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Abstract
Summary: Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting spe
cific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of 
hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of whole slide images (WSI) and 
elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an inter
active containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting 
comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables 
integration with other spatial data types through WSI co-registration.
Availability and implementation: Available on the following platforms—GitHub: jlevy44/trace_app, PyPI: trace_app, Docker: joshualevy44/ 
trace_app, Singularity: docker://joshualevy44/trace_app.

1 Implementation
Finding where metals are situated in tissues is a new and chal
lenging area, similar to the task of locating genes within tissues, 
which is vital for unraveling the complexities of various biologi
cal systems (see Supplementary Materials, section “Importance 
of Studying Metal Bioaccumulation”). Traditional measure
ments of elemental abundance, on a bulk scale, tend to neglect 
the intricacies and disruptions of metal homeostasis within spe
cific tissue architectures, obscuring critical associations and 
insights (Moses and Pachter 2022). Spatially resolved metal 
analysis through techniques like laser ablation inductively 

coupled plasma time-of-flight mass spectrometry (LA-ICPTOF- 
MS) offers detailed maps of multi-elemental distributions at 
one-micron resolution (Bussweiler et al. 2017, L€ohr et al. 2019, 
Theiner et al. 2019, Clases and Gonzalez de Vega 2022a,b, 
Chang et al. 2022, da Silva and Arruda 2023). Resulting biomo
lecular changes governing metal transport or biological path
ways and cell-types disrupted by local metal deposits may be 
identified with immunohistochemistry (IHC), imaging mass cy
tometry (IMC), or multiplex immunofluorescence (mIF) 
(Niedzwiecki et al. 2016). Identifying where metals and their bi
ological correlates occur within tissue typically involves 
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pathologist annotations of relevant tissue structures on hema
toxylin and eosin (H&E) or IHC slides. Alternatively, this pro
cess can be automated through the use of computer vision 
technologies, such as deep learning algorithms, which excel at 
autonomously annotating highly complex tissue regions and 
identifying cellular phenotypes with minimal human oversight 
(LeCun et al. 2015, Reddy et al. 2022).

Spatial multimodal co-registration workflows have been 
developed which align H&E slides (widely considered the 
gold standard) with IHC, IMC, mIF, and other spatial molec
ular modalities (e.g. spatial transcriptomics, ST) (Gatenbee 
et al. 2023). Such alignment offers numerous advantages for 
data preparation for integrative spatial multimodal analyses, 
leading to a more comprehensive understanding of spatial 
biomolecular heterogeneity and insights into multiple mecha
nistic pathways. Co-registration of spatial multimodal data
sets can be automated (Heiser et al. 2023). However, this 
process often requires the placement of manual fiducials to 
facilitate alignment, especially when data have varying spatial 
scales (0.25 lm/pixel for H&E versus 1–10 lm/pixel), feature 
dimensionality (typically three color channels versus 100– 
200 elements), or custom-trimming of regions of interest. 
These differences typically complicate automated integration.

In light of these complexities, integrating histopathological 
and spatial molecular information for spatial elemental 
analysis through co-registration has been limited in the metal
lomics community due to the lack of user-friendly tools for 
such integration. Currently, the standard approach for tissue 
region labeling involves viewing annotated H&E images 
alongside elemental images and manually replicating the 
same annotations on the elemental images to facilitate further 
analysis (Paul et al. 2021). Because elemental imaging is a de
structive process, this method requires profiling serial sec
tions corresponding to the H&E images. This can potentially 
lead to misidentification of features and inaccuracies in label
ing tissue within the elemental images.

Although co-registration of histopathological and elemen
tal imaging modalities has been proposed within the elemen
tal imaging community, these methods have not seen 
widespread adoption. A prior review of mass spectrometry 
imaging (MSI) co-registration methods highlighted several 
limitations: most tools are not open source, require image 
analysis expertise to implement custom workflows, and lack 
downstream analysis options that incorporate pathologist 
annotations (Balluff et al. 2022). Specifically, these tools do 
not support the transfer of annotated tissue regions from 
H&E sections to elemental images.

