ConCodeEval: Evaluating Large Language Models for Code Constraints in
Domain-Specific Languages

Anonymous ACL submission

Abstract

Recent work shows Large Language Models
(LLMs) struggle to understand natural lan-
guage constraints for various text generation
tasks in zero- and few-shot settings. While, in
the code domain, there is wide usage of con-
straints in code format to maintain the integrity
of code written in Domain-Specific Languages'
(DSLs) like JSON and YAML which are widely
used for system-level programming tasks in en-
terprises. Given that LLMs are increasingly
used for system-level code tasks, evaluating if
they can comprehend these code constraints
is crucial. However, no work has been done
to evaluate their controllability over code con-
straints. Hence, we introduce ConCodeEval
first-of-its-kind benchmark having two novel
tasks for code constraints across five represen-
tations. Our findings suggest that language
models struggle with code constraints. Code
languages that perform excellently for normal
code tasks do not perform well when the same
languages represent fine-grained constraints.

1 Introduction

Large language models (LLMs) have shown
promising results (Brown et al., 2020) in generat-
ing coherent text and code in zero and few-shot set-
tings, especially for resource-rich languages. How-
ever, their practical utility depends on their abil-
ity to follow instructions or constraints at various
granularity, encompassing user and system require-
ments. Recent studies (Sun et al., 2023) indicate
that LLMs struggle with fine-grained constraints in
natural language prompts, especially in paraphrase
generation and numerical planning tasks.

While previous work studied the controllabil-
ity of language models (LMs) using fine-grained
instructions in natural language (NL) format, the
necessity to represent instructions in code format
arises from a critical enterprise use case involv-
ing system-level programming. In enterprises,

"https://w.wiki/6jCH

Listing 1: The JSON sample generated (highlighted in
yellow) by the Granite 20B model does not adhere to
the minContains and subsequent numerical constraints.

Write a JSON sample with field values as per the
JSON format schema given below.

{

"type": "array",
"contains": {
"type": "number”,
"multipleOf”: 2.66,

0.08231885995435284,
5.1100233535478 3},

"exclusiveMinimum”:
"exclusiveMaximum”:
"minContains”: 7

3}
JSON sample:

| [2.66, 5.22, 8.88, 12.54, 16.2, 19.86, 23.52, 27.18] |

‘ “e ‘

L I

system-level code integrity is maintained through
use-case-specific constraints, typically encoded us-
ing schemas. Schemas are instructions in struc-
tured code languages like JSON, YAML, XML, or
Python to enforce constraints like data types and
required fields, ensuring code integrity. For exam-
ple, the schema in Listing 1 requires the sample
to be an array of numbers. Each number must be
a multiple of 2.66 and fall within the range de-
fined by the exclusiveMinimum and exclusiveMax-
imum fields. Additionally, the array must contain
at least seven elements. Following such schema
constraints, developers write system-level code in
Domain-Specific Languages (DSLs) in a format
similar to JSON, YAML, or XML. DSLs are cus-
tom languages with specialized schemas and syn-
tax suitable for a particular domain or application.
These DSLs are common for tasks like data ex-
change and system configuration, such as in Kuber-
netes’. Writing DSL code requires deep domain
expertise and a significant learning process for de-
velopers. This has led to a growing adoption of
LLMs for system-level programming in several
products such as Ansible Lightspeed?.

Zhttps://w.wiki/3kbz
3https: //developers.redhat.com/products/
ansible/lightspeed

https://w.wiki/6jCH
https://w.wiki/3kbZ
https://developers.redhat.com/products/ansible/lightspeed
https://developers.redhat.com/products/ansible/lightspeed

Given the cruciality of factoring in schemas with
LLMs, there is increasing interest in using con-
strained decoding for DSLs (Pimparkhede et al.,
2024; Wang et al., 2024a). However, given its limi-
tations (Appendix A.4), it is necessary to evaluate
if LMs are cognizant of code constraints when di-
rectly presented as a part of the prompt. Therefore,
we aim to study the controllability of LMs through
two novel seed tasks: (i) Data as Code generation:
valid sample generation factoring in constraints (ii)
DSL validation: validate code against constraints.
‘We evaluate two model families, Llama and Gran-
ite, ranging from 8B to 70B parameters, aligning
with enterprise needs for system-level tasks, where
open-source models provide an economical and
transparent alternative to black-box models like
GPT-4. Both tasks are highly motivated from re-
search and enterprise use case point of view as
detailed in Appendix A.5.

Our contributions are:

1. We introduce two novel NLP tasks for enter-
prise system-level code: code generation from
fine-grained schema instructions and code val-
idation against schemas. To the best of our
knowledge, we are the first to evaluate LMs
on these tasks.

2. A benchmark test set consisting of 602 schema
samples, each containing multiple instruc-
tions. Each schema sample in our test set
is represented in 5 different language formats
(JSON, YAML, XML, Python, and NL).

3. Comparative and qualitative analysis of state-
of-the-art code models for two novel tasks
with different schema languages. Our findings
show that language models best comprehend
JSON schema (Tables 1, 2) and are agnostic
of language proportions in pre-training data.

2 Data as Code Generation in DSL

Task description: Given the schema, the gener-
ation task (see Listing 1) aims to produce a com-
pliant data sample in DSL code format. We draw
inspiration from several use cases (see Appendix
A.5), including synthesizing schema-compliant
data from LLMs’ parametric memory to train and
evaluate smaller-sized models (Song et al., 2020)
and generating diverse sets of samples to be used
in product test pipelines. For reliable DSL code
generation, LLMs need to be schema-aware.

—— 160 57

,,,,,,,,,, 133 65
w154 49
g 71
aaaaaaaaaaaa 159 53 oo

Uama3 708 - 48 134 34

Figure 1: Uniform trend of steep decline in performance
across models for constraints positioned in the middle
and beginning of the JSON schema context and output
for task 1. We divide the schema in to 3 equal portions
Begin, Middle, and End, and put the violated constraints
based on their locality into either of these three buckets.

Dataset: We synthetically prepare 602 schemas
for each of the 5 representations having combina-
tions of various constraints (Appendix A.6). First,
we prepare JSON schemas using our combinato-
rial tool to generate a good mix of constraints.
We then convert each JSON schema to XML and
YAML schemas using automated tools. Further, we
include resource-rich general-purpose language -
Python using the Pydantic library generated using
the Gemini-1.0-pro (Team et al., 2024) model as
a code translation task. We extend our evaluation
to NL representation generated using rule-based
templates. We* ensure equivalence of the gener-
ated schemas across languages. More details are in
Appendix A.8.

Evaluation metric: Each schema-compliant
code output LLM generates is awarded one point
where schema compliance is checked using a
schema validator tool. We then utilize the accuracy
metric (Gen Acc) over all samples to benchmark
performance across the models. Additionally, we
also report the percentage of samples generated
with the invalid root data type (RTV%) and invalid
samples (IS%) in Table 5. The root data type is the
data type of the whole DSL sample. For example,
the root data type of sample represented in Listing
1 is array. For IS and RTV metrics, the lesser the
number, the better the performance.

Experimental setup: We report greedy decod-
ing results since it performed slightly better than
beam search with a beam width of 3. More details
including hyper-parameters in Appendix A.7.

*The schemas are manually validated by the paper’s au-
thors.

Prompts: We experiment with zero-shot and 3-
shot prompting for each model. For 3-shot prompt-
ing, we identify errors from the zero-shot setting,
then select shots similar to the most frequent errors.
Examples of prompts are in Appendix 1. While we
represent the zero-shot results in the main paper,
few-shot results are in the Appendix (Table 2).

Results: Among the 5 schema representations
studied, NL is best understood by models across
all outputs. JSON and YAML schemas perform
well for constraints in code despite their limited
presence in pre-training data. Surprisingly, mod-
els struggle with constraints in Python, though it
is the major portion of the pre-training data, and
models also find XML schemas challenging. No-
tably, models did not exhibit a performance boost
when schema and output representation languages
were the same. As shown in Figure 1, models are
sensitive to the locality of the constraints in the
schema and struggle to factor in constraints present
in the beginning and middle portions of the schema.
Irrespective of their overall performance, models
show a similar distribution of mistakes across all
constraint types (see Table 4) and show improved
performance in few-shot results (see Table 2) when
shots relevant to the mistakes used. Among the two
family of models, Llama3 70B performed the best
followed by Granite 34B.

