 7. The ablation of hyper-parameters on CMNIST.

Hyper-parameter Sensitivity. The proposed method in-
volves three hyper-parameters α, β, and λ, where α rep-
resents the degree of the regularization term in Eq. (7), β
corresponds to the proportion of the causal intervention loss
in the training objective Eq. (17), and λ denotes the selec-
tion ratio of the soft-feature filter in Eq. (12). We conduct
experiments on the CMNIST dataset and performed 5 re-
peated runs. We vary one hyper-parameter while keeping
the other two fixed. The results are shown in Fig. 7. It can
be observed that our approach is robust to hyper-parameter
changes, with a maximum fluctuation of 2.57%. This indi-
cates that FedUni does not rely heavily on careful hyper-
parameter tuning and can maintain stable performance under
a wide range of configurations.

6. Conclusion
In this work, we address the OOD generalization challenge
in FL by proposing FedUni, a novel framework that re-
tains all possible causal features across clients rather than
only an invariant subset. Our approach leverages a com-
prehensive feature extractor and a feature compressor to
extract the union of causal features while suppressing in-
active causal features. Additionally, we introduce a causal
intervention module that employs counterfactual generation
to further enhance OOD generalization. Through extensive
theoretical analysis and empirical evaluation, we demon-
strate that FedUni significantly improves OOD generaliza-
tion. These findings highlight the importance of preserving
diverse causal features in FL.
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A. Related Work
Causal Feature Learning. An important research direction to tackle OOD generalization is to exploit the causal features
behind the observed data (Zhou et al., 2022). A series of works formulate invariant causal mechanisms in terms of features.
Invariant risk minimization (IRM) (Arjovsky et al., 2019) provides a solution for learning causal features, but it dramatically
deteriorates when applied to an over-parameterized model. From this perspective, some works (Ahuja et al., 2021; Krueger
et al., 2021) further extend the IRM by incorporating information theory and nonlinear prediction functions. IIB (Li et al.,
2022) minimizes invariant risks for nonlinear classifiers through a tractable mutual information-based loss function. CaSN
(Yang et al., 2023) introduces the classical concept of the Probability of Necessity and Sufficiency (PNS) to simultaneously
capture information on both sufficient and necessary causes and proposes PNS risk to optimize OOD generalization capability.
Another series of papers achieves this goal by generating counterfactual images and constraining the consistency between
the features before and after generation (Chang et al., 2021). CIRL (Lv et al., 2022) introduce Fourier transformation as a
causal intervention module to enforce features to be separable from non-causal factors, jointly independent, and causally
sufficient for classification. DaC (Noohdani et al., 2024) leverages the model’s Class Activation Map (CAM) to identify
causal components in images, then intervenes by composing different elements to generate counterfactual samples and
retrains the model for improved generalization. However, these works focus on centralized scenarios where all training data
is accessible.

Single Domain Generalization is a more challenging yet practical domain generalization task, where the training data
comes from only a single distribution. A typical line of methods synthesize diverse samples from hypothetical domains
and ensure consistency between features extracted from the source and synthetic samples. Among the earliest attempts,
ADA (Volpi et al., 2018) and M-ADA (Qiao et al., 2020) introduce an adversarial data augmentation strategy to tackle the
worst-case domain generalization problem. Recent studies inspired by style transfer methods (Gatys et al., 2016) focus on
generating samples with novel styles. To name a few, PDEN (Li et al., 2021a) proposes a progressive domain expansion
framework. L2D (Wang et al., 2021) presents a style-complement module designed to synthesize images through the
optimization of the mutual information’s upper bound. UDP (Guo et al., 2023a) directly augments images using in the image
space, decoupling the training objectives between the generator and the discriminator, thereby avoiding mutual interference.
Despite their remarkable effectiveness, these methods often introduce additional computational burdens. In this paper, we
take into account the limited computational capabilities of clients in FL and devises a more lightweight algorithm.

General Federated Learning (GFL). The classic FedAvg (McMahan et al., 2017) algorithm performs well on IID datasets,
but its performance significantly drops under the presence of data heterogeneity. One line of methods has been proposed
to mitigate the impact of data heterogeneity during the client-side training process (Zhang et al., 2022; Mendieta et al.,
2022; Zhu et al., 2024b; Wu et al., 2024; Zhu et al., 2022; Wu et al., 2023; 2025; Zhu et al., 2024b). For example, FedProx
(Li et al., 2020) introduces an L2-norm term between the global model parameters and the local parameters. SCAFFOLD
(Karimireddy et al., 2020) adds correction terms for local gradients to ensure that the local update moves towards the
true optimum. MOON (Li et al., 2021b) propose a model-level contrastive learning approach inspired by conventional
data-level contrastive frameworks. Another line of studies focus on enhancing the server-side aggregation process. FedNova
(Wang et al., 2020) enhances model aggregation by addressing heterogeneous local steps caused by varying data quantities
or training epochs. FedDNA (Duan et al., 2021) selectively apply importance-weighted adversarial learning to batch
normalization layers while maintaining standard FedAvg for gradient-based parameters. In the context of server-side
optimization (Sharma et al., 2022), FedAvgM (Hsu et al., 2019) implements momentum-accelerated SGD. While these
methods comprehensively address distribution shifts among participating clients, it critically overlooks the generalization
requirements of non-participating clients. Unlike these works, our method attempts to learn latent causal relationships that
work equally well for both the participating and non-participating clients.