Co-registration methods generally rely on generating and com
paring binary masks based on pixel-by-pixel locations of whole, 
intact tissue sections or on extracting multidimensional features 
for each pixel. However, these methods do not account for issues 
such as incomplete profiling of elements, regions with missing 
data, tissue sections that are scored or significantly distorted during 
processing, or spatial mismatches between imaging modalities. 
Additionally, the extraction of multidimensional pixel features 
may not align well with specific modalities and can be challenging 
for non-experts to interpret and troubleshoot. While integration of 
tissue autofluorescence can guide/improve co-registration, data 
preparation and analysis face similar challenges, especially for re
search groups without relevant expertise (Patterson et al. 2018).

Moreover, data standards like imzML, developed over a 
decade ago, are still employed in some co-registration tools 
(R€ompp et al. 2011). Yet, these standards are not compatible 

with newly rasterized imaging formats required for down
stream analysis with advanced computational methods and 
spatial multimodal data modalities (e.g. SpatialData) 
(Marconato et al. 2024).

In this article, we introduce TRACE—Tissue Region 
Analysis through Co-registration of Elemental Maps. 
Developed by the Biomedical National Elemental Imaging 
Resource (BNEIR), TRACE is an interactive web application 
that facilitates the co-registration of high-resolution whole 
slide images (WSI) with elemental maps, encompassing vari
ous imaging formats and a range of elemental imaging techni
ques (e.g. LA-ICPMS, XRF). TRACE enables comparisons of 
metal abundance across different, annotated tissue structures 
and data exported from this application also can be readily 
integrated with additional spatial genomics assays, such as 
spatial transcriptomics (Ståhl et al. 2016, Berglund et al. 
2018, Stark et al. 2019, Ji et al. 2020, PALISI Pediatric 
Intensive Care Influenza (PICFLU) Investigators et al. 2020, 
Fawkner-Corbett et al. 2021, Garcia-Alonso et al. 2021, 
Maynard et al. 2021, Meylan et al. 2022). TRACE allows for 
a streamlined data integration, preprocessing, co-registration, 
and initial analysis comparing elemental abundance by tissue 
regions through the following collection of modules (Fig. 1, 
Supplementary Fig. S1):

1) Efficient data management through data module: This 
module simplifies the organization, upload, and man
agement of various pathology images (including H&E, 
IHC, mIF) and annotations in JSON/XML format from 
tools like QuPath and ASAP (Bankhead et al. 2017, 
Humphries et al. 2021, Escobar D�ıaz Guerrero et al. 
2022). It also handles metal images from techniques 
such as MALDI, LA-ICPTOF-MS, and XRF in multiple 
formats (Paton et al. 2011). The data module stream
lines the integration of elemental imaging data, accom
modating files exported from software like iolite 
(analyses software to generate quantitative spatial maps 
of elements in histologic sections, biopsies included). 
These files, typically a series of single channel elemental 
maps in Excel format, are consolidated into single files 
following the Bio-Format and FAIR (findable, accessi
ble, interoperable, reusable) standards (e.g. OME- 
ZARR, SpatialData) for streamlined access and use 
(Moore et al. 2021). 