3 DSL Validation

Listing 2: In the JSON sample, values for fields stingo
and anisic do not adhere to schema constraints. But
the Granite 34B model gives the incorrect answer (high-
lighted in yellow) as yes.

Question:

Does the JSON sample { "tamil”: false, "baser”: null
, "anisic”: 1906.34, "stingo": "officiis tellus
. illum modi odit quas mattis nunc”, "
pigheadedness”: 52.0 } adhere to all the
constraints defined in JSON format schema

{

"type": "object”,
"properties”: {
"tamil”: { "type"”: "boolean” 3},
"baser”: { "type”: "null” 3},
"anisic": { "type”: "number”, "multipleOf”: 17.0
2},
"stingo": { "type": "string”, "maxLength": 20 3},
"pigheadedness”: {"type": "number”, "

exclusiveMinimum”: 27.65410407394338,
maximum”: 93.85523810367313 } },
"additionalProperties”: false
3
Respond to yes or no.
Answer:

yes

Task description: There is a growing body of
work (Hada et al., 2024) on showing promising
usage of LLMs as evaluators in many tasks. On
similar lines, given the DSL sample and schema to
validate, this task (see Listing 2) aims to determine
the validity of the provided sample against the con-
straints through boolean question answering (QA).
Also, the task is highly motivated from various use
cases (see Appendix A.5) and throws light on LM’s
understanding of the relation between requirements
and output in various representations.

Dataset: For each of the 602 schemas across
5 representations as described in Section 2, we
generate 3 data samples across JSON, XML, and
YAML languages. First, these data samples are
synthetically generated by parsing through the
JSON schema by randomly pruning and selecting
constraints, resulting in data samples of different
lengths and constraints. We then convert the gener-
ated JSON data samples to equivalent YAML and
XML formats. Dataset consists of 3076 instances
with 45% of no and 55% yes instances.

Evaluation metric: Since it is a boolean QA task,
we use Macro average F1 (see Table 6) and Accu-
racy (Val Acc) as evaluation metrics (see Table 1).

Experimental setup: The decoding strategy
used here is similar to the generation task as men-
tioned in Section 2. More details in Appendix A.7.

Prompts: The goal of this task is to answer with
either yes or no. We experiment with zero- and
few-shot prompting. With few shot prompting we
provide one example each of yes and no answer.
Results for few-shot prompting and examples of
prompts are given in Appendix (Table 2).

Results: Although NL representation excels in
generation tasks, it degrades the validation perfor-
mance of larger models like 70B. JSON, YAML
and Python representations show effectiveness in
one of the output formats however poorly perform
for others. Like in task 1, models perform sub-
optimally when both schema and output represen-
tations are same. In lines with task 1, XML stands
as a challenging language for models. The Llama3
70B model perform best in validation like in task 1,
with other models hovering around 50% Val Acc,
likely reflecting random choice given the binary
nature of the task. Smaller models, particularly the
Llama3-8B with natural language representation,

Output Representation

\ | JSON YAML | XML
Model | Schema | Gen Acc | Val Acc Gen Acc | Val Acc | Gen Acc | Val Acc
Llama3 8B 28.2 56.0 29.2 45.0 7.9 47.0
Granite 8B 47.5 56.0 24.7 55.0 5.1 45.0
Granite 20B JSON 50.4 52.0 37.7 44.0 10.1 53.0
Granite 34B 53.3 64.0 322 57.0 11.2 65.0
Codellama 34B 58.4 64.0 23.0 54.0 9.4 53.0
¥ Llama3 70B 62.8 67.0 40.1 584 18.9 55.7
Llama3 8B 10.2 37.0 225 42.0 10.2 46.0
Granite 8B 18.9 47.0 12.1 44.0 8.4 52.0
Granite 20B XML 24.0 37.0 12.4 47.0 8.6 57.0
Granite 34B 18.7 68.0 18.1 58.0 8.6 58.0
Codellama 34B 8.8 46.0 14.2 46.0 8.6 50.0
¥ Llama3 70B 284 70.3 24.8 60.1 16.6 54.2
Llama3 8B 259 46.0 8.1 44.0 6.4 45.0
Granite 8B 47.0 47.0 15.7 50.0 8.6 44.0
Granite 20B YAML 347 31.0 259 38.0 8.4 47.0
Granite 34B 52.1 68.0 26.4 61.0 8.6 58.0
Codellama 34B 48.0 59.0 27.9 53.0 9.1 58.0
¥ Llama3 70B 56.0 71.0 324 63.2 14.6 56.9
Llama3 8B 13.7 43.0 10.2 42.0 11.6 43.0
Granite 8B 10.2 54.0 11.9 58.0 11.1 55.0
Granite 20B Python 14.6 45.0 11.7 67.0 7.3 44.0
Granite 34B 17.7 54.0 13.9 67.0 10.6 46.0
Codellama 34B 13.7 49.0 11.6 53.0 8.4 44.0
¥ Llama3 70B 24.7 57.2 18.9 70.4 14.9 52.1
Llama3 8B 30.2 63.0 245 56.0 9.6 57.0
Granite 8B 52.3 59.0 42.1 61.0 11.1 58.0
Granite 20B NL 65.4 54.0 46.0 48.0 10.9 60.0
Granite 34B 69.7 55.0 55.1 46.0 10.9 56.0
Codellama 34B 60.4 57.0 40.6 57.0 8.69 50.0
¥ Llama3 70B 75.2 67.7 57.2 64.2 134 58.1

Table 1: Zero shot results for tasks 1 and 2. Models scoring the highest accuracy the majority of times across all
output representations for a particular schema are labeled with ®. Gen Acc represents the accuracy of valid samples
for DSL generation tasks. Val Acc represents the accuracy of the binary classification validation task.

show notable improvement, as its pre-training is a
combination of NL and code.

4 Related Work

Generation: There is extensive work (Muen-
nighoff et al., 2024; Cassano et al., 2022) on
evaluating capabilities of LLMs for various code
tasks such as code completion, translation, etc for
resource-rich languages like Python. Despite there
being work (Cassano et al., 2022) on multi-lingual
code, there is scant attention to low-resource lan-
guages such as DSLs, though having crucial im-
portance. In parallel, using LLMs as evaluators for
low-resource languages is gaining interest, how-
ever limited, mainly focusing on languages like
XML and INI (Lian et al., 2024).

Controllability of LLMs: While LLMs can han-
dle coarse-grained constraints like sentiment, they
struggle with fine-grained constraints, such as end-
ing a text with a specific word (Sun et al., 2023).
Code schemas often require such fine-grained con-
trol, and to our knowledge, we are the first to ex-
plore LLM controllability for constraints in code.

5 Conclusion

We introduce two novel tasks - Data as Code gen-
eration and DSL validation to test the controlla-
bility of LLMs when constraints are in code for-
mat, which is a crucial use case for system-level
programming tasks in enterprises. We evaluate
LLMs over 5 schema representations, including
YAML, JSON, Python, XML, and NL, and 3 out-
put representations, including YAML, JSON, and
XML. We conclude that model performance does
not directly correlate with language’s portion in pre-
training data. Models for task 1 best understand
NL. Howeyver, this is not the case with the valida-
tion task. Interestingly, models underperformed
when the schema and output representations were
the same, and the locality of the constraints in the
schema impacted their performance. Task 2 re-
sults show that most of the models, irrespective of
their size, found it very challenging since they per-
formed just above or under the 50% accuracy. We
hope our work can help innovation in improving
the capabilities of LLMs for such challenging use
cases and serve as a valuable reference.

6 Limitations

While we explore the DSL validation task by gen-
erating yes or no, exploring the model’s reason-
ing can give a more comprehensive analysis of
LLM’s understanding. Further, one can include
more complex constraints in the future for general-
purpose programming languages, like coding style
constraints to write code along with natural lan-
guage prompts and schema.

Ethics Statement

Custom-created datasets have been created syn-
thetically using open-source tools. The language
models, tools, and frameworks used for evaluation
are open source and can be used without copyright
issues.