Federated Learning for OOD Generalization. The out-of-distribution (OOD) generalization problem in FL has recently
attracted significant research interest (Zhang et al., 2024; Zhu et al., 2024a). Data augmentation-based research involves
applying various transformations to the existing training data (Yoon et al., 2021; Hao et al., 2021). Several approaches
enhance OOD generalization by optimizing the weighting strategies for global model aggregation. FedDG-GA (Zhang
et al., 2023) dynamically calibrates aggregation weights through generalization adjustment to achieve tighter theoretical
bounds. More similar to our approach, several studies concentrate on invariant (causal) feature extraction through adversarial
domain alignment or causal representation learning. FedADG (Zhang et al., 2021) introduces a federated adversarial
domain adaptation framework to align data distributions across all clients. FedSR (Nguyen et al., 2022) imposes dual
regularization mechanisms on latent representations and conditional mutual information, suppressing spurious correlations
while preserving invariant features. FL GAME (Zhang et al., 2021) establishes a multi-agent game-theoretic architecture
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enabling decentralized parallel computation through Nash equilibrium-driven optimization, which systematically extracts
client-invariant causal features via information bottleneck constraints. FedIIR (Guo et al., 2023b) implicitly learns causal
relationships for OOD generalization by quantifying disagreement across clients and reducing it through inter-client gradient
alignment in parameter space. However, these methods focus on mining the invariant features across clients, which inevitably
leads to the loss of some valuable information.

Causal Feature with FL OOD Generalization. Recently, inspired by causal feature learning in centralized learning
scenarios, a growing number of methods aim to extract causal features to improve the OOD generalization ability of FL
model (Tang et al., 2021; 2022). FedSDR(Tang et al., 2023) constructs a structural causal model (SCM) for heterogeneous
clients to collaboratively identify non-causal features and learn the optimal personalized causally invariant predictor. FedPIN
(Tang et al., 2024) distinguishes personalized causal features from non-causal ones using global invariant features as anchors,
formulating an information-theoretic constraint to enable shortcut-averse personalized invariant learning, thereby improving
OOD generalization in PFL. However, these methods are especially designed for PFL, where the causal features of each
client’s data are observable during training. In contrast, in the GFL setting we focus on, the causal features present in the
unknown test data are unseen during training.

B. Theoretical Guarantees
B.1. The detailed explanation of Assumption 3.1 and the proof of Lemma 3.2

Assumption 3.1 (Existing SCM illustrated in Fig. 2a)

ZS := fspu(E, Y ), ZU
C := finv(U,Z

g
C),

X := fgen(ZS , Z
g
C , Z

U
C ), Y := ω(Zg

C , Z
U
C ).

Explanation. Here, ZS represents spurious non-causal features. It is a function of the environment E and target Y . ZUC
is the local causal variables, which is determined by the client indicator U and the global causal features ZgC through the
invariable causal function finv. The data X is generated by the generation function fgen, which takes into account the
spurious variables ZS , the global causal variables ZgC , and the local causal variables ZUC . Finally, the target Y is determined
by the classifier ω based on the global causal variables ZgC and the local causal variables ZUC .

Lemma 3.2. If the data generating process of each client follows the SCM assumption illustrated in Fig. 2a, the global
invariance ZgC is incomplete from two perspectives:

• Y ̸⊥ U | ZgC : Under ZgC , the prediction of Y is still influenced by the client indicator U .

• Y ⊥ [U,E] | ZgC , ZUC : Given ZgC (i.e. global/shared invariant features) and ZUC (i.e. local/personalized invariant
features), Y is conditionally independent of the environment variable E and user indicator U .

Proof. To prove the non-independence Y ̸⊥ U | ZgC , we rely on the d-separation criterion. Specifically, there is an unblocked
causal path from U to Y (U → ZUC → Y ) that does not pass through ZgC . This implies that even when conditioned on ZgC ,
the prediction of Y is still influenced by the client indicator U .

To prove the conditional independence Y ⊥ [U,E] | ZgC , ZUC , we observe that the variables ZgC and ZUC d-separate Y from
both the environment indicator E and the user/client indicator U .

