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Abstract

Summary: Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting spe-
cific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of
hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of whole slide images (WSI) and
elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an inter-
active containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting
comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables
integration with other spatial data types through WSI co-registration.

Availability and implementation: Available on the following platforms—GitHub: jlevy44/trace_app, PyPl: trace_app, Docker: joshualevy44/
trace_app, Singularity: docker://joshualevy44/trace_app.

1 Implementation

Finding where metals are situated in tissues is a new and chal-
lenging area, similar to the task of locating genes within tissues,
which is vital for unraveling the complexities of various biologi-
cal systems (see Supplementary Materials, section “Importance
of Studying Metal Bioaccumulation”). Traditional measure-
ments of elemental abundance, on a bulk scale, tend to neglect
the intricacies and disruptions of metal homeostasis within spe-
cific tissue architectures, obscuring critical associations and
insights (Moses and Pachter 2022). Spatially resolved metal
analysis through techniques like laser ablation inductively

coupled plasma time-of-flight mass spectrometry (LA-ICPTOF-
MS) offers detailed maps of multi-elemental distributions at
one-micron resolution (Bussweiler et al. 2017, Lohr et al. 2019,
Theiner et al. 2019, Clases and Gonzalez de Vega 2022a,b,
Chang et al. 2022, da Silva and Arruda 2023). Resulting biomo-
lecular changes governing metal transport or biological path-
ways and cell-types disrupted by local metal deposits may be
identified with immunohistochemistry (IHC), imaging mass cy-
tometry (IMC), or multiplex immunofluorescence (mlIF)
(Niedzwiecki et al. 2016). Identifying where metals and their bi-
ological correlates occur within tissue typically involves
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pathologist annotations of relevant tissue structures on hema-
toxylin and eosin (H&E) or IHC slides. Alternatively, this pro-
cess can be automated through the use of computer vision
technologies, such as deep learning algorithms, which excel at
autonomously annotating highly complex tissue regions and
identifying cellular phenotypes with minimal human oversight
(LeCun et al. 2015, Reddy ez al. 2022).

Spatial multimodal co-registration workflows have been
developed which align H&E slides (widely considered the
gold standard) with IHC, IMC, mIF, and other spatial molec-
ular modalities (e.g. spatial transcriptomics, ST) (Gatenbee
et al. 2023). Such alignment offers numerous advantages for
data preparation for integrative spatial multimodal analyses,
leading to a more comprehensive understanding of spatial
biomolecular heterogeneity and insights into multiple mecha-
nistic pathways. Co-registration of spatial multimodal data-
sets can be automated (Heiser et al. 2023). However, this
process often requires the placement of manual fiducials to
facilitate alignment, especially when data have varying spatial
scales (0.25 um/pixel for H&E versus 1-10 pm/pixel), feature
dimensionality (typically three color channels versus 100-
200 elements), or custom-trimming of regions of interest.
These differences typically complicate automated integration.

In light of these complexities, integrating histopathological
and spatial molecular information for spatial elemental
analysis through co-registration has been limited in the metal-
lomics community due to the lack of user-friendly tools for
such integration. Currently, the standard approach for tissue
region labeling involves viewing annotated H&E images
alongside elemental images and manually replicating the
same annotations on the elemental images to facilitate further
analysis (Paul et al. 2021). Because elemental imaging is a de-
structive process, this method requires profiling serial sec-
tions corresponding to the H&E images. This can potentially
lead to misidentification of features and inaccuracies in label-
ing tissue within the elemental images.

Although co-registration of histopathological and elemen-
tal imaging modalities has been proposed within the elemen-
tal imaging community, these methods have not seen
widespread adoption. A prior review of mass spectrometry
imaging (MSI) co-registration methods highlighted several
limitations: most tools are not open source, require image
analysis expertise to implement custom workflows, and lack
downstream analysis options that incorporate pathologist
annotations (Balluff et al. 2022). Specifically, these tools do
not support the transfer of annotated tissue regions from
H&E sections to elemental images.

Co-registration methods generally rely on generating and com-
paring binary masks based on pixel-by-pixel locations of whole,
intact tissue sections or on extracting multidimensional features
for each pixel. However, these methods do not account for issues
such as incomplete profiling of elements, regions with missing
data, tissue sections that are scored or significantly distorted during
processing, or spatial mismatches between imaging modalities.
Additionally, the extraction of multidimensional pixel features
may not align well with specific modalities and can be challenging
for non-experts to interpret and troubleshoot. While integration of
tissue autofluorescence can guide/improve co-registration, data
preparation and analysis face similar challenges, especially for re-
search groups without relevant expertise (Patterson et al. 2018).