References

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. 2024. The reversal curse: LIms
trained on "a is b" fail to learn "b is a". Preprint,
arXiv:2309.12288.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation. Preprint, arXiv:2208.08227.

Xinyun Chen, Ryan A. Chi, Xuezhi Wang, and Denny
Zhou. 2024. Premise order matters in reasoning with
large language models. Preprint, arXiv:2402.08939.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10932—
10952, Singapore. Association for Computational
Linguistics.

Rishav Hada, Varun Gumma, Adrian Wynter, Harshita
Diddee, Mohamed Ahmed, Monojit Choudhury, Ka-
lika Bali, and Sunayana Sitaram. 2024. Are large
language model-based evaluators the solution to scal-
ing up multilingual evaluation? In Findings of the
Association for Computational Linguistics: EACL
2024, pages 1051-1070, St. Julian’s, Malta. Associa-
tion for Computational Linguistics.

Xinyu Lian, Yinfang Chen, Runxiang Cheng, Jie Huang,
Parth Thakkar, Minjia Zhang, and Tianyin Xu. 2024.
Configuration validation with large language models.
Preprint, arXiv:2310.09690.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. Preprint,
arXiv:2308.07124.

Sameer Pimparkhede, Mehant Kammakomati, Srikanth
Tamilselvam, Prince Kumar, Ashok Pon Ku-
mar, and Pushpak Bhattacharyya. 2024. Docc-
gen: Document-based controlled code generation.
Preprint, arXiv:2406.11925.

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas
Dupuis, Burn Lewis, Sahil Suneja, Atin Sood,
Ganesh Nalawade, Matthew Jones, Alessandro
Morari, and Ruchir Puri. 2023. Automated code
generation for information technology tasks in
yaml through large language models. Preprint,
arXiv:2305.02783.

Kaitao Song, Hao Sun, Xu Tan, Tao Qin, Jianfeng Lu,
Hongzhi Liu, and Tie-Yan Liu. 2020. Lightpaff: A
two-stage distillation framework for pre-training and
fine-tuning. Preprint, arXiv:2004.12817.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian
Hu, Rahul Gupta, John Wieting, Nanyun Peng, and
Xuezhe Ma. 2023. Evaluating large language models
on controlled generation tasks. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3155-3168, Singapore.
Association for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, Orhan Firat, James Molloy, Michael
Isard, Paul R. Barham, Tom Hennigan, Benjamin
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong
Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza
Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Jack Krawczyk, Cosmo Du, Ed Chi, Heng-
Tze Cheng, Eric Ni, Purvi Shah, Patrick Kane, Betty
Chan, Manaal Faruqui, Aliaksei Severyn, Hanzhao
Lin, YaGuang Li, Yong Cheng, Abe Ittycheriah,
Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran,
Sumit Bagri, Balaji Lakshminarayanan, Jeremiah

https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2402.08939
https://arxiv.org/abs/2402.08939
https://arxiv.org/abs/2402.08939
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://doi.org/10.18653/v1/2023.emnlp-main.674
https://aclanthology.org/2024.findings-eacl.71
https://aclanthology.org/2024.findings-eacl.71
https://aclanthology.org/2024.findings-eacl.71
https://aclanthology.org/2024.findings-eacl.71
https://aclanthology.org/2024.findings-eacl.71
https://arxiv.org/abs/2310.09690
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2004.12817
https://arxiv.org/abs/2004.12817
https://arxiv.org/abs/2004.12817
https://arxiv.org/abs/2004.12817
https://arxiv.org/abs/2004.12817
https://doi.org/10.18653/v1/2023.emnlp-main.190
https://doi.org/10.18653/v1/2023.emnlp-main.190
https://doi.org/10.18653/v1/2023.emnlp-main.190

Liu, Andras Orban, Fabian Giira, Hao Zhou, Xiny-
ing Song, Aurelien Boffy, Harish Ganapathy, Steven
Zheng, HyunJeong Choe, Agoston Weisz, Tao Zhu,
Yifeng Lu, Siddharth Gopal, Jarrod Kahn, Maciej
Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa,
Majd Al Merey, Martin Baeuml, Zhifeng Chen, Lau-
rent El Shafey, Yujing Zhang, Olcan Sercinoglu,
George Tucker, Enrique Piqueras, Maxim Krikun,
lain Barr, Nikolay Savinov, Ivo Danihelka, Becca
Roelofs, Anais White, Anders Andreassen, Tamara
von Glehn, Lakshman Yagati, Mehran Kazemi, Lu-
cas Gonzalez, Misha Khalman, Jakub Sygnowski,
Alexandre Frechette, Charlotte Smith, Laura Culp,
Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan
Schucher, Federico Lebron, Alban Rrustemi, Na-
talie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao,
Bartek Perz, Dian Yu, Heidi Howard, Adam Blo-
niarz, Jack W. Rae, Han Lu, Laurent Sifre, Mar-
cello Maggioni, Fred Alcober, Dan Garrette, Megan
Barnes, Shantanu Thakoor, Jacob Austin, Gabriel
Barth-Maron, William Wong, Rishabh Joshi, Rahma
Chaabouni, Deeni Fatiha, Arun Ahuja, Gaurav Singh
Tomar, Evan Senter, Martin Chadwick, Ilya Kor-
nakov, Nithya Attaluri, Ifiaki Iturrate, Ruibo Liu,
Yunxuan Li, Sarah Cogan, Jeremy Chen, Chao Jia,
Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse
Hartman, Xavier Garcia, Thanumalayan Sankara-
narayana Pillai, Jacob Devlin, Michael Laskin, Diego
de Las Casas, Dasha Valter, Connie Tao, Lorenzo
Blanco, Adria Puigdomenech Badia, David Reitter,
Mianna Chen, Jenny Brennan, Clara Rivera, Sergey
Brin, Shariq Igbal, Gabriela Surita, Jane Labanowski,
Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yim-
ing Gu, Kate Olszewska, Ravi Addanki, Antoine
Miech, Annie Louis, Denis Teplyashin, Geoff Brown,
Elliot Catt, Jan Balaguer, Jackie Xiang, Pidong Wang,
Zoe Ashwood, Anton Briukhov, Albert Webson, San-
jay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-
Wei Chang, Axel Stjerngren, Josip Djolonga, Yut-
ing Sun, Ankur Bapna, Matthew Aitchison, Pedram
Pejman, Henryk Michalewski, Tianhe Yu, Cindy
Wang, Juliette Love, Junwhan Ahn, Dawn Bloxwich,
Kehang Han, Peter Humphreys, Thibault Sellam,
James Bradbury, Varun Godbole, Sina Samangooei,
Bogdan Damoc, Alex Kaskasoli, Sébastien M. R.
Arnold, Vijay Vasudevan, Shubham Agrawal, Jason
Riesa, Dmitry Lepikhin, Richard Tanburn, Srivat-
san Srinivasan, Hyeontaek Lim, Sarah Hodkinson,
Pranav Shyam, Johan Ferret, Steven Hand, Ankush
Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Gi-
ang, Alexander Neitz, Zaheer Abbas, Sarah York,
Machel Reid, Elizabeth Cole, Aakanksha Chowdh-
ery, Dipanjan Das, Dominika Rogoziniska, Vitaliy
Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas
Zilka, Flavien Prost, Luheng He, Marianne Mon-
teiro, Gaurav Mishra, Chris Welty, Josh Newlan,
Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,
Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel,
Albin Cassirer, Yunhan Xu, Daniel Sohn, Deven-
dra Sachan, Reinald Kim Amplayo, Craig Swan-
son, Dessie Petrova, Shashi Narayan, Arthur Guez,