B.2. The detailed explanation of Assumption 3.3 and the proof of Lemma 3.4

Assumption 3.3 (Our Restructured SCM illustrated in Fig. 2b)

ZS := fspu(E, Y ), Zg
C := finv(Z

U
F ), ZU

F := finv(U,Z
g
C),

X := fgen(ZS , Z
g
C , Z

U
F ), Y := ω(Zg

C).

Explanation. Here, ZS represents spurious non-causal variable and is a function of the environment E and the target Y .
Different from Assumption 3.1, ZgC is now the only cause of the target Y , which means it encompasses the local causal
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knowledge carried by ZUC in Assumption 3.1. We have a new variable ZUF (where F stands for False). ZUF is only affected
by the client indicator U and influences Y through affecting ZgC . ZUF is a local causal variable, similar to ZUC in Assumption
3.1, representing some causal information that holds locally at the client but my not be transferred well to all environments.

Lemma 3.4. If the data generating process of each client follows the SCM assumption illustrated in Fig. 2b, then the
following three statements hold:

• ZS ⊥ [ZgC , Z
U
F ] | Y : Given Y , both the ZgC and ZUF are conditionally independent of the non-causal variable ZS .

• Y ⊥ [U,E] | ZgC : Components in [U,E] are conditionally independent of the target Y given ZgC and ZUF . Considering
that ZUF ⊊ ZgC , this expression is a simplified notation.

• Y ̸⊥ ZgC |ZS , ZUF : Y is not conditionally independent of ZgC given ZS and ZUF .

Proof. We first prove that ZS is conditionally independent of both ZgC and ZUF given Y . According to the d-separation
criterion, ZS and ZgC , ZUF share no common parent variables, and the only path from ZgC , ZUF to ZS is blocked by Y ,
leading to the conditionally independence between ZS and ZgC , ZUF .

To prove the second statement, we observe the conditional independence Y ⊥ [U,E] | ZgC . Since ZgC is the only cause
variable of the target Y , it blocks the conditional correlation between U , E and Y . Therefore, the conditional independence
holds.

Finally, we turn to the third statement. We argue that Y is not conditionally independent of ZgC given ZS and ZUF , as there
exists a direct causal path from ZgC to Y that cannot be blocked by ZS and ZUF . This implies that ZUF and ZgC play different
roles in the prediction process and also justifies this non-independence.

B.3. The proof of Proposition 4.1

Proposition 4.1. Causal variables ZgC should satisfy the following two properties:

• Invariance under causal intervention: Based on the first claim in Lemma 3.4, we have ZgC ⊥ E | Y . Thus,
performing an intervention upon E does not make changes to ZgC .

• Sufficiency of semantic information: The causal variable ZgC should be causally sufficient to the label prediction, i.e.
maximizing I(ZgC ;Y ).

Proof. To demonstrate invariance under causal intervention property, we first examine the causal relationships among
the variables involved. There is no direct or indirect casual path from E to ZgC that is not blocked by Y . Specifically, the
generation of ZgC is mainly through ZUF which has no direct causal link from E. Therefore, ZgC and E are d-separated
conditioned on Y . This means that intervening on E does not affect ZgC , thus satisfying the invariance property under causal
intervention.

To demonstrate the sufficiency of semantic information property, we refer to the SCM model in Assumption 3.3, where
Y = ω(ZgC). This implies that Y is determined entirely by ZgC . From the perspective of information, the mutual information
is given by I(ZgC ;Y ) = H(Y ) −H(Y | ZgC). Thus, maximizing I(ZgC ;Y ) is to minimize (Y | ZgC). According to the
causal relationships among variables, ZgC is the only cause of the target Y and there is no other variable that can provide
additional information for predicting Y other than ZgC , which should minimize (Y | ZgC), thus satisfying the sufficiency of
semantic information property.

B.4. The proof of Lemma 4.2 and Lemma 4.3

Lemma 4.2. H(x′|x) can be approximated by the conditional probability p(x′|x) as L1-Laplacians, as follows:

H(x′|x) = −Ex′(logP (x′|x)) ≈ Ex[∥x− ψ(x)∥1].

