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ABSTRACT

Visual hallucination (VH) occurs when a multimodal large language model (MLLM) generates
responses with incorrect visual details for prompts. Existing methods for generating VH test
cases primarily rely on human annotations, typically in the form of triples: (image, question,
answer). In this paper, we introduce VHExpansion, the first automated method for expanding
VH test cases for MLLMs. Given an initial VH test case, VHExpansion automatically expands
it by perturbing the question and answer through negation as well as modifying the image using
both common and adversarial perturbations. Additionally, we propose a new evaluation metric,
symmetric accuracy, which measures the proportion of correctly answered VH test-case pairs.
Each pair consists of a test case and its negated counterpart. Our theoretical analysis shows
that symmetric accuracy is an unbiased evaluation metric that remains unaffected by the im-
balance of VH testing cases with varying answers when an MLLM is randomly guessing the
answers, whereas traditional accuracy is prone to such imbalance. We apply VHExpansion to
expand three VH datasets annotated manually and use these expanded datasets to benchmark
seven MLLMs. Our evaluation shows that VHExpansion effectively identifies more VH test
cases. Moreover, symmetric accuracy, being unbiased, leads to different conclusions about the
vulnerability of MLLMs to VH compared to traditional accuracy metric. Finally, we show that
fine-tuning MLLMs on the expanded VH dataset generated by VHExpansion mitigates VH more
effectively than fine-tuning on the original, manually annotated dataset. We will publish code
and data upon paper acceptance.

1 INTRODUCTION

Given a prompt containing both an image and a question, multimodal large language models (MLLMs) (Li et al.,
2024b; Liu et al., 2023; Bai et al., 2023a; Li et al., 2023a; Tong et al., 2024a; Li et al., 2024a) generate a text
response. MLLMs extend the capabilities of large language models (LLMs) (AI@Meta, 2024; Bai et al., 2023b;
Touvron et al., 2023; Yang et al., 2024; Chiang et al., 2023) by enabling them to understand visual inputs. An
MLLM typically comprises three main components: a vision encoder, a vision-language connector, and an LLM.
Specifically, the vision encoder extracts visual embedding vectors from the image in the prompt, while the vision-
language connector aligns these visual embedding vectors with the token-based input used by the LLM. The LLM
then generates the text response based on the outputs of the vision-language connector and the text in the prompt.
This integration allows MLLMs to tackle complex tasks like Visual Question Answering (VQA) (Tong et al.,
2024b; Huang et al., 2024; Li et al., 2023b; Fu et al., 2023).

Figure 1: An example of visual hallucination
(VH) in MLLM. The red text indicates the
hallucinated response, since there are actually
six spots on the butterfly’s wings.

Despite significant advancements, MLLMs are prone to a critical
flaw known as visual hallucination (VH) (Huang et al., 2024; Liu
et al., 2024), where the model generates responses containing in-
correct or misleading visual information. For example, Figure 1
illustrates a VH case where the MLLM provides an incorrect re-
sponse regarding the number of spots on a butterfly’s wings. VH
can lead to catastrophic outcomes, especially in high-stakes ap-
plications such as autonomous driving (Wen et al., 2023; Chen
et al., 2024), medical diagnostics (Qiu et al., 2022), and content
moderation (Kumar et al., 2024). Therefore, VH poses signif-
icant obstacles to the safe deployments of MLLMs. This con-
cern is highlighted in the U.S. Executive Order on Trustworthy
AI (House, 2023), which emphasized rigorous testing of AI sys-
tems to identify and mitigate their potential harms. Therefore,
developing methods to test and mitigate VH in MLLMs is crucial
for ensuring their safety.

Existing VH testing relies on either manual (Li et al., 2023b) or semi-automated (Huang et al., 2024; Tong et al.,
2024b) methods to construct test cases, both of which require extensive human annotations. As MLLMs evolve

1



058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Under review as a conference paper at ICLR 2025

rapidly, these methods struggle to scale up VH testing, limiting the number of test cases and thus hindering
comprehensive testing of MLLMs’ vulnerability to VH. Furthermore, existing VH testing methods do not consider
adversarial testing (Goodfellow et al., 2014; Carlini & Wagner, 2017) in a white-box setting, where an adversary
with full knowledge of the target MLLM can craft adversarial examples to trigger VH through adding human-
imperceptible perturbations to the images. This is particularly relevant for open-sourced MLLMs whose model
parameters are public. Thus, automated and adversarial methods for generating VH test cases are urgently needed.

Our work: To address these challenges, we introduce VHExpansion, the first automated framework to generate
VH test cases for MLLMs. Given an initial VH test case, VHExpansion generates additional ones using a com-
bination of negation as well as common and adversarial image perturbations. Each VH test case is a VQA triple
consisting of an image, a question, and a ground-truth answer. Negation flips the question and answer. To automate
negation, we leverage an LLM with a specifically designed prompt. For common image perturbations, we process
the image via frequently encountered image processing operations such as JPEG compression, Gaussian noise,
etc.. For adversarial image perturbations, we add a human-imperceptible perturbation to the image so that the
resulting embedding vector, generated by the vision encoder, differs significantly from the original. We formulate
finding the perturbation as a constrained optimization problem, solved using Projected Gradient Descent (Madry
et al., 2018) or the iterative Fast Gradient Sign Method (Kurakin et al., 2018). We apply VHExpansion to expand
three existing VH datasets annotated manually and use these expanded datasets to benchmark seven MLLMs. Our
evaluation demonstrates that VHExpansion effectively identifies more VH test cases.