Siddhartha Brahma, Jessica Landon, Miteyan Pa-
tel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wen-
hao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung,
James Keeling, Petko Georgiev, Diana Mincu, Boxi
Wu, Salem Haykal, Rachel Saputro, Kiran Vodra-
halli, James Qin, Zeynep Cankara, Abhanshu Sharma,
Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal,
Alex Castro-Ros, George van den Driessche, Tao
Wang, Fan Yang, Shuo yiin Chang, Paul Komarek,
Ross Mcllroy, Mario Lucié¢, Guodong Zhang, Wael
Farhan, Michael Sharman, Paul Natsev, Paul Michel,
Yamini Bansal, Siyuan Qiao, Kris Cao, Siamak Shak-
eri, Christina Butterfield, Justin Chung, Paul Kishan
Rubenstein, Shivani Agrawal, Arthur Mensch, Kedar
Soparkar, Karel Lenc, Timothy Chung, Aedan Pope,
Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo
Wang, Joshua Maynez, Mary Phuong, Taylor Tobin,
Andrea Tacchetti, Maja Trebacz, Kevin Robinson,
Yash Katariya, Sebastian Riedel, Paige Bailey, Kefan
Xiao, Nimesh Ghelani, Lora Aroyo, Ambrose Slone,
Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena Gri-
bovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music
Li, Thais Kagohara, Jay Pavagadhi, Sophie Bridgers,
Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed,
Tiangi Liu, Richard Powell, Vijay Bolina, Mariko
linuma, Polina Zablotskaia, James Besley, Da-Woon
Chung, Timothy Dozat, Ramona Comanescu, Xi-
ance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaél Lopez Kaufman, Simon Tokumine, Hexiang
Hu, Elena Buchatskaya, Yingjie Miao, Mohamed
Elhawaty, Aditya Siddhant, Nenad Tomasev, Jin-
wei Xing, Christina Greer, Helen Miller, Shereen
Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Ange-
los Filos, Milos Besta, Rory Blevins, Ted Klimenko,
Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Os-
car Chang, Mantas Pajarskas, Carrie Muir, Vered
Cohen, Charline Le Lan, Krishna Haridasan, Amit
Marathe, Steven Hansen, Sholto Douglas, Rajku-
mar Samuel, Mingqiu Wang, Sophia Austin, Chang
Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo,
Lars Lowe Sjosund, Sébastien Cevey, Zach Gle-
icher, Thi Avrahami, Anudhyan Boral, Hansa Srini-
vasan, Vittorio Selo, Rhys May, Konstantinos Aiso-
pos, Léonard Hussenot, Livio Baldini Soares, Kate
Baumli, Michael B. Chang, Adria Recasens, Ben
Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo,
Anita Gergely, Justin Frye, Vinay Ramasesh, Dan
Horgan, Kartikeya Badola, Nora Kassner, Subhra-
jit Roy, Ethan Dyer, Victor Campos Campos, Alex
Tomala, Yunhao Tang, Dalia El Badawy, Elspeth
White, Basil Mustafa, Oran Lang, Abhishek Jin-
dal, Sharad Vikram, Zhitao Gong, Sergi Caelles,
Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng,
Wojciech Stokowiec, Ce Zheng, Phoebe Thacker,
Caglar Unlii, Zhishuai Zhang, Mohammad Saleh,
James Svensson, Max Bileschi, Piyush Patil, Ankesh
Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer,
Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom
Kwiatkowski, Samira Daruki, Keran Rong, Allan
Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg,
Mina Khan, Lisa Anne Hendricks, Marie Pellat,
Vladimir Feinberg, James Cobon-Kerr, Tara Sainath,
Maribeth Rauh, Sayed Hadi Hashemi, Richard Ives,

Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd,
Le Hou, Qingze Wang, Thibault Sottiaux, Michela
Paganini, Jean-Baptiste Lespiau, Alexandre Mou-
farek, Samer Hassan, Kaushik Shivakumar, Joost van
Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh
Goyal, Matthew Tung, Andrew Brock, Hannah Shea-
han, Vedant Misra, Cheng Li, Nemanja Rakiéevi¢,
Mostafa Dehghani, Fangyu Liu, Sid Mittal, Jun-
hyuk Oh, Seb Noury, Eren Sezener, Fantine Huot,
Matthew Lamm, Nicola De Cao, Charlie Chen, Sid-
harth Mudgal, Romina Stella, Kevin Brooks, Gau-
tam Vasudevan, Chenxi Liu, Mainak Chain, Nivedita
Melinkeri, Aaron Cohen, Venus Wang, Kristie Sey-
more, Sergey Zubkov, Rahul Goel, Summer Yue,
Sai Krishnakumaran, Brian Albert, Nate Hurley,
Motoki Sano, Anhad Mohananey, Jonah Joughin,
Egor Filonov, Tomasz Kepa, Yomna Eldawy, Jiaw-
ern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor
Bos, Jerry Chang, Sanil Jain, Sri Gayatri Sundara
Padmanabhan, Subha Puttagunta, Kalpesh Krishna,
Leslie Baker, Norbert Kalb, Vamsi Bedapudi, Adam
Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin,
Xiang Zhou, Zhichun Wu, Sam Sobell, Andrea Si-
ciliano, Alan Papir, Robby Neale, Jonas Bragagnolo,
Tej Toor, Tina Chen, Valentin Anklin, Feiran Wang,
Richie Feng, Milad Gholami, Kevin Ling, Lijuan
Liu, Jules Walter, Hamid Moghaddam, Arun Kishore,
Jakub Adamek, Tyler Mercado, Jonathan Mallinson,
Siddhinita Wandekar, Stephen Cagle, Eran Ofek,
Guillermo Garrido, Clemens Lombriser, Maksim
Mukha, Botu Sun, Hafeezul Rahman Mohammad,
Josip Matak, Yadi Qian, Vikas Peswani, Pawel Janus,
Quan Yuan, Leif Schelin, Oana David, Ankur Garg,
Yifan He, Oleksii Duzhyi, Anton Algmyr, Timo-
thée Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex
Chinien, Rakesh Shivanna, Aleksandr Chuklin, Josie
Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed,
Subhabrata Das, Zihang Dai, Kyle He, Daniel von
Dincklage, Shyam Upadhyay, Akanksha Maurya,
Luyan Chi, Sebastian Krause, Khalid Salama, Pam G
Rabinovitch, Pavan Kumar Reddy M, Aarush Sel-
van, Mikhail Dektiarev, Golnaz Ghiasi, Erdem Gu-
ven, Himanshu Gupta, Boyi Liu, Deepak Sharma,
Idan Heimlich Shtacher, Shachi Paul, Oscar Aker-
lund, Francgois-Xavier Aubet, Terry Huang, Chen
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze,
Francesco Bertolini, Liana-Eleonora Marinescu, Mar-
tin Bolle, Dominik Paulus, Khyatti Gupta, Tejasi
Latkar, Max Chang, Jason Sanders, Roopa Wil-
son, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet,
Tulsee Doshi, Sid Lall, Swaroop Mishra, Wanming
Chen, Thang Luong, Seth Benjamin, Jasmine Lee,
Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan,
Krzysztof Styrc, Pengcheng Yin, Jon Simon, Mal-
colm Rose Harriott, Mudit Bansal, Alexei Robsky,
Geoff Bacon, David Greene, Daniil Mirylenka, Chen
Zhou, Obaid Sarvana, Abhimanyu Goyal, Samuel
Andermatt, Patrick Siegler, Ben Horn, Assaf Is-
rael, Francesco Pongetti, Chih-Wei "Louis" Chen,
Marco Selvatici, Pedro Silva, Kathie Wang, Jack-
son Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai,
Alessandro Agostini, Maulik Shah, Hung Nguyen,
Noah O Donnaile, Sébastien Pereira, Linda Friso,