Similarly, H(x′) can be approximated by the marginal distribution of x′:

H(x′) = −Ex′(logP (x′)) ≈ Ex[∥ψ(x)∥1].
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Proof. The L1-Laplace distribution is often used to approximate conditional entropy, which effectively captures deviations
under noise-perturbed conditions (Carlini et al., 2019; Guo et al., 2023a). In the first approximation, the conditional
probability is modeled as a L1-Laplace distribution centered at ψ(x) with identity covariance,

P (x′|x) = L(x′;µ(x), I) ∝ exp(−∥x− ψ(x)∥1). (18)

By using this approximation above, the conclusion in Lemma 4.2 holds. Similarly, in the subsequent approximation, we
model the distribution using an L1-Laplace distribution centered at zero,

P (x′) = L(x′;0, I) ∝ exp(−∥ψ(x))∥1). (19)

Lemma 4.3. Maximizing the diversity loss is approximately equivalent to maximizing the lower bounds of LDIV , which
satisfy the following inequality:

max
ψ

LDIV ≥ max
ψ

Ex(
∣∣∣∣1− ∥x∥1

∥x′∥1

∣∣∣∣).
It can be observed that generating the counterfactual image x′ essentially involves maximizing ∥∥x′∥1 − ∥x∥1∥p.

Proof. Since ∥x∥1 and ∥x′∥1 are positive, the left-hand side of the above inequality can be rewritten as follows:

∣∣∣∣1− ∥x∥1
∥x′∥1

∣∣∣∣ = |∥x′∥1 − ∥x∥1|
∥x′∥1

. (20)

Notice that for most practical distributions, especially when ψ(x) (or x′) is close to x, ∥x′ − x∥1 tends to be greater than or
equal to |∥x′∥1−∥x∥1|, cause changes in the L1-norm are generally larger compared to element-wise differences. Therefore,
it’s reasonable to conclude:

Ex
(
|ψ(x)− x|1
|ψ(x)|1

)
≥ Ex

(∣∣∣∣1− ∥x∥1
∥x′∥1

∣∣∣∣) . (21)

Combining the analysis above, we can derive:

max
ψ

LDIV ≥ max
ψ

Ex(
∣∣∣∣1− ∥x∥1

∥x′∥1

∣∣∣∣). (22)

B.5. The proof of Lemma 4.4

Lemma 4.4. The CMI admits the following decompositions:

I[Y ;ZUF | ϕ∗(X)/ZUF ] = −H(Y |ϕ∗(X)) +H(Y |ϕ∗(X)/ZUF ),

I[Y ;ϕ∗(X)/ZUF | ZUF ] = −H(Y |ϕ∗(X)) +H(Y |ZUF ).

Proof. Under our Restructured SCM in Assumption 3.3, our goal is to distinguish ZUF from ZgC to effectively adapt to test
data distributions. It can be observed that we can distinguish them based on their differing behaviors when conditioned on
each other in predicting Y . In line with (Chen et al., 2024), we adopt CMI as a principled metric to analyze the dependencies
among different feature variables. However, (Chen et al., 2024) focuses on extracting causal features and computing the
mutual information between causal features and label Y , whereas our focus is on eliminating inactive causal features ZUF
from global causal features ZgC .
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The CMI between X and Y given Z can be decomposed into entropy terms as follows:

I[X;Y |Z] = H(X|Z) +H(Y |Z)−H(X,Y |Z). (23)

Note that when ϕ(X) is well trained, the models encourage ϕ∗(X) = ZUF ∪ ZUC , therefore, ZUC = ϕ∗(X)/ZUF .

I[Y ;ZUF |ZUC ] = H(Y |ZUC ) +H(ZUF |ZUC )−H(Y ;ZUF |ZUC ). (24)

By the definition of conditional entropy (Shannon, 1948), we obtain:

H(ZUF |ZUC ) = H(ZUF , Z
U
C )−H(ZUC ), H(Y |ZUF , ZUC ) = H(Y, ZUF , Z

U
C )−H(ZUF , Z

U
C ), (25)

where H(ZUF , Z
U
C ) is the joint entropy of ZUF and ZUC , H(ZUC ) is the entropy of ZUC , and H(Y,ZUF , Z

U
C ) is the joint entropy

of ZUF , Z
U
C and Y . From the above decomposition in Eq. (23), the following equation can be derived:

H(ZUF |ZUC ) = [H(ZUF , Z
U
C )−H(ZUC )]− [H(Y,ZUF , Z

U
C )−H(ZUF , Z

U
C )]

= 2H(ZUF , Z
U
C )−H(ZUC )−H(Y,ZUF , Z

U
C )

= 2H(ZUF , Z
U
C )−H(ZUC )− [H(Y |ZUF , ZUC ) +H(ZUF , Z

U
C )]

= H(ZUF , Z
U
C )−H(ZUC )−H(Y |ZUF , ZUC )

= H(ZUF |ZUC )−H(Y |ZUF , ZUC ). (26)

Then, substituting the above expression into Eq. (24) and simplifying yields:

I[Y ;ZUF |ZUC ] = H(Y |ZUC ) + [H(ZUF |ZUC )−H(Y |ZUF , ZUC )]−H(ZUF |ZUC )
= −H(Y |ϕ∗(X)) +H(Y |ϕ∗(X)/ZUF ). (27)

In the same way, we can prove the second equation in the lemma:

I[Y ;ϕ∗(X)/ZUF | ZUF ] = −H(Y |ϕ∗(X)) +H(Y |ZUF ). (28)

C. Theoretical analysis of generalization boundary
To analyze the generalization boundary of FedUni, we follow (Mohri, 2018) and use Vapnik–Chervonenkis (VC) dimension
theory (Reichenbach, 1971). VC dimension is an important concept in statistical learning theory used to measure the
complexity and expressiveness of a hypothesis class, which is closely related to a model’s generalization ability. Generally,
models with a higher VC dimension indicate that the hypothesis class can represent more complex functions and may
perform well on training data but might overfit when applied to testing data.