Moreover, we introduce a new evaluation metric called symmetric accuracy, which measures the proportion of
correctly answered VH test-case pairs, where each pair includes a VH test case and its negated counterpart.
Symmetric accuracy captures the consistency of an MLLM in accurately answering both the original and negated
questions. In fact, we theoretically show that symmetric accuracy is an unbiased evaluation metric that remains
unaffected by the imbalance of VH testing cases with varying answers when an MLLM is randomly guessing
the answers, whereas traditional accuracy is prone to such imbalance. Our empirical benchmark results show
that symmetric accuracy and traditional accuracy can lead to different conclusions about MLLMs’ vulnerability
to VH. For instance, on the POPE dataset (Li et al., 2023b), Cambrian-1 (Tong et al., 2024a) achieves a higher
traditional accuracy than LLaVA-NeXT (Li et al., 2024a) (0.887 vs. 0.879), but performs worse in symmetric
accuracy (0.745 vs. 0.798).

Finally, we demonstrate that fine-tuning an MLLM on the expanded VH test cases generated by VHExpansion
significantly mitigates visual hallucinations. For example, our experiments show that when fine-tuning LLaVA-
1.5 on the POPE dataset, using randomly sampled 200 VH test cases results in a symmetric accuracy of 0.180,
whereas fine-tuning on both the sampled VH test cases and the corresponding expanded 1,800 more VH test cases
achieves a symmetric accuracy of 0.711. This highlights the effectiveness of VHExpansion in mitigating VH in
MLLMs. Additionally, our evaluation shows that fine-tuning does not compromise the model’s performance on
other general-purpose VQA datasets, preserving its broader functionality.

To summarize, we make the following contributions in this work:

• We introduce VHExpansion, the first automated framework for generating VH test cases in MLLMs,
combining negation and common and adversarial image perturbations.

• We propose a new evaluation metric, symmetric accuracy, to quantify an MLLM’s performance. Sym-
metric accuracy is unaffected by the imbalance of test cases when an MLLM makes random guessing.

• We demonstrate that fine-tuning MLLMs on the expanded test cases generated by VHExpansion signifi-
cantly mitigates VH while maintaining general performance on other VQA datasets.

2 RELATED WORK

2.1 MLLMS

MLLMs (Li et al., 2024b; Liu et al., 2023; Bai et al., 2023a; Li et al., 2023a; Tong et al., 2024a; Li et al., 2024a)
have revolutionized the ability of LLMs to respond to prompts containing images and questions. Recall that
MLLMs typically comprise three components: a vision encoder, a vision-language connector, and an LLM. Vision
encoders are often pre-trained via self-supervised learning (Radford et al., 2021; Oquab et al., 2023) on large
datasets of unlabeled images or image-text pairs. Among the widely used vision encoders are those from the
CLIP family (Radford et al., 2021), including CLIP-ViT-L/14 (Radford et al., 2021), EVA-CLIP ViT-g/14 (Fang
et al., 2023), and OpenCLIP ConvNeXt-XXL (Ilharco et al., 2021; Liu et al., 2022). Cambrian-1 (Tong et al.,
2024a) also incorporates other vision encoders, including DINOv2 ViT-L/14 (Oquab et al., 2023) and SigLIP ViT-
SO400M/14 (Zhai et al., 2023). Recently, several types of vision-language connectors have been introduced, such
as 2-layer multilayer perceptrons (MLPs), Q-Former (Dai et al., 2023), 1-layer cross-attention mechanisms (Bai
et al., 2023b), and Spatial Visual Aggregator (Tong et al., 2024a). The backbone LLMs used in MLLMs can
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Figure 2: Overview of VHExpansion. Green text and boxes indicate text and images modified by VHExpansion.

be models like Llama2 (Touvron et al., 2023), Llama3 (AI@Meta, 2024), Vicuna (Chiang et al., 2023), and
Qwen (Bai et al., 2023a).

2.2 METHODS TO GENERATE VH TEST CASES

To detect and mitigate VH in MLLMs, several methods to generate VH test cases (Li et al., 2023b; Huang et al.,
2024; Tong et al., 2024b; Guan et al., 2023) have been proposed. These methods can be categorized into two
types: manual and semi-automatic. Manual methods (Li et al., 2023b; Guan et al., 2023) involve creating each
VH test case through human effort. For example, POPE (Li et al., 2023b) requires human annotation for each
image to identify the objects within it and then design corresponding questions based on these objects, including
some randomly introduced non-existent objects. Note that the images in POPE are also human-created.

To reduce the human labor involved in generating VH test cases, semi-automatic methods (Huang et al., 2024)
have been developed. For instance, VHTest uses GPT-4V (Achiam et al., 2023) and DALL·E-3 (Betker et al.,
2023) to facilitate construction of VH test cases. Specifically, it first employs CLIP (Radford et al., 2021) and
DINO (Oquab et al., 2023) to detect images from benchmark datasets that may trigger VH in MLLMs. These im-
ages are then passed to GPT-4V to generate textual descriptions. The generated text descriptions are subsequently
passed to DALL·E-3 to create more images. Based on these AI-generated images, human workers manually iden-
tify objects within them and design questions, along with the corresponding ground-truth answers. Similarly,
MMVP (Tong et al., 2024b) uses CLIP and DINO to identify image pairs that have a high CLIP score but a low
DINO score. Human workers then manually examine the differences between these paired images and formulate
questions/answers based on those differences.