Adam Stambler, Adam Kurzrok, Chenkai Kuang,
Yan Romanikhin, Mark Geller, ZJ Yan, Kane Jang,
Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qi-
jun Tan, Dan Banica, Daniel Balle, Ryan Pham,
Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot
Singh, Chris Hidey, Niharika Ahuja, Pranab Sax-
ena, Dan Dooley, Srividya Pranavi Potharaju, Eileen
O’Neill, Anand Gokulchandran, Ryan Foley, Kai
Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta,
Ragha Kotikalapudi, Chalence Safranek-Shrader, An-
drew Goodman, Joshua Kessinger, Eran Globen, Pra-
teek Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang
Song, Ali Eichenbaum, Thomas Brovelli, Sahitya
Potluri, Preethi Lahoti, Cip Baetu, Ali Ghorbani,
Charles Chen, Andy Crawford, Shalini Pal, Mukund
Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski,
Pierre-Louis Cedoz, Chenmei Li, Shiyuan Chen,
Niccold Dal Santo, Siddharth Goyal, Jitesh Pun-
jabi, Karthik Kappaganthu, Chester Kwak, Pallavi
LV, Sarmishta Velury, Himadri Choudhury, Jamie
Hall, Premal Shah, Ricardo Figueira, Matt Thomas,
Minjie Lu, Ting Zhou, Chintu Kumar, Thomas Ju-
rdi, Sharat Chikkerur, Yenai Ma, Adams Yu, Soo
Kwak, Victor Ahdel, Sujeevan Rajayogam, Travis
Choma, Fei Liu, Aditya Barua, Colin Ji, Ji Ho
Park, Vincent Hellendoorn, Alex Bailey, Taylan Bi-
lal, Huanjie Zhou, Mehrdad Khatir, Charles Sut-
ton, Wojciech Rzadkowski, Fiona Macintosh, Kon-
stantin Shagin, Paul Medina, Chen Liang, Jinjing
Zhou, Pararth Shah, Yingying Bi, Attila Dankovics,
Shipra Banga, Sabine Lehmann, Marissa Bredesen,
Zifan Lin, John Eric Hoffmann, Jonathan Lai, Ray-
nald Chung, Kai Yang, Nihal Balani, Arthur BraZin-
skas, Andrei Sozanschi, Matthew Hayes, Héctor Fer-
nandez Alcalde, Peter Makarov, Will Chen, Anto-
nio Stella, Liselotte Snijders, Michael Mandl, Ante
Kirrman, Pawet Nowak, Xinyi Wu, Alex Dyck, Kr-
ishnan Vaidyanathan, Raghavender R, Jessica Mal-
let, Mitch Rudominer, Eric Johnston, Sushil Mit-
tal, Akhil Udathu, Janara Christensen, Vishal Verma,
Zach Irving, Andreas Santucci, Gamaleldin Elsayed,
Elnaz Davoodi, Marin Georgiev, lan Tenney, Nan
Hua, Geoffrey Cideron, Edouard Leurent, Mah-
moud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy
Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper
Snoek, Mukund Sundararajan, Xuezhi Wang, Zack
Ontiveros, Itay Karo, Jeremy Cole, Vinu Rajashekhar,
Lara Tumeh, Eyal Ben-David, Rishub Jain, Jonathan
Uesato, Romina Datta, Oskar Bunyan, Shimu Wu,
John Zhang, Piotr Stanczyk, Ye Zhang, David Steiner,
Subhajit Naskar, Michael Azzam, Matthew Johnson,
Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez
Elias, Afroz Mohiuddin, Faizan Muhammad, Jin
Miao, Andrew Lee, Nino Vieillard, Jane Park, Ji-
ageng Zhang, Jeff Stanway, Drew Garmon, Abbhijit
Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Lu-
owei Zhou, Jonathan Evens, William Isaac, Geoffrey
Irving, Edward Loper, Michael Fink, Isha Arkatkar,
Nanxin Chen, Izhak Shafran, Ivan Petrychenko,
Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai
Zhu, Peter Grabowski, Yu Mao, Alberto Magni,
Kaisheng Yao, Javier Snaider, Norman Casagrande,
Evan Palmer, Paul Suganthan, Alfonso Castafio,
Irene Giannoumis, Wooyeol Kim, Mikotaj Rybinski,

Ashwin Sreevatsa, Jennifer Prendki, David Soergel,
Adrian Goedeckemeyer, Willi Gierke, Mohsen Jafari,
Meenu Gaba, Jeremy Wiesner, Diana Gage Wright,
Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay
Hoover, Maigo Le, Lu Li, Chimezie Iwuanyanwu,
Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert
Cui, Tian LIN, Marcus Wu, Ricardo Aguilar, Keith
Pallo, Abhishek Chakladar, Ginger Perng, Elena Al-
lica Abellan, Mingyang Zhang, Ishita Dasgupta,
Nate Kushman, Ivo Penchev, Alena Repina, Xihui
Wu, Tom van der Weide, Priya Ponnapalli, Car-
oline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier
Dousse, Fan Yang, Jeff Piper, Nathan Ie, Rama Pa-
sumarthi, Nathan Lintz, Anitha Vijayakumar, Daniel
Andor, Pedro Valenzuela, Minnie Lui, Cosmin Padu-
raru, Daiyi Peng, Katherine Lee, Shuyuan Zhang,
Somer Greene, Duc Dung Nguyen, Paula Kurylow-
icz, Cassidy Hardin, Lucas Dixon, Lili Janzer, Kiam
Choo, Ziqiang Feng, Biao Zhang, Achintya Sing-
hal, Dayou Du, Dan McKinnon, Natasha Antropova,
Tolga Bolukbasi, Orgad Keller, David Reid, Daniel
Finchelstein, Maria Abi Raad, Remi Crocker, Pe-
ter Hawkins, Robert Dadashi, Colin Gaffney, Ken
Franko, Anna Bulanova, Rémi Leblond, Shirley
Chung, Harry Askham, Luis C. Cobo, Kelvin Xu,
Felix Fischer, Jun Xu, Christina Sorokin, Chris Al-
berti, Chu-Cheng Lin, Colin Evans, Alek Dimitriev,
Hannah Forbes, Dylan Banarse, Zora Tung, Mark
Omernick, Colton Bishop, Rachel Sterneck, Rohan
Jain, Jiawei Xia, Ehsan Amid, Francesco Piccinno,
Xingyu Wang, Praseem Banzal, Daniel J. Mankowitz,
Alex Polozov, Victoria Krakovna, Sasha Brown, Mo-
hammadHossein Bateni, Dennis Duan, Vlad Firoiu,
Meghana Thotakuri, Tom Natan, Matthieu Geist,
Ser tan Girgin, Hui Li, Jiayu Ye, Ofir Roval, Reiko
Tojo, Michael Kwong, James Lee-Thorp, Christo-
pher Yew, Danila Sinopalnikov, Sabela Ramos, John
Mellor, Abhishek Sharma, Kathy Wu, David Miller,
Nicolas Sonnerat, Denis Vnukov, Rory Greig, Jen-
nifer Beattie, Emily Caveness, Libin Bai, Julian
Eisenschlos, Alex Korchemniy, Tomy Tsai, Mimi
Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng,
Frederick Liu, Fan Yang, Rui Zhu, Tian Huey Teh,
Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin,
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Lint-
ing Xue, Chen Elkind, Oliver Woodman, John Car-
penter, George Papamakarios, Rupert Kemp, Sushant
Kafle, Tanya Grunina, Rishika Sinha, Alice Tal-
bert, Diane Wu, Denese Owusu-Afriyie, Cosmo
Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna
Narayana, Jing Li, Saaber Fatehi, John Wieting,
Omar Ajmeri, Benigno Uria, Yeongil Ko, Laura
Knight, Amélie Héliou, Ning Niu, Shane Gu, Chenxi
Pang, Yeqing Li, Nir Levine, Ariel Stolovich, Re-
beca Santamaria-Fernandez, Sonam Goenka, Wenny
Yustalim, Robin Strudel, Ali Elqursh, Charlie Deck,
Hyo Lee, Zonglin Li, Kyle Levin, Raphael Hoff-
mann, Dan Holtmann-Rice, Olivier Bachem, Sho
Arora, Christy Koh, Soheil Hassas Yeganeh, Siim
Pdder, Mukarram Tariq, Yanhua Sun, Lucian Ionita,
Mojtaba Seyedhosseini, Pouya Tafti, Zhiyu Liu, An-
mol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz,
Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown,
Shreya Singh, Wei Fan, Aaron Parisi, Joe Stan-