Moreover, data standards like imzML, developed over a
decade ago, are still employed in some co-registration tools
(Rompp et al. 2011). Yet, these standards are not compatible
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with newly rasterized imaging formats required for down-
stream analysis with advanced computational methods and
spatial multimodal data modalities (e.g. SpatialData)
(Marconato et al. 2024).

In this article, we introduce TRACE—Tissue Region
Analysis through Co-registration of Elemental Maps.
Developed by the Biomedical National Elemental Imaging
Resource (BNEIR), TRACE is an interactive web application
that facilitates the co-registration of high-resolution whole
slide images (WSI) with elemental maps, encompassing vari-
ous imaging formats and a range of elemental imaging techni-
ques (e.g. LA-ICPMS, XRF). TRACE enables comparisons of
metal abundance across different, annotated tissue structures
and data exported from this application also can be readily
integrated with additional spatial genomics assays, such as
spatial transcriptomics (Stdhl et al. 2016, Berglund et al.
2018, Stark et al. 2019, Ji et al. 2020, PALISI Pediatric
Intensive Care Influenza (PICFLU) Investigators et al. 2020,
Fawkner-Corbett et al. 2021, Garcia-Alonso et al. 2021,
Maynard et al. 2021, Meylan et al. 2022). TRACE allows for
a streamlined data integration, preprocessing, co-registration,
and initial analysis comparing elemental abundance by tissue
regions through the following collection of modules (Fig. 1,
Supplementary Fig. S1):

1) Efficient data management through data module: This
module simplifies the organization, upload, and man-
agement of various pathology images (including H&E,
IHC, mIF) and annotations in JSON/XML format from
tools like QuPath and ASAP (Bankhead et al. 2017,
Humphries et al. 2021, Escobar Diaz Guerrero et al.
2022). It also handles metal images from techniques
such as MALDI, LA-ICPTOF-MS, and XRF in multiple
formats (Paton et al. 2011). The data module stream-
lines the integration of elemental imaging data, accom-
modating files exported from software like iolite
(analyses software to generate quantitative spatial maps
of elements in histologic sections, biopsies included).
These files, typically a series of single channel elemental
maps in Excel format, are consolidated into single files
following the Bio-Format and FAIR (findable, accessi-
ble, interoperable, reusable) standards (e.g. OME-
ZARR, SpatialData) for streamlined access and use
(Moore et al. 2021).

2) Preprocessing and co-registration modules: Once multi-
channel elemental images are generated, tissue is detected us-
ing a custom workflow which aggregates elemental abun-
dance across selected channels. This process includes
smoothing of pseudo-log-transformed data using a Gaussian
filter, followed by user-defined or custom thresholding and
morphological operations to refine the image, such as remov-
ing extraneous objects and filling in gaps within contiguous
areas. After preprocessing, co-registration takes place. While
there are advanced co-registration workflows utilizing feature
matching and nonlinear transformations between H&E and
elemental maps, our approach is currently landmark-based.
This allows for real-time labeling of similar histopathological
regions of interest, enabling linear co-registration to merge
H&E images with metal maps effectively. Customizable visu-
alizations aid in enhancing landmark identification, which is
vital for pathologists to correlate pathology findings with
metal composition and to transfer annotated biomarkers or
regions on WSI directly to elemental maps.
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Figure 1. Transfer of pathologist annotations to LA-ICPMS elemental image through co-registration with TRACE.

3) Data visualization/analysis via the measure module:
This module facilitates the visualization of co-registered
elemental maps alongside WSI. It provides advanced
tools for precise annotation and measurement within
specific regions. Users can upload, import, and synchro-
nize annotations from WSI in various formats, including
JSON, XML, or GeoJSON, which are compatible with
QuPath/ASAP pathology annotation tools. TRACE ena-
bles real-time synchronization between H&E and metal
maps images, enhancing data interpretation, and cur-
rently provides basic statistical analysis functionalities.
Additionally, data labeled with this tool can be exported
in standard bioimaging formats, such as OME-ZARR,
facilitating further analysis of elemental data along with
the associated annotations transferred from WSI.

TRACE was implemented using a Python Dash/Flask front
end (Dabbas 2021), Python v3.9.