2.3 MITIGATING VH VIA FINE-TUNING

With VH datasets constructed by these methods, MLLMs can be fine-tuned on them to mitigate VH (Huang et al.,
2024). This approach enables the MLLMs to learn from instances of VH, allowing them to distinguish between
accurate visual representations and hallucinated content. By exposing the models to diverse VH instances during
fine-tuning, they can better generalize and reduce the occurrence of hallucinations (Huang et al., 2024).

3 OUR VHEXPANSION

Figure 2 shows an overview of our VHExpansion. Given an initial VH test case, VHExpansion automatically
generates additional VH test cases by modifying the question and answer through negation, as well as modifying
the image through common and adversarial image perturbations. We denote a VH test case as {xI , xQ, yA}, where
xI and xQ are respectively the image and text question in the prompt, while yA is the ground-truth answer. To
support automated evaluation, we focus on binary questions in this work, i.e., yA is either “yes” or “no”. Note that
non-binary question-answer pairs (xQ, yA) can be rewritten as binary counterparts.

3.1 MODIFYING QUESTION xQ AND ANSWER yA VIA NEGATION

Given a VH test case {xI , xQ, yA}, the goal of negation is to transform it into {xI ,¬xQ,¬yA}. Our VHExpansion
automates this process using an LLM with a custom prompt (showed in Figure 3). This prompt takes xQ as input
and instructs the LLM to output a negated question using predefined transformation rules, such as adding negation
prefixes or modifying key words to reverse the meaning of xQ.
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Negation Prompt

Rephrase the following question to be a negated question for the original question. The rephrase method is
to add prefix ‘Is it false’ before the original question in a declarative sentence or change all occurrences of
the “a/an” to “no” for simple cases. Below are the rules must be followed when rephrasing the question:
DO NOT CHANGE OR ADD ANY INFORMATION to the sentence, such as the case of any letters
except the first letter of the sentence, tenses, the order of clauses, pronouns, etc.. You should only return
the rephrased question. The question is: [xQ].

Figure 3: Prompt used to instruct an LLM to negate a question xQ.

The primary intuition behind negation is that an MLLM may simply guess the answer (i.e., “yes” or “no”) correctly
for binary questions without really understanding the image. In particular, some MLLMs such as LLaVA-1.5 tend
to answer “yes” for binary questions (Liu et al., 2023). Therefore, if the VH test cases are imbalanced and a major-
ity of them have “yes” as ground-truth answers, such MLLMs would have high accuracy without understanding
the images, misleading developers to think that the MLLMs are not vulnerable to visual hallucination. However,
such MLLMs would be likely to answer incorrectly for the negated questions, leading to low accuracy on them.
Thus, the VH test cases and their negated versions can better quantify the vulnerability of an MLLM to visual
hallucination. In fact, in Section 4, we propose a new evaluation metric, called symmetric accuracy, which mea-
sures the percentage of correctly answered VH test-case pairs, each of which includes a test case and its negated
version. In Section 4, we theoretically show that symmetric accuracy is unaffected by the imbalance of VH test
cases with answers “yes” and “no” when the MLLM makes random guessing, while accuracy on the original VH
test cases alone is prone to such imbalance.

3.2 MODIFYING IMAGE XI

Common image perturbations: In real-world scenarios, images often undergo standard editing operations for
various purposes. For example, images are frequently compressed using formats like JPEG to reduce trans-
mission costs over the Internet. These image edits are known as common image perturbations (Hendrycks &
Dietterich, 2019). Our VHExpansion uses these perturbations to generate additional VH test cases. Given a VH
test case {xI , xQ, yA}, we apply a common perturbation method T to the image xI , creating a new VH test case
{T (xI), xQ, yA}. The intuition is that for a slightly perturbed image T (xI), the ground-truth answer yA should
remain unchanged for the same question xQ. However, this subtle alteration may trigger VH in an MLLM. We
focus on four common image perturbations: Gaussian Noise, Brightness Adjustments, Defocus Blur, and JPEG
Compression. Further details on these common perturbations are provided in Section C of the Appendix.

Adversarial image perturbations: In the context of adversarial image perturbations, we consider a white-
box setting where an adversary, with full knowledge of the target MLLM’s model parameters, crafts nearly-
imperceptible adversarial perturbations to generate VH test cases. Given an original VH test case {xI , xQ, yA},
the adversarial image perturbation generates a new test case {xI + δ∗, xQ, yA}, where δ∗ is the adversarial per-
turbation. Our intuition is that for a VH test case that does not trigger VH in an MLLM M , VHExpansion creates
perturbations that cause the projected visual embedding vector from the vision-language connector to differ from
the original. Conversely, if the test case already triggers VH in M , VHExpansion generates perturbations that
make the projected visual embedding vector similar to the original. Formally, for an MLLM M with vision en-
coder ME and vision-language connector MC , we formulate finding δ∗ as the solution to the following constrained
optimization problem:

δ∗ =

{
argminδ (− cos (ME ◦MC(xI),ME ◦MC(xI + δ))) , if xI does not trigger VH,

argminδ (cos (ME ◦MC(xI),ME ◦MC(xI + δ))) , if xI triggers VH,

s.t. ||δ||∞ ≤ ϵ, (1)

where ME ◦MC denotes the concatenation of the vision encoder and the vision-language connector, cos denotes
cosine similarity, and ϵ is the ℓ∞-norm constraint on the perturbation δ added to the image xI . Note that when
the VH test case already triggers VH, we initialize δ to be a non-zero vector with random value and apply early
stopping to avoid the optimization result to be identical with the original image input xI ; and when the VH
test case does not trigger VH, we initialize δ to be zero. Our algorithm solves the optimization problem in
Equation 1 using either Projected Gradient Descent (PGD) (Madry et al., 2018) or the iterative Fast Gradient
Sign Method (I-FGSM) (Kurakin et al., 2018). PGD iteratively updates δ via gradient ascent: δ = δ − γ · ∇δl,
where l = cos (ME ◦MC(xI),ME ◦MC(xI + δ)), followed by projecting δ onto the feasible region using
δ = clip(δ,−ϵ, ϵ). I-FGSM differs from PGD by using the sign of the gradient instead: δ = δ − γ · sign(∇δl).
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Table 1: Statistics of existing VH datasets manually annotated.