As mentioned in Section 3, each client in our model consists of a feature extractor and a classifier, and can be formulated as
fθc(·) = wc(Φc(·)), where θc = (wc, ϕc). Considering only the stages following feature extraction, the global optimization
objective is given in Eq. (17). It is noteworthy that all components of the optimization objective are upper-bounded. Without
loss of generality, we assume the loss function is bounded above by 1. Let H be a family of functions that take values of
the one-hot vectors of length k for a k-classification problem, where the VC-dimension is d. Then, for any δ > 0, with
probability at least 1− δ, for any hxi

∈ H, the following holds:

E[R(hxi
)] ≤ E[R̂S(hxi

)] + 2

√
2d log em

d

m
+

√
log 1

δ

2m
. (29)

where R(hxi) and R̂S(hxi) are the generalization error and empirical error on sample S respectively. Since the empirical
error in our method is upper-bounded, the generalization error has a upper bound as well. To establish this result, we
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build upon the analysis in (Mohri, 2018), generalizing it from the centralized binary classification setting to a multi-client,
multi-class scenario. Firstly, let F be a family of functions mapping from Z to [0,1], in which Z = X ×Y is the input space.
Then, for any δ > 0, with probability at least 1− δ over i.i.d. sample S of size m, the following holds for each f ∈ F :

E[f(z)] ≤ 1

m

m∑
i=1

f(zi) + 2Rm(F) +

√
log 1

δ

2m
, (30)

where R is the Rademacher complexity (Shalev-Shwartz & Ben-David, 2014). Our focus now shifts to proving that the right
side of Eq. (30) is bounded, with the key challenge lying in demonstrating that Rm(F) is bounded.

Let H be a family of functions that take values in the one-hot vectors of length k for a k-classification problem, and F be
the family of loss functions associated with H for the zero-one loss, i.e., F = {(x, y) → 1h(x)̸=y : h ∈ H}. For any sample
S = {(x1, y1), . . . , (xm, ym)} of elements in (X ,Y), let SX denote its projection onto X . Then, the following relation
holds between the empirical Rademacher complexities of F and H:

RS(F) = RSX
(H). (31)

Using Eq. (30) and Eq. (31), we have

R(h) ≤ R̂S(h) + 2Rm(H) +

√
log 1

δ

2m
, (32)

where R(h) is the generalization error and R̂S(h) is the empirical error. According to Massart’s Lemma (Massart, 2000)
and Sauer’s Lemma (Sauer, 1972), which together establish an explicit relationship among the Rademacher complexity,
the growth function, and the VC-dimension, we can derive the following result based on Eq. (32): for any δ > 0, with
probability at least 1− δ, for every function h ∈ H, the following upper bound on the generalization error R(h) holds:

R(h) ≤ R̂S(h) + 2

√
2 logΠH(m)

m
+

√
log 1

δ

2m
≤ R̂S(h) + 2

√
2d log em

d

m
+

√
log 1

δ

2m
, (33)

where ΠH(m) is the growth function of H and d is the VC-dimension of H. Since Eq. (33) holds for all clients in our
method, we now focus on the expected generalization error for each client. In the multi-client scenario, the result is shown
in the following equation, thereby proving the theoretical generalization bound of FedUni:

E[R(hxi
)] ≤ E[R̂S(hxi

)] + 2

√
2d log em

d

m
+

√
log 1

δ

2m
. (34)

D. More Details about Experiments
D.1. Description of the dataset

Waterbirds is a synthetic dataset that combines bird photographs from the Caltech-UCSD Birds-200-2011 (CUB) dataset
(Welinder et al., 2010) with backgrounds from the Places dataset (Zhou et al., 2014). This dataset provides a binary
classification task for ‘landbird’ and ‘waterbird’, and the background is spuriously correlated with the class. We use ps to
quantify the degree of spurious correlation, where landbirds have a probability of ps with a land background and (1− ps)
with a water background.

Colored-MNIST (CMNIST) is a variant of the original MNIST (LeCun et al., 1998) dataset via rearranging the images of
digits 0-4 into one class (class 0) and the images of digits 5-9 into another class (class 1). The color is spuriously correlated
with the class, where each digit with label 0 is colored green/red with probability ps/1− ps, and this probability is reversed
for label 1.