ton, Vinod Koverkathu, Christopher A. Choquette-
Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash
Shroff, Mani Varadarajan, Sanaz Bahargam, Rob
Willoughby, David Gaddy, Guillaume Desjardins,
Marco Cornero, Brona Robenek, Bhavishya Mit-
tal, Ben Albrecht, Ashish Shenoy, Fedor Moiseev,
Henrik Jacobsson, Alireza Ghaffarkhah, Morgane
Riviere, Alanna Walton, Clément Crepy, Alicia Par-
rish, Zongwei Zhou, Clement Farabet, Carey Rade-
baugh, Praveen Srinivasan, Claudia van der Salm,
Andreas Fidjeland, Salvatore Scellato, Eri Latorre-
Chimoto, Hanna Klimczak-Plucinska, David Bridson,
Dario de Cesare, Tom Hudson, Piermaria Mendolic-
chio, Lexi Walker, Alex Morris, Matthew Mauger,
Alexey Guseynov, Alison Reid, Seth Odoom, Lu-
cia Loher, Victor Cotruta, Madhavi Yenugula, Do-
minik Grewe, Anastasia Petrushkina, Tom Duerig,
Antonio Sanchez, Steve Yadlowsky, Amy Shen,
Amir Globerson, Lynette Webb, Sahil Dua, Dong
Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi,
Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj
Khare, Shreyas Rammohan Belle, Lei Wang, Chetan
Tekur, Mihir Sanjay Kale, Jinliang Wei, Ruoxin
Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao
Zhao, Stephan Lee, Pandu Nayak, Doug Fritz, Man-
ish Reddy Vuyyuru, John Aslanides, Nidhi Vyas,
Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina Mar-
tin, Hardie Cate, James Manyika, Keyvan Amiri,
Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier,
Nilesh Tripuraneni, David Madras, Mandy Guo,
Austin Waters, Oliver Wang, Joshua Ainslie, Jason
Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer,
Feng Yang, Riham Mansour, Jason Gelman, Yang Xu,
George Polovets, Ji Liu, Honglong Cai, Warren Chen,
XiangHai Sheng, Emily Xue, Sherjil Ozair, Christof
Angermueller, Xiaowei Li, Anoop Sinha, Weiren
Wang, Julia Wiesinger, Emmanouil Koukoumidis,
Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark
Goldenson, Parashar Shah, MK Blake, Hongkun Yu,
Anthony Urbanowicz, Jennimaria Palomaki, Chrisan-
tha Fernando, Ken Durden, Harsh Mehta, Nikola
Momchev, Elahe Rahimtoroghi, Maria Georgaki,
Amit Raul, Sebastian Ruder, Morgan Redshaw, Jin-
hyuk Lee, Denny Zhou, Komal Jalan, Dinghua Li,
Blake Hechtman, Parker Schuh, Milad Nasr, Kieran
Milan, Vladimir Mikulik, Juliana Franco, Tim Green,
Nam Nguyen, Joe Kelley, Aroma Mahendru, Andrea
Hu, Joshua Howland, Ben Vargas, Jeffrey Hui, Kshi-
tij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang,
Ke Ye, Jean Michel Sarr, Melanie Moranski Preston,
Madeleine Elish, Steve Li, Aakash Kaku, Jigar Gupta,
Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi
M., Xinyun Chen, Aida Amini, Alex Fabrikant, Eric
Chu, Xuanyi Dong, Amruta Muthal, Senaka Buth-
pitiya, Sarthak Jauhari, Nan Hua, Urvashi Khan-
delwal, Ayal Hitron, Jie Ren, Larissa Rinaldi, Sha-
har Drath, Avigail Dabush, Nan-Jiang Jiang, Har-
shal Godhia, Uli Sachs, Anthony Chen, Yicheng
Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai,
James Wang, Chen Liang, Jenny Hamer, Chun-Sung
Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vit
Listik, Mathias Carlen, Jan van de Kerkhof, Marcin
Pikus, Krunoslav Zaher, Paul Miiller, Sasha Zykova,
Richard Stefanec, Vitaly Gatsko, Christoph Hirn-

schall, Ashwin Sethi, Xingyu Federico Xu, Chetan
Ahuja, Beth Tsai, Anca Stefanoiu, Bo Feng, Ke-
shav Dhandhania, Manish Katyal, Akshay Gupta,
Atharva Parulekar, Divya Pitta, Jing Zhao, Vivaan
Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin
Li, Peter Danenberg, Dennis Tu, Alex Pine, Vera
Filippova, Abhipso Ghosh, Ben Limonchik, Bhar-
gava Urala, Chaitanya Krishna Lanka, Derik Clive,
Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak,
Ianna Li, Kalind Thakkar, Kuanysh Omarov, Kushal
Majmundar, Michael Alverson, Michael Kucharski,
Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo
Pelagatti, Rohan Kohli, Saurabh Kumar, Joseph Kim,
Swetha Sankar, Vineet Shah, Lakshmi Ramachan-
druni, Xiangkai Zeng, Ben Bariach, Laura Weidinger,
Tu Vu, Amar Subramanya, Sissie Hsiao, Demis Hass-
abis, Koray Kavukcuoglu, Adam Sadovsky, Quoc Le,
Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey
Dean, and Oriol Vinyals. 2024. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif
A Saurous, and Yoon Kim. 2024a. Grammar prompt-
ing for domain-specific language generation with
large language models. Advances in Neural Informa-
tion Processing Systems, 36.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A.
Saurous, and Yoon Kim. 2024b. Grammar prompting
for domain-specific language generation with large
language models. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA. Curran
Associates Inc.

A Appendix
A.1 Prompts

This section defines the prompts which are used
for models. We report different prompts for every
model tried here and report the best-performing
prompt results. Generally, the model consists of
a System Prompt followed by a prompt template
specific to the model.

A.1.1 Common prompt

For zero shot inference, we use a common prompt
as it is for all the models irrespective of the model’s
prompt format and we observe best results for
Task-1 with this prompt. The prompt is as follows.

Listing 3: common prompt

A.1.2 Granite model family

The granite model generally follows the question-
answering format. Task-1 prompts for granite
family models are as follows.

System prompt:

System:

You are an intelligent Al programming assistant,
utilizing a Granite code language model developed
by IBM. Your primary function is to assist users in
code explanation, code generation and other soft-
ware engineering tasks. You MUST follow these
guidelines: - Your responses must be factual. Do
not assume the answer is yes when you do not know,
and DO NOT SHARE FALSE INFORMATION.
- You should give concise answers. You should
follow the instruction and provide the answer in
the specified format and DO NOT SHARE FALSE
INFORMATION.

Prompt 2:

Listing 4: QA-prompt-1

{System prompt}
Question:
Write an {input_representation} sample with field
values as per the {input_representation} format
schema given below.

{schema}

Answer:

Prompt 3:

Listing 5: QA-prompt-2

{System prompt}

Question:

Write an {input_representation} sample with field
values as per the {output_representation}
format schema given below. Please wrap your
code

answer using ~°°

{schema}

Answer :

Write an {input_representation} sample with field
values as per the {output_representation}
format schema given below.

{schema}

{output_representation} sample:

{output_representation} and {input_representation }
are the variables where {input_representation} take
the values JSON, YAML, XML, Python, and nat-
ural language. {output_representation} takes the
values JSON, YAML, and XML.

A.1.3 Llama family

For codellama 3458 model we wrap the common
prompt in [INST] and [/INST] tags. For the llama3-

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805

8B model, we use the System prompt along with
user tags >.

System prompt: You are a helpful, respectful, and
honest assistant. Always answer as helpfully as
possible, while being safe. Your answers should
not include any harmful, unethical, racist, sexist,
toxic, dangerous, or illegal content. Please ensure
that your responses are socially unbiased and pos-
itive. If a question does not make any sense or is
not factually coherent, explain why instead of an-
swering something not correct. If you don’t know
the answer to a question, please don’t share false
information.

Other than this, similar to the granite family we try
Question answering format and instruction to wrap
the output in quotes (‘).

A.2 Data statistics

This section represents schema length comparison
for various languages.

A.3 Few shot prompting results

Below are the results for Few-shot prompting. We
experiment with 3 shot prompting. We observe
that the majority of errors made by all the models
are regarding short schema and the schema having
root type of array as shown in sample 1. An
example of a 3-shot prompt for a DSL generation
task is shown below.

Few shot prompt

Listing 6: Few shot prompt

{System prompt}

Your task is to write a JSON sample with field
values as per JSON format schema.
You are given a few examples demonstrating the same.

JSON format schema:
{

"array",

{

"boolean”

"type:

"contains”:
"type”:

1,

"minContains”: @

3

JSON sample:

[true, true, falsel]

JSON
{

format schema:

"type”: "string”,
"format”: "idn-email”

}

JSON sample:

5https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

10

L

"hchavezexample.org”“‘JSON format schema:"type"
"array”,"items": "type”: "number”,"multipleOf”
5.82,"exclusiveMinimum”: 3.06915819537@172JSON sample:“¢ J

A.4 Limitations of Constrained Decoding

This section outlines some common problems with
constrained decoding and emphasises on why it
cannot be a complete and a viable solution for fac-
toring in schemas to generate compliant text using
language models.