Dataset # Images # VH Test Cases

MMVP (Tong et al., 2024b) 300 300

VHTest (Huang et al., 2024) 650 1,200

POPE (Li et al., 2023b) 500 9,000

4 THEORETICAL ANALYSIS

In this section, we theoretically analyze the standard accuracy metric and our proposed symmetric accuracy metric
for evaluating an MLLM model’s performance when the model is making random guessing. Suppose we are given
a VH test case t = {xI , xQ, yA}, sampled from the distribution T of VH test cases, i.e., t ∼ T . Our analysis
focuses on binary questions, i.e., yA is either “yes” or “no”. Specifically, we denote by q the probability that a
randomly sampled t has a ground-truth answer “yes”. In other words, a randomly sampled t has a ground-truth
answer “no” with probability 1− q. q quantifies the imbalance of the VH test cases with answers “yes” and “no”.

We denote by f an MLLM model and f(xI , xQ) the MLLM’s answer for the VH test case. f(xI , xQ) ̸= yA
indicates that the MLLM hallucinates. When the MLLM model makes random guessing to answer the test case
without understanding the image xI and question xQ, it outputs an answer “yes” or “no” randomly. Suppose the
MLLM model guesses “yes” with probability p and “no” with probability 1− p.

An evaluation metric measures the performance of an MLLM model f on the VH test cases whose distribution is
T . Specifically, an evaluation metric takes T and f as input and outputs a number (e.g., between 0 and 1), with
a smaller number indicating that f is more vulnerable to VH test cases from the distribution T . An evaluation
metric is unbiased if it does not depend on the imbalance of the VH test cases when the model f makes random
guessing, i.e., it does not depend on q. Otherwise, the evaluation metric is biased. Formally, we have the following
definition.

Definition 1 (Unbiased Evaluation Metric). An evaluation metric is said to be unbiased if does not depend on q
when the MLLM model makes random guessing.

Next, we formally define accuracy and prove that accuracy is a biased evaluation metric.

Definition 2 (Accuracy). Accuracy is the probability that an MLLM model f correctly answers a VH test case
t = {xI , xQ, yA} sampled from T . Formally, we have: accuracy = Prt∼T (f(xI , xQ) = yA).

Theorem 1. Accuracy is a biased evaluation metric when p ̸= 1
2 , where p is the probability that the MLLM model

guesses answer “yes”.

Proof. Please refer to Section A in Appendix.

The above theorem shows that accuracy of an MLLM model depends on q once it does not guess uniformly at ran-
dom, and thus can be artificially inflated by random guessing, leading to misleading conclusions on an MLLM’s
vulnerability to visual hallucination. To address this limitation, we propose a new metric called symmetric accu-
racy. Formally, it is defined as follows:

Definition 3 (Symmetric Accuracy). Symmetric accuracy is the probability that an MLLM model f correctly
answers a VH test case t = {xI , xQ, yA} sampled from T and its negated version. Formally, we have:
symmetric accuracy = Prt∼T (f(xI , xQ) = yA ∧ f(xI ,¬xQ) = ¬yA).

We prove that symmetric accuracy is an unbiased evaluation metric in the following theorem:

Theorem 2. Symmetric accuracy is an unbiased evaluation metric.

Proof. Please refer to Section B in Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

VH datasets: We use three popular VH datasets: MMVP (Tong et al., 2024b), VHTest (Huang et al., 2024),
and POPE (Li et al., 2023b). MMVP and VHTest consist of VH test cases across various object properties in
images, such as color, counting, and position. In contrast, POPE focuses on VQA test cases related to existence
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Table 2: Details of MLLMs.

MLLM Vision Encoder Connector LLM

LLaVA-1.5 (Liu et al., 2023) CLIP-ViT-L/14 (Radford et al., 2021) 2-layer MLP Llama2-7B (Touvron et al., 2023)

InstructBLIP (Dai et al., 2023) EVA-CLIP ViT-g/14 (Fang et al., 2023) Q-Former (Li et al., 2023a) Vicuna-7B (Chiang et al., 2023)

Qwen-VL-Chat (Bai et al., 2023b) OpenCLIP ViT-bigG (Ilharco et al., 2021) 1-layer Cross-Attention Qwen-7B (Bai et al., 2023a)

LLaVA-NEXT (Li et al., 2024a) CLIP-ViT-L/14 2-layer MLP Llama3-8B (AI@Meta, 2024)

LLaVA-OneVision (Li et al., 2024b) SigLIP ViT-SO400M/14 (Zhai et al., 2023) 2-layer MLP Qwen2-7B (Yang et al., 2024)

Cambrian-1 (Tong et al., 2024a)

CLIP ViT-L/14 Spatial Visual
Aggregator

(Tong et al., 2024a)
Llama3-8BSigLIP ViT-SO400M/14

OpenCLIP ConvNeXt-XXL (Liu et al., 2022)
DINOv2 ViT-L/14 (Oquab et al., 2023)

GPT-4o (OpenAI, 2024) - - -

Table 3: Accuracy, symmetric accuracy, and # new successful VH test cases for seven MLLMs on the three VH
datasets.