Colored-Fashion MNIST (CFMNIST) is constructed from Fashion-MNIST (Xiao et al., 2017) using the same strategy as
CMNIST.
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Digits consists of 5 different datasets: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), MNISTM (Ganin &
Lempitsky, 2015), SYN (Ganin & Lempitsky, 2015) and USPS (Denker et al., 1988). Each dataset is considered a unique
domain which may be different from the rest of the domains in font style, background, and color.

PACS consists of a total of 9,991 samples, each with a dimension of (3, 224, 224). It includes 7 classes and covers four
domains: art, cartoon, photo, sketch.

D.2. Implementation Details

For Waterbirds, CMNIST, and CFMNIST datasets, the degree of spurious correlation ps for each source client is randomly
sampled from [0.85 : 1.0], while for the test data ps varies from 0. to 1.0. Considering the heterogeneity across clients, the
training data on each client are sampled from a subset of the original classes. Specifically, we conduct experiments on 10
clients. We distribute 10 waterbird species (4 separated and 6 overlapped) and 19 landbird species (15 separated and 4
overlapped) to each client on the Waterbirds dataset. And on the CMNIST/CFMNIST dataset, we re-label the data with
labels {0, 1, 2, 3, 4} as class 0, and the data with labels {5, 6, 7, 8, 9} as class 1. Furthermore, we randomly select two
different digit subclasses from each of class 0 and class 1. Since the test distribution in the real world is unknown, the model
may be deployed to source clients, which share the same distribution as the training data, or to unseen clients, whose data
distribution shifts from the training process. We aim to enhance OOD generalization performance while maintaining the
discriminative ability on the ID data distribution as much as possible. We refer to the results for ps ∈ {1.0, 0.9, 0.8} as the
in-distribution (ID) case, since this degree is close to the training data distribution, while the remaining values correspond to
the OOD case.

For Digits and PACS datasets, we follow the ’leave-one-out’ rule, where we choose one domain as target domain, train the
model on all remaining domains, and evaluate on the target domain. We conduct experiments on 10 clients, the data on
each client are sampled from the same domain, and the domains on different clients can be repeated. For example, in the
Digits dataset, there are 5 domains in total, with training clients covering 4 of these domains. The number of clients in each
training domain is 2, 2, 2, and 4, respectively, and each domain contains 1000 training samples. In the PACS dataset, there
are 4 domains in total, with training clients covering 3 of these domains. The number of clients in each training domain is 3,
3, and 4, respectively, and each domain contains 750 training samples.

E. Additional Method Details
E.1. Structure of the counterfactual generator

Our generator ψ(x; θψ) aims to synthesize novel and diverse samples to extend the distribution of the source domain. We
chose a model architecture that is widely used in the field of style transfer (Guo et al., 2023a; Yang et al., 2024), due
to its proven effectiveness in capturing and transferring domain information. ψ consists of two convolution layers and
AdaINnoise. The output synthesized by ψ(x; θψ) is defined as follows:

ψ(x; θψ) = Conv(AdaINnoise(Conv(x))), (35)

where Conv represents the convolution layers and AdaINnoise is a variant of adaptive instance normalization (Huang &
Belongie, 2017). To achieve counterfactual generation, AdaINnoise replaces affine transformation parameters with style
mean µ̂ ∈ Rc and style variance σ̂ ∈ Rc, while simultaneously incorporating the variable noise η̂ ∈ Rh×w×c into the
semantic content, with h, w and c indicating the height, width, and channel, respectively.

F. Additional Experimental Results.
F.1. Model attention visualization.

To demonstrate that our method relies on causal features rather than non-causal ones, we generate visual explanations using
Grad-CAM (Selvaraju et al., 2017). The models are trained on the Waterbirds dataset using various FL methods. Grad-CAM,
an extension of CAM, is a tool that provides visual insights into CNN-based image classifiers by highlighting image regions
that contribute most to the model’s predictions, thus allowing us to assess the features the model uses as the basis for its
classification decisions.

The detailed results can be found in Fig. 8, which shows that the model trained with FedUni focuses more on the causal
feature regions relevant to classification, such as the body parts and feather textures of birds. In contrast, the comparative
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models rely on spurious features, such as the background. These findings provide strong evidence that our method can more
effectively extract invariant causal features while avoiding spurious associations.

F.2. Mitigation of spurious correlations.

We further evaluate the extent of spurious associations by training models using different FL methods on three datasets:
CMNIST, CFMNIST, and Waterbirds. The degree to which each model relies on spurious features, such as background and
color, is quantified by the probability ps.