A.4.1 Inference Performance Bottleneck

Constrained decoding often negatively effects in-
ference throughput widely mentioned as one of
the major drawbacks in many works (Wang et al.,
2024b; Pimparkhede et al., 2024; Geng et al., 2023)
due to involvement of token-level operations keep-
ing track of the schema constraints and tokens gen-
erated so far. This latency can be a factor of the
complexity of the schema, tokens generated so far,
and the nature of the constrained decoding imple-
mentation. Further, advances such as batched infer-
ence © are not yet there for constrained decoding

limiting their scalability and practical use.

A4.2 Complex Engineering Effort

Implementing a constrained decoding system can
involve instrumenting at the decoding phase of the
language model while keeping track of the tokens
generated so far and structured schema adherence
which can involve implementation specific to a
schema representation and may not be possible to
generalize to any schema representation. For in-
stance, most of the openly available constrained de-
coding systems ’ have limited support and not gen-
eralized to various schemas such as XML and out-
put formats such as YAML and others. It is worth-
while to note that some approaches tend to convert
scehmas to context free grammars, however, this
approach is possible with common schema repre-
sentations such as Python pydantic. Additionally,
implementing such a system requires deep domain
expertise.

A.4.3 Model Performance Bottleneck

LLMs have multiple failure modes that can likely
be triggered through constrained decoding. Many
works show that LLMs are sensitive to the text be-
ing fed into them and often deteriorate the model’s
performance. Some examples being the reverse

6https://github.com/microsoft/batch—inference
"https://github.com/outlines-dev/outlines

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://github.com/microsoft/batch-inference
https://github.com/outlines-dev/outlines

| | Output Representation

\ \ JSON \ YAML \ XML
Model | Schema | Gen Acc | Val Acc | Gen Acc | Val Acc | Gen Acc | Val Acc
Llama3 8B 48.3 71.2 46.6 68.1 39.2 64.1
Granite 8B 51.2 69.2 52.3 66.1 47.8 65.8
Granite 20B JSON 58.3 73.5 56.4 72.3 50.2 68.2
Granite 34B 66.3 76.2 64.5 75.4 51.3 73.2
Codellama 34B 65.1 75.1 63.4 73.2 50.6 71.2
¥ Llama3 70B 70.1 79.3 69.4 77.9 58.6 74.2
Llama3 8B 46.6 65.8 423 63.4 36.6 60.1
Granite 8B 46.2 64.8 44.5 63.2 345 57.3
Granite 20B XML 50.4 66.7 48.2 64.1 36.4 56.1
Granite 34B 52.3 68.5 51.1 63.4 39.2 53.2
Codellama 34B 49.2 66.2 49.2 63.2 35.1 52.1
¥ Llama3 70B 56.4 70.3 55.6 68.2 43.6 66.3
Llama3 8B 46.7 67.2 45.3 64.2 435 63.2
Granite 8B 48.1 65.2 46.2 61.2 442 61.2
Granite 20B YAML 52.3 68.9 49.7 66.7 47.8 65.1
Granite 34B 54.2 67.7 51.3 65.3 453 56.4
Codellama 34B 56.8 66.4 50.2 64.3 47.8 56.2
¥ Llama3 70B 60.4 76.3 57.3 69.1 49.6 68.3
Llama3 8B 43.2 60.1 41.1 58.9 39.2 57.6
Granite 8B 45.1 60.5 46.7 59.4 37.4 56.0
Granite 20B Python 482 57.2 459 57.8 38.4 58.2
Granite 34B 50.6 59.2 47.1 55.6 41.3 57.3
Codellama 34B 472 56.4 453 57.2 39.2 55.1
¥ Llama3 70B 56.2 65.1 50.7 64.2 434 60.6

Table 2: Few shot results for task 1 (3 shots) and 2 (2 shots). Models scoring highest accuracy majority number of
times across all output representations for a particular schema are labeled with ¥. Gen Acc represents the accuracy
of valid samples for DSL generation tasks. Val Acc represents the accuracy of the binary classification validation
task.

Language Max schema | Average schema
length length

XML | 3316 | 364.82

JSON | 1954 | 208.23

YAML | 1295 | 135.09

Table 3: Schema length comparison

Constraint | Llama3 8B | Llama3 70B
type | 302 | 49
exclusiveMinimum | 18 | 44
multipleOf | 170 |4
minLength | 47 | 21
contains | 22 | 12
exclusiveMaximum | 22 | 12
maximum | 11 | 2
maxLength | 7 | 19
additionalProperties | 4 | 0
minimum | 4 | 15

Table 4: Both the models, least and best performing irrespective of their performance show a similar distribution of
mistakes for each constraint.

curse from (Berglund et al., 2024), where LLM un- the order of the premises can have a substantial im-
derstanding "A is B" may not guarantee to learn "B pact on the performance often affecting negatively.
is A". Another work (Chen et al., 2024) shows that ~ Such failures can be triggered when the natural

11

flow of text generation is interrupted through con-
strained decoding over autoregressive generation.
The problem can worsen when it involves mixed
generation of structured output and unstructured
NL text.

A.4.4 Limited Scope

Since constrained decoding needs access to the
decoding phase of the language model, its often
not possible to apply such decoding to hosted or
gated LLM deployments.

Applying constrained decoding to some com-
mon use cases is not obvious. Given n structured
schemas from s; to s,,, unstructured NL text out-
put as k and structured output as u. Common use
cases in natural language processing (NLP) such as
summarization involve the following input-output
relationship. For some arbitrary schema ¢, s; — u.
Further typical use cases involve factoring in n mul-
tiple schemas and generate m multiple structured
outputs (s1...5,) — (k1...knm).

Employing constrained decoding in such use
cases is not viable since in the first use case, tasks
that output u cannot leverage constrained decoding
and schema has to go into LLMs as input. When
multiple schemas and structured outputs are in-
volved, its not obvious to choose the right schema
for decoding a particular structured output. Such
common use cases substantially limit the scope of
using constrained decoding.

A.5 Task Motivation
A.5.1 Data as Code Generation Task

This section describes use cases from enterprise
and research point of view motivating data as code
generation seed task in our study.

Enterprise Use Cases: (i) Test case structured
data generation to test application interfaces such
as REST API endpoints. Often enterprises have
large number of services exposing API endpoints
that have to be tested and LLMs can be a drop in so-
lution to generate test case data at scale. (ii) Struc-
tured configuration data generation for a particuilar
use case and domain. Enterprise applications such
as Kubernetes use DSLs for configuration and us-
age, preparing them require deep domain exper-
tise and there is increasing motivation (Pujar et al.,
2023) to employ LLMs in enterprises to generate
DSL code. (iii) Some more downstream tasks in-
volving structured data such as forms and tables
often represented in programmable format such as

JSON can leverage LLMs to generate structured
data to fill forms or tables leveraging the schema.

Research Use Cases: (i) Since DSLs are typi-
cally low resource languages, LLMs are often em-
ployed (Song et al., 2020) to synthesize data from
LLM:s to train and evaluate smaller-sized models.
(i1) This task acts a as a seed for similar NLP use
cases such as code translation.

A.5.2 DSL Validation Task

This section describes use cases from enterprise
and research point of view motivating DSL valida-
tion seed task in our study.

Enterprise Use Cases: (i) Given the schema, em-
ploying LL.Ms to generate domain aware sugges-
tions over the provided structured data which is
not viable with traditional schema validators which
only pinpoint syntactic errors and cannot provide
semantic suggestions. Such as providing optimiza-
tions over the existing resource YAML in Kuber-
netes while complying with resource schema. (ii)
In a assistive chat system, often the constraints are
in NL representation from the user which are not
machine readable and LL.Ms should be able to un-
derstand such constraints. (iii) Quick interoperabil-
ity across different schema and data representation
versions. Often in enterprises, schemas can be in
a particular version not compatible with structured
data’s version. For instance, the schema could be
in an older JSON schema version such as Draft 0
and data in Draft 7, in such cases LLMs can come
handy to perform validation at scale.