(a) MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.638 0.533 0.607 0.649 0.697 0.717 0.813

Symmetric
Accuracy 0.356 0.320 0.210 0.268 0.430 0.333 0.663

# New Successful
VH test cases 145 166 175 178 126 152 85

(b) VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.542 0.499 0.537 0.631 0.588 0.632 0.709

Symmetric
Accuracy 0.308 0.117 0.156 0.260 0.287 0.328 0.423

# New Successful
VH test cases 599 643 627 670 585 647 523

(c) POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Accuracy 0.861 0.860 0.692 0.887 0.879 0.889 0.861

Symmetric
Accuracy 0.468 0.444 0.354 0.745 0.798 0.843 0.425

# New Successful
VH test cases 3,978 4,368 4,845 2,046 1,281 976 4,504

VH, specifically identifying whether an object is present in an image. Table 1 summarizes the key statistics of
these datasets. Note that for VHTest and POPE, a single image can be used in multiple VH test cases.

MLLMs: In our experiments, we evaluate seven MLLMs in total. In particular, six of these models are open-
source, including LLaVA-1.5 (Liu et al., 2023), InstructBLIP (Dai et al., 2023), Qwen-VL-Chat (Bai et al., 2023b),
LLaVA-NeXT (Li et al., 2024a), LLaVA-OneVision (Li et al., 2024b), and Cambrian-1 (Tong et al., 2024a), along-
side one closed-source model, GPT-4o (OpenAI, 2024). These MLLMs demonstrate state-of-the-art performance
across various VQA benchmarks and have diverse model architectures. Table 2 shows details of these MLLMs.

Evaluation metrics: We use accuracy and symmetric accuracy as our evaluation metrics, both of which are
formally defined in Section 4. Our theoretical analysis demonstrates that symmetric accuracy is an unbiased eval-
uation metric, whereas traditional accuracy is biased. In our experiments, we illustrate how symmetric accuracy
leads to different conclusions about the vulnerability of MLLMs to VH compared to the traditional accuracy met-
ric. Subsequently, we use symmetric accuracy as our default evaluation metric unless otherwise mentioned. We
also report the number of successful VH test cases generated by our VHExpansion.

Parameter settings: Unless otherwise mentioned, we use LLaVA-1.5 on MMVP dataset by default. We use
GPT-4o as the LLM to negate all questions in VH test cases due to its state-of-the-art performance. We use the
default parameter settings for all MLLMs. For common image perturbations, the parameters are set as follows:
Gaussian Noise standard deviation σ = 0.08, Brightness Hue-Saturation -Value space constant c = 0.5, Defocus
Blur radius r = 5 , and JPEG Compression quality factor q = 30. More details of these common perturbations are
shown in Section C in Appendix. For adversarial image perturbations, the default setting is: ℓ∞-norm constraint
ϵ = 8/255, with 500 epochs for non-hallucinated VH test cases and 100 epochs for hallucinated test cases. In
hallucinated test cases, each pixel of the initial perturbation is set to 5/255 or −5/255 uniformly at random.
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5.2 EXPERIMENTAL RESULTS

Symmetric accuracy v.s. accuracy: Table 3 shows accuracy and symmetric accuracy of the seven MLLMs
across the three datasets MMVP, VHTest, and POPE. We have three main observations. First, symmetric accuracy
reveals different conclusions about MLLM vulnerability to VH compared to traditional accuracy. For example, on
the POPE dataset, Cambrian-1 has higher traditional accuracy than LLaVA-NeXT (0.887 vs. 0.879) but performs
worse in symmetric accuracy (0.745 vs. 0.798). Second, when comparing symmetric accuracy across MLLMs,
GPT-4o achieves the highest scores on MMVP and VHTest, particularly on MMVP with 0.663, indicating it is
less prone to visual hallucinations than other models. LLaVA-OneVision scores the highest symmetric accuracy
on POPE (0.843), likely due to its fine-tuning on simpler existence-based questions and possible overlap between
POPE and its training data. Third, across VH datasets, all MLLMs perform worse on VHTest, with InstructBLIP
scoring only 0.117. This is likely because VHTest contains VH test cases with AI-generated images and more
complex questions that the models have not trained on, making it more challenging. In addition, expanding the
dataset using negation allows us to generate more new VH instances, providing additional training data for fine-
tuning, which leads to more robust models.

Common and adversarial image perturbations generate more VH test cases: Table 4 shows the symmetric
accuracy on three datasets of different MLLMs before and after common image perturbations. We observe that
symmetric accuracy slightly decreases after common image perturbations in most cases. This shows that most
MLLMs are generally robust against common perturbations. For instance, LLaVA-NeXT’s symmetric accuracy
on the VHTest dataset drops from 0.287 to 0.272 under Gaussian Noise. However, there are still some notable
exceptions. For example, Defocus Blur significantly reduces LLaVA-OneVision’s accuracy on POPE, from 0.843
to 0.646; while three of four common perturbations even increase InstructBLIP’s symmetric accuracy on VHTest.

Table 5 shows the symmetric accuracy on the three datasets of different MLLMs before and after adversarial
image perturbations. Our main observation is that adversarial perturbations cause significant drops in symmetric
accuracy for all MLLMs. For example, LLaVA-1.5’s symmetric accuracy on POPE drops sharply from 0.468 to
0.017 when performing I-FGSM to craft adversarial perturbations. When comparing I-FGSM with PGD, I-FGSM
consistently results in a larger decrease in accuracy, indicating it is more effective.