2) Preprocessing and co-registration modules: Once multi- 
channel elemental images are generated, tissue is detected us
ing a custom workflow which aggregates elemental abun
dance across selected channels. This process includes 
smoothing of pseudo-log-transformed data using a Gaussian 
filter, followed by user-defined or custom thresholding and 
morphological operations to refine the image, such as remov
ing extraneous objects and filling in gaps within contiguous 
areas. After preprocessing, co-registration takes place. While 
there are advanced co-registration workflows utilizing feature 
matching and nonlinear transformations between H&E and 
elemental maps, our approach is currently landmark-based. 
This allows for real-time labeling of similar histopathological 
regions of interest, enabling linear co-registration to merge 
H&E images with metal maps effectively. Customizable visu
alizations aid in enhancing landmark identification, which is 
vital for pathologists to correlate pathology findings with 
metal composition and to transfer annotated biomarkers or 
regions on WSI directly to elemental maps. 
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3) Data visualization/analysis via the measure module: 
This module facilitates the visualization of co-registered 
elemental maps alongside WSI. It provides advanced 
tools for precise annotation and measurement within 
specific regions. Users can upload, import, and synchro
nize annotations from WSI in various formats, including 
JSON, XML, or GeoJSON, which are compatible with 
QuPath/ASAP pathology annotation tools. TRACE ena
bles real-time synchronization between H&E and metal 
maps images, enhancing data interpretation, and cur
rently provides basic statistical analysis functionalities. 
Additionally, data labeled with this tool can be exported 
in standard bioimaging formats, such as OME-ZARR, 
facilitating further analysis of elemental data along with 
the associated annotations transferred from WSI. 

TRACE was implemented using a Python Dash/Flask front 
end (Dabbas 2021), Python v3.9.

2 Results
TRACE was initially tested in five illustrative use cases, dem
onstrating broad applicability, with plans for more compre
hensive, in-depth analyses for expanded cohorts in 
future works:

1) Annotation transfer in breast cancer study: Applied to 
breast tumors and normal adjacent tissue with varying 
HER2/HR/TNBC molecular subtypes and histologies, 
TRACE enabled the transfer of pathology annotations 
from WSI to examine architectural differences in ele
mental maps. The following regions were annotated by 
a pathologist using the QuPath annotation software: 
Duct, Fat, Immune Cells, Interface, Lobule, Normal 
Fibrous Stroma, Stroma, and Tumor. Architectures were 
compared if at least tumor and normal adjacent tissue 
were profiled as means of comparison. Preliminary 

results were derived using Bayesian hierarchical hurdle 
gamma regression models (B€urkner 2017, 2018, 
Carpenter et al. 2017), reporting differences in tissue 
architectures by tissue type (tumor/normal adjacent) and 
architecture (Supplementary Fig. S2, Supplementary 
Table S1), accounting for patient using random effects. 
It should be noted due to limited sample size that the 
returned results provide an example of what can be 
done and is only proof-of-concept and do not draw any 
conclusions reserved for more expansive study. 

2) Colorectal cancer case study with spatial transcriptom
ics: As a proof-of-concept, TRACE was applied to a pT3 
stage colorectal cancer case, integrating with spatial 
transcriptomics data (Fatemi et al. 2023, 2024). The 
10x Genomics Visium CytAssist spatial transcriptomics 
(ST) assay (Janesick et al. 2023), capturing spatial gene 
expression variations within 55-µm spots, was aligned 
with 40X H&E-stained WSI (Leica Aperio GT450). 
Regions in and around the tumor were annotated by 
pathologists. ST data were clustered using UMAP 
embeddings and Leiden clustering and visualized, with 
further analysis left for a future work (Supplementary 
Fig. S3) (McInnes et al. 2017, 2018). Elemental imaging 
at 5-µm resolution utilized laser ablation inductively 
coupled plasma time-of-flight mass spectrometry (LA- 
ICPTOF-MS), on tissue sectioned from formalin-fixed, 
paraffin-embedded blocks. Prior to further analysis, co- 
registered data were exported from TRACE. 

3) Spatial transcriptomics breast cohort: Following the 
same workflow as in the Colorectal Cancer Case Study, 
TRACE was applied to deparaffinized tissue from two 
Triple Negative Breast Cancer (TNBC) patients, profil
ing ST data and elemental imaging on serial sections. 
Corresponding spatial molecular data were co-registered 
and exported from TRACE for further analysis 
(Supplementary Fig. S4). 