In Table 4, 5, and 6, we demonstrate the relationship between test accuracy and ps for each model. Our proposed model
outperforms the SOTA methods by exhibiting lower dependence on spurious associations across all three datasets. This
indicates that our model effectively mitigates reliance on spurious associations.

p = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

FedAvg 87.92 86.3 85.07 82.84 82.26 80.35 78.99 77.40 75.59 74.26 70.18
-worst 85.01 82.67 82.66 78.81 79.18 77.44 75.71 72.86 71.79 70.18 67.5

FedProx 88.2 86.41 85.55 82.91 81.8 80.36 78.06 76.69 75.02 73.69 71.88
-worst 84.3 83.07 80.78 79.6 77.43 76.77 74.43 72.32 70.72 69.49 67.86

Scaffold 87.89 86.2 84.97 82.49 82.26 80.19 78.85 77.18 75.79 74.02 72.54
-worst 84.33 83.25 81.83 79.78 78.66 78.16 76.19 74.21 73.02 70.22 68.95

Moon 86.15 84.69 83.93 82.53 81.64 80.56 78.9 77.99 77.01 75.67 74.64
-worst 80.78 79.37 79.89 78.84 76.54 76.42 75.31 73.93 72.84 72.13 70.89

FedSR 87.99 86.55 85.49 83.45 82.52 81.2 79.41 78.28 77.06 75.74 74.26
-worst 83.25 82.89 81.31 80.69 77.62 77.08 74.91 74.64 73.57 72.92 68.93

FedIIR 88.1 86.14 85.61 82.7 81.88 80.27 78.79 76.54 75.25 73.52 72.01
-worst 85.01 83.03 82.19 79.54 78.16 77.44 74.82 72.32 71.66 70.04 68.39

FedDG-GA 87.35 85.64 84.79 82.86 82.38 79.95 78.63 77.31 75.84 74.49 73.13
-worst 82.54 82.36 81.13 80.07 79.4 76.17 74.19 73.11 70.94 69.49 67.51

FedSDR 87.64 86.22 85.74 84 83.24 81.86 80.78 79.4 78.69 77.7 76.67
-worst 84.52 82.46 82.54 81.72 79.72 78.67 77.86 76.43 75.54 73.65 71.84

Ours 89.45 88.38 87.81 86.33 85.64 84.25 83.08 82.24 81.4 80.61 79.41
-worst 86.07 85.26 84.3 84.13 83.25 81.39 80.78 79.11 78.21 78.16 76.61

Table 4. The relationship between average and worst test accuracy and test distribution specified by ps on Waterbirds dataset. (Rows
without background color show the average test accuracy results.)

F.3. Convergence behavior.

To provide a clear illustration of the convergence behavior of our method, we plot the test accuracy over global communication
rounds on the Digits dataset, as shown in Fig. 9. In the early stages of training, the test accuracy shows some fluctuations
because the model has not yet fully captured the causal features. However, as the number of communication rounds increases,
the model gradually learns more robust feature representations, enhancing its ability to handle diverse data distributions.
Eventually, the curve becomes stable. This trend demonstrates that our method steadily converges throughout the training
process and maintains stable performance in later stages, indicating its effectiveness and robustness in heterogeneous data
scenarios.

G. Discussion of Limitations and Future Direction.
In this section, we discuss the limitations of our method and the potential solutions.

Despite the promising results our proposed method has achieved in reducing the reliance on spurious associations, it still
suffers from some limitations.

Firstly, in terms of computation, compared with the FedAvg method, the CMI filter and counterfactual generator included in
our proposed method bring a relatively large computational burden. This restricts the scale of the model and the amount
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p = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

FedAvg 96.72 91.92 87.1 82.46 77.67 72.73 68.53 63.28 59.21 53.92 49.18
-worst 90.5 85.4 82.3 74.9 67 61 54.6 48.2 39.7 32.7 26.1

FedProx 96.4 91.81 87.31 82.28 77.7 73.05 68.81 63.6 59.55 54.56 49.97
-worst 90.3 85.5 81.2 75.9 68.2 63 56.1 49 40.8 34.2 27.6

Scaffold 95.8 91.32 86.81 81.92 77.58 72.83 68.68 63.64 59.71 54.77 50.27
-worst 88.7 84.5 80.9 75.9 68.8 62.4 56.8 48.8 42.4 35.6 29.1

Moon 94.31 92.89 91.61 90.54 88.93 88.04 86.49 85.41 84.36 82.86 81.53
-worst 72.3 69.2 64.5 61.6 58.7 55 50.4 50.5 46.8 42.8 39.7

FedSR 97.18 93.2 89.39 84.74 80.96 76.46 72.52 68.69 64.97 60.18 56.34
-worst 90.3 85.7 82.3 77.7 72.45 66.7 61.9 56.2 49 41.8 37.4