To conclude, MLLMs are fairly robust to common image perturbations but remain vulnerable to adversarial ones,
highlighting the need for more adversarially robust training strategies. Furthermore, both common and adversarial
perturbations lead to the generation of more new VH instances, with adversarial perturbations producing more VH
instances than common perturbations, since MLLMs are more vulnerable to them.

Manual verification for negation: The correctness of our proposed symmetric accuracy metric relies on the
validity of the negated questions, which are generated by LLMs. Since LLMs may exhibit hallucinations, these
negated questions might not always be the negated counterparts of the original questions. Thus, it is necessary to
verify whether the negated questions generated by the LLM are correct.

To validate the correctness of these negated questions, we randomly sampled 200 VQA triples (100 original-
negation pairs) from each of the MMVP, VHTest, and POPE datasets, which were evaluated by four independent
annotators. The task of the annotators was to judge whether each negated question was the correct negation of
the corresponding original question generated by the LLM. The annotators unanimously agreed that all negated
questions were correctly generated by the LLM. This result demonstrates the reliability of the LLM in generating
valid negations.

5.3 ABLATION STUDY

We conduct a comprehensive ablation study on adversarial image perturbation using I-FGSM, since it is the most
effective method to generate successful VH test cases in our VHExpansion.

Impact of ℓ∞-norm constraint ϵ: Recall that I-FGSM projects the perturbation into the feasible region defined
by the ℓ∞-norm constraint ϵ at each iteration. Table 6a shows the effect of varying ϵ on symmetric accuracy. We
observe that symmetric accuracy initially decreases and then stabilizes as the ℓ∞-norm constraint ϵ increases. For
example, at ϵ = 4/255, symmetric accuracy is 0.080, dropping to 0.051 at ϵ = 8/255, after which it converges.
This trend occurs because larger perturbations changes the visual embedding vector more significantly of an image
for a non-hallucinated VH test case, which is more likely to trigger VH and thereby reducing symmetric accuracy.

Impact of perturbation step size γ: The perturbation step size γ controls the update in every iteration of I-
FGSM. Table 6b shows the impact of γ on symmetric accuracy. We observe that symmetric accuracy is relatively
insensitive to different small perturbation step size γ.

Impact of iterations: Since I-FGSM solves the optimization problem in Equation 1 iteratively, we study the
impact of the number of iterations and present the results in Table 6c and Table 6d for hallucinated and non-
hallucinated VH test cases, respectively. For hallucinated VH test cases, we observe that symmetric accuracy
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Table 4: Symmetric accuracy and # new successful VH test cases on the three datasets of different MLLMs before
and after common image perturbations. Due to API query limits, we sample 3,000 VH test cases from the POPE
dataset for GPT-4o.

(a) MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No Perturbation 0.356 0.320 0.210 0.268 0.430 0.333 0.663
Gaussian Noise 0.353 0.187 0.147 0.213 0.370 0.317 0.643

Brightness 0.317 0.177 0.160 0.190 0.357 0.273 0.613
Defocus Blur 0.353 0.163 0.193 0.183 0.297 0.317 0.543

JPEG Compression 0.373 0.253 0.213 0.270 0.410 0.347 0.657

(b) # New successful VH test cases on MMVP dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 275 305 295 274 237 259 158

Brightness 270 300 309 270 238 273 165
Defocus Blur 256 305 296 283 255 262 185

JPEG Compression 253 299 285 279 233 239 148

(c) VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No perturbation 0.308 0.117 0.156 0.260 0.287 0.328 0.423
Gaussian Noise 0.312 0.138 0.170 0.258 0.272 0.279 0.429

Brightness 0.292 0.124 0.164 0.238 0.278 0.287 0.392
Defocus Blur 0.302 0.110 0.125 0.154 0.282 0.278 0.271

JPEG Compression 0.312 0.177 0.193 0.282 0.293 0.289 0.433

(d) # New successful VH test cases on VHTest dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 1,142 1,210 1,196 1,112 1,089 1,167 937

Brightness 1,160 1,209 1,212 1,114 1,079 1,139 1,001
Defocus Blur 1,162 1,210 1,210 1,133 1,086 1,145 1,164

JPEG Compression 1,168 1,216 1,220 1,075 1,069 1,129 938

(e) POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
No perturbation 0.468 0.444 0.354 0.745 0.798 0.843 0.425
Gaussian Noise 0.462 0.433 0.413 0.735 0.782 0.828 0.412

Brightness 0.444 0.428 0.345 0.738 0.757 0.819 0.389
Defocus Blur 0.449 0.435 0.486 0.699 0.789 0.646 0.396

JPEG Compression 0.465 0.440 0.402 0.726 0.828 0.724 0.410

(f) # New successful VH test cases on POPE dataset

MLLM LLaVA-1.5 InstructBLIP Qwen-VL-Chat Cambrian-1 LLaVA-NeXT LLaVA-OneVision GPT-4o
Gaussian Noise 5,297 5,686 6,567 3,291 2,594 2,177 872

Brightness 5,502 5,788 7,662 3,221 2,634 2,337 916
Defocus Blur 5,429 5,727 5,410 4,025 3,049 3,605 897

JPEG Compression 5,260 5,685 6,909 3,173 2,535 2,878 896

remains consistently low as the number of iterations increases from 50 to 150. This is because I-FGSM up-
dates the adversarial perturbations to increase the cosine similarity between the original and perturbed images for
hallucinated VH test cases, maintaining the effectiveness of VH test cases. In non-hallucinated VH test cases,
symmetric accuracy initially decreases and then stabilizes as the number of iterations increases from 100 to 900.