Research Use Case: Understanding LLMs’ capa-
bility in validating the given structured data against
the schema across representations can provide seed
evidence for more complex tasks such as automatic
fixing of data in compliance with given schema.

A.6 Schema Examples

This section provides schemas across 5 represen-
tations from Listings 7 to 11. All the schemas are
equivalent in terms of constraints.

Listing 7: Sample schema using JSON Schema

12

"type”: "object”,
"properties”: {
"footbaths”: {
"type"”: "boolean”
1,
"deluded”: {
"type”: "null”
3,
"bravadoing”: {
"type"”: "number”,

| | Output Representation

| \ JSON \ YAML \ XML
Model | Schema | IS(%) | RIV(%) | IS(%) | RIV(%) | 1IS(%) | RIV(%)
Llama3 8B 1.9 50.1 1.8 49.8 1.6 73.9
Granite 8B 2.9 31.0 2.8 57.3 17.1 70.26
Granite 20B JSON 13.9 15.6 23 38.0 79 71.92
Granite 34B 2.6 23.5 2.6 48.6 4.1 73.08
Codellama 34B 3.6 17.9 1.8 514 3.7 71.12
Llama3 8B 12.9 64.1 6.1 52.8 4.8 73.5
Granite 8B 3.6 60.7 2.8 70.9 10.7 72.0
Granite 20B XML 2.1 53.3 1.9 73.9 12.2 70.5
Granite 34B 1.9 56.9 1.6 63.1 10.6 71.9
Codellama 34B 23 71.2 1.6 56.9 10.2 71.7
Llama3 8B 1.3 533 3.1 62.4 0.4 74.5
Granite 8B 11.2 13.7 1.8 63.9 12.2 70.5
Granite 20B YAML 1.6 39.8 1.4 56.6 10.7 72.0
Granite 34B 3.1 14.9 1.1 40.6 10.6 71.9
Codellama 34B 7.1 24.9 1.4 50.3 12.6 71.0
Llama3 8B 5.4 64.9 3.1 72.9 31 72.9
Granite 8B 2.4 73.0 23 70.9 10.7 72.71
Granite 20B Python 1.6 64.7 2.4 68.7 16.6 71.42
Granite 34B 2.6 61.2 24 66.9 8.9 69.35
Codellama 34B 5.6 65.1 29 64.1 14.1 69.1
Llama3 8B 5.8 50.4 34 54.1 5.6 73.9
Granite 8B 2.1 28.9 2.6 29.2 83 69.24
Granite 20B NL 2.9 0.6 2.8 30.2 7.97 69.24
Granite 34B 2.3 1.9 24 8.9 9.86 63.42
Codellama 34B 2.8 60.4 29 345 7.88 65.51

Table 5: Task 1 zero shot results having IS and RTV metric values. IS denotes the percentage of invalid samples
and RTV denotes the percentage of sample root data type errors. For IS and RTV, the lesser the value better the
performance.

‘ ‘ Output Representation

| | JSON | YAML | XML
Model ‘ Schema ‘ Macro-F1 ‘ Macro-F1 ‘ Macro-F1

Llama3 8B 0.55 0.37 0.40
Granite 8B 0.55 0.55 0.42
Granite 20B JSON 0.48 0.37 0.47
Granite 34B 0.60 0.56 0.63
Codellama 34B 0.64 0.53 0.50
Llama3 8B 0.44 0.35 0.41
Granite 8B 0.45 0.44 0.50
Granite 20B XML 0.24 0.45 0.56
Granite 34B 0.52 0.47 0.39
Codellama 34B 0.41 0.41 0.48
Llama3 8B 0.38 0.40 0.40
Granite 8B 0.45 0.50 0.44
Granite 20B YAML 0.24 0.31 0.45
Granite 34B 0.52 0.55 0.47
Codellama 34B 0.59 0.52 0.58
Llama3 8B 0.37 0.36 0.38
Granite 8B 0.54 0.44 0.54
Granite 20B Python 0.34 0.45 0.36
Granite 34B 0.53 0.47 0.40
Codellama 34B 0.48 0.45 0.46
Llama3 8B 0.63 0.55 0.57
Granite 8B 0.45 0.51 0.39
Granite 20B NL 0.53 0.45 0.57
Granite 34B 0.45 0.46 0.38
Codellama 34B 0.52 0.54 0.42

Table 6: Task 2 zero shot Macro-F1 scores. Task 2 is a binary classification task.

"exclusiveMaximum”: 5.131849487240756 "outbacker”: {
3, "type”: "number”
"queintise”: {3}, 3,
"manucodia”: { "sphenotripsy”: {
"type": "number” "type": "boolean”
3, 3,
"antagonized”: {3}, "hw": {

13

"type”: "null”
3
3,
"additionalProperties”: true,
"required”: []

Listing 8: Sample schema using YAML

additionalProperties: true
properties:
antagonized:
bravadoing:
exclusiveMaximum:
type: number
deluded:
type: 'null’
footbaths:
type: boolean
hw:
type: 'null’
manucodia:
type: number
outbacker:
type: number
queintise: {}
sphenotripsy:
type: boolean
required: []
type: object

19

5.131849487240756

Listing 9: Sample schema using Python

from pydantic import BaseModel, Field

class Schema(BaseModel):

footbaths: bool

deluded: None = Field(None, alias="null")

bravadoing: float = Field(..., exclusive_maximum
=5.131849487240756)

queintise: None = {}

manucodia: float

antagonized: None = {}

outbacker: float

sphenotripsy: bool

hw: None = Field(None, alias="null")

Listing 10: Sample schema using XML

<?xml version="1.0" ?>
<all>
<type type="str">object</type>
<properties type="dict">
<footbaths type="dict">
<type type="str">boolean</
type>
</footbaths>
<deluded type="dict">
<type type="str">null</type>
</deluded>
<bravadoing type="dict">
<type type="str">number</
type>
<exclusiveMaximum type="
float”>5.13184948724075
6</exclusiveMaximum>
</bravadoing>
<queintise type="dict"/>
<manucodia type="dict">
<type type="str">number</
type>
</manucodia>
<antagonized type="dict"/>
<outbacker type="dict">
<type type="str">number</
type>
</outbacker>
<sphenotripsy type="dict">
<type type="str">boolean</
type>
</sphenotripsy>
<hw type="dict">

<type type="str">null</type>
</hw>
</properties>
<additionalProperties type="bool">true</
additionalProperties>
<required type="list"/>
</all>

Listing 11: Sample schema in NL

is a JSON schema that defines the structure of
an object. Here's a breakdown of the schema:

This

**Top-level propertiesx*x*

x “type : The type of the JSON data, which is an
object (" "object”).

* “properties”: An object that defines the
properties of the object.

x “additionalProperties”™: A boolean value that

indicates whether additional properties not
specified in the schema are allowed. In this
case, it is set to True

* required: An empty array that specifies no
properties are required in the object.

*xProperties objectxx

The object defines the structure of

Here's a brief

“properties”
each property in the object.
description of each property:

footbaths: A boolean

deluded: A null

bravadoing: A number that must be strictly lesser
than 5.131849487240756,

queintise: An object with no specific type or
constraints.

manucodia: A number

antagonized: An object with no specific type or
constraints.

outbacker: A number

sphenotripsy: A boolean

hw: A null

14

A.7 Hyperparameter details

We perform inference for all the models in float16
precision and a max new token limit of 1024 tokens.
For beam search decoding, we use the beam width
of 3.

A.8 Data Generation Scripts

A combinatorial data generation tool is created,
which factors in constraints of interest, constraint-
specific information, and combinatorial prefer-
ences, to generate the schemas. We also use openly
available automatic lossless language to language
translation tools for translation code from JSON to
YAML etc. We plan to open-source all the scripts
used for data preparation.

	Introduction
	Data as Code Generation in DSL
	DSL Validation
	Related Work
	Conclusion
	Limitations
	Appendix
	Prompts
	Common prompt
	Granite model family
	Llama family

	Data statistics
	Few shot prompting results
	Limitations of Constrained Decoding
	Inference Performance Bottleneck
	Complex Engineering Effort
	Model Performance Bottleneck
	Limited Scope

	Task Motivation
	Data as Code Generation Task
	DSL Validation Task

	Schema Examples
	Hyperparameter details
	Data Generation Scripts