Figure 1. Transfer of pathologist annotations to LA-ICPMS elemental image through co-registration with TRACE.
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4) Co-registration of mIF in kidney papillae: This example 
demonstrates the integration of spatial proteomics with 
elemental maps by combining two co-registration work
flows. A kidney papillae block was sectioned into five se
rial tissue sections: the first was stained with H&E and 
excluded from the analysis, while four intermediate sec
tions were analysed using mIF, incorporating 2–3 stains 
per section. Each section featured specific markers with 
DAPI for nuclei segmentation. The final section was ana
lysed using LA-ICP-MS. All mIF images were co- 
registered using VALIS to create a composite mIF image 
containing all markers, featuring a six-plex protein 
panel (DAPI, PIEZO1, HIF-1a/Zn, MFN2, TRPV4). 
The composite mIF data were aligned with elemental 
maps using TRACE to facilitate integration of single-cell 
protein expression data extracted using a neural net
work through usage of the same transformation parame
ters (Supplementary Fig. S5, Supplementary Table S2). 

5) Central nervous system tissue: In this case, serial H&E 
and elemental images of neocortex tissue from a single 
patient were taken and co-registered. This alignment 
revealed localized metal concentrations associated with 
specific tissue structures (Supplementary Fig. S6). 

3 Benefits and future direction
TRACE permits flexible integration of histological and spatial 
transcriptomic data with elemental imaging analysis. This tool is 
available via PyPI (trace-app), GitHub (jlevy44/trace_app), Docker 
(joshualevy44/trace_app), and Singularity (docker://joshualevy44/ 
trace_app), making the tool reproducible, accessible/sharable, and 
operating system agnostic. A video tutorial illustrating usage of the 
tool and a user-friendly application launcher (executable file) can 
be found in the GitHub repository. Applying this web application 
across various tissue types will broaden the scope and validity of 
our research in identifying prognostic elemental and transcriptomic 
markers within specific tissue structures. The current version 
allows for the co-registration of WSI with elemental maps. Future 
updates include a second release, which will integrate multiple mo
dalities into a single multimodal data array. This approach will en
able the integration of multiplexed spatial imaging and genomics 
assays with elemental imaging and histology. Such integration 
facilitates metals-based pathway analysis at a resolution approach
ing that of single cells. However, it is important to recognize that 
elemental imaging is generally a destructive process, necessitating 
the analysis to be conducted on consecutive tissue sections. 
Linking individual cell profiles with elemental abundance poses 
significant challenges, often requiring studies at a broader scale, 
such as examining the relationship between cellular interaction 
densities and the presence of metals and their mixtures. 
Furthermore, dewaxing of formalin-fixed paraffin-embedded tissue 
sections is currently recommended for LA-ICPTOF-MS applica
tions to reduce the likelihood of signal intensity fluctuations 
though the impact of paraffin removal on metal distribution is cur
rently understudied. While further spatial genomics analysis can 
currently be achieved by exporting and analysing co-registered 
data, future enhancements will offer interactive clustering tools, 
identification of metal hotspots using local spatial autocorrelation 
statistics, advanced machine learning analytics (Paul et al. 2021), 
and enhanced nonlinear co-registration techniques. Although sev
eral multimodal analysis tools have been developed for this pur
pose, an in-depth discussion and comparison of these downstream 
tools falls outside the scope of this manuscript. Instead, this work 

focuses on data preparation for such analyses and the initial com
parison of tissue regions based on elemental abundance. 
References have been provided for readers interested in exploring 
these tools further (Ji et al. 2020, Bredikhin et al. 2022, Velten 
et al. 2022, Park et al. 2022, Arutyunyan et al. 2023, Dimitrov 
et al. 2024, Marconato et al. 2024, Vicari et al. 2024). 
Deployment on cloud platforms like Amazon Web Services is 
planned to improve accessibility. Additionally, high-resolution 
viewing of highly multiplexed imaging will be enabled through 
bioimaging software like ViV, Vitessce, and Avivator, using stan
dard NGFF formats (Keller et al. 2021, Manz et al. 2022). The in
tegration of these features, which currently require external 
analysis of exported data, will further enhance the application’s 
capabilities.
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