Impact of repetition of evaluation: Due to the inherent randomness in the decoding algorithm of MLLMs, we
repeat the evaluation and report the average symmetric accuracy in Table 6e, varying the number of repetitions.
We observe that symmetric accuracy remains consistent across different repetition counts, ranging from 0.040 to
0.051. This suggests that symmetric accuracy stabilizes after only a few repetitions, with even a single evaluation
providing reliable results, thus avoiding unnecessary computational overhead.

Impact of MLLM’s temperature: Temperature controls the randomness of MLLMs’ responses, with higher
temperatures typically leading to more diverse outputs. Table 6f shows the impact of temperature on LLaVA-1.5’s
symmetric accuracy. We observe a slight increase in symmetric accuracy as the temperature increases from 0 to
1, likely because the MLLM explores more diverse outputs at higher temperatures.
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Table 5: Symmetric accuracy and # new successful VH test cases on the three datasets of different MLLMs before
and after adversarial image perturbations. We cannot perform adversarial image perturbations for Cambrian-1
because of our limited GPU memory, and we do not have results for GPT-4o because it is closed-source.

(a) MMVP dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.356 0.320 0.210 0.430 0.333

I-FGSM 0.051 0.080 0.027 0.263 0.297
PGD 0.094 0.080 0.051 0.287 0.283

(b) # New successful VH test cases on the MMVP dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 416 390 320 297 300

PGD 357 373 321 312 297

(c) VHTest dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.308 0.117 0.156 0.287 0.328

I-FGSM 0.102 0.053 0.097 0.144 0.147
PGD 0.166 0.059 0.117 0.204 0.249

(d) # New successful VH test cases on VHTest dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 1,493 1,306 1,243 1,246 1,322

PGD 1,341 1,290 1,233 1,205 1,186

(e) POPE dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
No perturbation 0.468 0.444 0.354 0.798 0.843

I-FGSM 0.017 0.152 0.072 0.526 0.573
PGD 0.030 0.174 0.088 0.553 0.761

(f) # New successful VH test cases on POPE dataset

Perturbation LLaVA-1.5 InstructBLIP Qwen-VL-Chat LLaVA-NeXT LLaVA-OneVision
I-FGSM 7,588 8,627 10,340 5,453 4,717

PGD 10,246 8,414 10,029 5,296 2,940

Table 6: Ablation study on symmetric accuracy for adversarial image perturbations for LLaVA-1.5 on MMVP
dataset when using I-FGSM.

(a) ℓ∞-norm constraint ϵ

ϵ 4/255 8/255 12/255 16/255
Symmetric
Accuracy 0.080 0.051 0.047 0.053

(b) Perturbation step size γ

γ 0.3/255 0.4/255 0.5/255 0.6/255 0.7/255
Symmetric
Accuracy 0.051 0.059 0.051 0.054 0.040

(c) Iterations for hallucinated VH test cases

Iterations 50 75 100 125 150
Symmetric
Accuracy 0.049 0.062 0.051 0.042 0.054

(d) Iterations for non-hallucinated VH test cases

Iterations 100 300 500 700 900
Symmetric
Accuracy 0.090 0.058 0.051 0.050 0.050

(e) Repetition of evaluation

# Repetition 1 2 3 4 5
Symmetric
Accuracy 0.043 0.040 0.051 0.047 0.049

(f) Temperature of MLLM

Temperature 0.0 0.2 0.4 0.6 0.8 1.0
Symmetric
Accuracy 0.037 0.051 0.066 0.099 0.104 0.096

5.4 MITIGATING VH VIA FINE-TUNING

Huang et al. (2024) demonstrate that fine-tuning MLLMs on VH datasets constructed using VH test case gener-
ation methods can help mitigate VH. In this section, we compare the symmetric accuracy across three scenarios:
1) before fine-tuning, 2) fine-tuning on original VH test cases generated by other methods, and 3) fine-tuning on
original VH test cases generated by other methods combined with expanded VH test cases from our VHExpansion.
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Table 7: Symmetric accuracy before and after fine-tuning on different image and VQA combinations.

Before Fine-tuning After Fine-tuning on
Original VH Test Cases

After Fine-tuning on Our
Expanded VH Test Cases

MMVP 0.207 0.172 0.343
VHTest 0.206 0.208 0.225
POPE 0.180 0.189 0.711

Table 8: Scores on MME Perception and MME Cognition before and after fine-tuning.

Before Fine-tuning After Fine-tuning on
Original VH Test Cases

After Fine-tuning on Our
Expanded VH Test Cases

MME Perception 1459.3 1456.7 1434.4
MME Cognition 335.4 327.5 323.9

(a) MMVP dataset (b) MME Perception (c) MME Cognition

Figure 4: Impact of learning rate on symmetric accuracy for the MMVP dataset, and scores on MME perception
and MME cognition, when fine-tuning LLaVA-1.5 on our expanded VH test cases. The red horizontal lines
represent the performance of LLaVA-1.5 before fine-tuning.