FedIIR 96.22 91.77 87.25 82.4 77.93 73.39 69.3 64.14 60.38 55.33 50.79
-worst 89.3 84.9 80.2 74.9 67.5 62.5 55.4 49.4 41.5 35.1 28.6

FedDG-GA 96.92 92.44 87.53 82.68 78.2 73.38 69.4 64.1 60.16 55.22 50.55
-worst 92.7 88.3 81.8 76 69.2 62 55.7 48 42 34.2 26.9

FedSDR 96.73 92.15 87.5 82.47 78.07 73.32 68.83 63.77 59.77 54.71 50.01
-worst 88.9 83.7 80.5 75.3 69.6 61.2 56.7 48.2 42.7 35.1 27.8

Ours 96.57 95.16 93.8 92.37 90.92 89.46 87.88 86.46 85.39 83.75 82.28
-worst 92 89.5 86.1 82.1 78 74.7 69.7 68.4 64.2 60 56.4

Table 5. The relationship between average and worst test accuracy and test distribution specified by ps on CMNIST dataset. (Rows
without background color show the average test accuracy results.)

p = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

FedAvg 93.13 91.96 91.14 90.4 89.31 88.38 87.21 86.61 85.79 84.72 83.71
-worst 66.7 64.4 61.2 59.9 58.4 55 52 52.2 48.8 46.9 44.5

FedProx 95.23 93.62 92.08 91.1 89.03 88.07 86.28 84.92 83.57 82.05 80.54
-worst 78.3 74.4 68.1 66 60.4 56.8 50.4 50 45.6 40.7 36.8

Scaffold 94.73 93.29 91.93 90.81 89.16 88.12 86.56 85.35 84.29 82.73 81.36
-worst 74.4 71.4 66.3 63.2 60.2 56.5 52.2 51.9 48.2 44.3 41.1

Moon 95.53 92.01 88.38 84.62 80.82 77.44 74.01 70.16 67.18 63.19 59.5
-worst 86.1 83.1 80.2 77 72.5 67.3 61.7 55.8 51.3 45.4 39.6

FedSR 93.4 92.34 91.14 90.19 88.62 87.89 86.18 85.68 84.48 83.27 81.99
-worst 69.5 67.2 62.7 61.2 58.5 55.9 51.2 50.6 48.4 45.9 43

FedIIR 93.53 92.3 91.26 90.43 89.14 88.22 86.86 86.04 85.07 83.96 82.78
-worst 68.3 65.7 62.1 60.3 58.6 55.1 51.7 51.8 48.2 45.6 43.2

FedDG-GA 93.2 91.95 91.07 90.31 89.19 88.13 86.97 86.32 85.41 84.29 83.26
-worst 66.8 64.3 61.1 59.7 58.3 54.6 51.5 52 48.5 46.4 44.1

FedSDR 95.34 93.71 92.13 90.95 89.04 87.82 86.21 84.68 83.32 81.77 80.14
-worst 77.5 74.1 68.9 65.7 61.5 57.8 53.6 51.6 47.8 44.4 40.5

Ours 94.95 93.91 92.83 91.9 90.61 89.79 88.73 87.68 86.67 85.58 84.51
-worst 76.5 74.5 69.4 66.6 63.5 60.7 57.2 55.6 52.5 49.3 46.2

Table 6. The relationship between average and worst test accuracy and test distribution specified by ps on CFMNIST dataset. (Rows
without background color show the average test accuracy results.)
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Figure 8. Visualization of the effects of some federated learning methods (including ours) on the Waterbirds dataset. The red areas are
important for the prediction of the correct class, and the blue areas are vice versa.
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Figure 9. Accuracy curves with global communication rounds increase.
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of data that can be processed. As a result, our method fits better in cross-silo FL scenarios where devices have sufficient
computing power.

Secondly, device heterogeneity has not been considered. In FL, different clients may have diverse hardware conditions,
including network environments and computing capabilities. Some clients can handle complex causal feature extraction
and selection, while others may struggle to complete these tasks due to limitations in computing capabilities, network, or
memory. On the other hand, the datasets on different clients may also vary. Some clients may have very few or low-quality
datasets, which can affect the local learning effect and, in turn, the overall performance. It is important to note that the
current framework proposed in this paper assumes uniform computational resources across all clients. This assumption
simplifies the experimental setup but does not fully capture the complexity of real-world scenarios involving heterogeneous
devices and resource constraints.

To address the aforementioned limitations, several promising research directions can be explored. A key area is optimizing
the computational efficiency of our method. By exploring more efficient algorithms and techniques, we can reduce the
computational burden and make the method applicable to a wider range of model scales and data amounts. Additionally,
designing customized lightweight approximation schemes for clients with low computing power and unstable network
conditions could further enhance the adaptability of our method.
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