Experimental settings: We use LLaVA-1.5 as the fine-tuning MLLM. For fine-tuning on the original VH test
cases generated by other methods, we randomly sample 200 VH test cases from each of the MMVP, VHTest,
and POPE datasets, along with 4,000 randomly sampled VQA triples from the LLaVA-1.5 fine-tuning data (Liu
et al., 2023). For fine-tuning on our expanded VH test cases, we expand the previously sampled 200 VH test
cases from each of the three datasets using negation and adversarial image perturbations, resulting in 800 VH test
cases. To further increase data diversity, we use GPT-4o to rephrase the questions four times for each VH test
case, generating four additional versions of each. Consequently, our expanded fine-tuning set contains 4,000 VH
test cases and the sampled 4,000 VQA triples from the fine-tuning data of LLaVA-1.5. All remaining VH test
cases from the three VH datasets, along with their adversarially perturbed versions, are used as evaluation data.
Following LLaVA-1.5 (Liu et al., 2023), we fine-tune LLaVA-1.5 using LoRA (Hu et al., 2021) with a learning
rate of 1.8× 10−6 for one epoch. All other parameters are set to the default fine-tuning settings of LLaVA-1.5.

Experimental results: The comparison results of fine-tuning are shown in Table 7 and Table 8. Our findings
demonstrate that fine-tuning on our expanded VH test cases significantly improves symmetric accuracy across the
three VH datasets. For instance, on the POPE dataset, symmetric accuracy increases slightly from 0.180 to 0.189
after fine-tuning on the original VH test cases, but rises substantially to 0.711 after fine-tuning on our expanded
VH test cases. This highlights the effectiveness of using VH test cases generated by our VHExpansion to mitigate
VH in MLLMs. Moreover, Table 8 shows that fine-tuning on our expanded VH test cases maintains the model’s
performance on other general-purpose VQA datasets, MME Perception and MME Recognition (Fu et al., 2023).

Impact of fine-tuning learning rate: Figure 4 illustrates the impact of different fine-tuning learning rates on
symmetric accuracy for the MMVP dataset, scores on MME Perception and scores on MME Cognition. We
observe that performance across these datasets is highly sensitive to the fine-tuning learning rate. At the learning
rate of 1.8× 10−6, the fine-tuned MLLM achieves the best trade-off among performances on all three datasets.

6 CONCLUSION

In this paper, we introduce VHExpansion, an automated framework to generate VH test cases for MLLMs. VHEx-
pansion significantly advances VH testing by automating the generation of test cases through techniques such as
negation and image perturbations, both common and adversarial. We also propose an unbiased evaluation metric,
symmetric accuracy, to measure the consistency of MLLMs in answering VH test cases and their negated coun-
terparts. Our experiments demonstrate that, given VH test cases, VHExpansion can find more successful VH test
cases. Importantly, fine-tuning MLLMs on the expanded VH test cases generated by VHExpansion significantly
mitigates VH, while maintaining general performance on standard VQA tasks.
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A PROOF OF THEOREM 1

Proof. Standard accuracy is defined as: Accuracy = Prt∼T (f(xI , xQ) = yA). Since the model’s predictions are
independent of yA when random guessing:

E[Accuracy] = P (yA = Yes) · P (f(xI , xQ) = Yes) + P (yA = No) · P (f(xI , xQ) = No)
= q · p+ (1− q) · (1− p)

= 1 + (2p− 1) · q − p.

This expression shows that E[Accuracy] depends on the class distribution (P (yA = Yes)) if p ̸= 1
2 . If the model’s

bias aligns with the majority class (e.g., p is large when P (yA = Yes) is large), E[Accuracy] is artificially inflated,
even though the model is merely guessing.

Therefore, standard accuracy is biased due to class imbalance and model bias.

B PROOF OF THEOREM 2

Proof. Symmetric accuracy is defined as: Symmetric Accuracy = Prt∼T (f(xI , xQ) = yA∧f(xI ,¬xQ) = ¬yA).
Since model predictions are independent of yA and independent between xQ and ¬xQ under random guessing:

E[Symmetric Accuracy] = P (f(xI , xQ) = yA) · P (f(xI ,¬xQ) = ¬yA)
= P (yA = Yes) · P (f(xI , xQ) = Yes) · P (f(xI ,¬xQ) = No)
+ P (yA = No) · P (f(xI , xQ) = No) · P (f(xI ,¬xQ) = Yes)

= q · p(1− p) + (1− q) · p(1− p)

= p(1− p). (2)

Therefore,E[Symmetric Accuracy] = p(1 − p), which is independent of the class distribution (P (yA = Yes)).
Thus, symmetric accuracy is an unbiased evaluation metric with respect to class imbalance.

C DETAILS OF COMMON IMAGE PERTURBATIONS

• Gaussian Noise In this method, Gaussian noise is randomly sampled from a distribution with zero mean
and a standard deviation of σ. The image pixel values are first converted to the range [0, 1], and the
generated noise is then added to these values. This process simulates the noise real-world images might
experience during transmission. In our experiments, the standard deviation σ is set to 0.08.

• Brightness This method adjusts image brightness by modifying its V (value) channel in the HSV color
space. The input image is first normalized to [0, 1] and converted from RGB to HSV. The brightness is
then altered by adding a constant c to the V channel, with values clipped to the range [0, 1]. The image
is finally converted back to RGB. In our experiments, the constant c is set to 0.5.

• Defocus Blur This method applies a defocus blur to the image using a disk-shaped kernel. The input
image is normalized to [0, 1], and a disk kernel of radius c is generated. Each of the three RGB channels
is filtered independently with this kernel, then recombined and clipped to the range [0, 1]. The radius c
is set to 5 in our experiments.

• JPEG Compression This method compresses the input image using a specified quality factor q. Lower
q values result in higher compression and more artifacts, while higher values retain more image quality.
In our experiments, the quality factor q is set to 30.
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