2 Results

TRACE was initially tested in five illustrative use cases, dem-
onstrating broad applicability, with plans for more compre-
hensive, in-depth analyses for expanded cohorts in
future works:

1) Annotation transfer in breast cancer study: Applied to
breast tumors and normal adjacent tissue with varying
HER2/HR/TNBC molecular subtypes and histologies,
TRACE enabled the transfer of pathology annotations
from WSI to examine architectural differences in ele-
mental maps. The following regions were annotated by
a pathologist using the QuPath annotation software:
Duct, Fat, Immune Cells, Interface, Lobule, Normal
Fibrous Stroma, Stroma, and Tumor. Architectures were
compared if at least tumor and normal adjacent tissue
were profiled as means of comparison. Preliminary

results were derived using Bayesian hierarchical hurdle
gamma regression models (Birkner 2017, 2018,
Carpenter et al. 2017), reporting differences in tissue
architectures by tissue type (tumor/normal adjacent) and
architecture (Supplementary Fig. S2, Supplementary
Table S1), accounting for patient using random effects.
It should be noted due to limited sample size that the
returned results provide an example of what can be
done and is only proof-of-concept and do not draw any
conclusions reserved for more expansive study.
Colorectal cancer case study with spatial transcriptom-
ics: As a proof-of-concept, TRACE was applied to a pT3
stage colorectal cancer case, integrating with spatial
transcriptomics data (Fatemi et al. 2023, 2024). The
10x Genomics Visium CytAssist spatial transcriptomics
(ST) assay (Janesick et al. 2023), capturing spatial gene
expression variations within 55-um spots, was aligned
with 40X H&E-stained WSI (Leica Aperio GT450).
Regions in and around the tumor were annotated by
pathologists. ST data were clustered using UMAP
embeddings and Leiden clustering and visualized, with
further analysis left for a future work (Supplementary
Fig. S3) (Mclnnes et al. 2017, 2018). Elemental imaging
at 5-um resolution utilized laser ablation inductively
coupled plasma time-of-flight mass spectrometry (LA-
ICPTOF-MS), on tissue sectioned from formalin-fixed,
paraffin-embedded blocks. Prior to further analysis, co-
registered data were exported from TRACE.

Spatial transcriptomics breast cohort: Following the
same workflow as in the Colorectal Cancer Case Study,
TRACE was applied to deparaffinized tissue from two
Triple Negative Breast Cancer (TNBC) patients, profil-
ing ST data and elemental imaging on serial sections.
Corresponding spatial molecular data were co-registered
and exported from TRACE for further analysis
(Supplementary Fig. S4).
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4) Co-registration of mIF in kidney papillae: This example
demonstrates the integration of spatial proteomics with
elemental maps by combining two co-registration work-
flows. A kidney papillae block was sectioned into five se-
rial tissue sections: the first was stained with H&E and
excluded from the analysis, while four intermediate sec-
tions were analysed using mlF, incorporating 2-3 stains
per section. Each section featured specific markers with
DAPI for nuclei segmentation. The final section was ana-
lysed using LA-ICP-MS. All mIF images were co-
registered using VALIS to create a composite mIF image
containing all markers, featuring a six-plex protein
panel (DAPI, PIEZO1, HIF-10/Zn, MFN2, TRPV4).
The composite mIF data were aligned with elemental
maps using TRACE to facilitate integration of single-cell
protein expression data extracted using a neural net-
work through usage of the same transformation parame-
ters (Supplementary Fig. S5, Supplementary Table S2).

5) Central nervous system tissue: In this case, serial H&E
and elemental images of neocortex tissue from a single
patient were taken and co-registered. This alignment
revealed localized metal concentrations associated with
specific tissue structures (Supplementary Fig. S6).

3 Benefits and future direction

TRACE permits flexible integration of histological and spatial
transcriptomic data with elemental imaging analysis. This tool is
available via PyPI (trace-app), GitHub (jlevy44/trace_app), Docker
(joshualevy44/trace_app), and Singularity (docker://joshualevy44/
trace_app), making the tool reproducible, accessible/sharable, and
operating system agnostic. A video tutorial illustrating usage of the
tool and a user-friendly application launcher (executable file) can
be found in the GitHub repository. Applying this web application
across various tissue types will broaden the scope and validity of
our research in identifying prognostic elemental and transcriptomic
markers within specific tissue structures. The current version
allows for the co-registration of WSI with elemental maps. Future
updates include a second release, which will integrate multiple mo-
dalities into a single multimodal data array. This approach will en-
able the integration of multiplexed spatial imaging and genomics
assays with elemental imaging and histology. Such integration
facilitates metals-based pathway analysis at a resolution approach-
ing that of single cells. However, it is important to recognize that
elemental imaging is generally a destructive process, necessitating
the analysis to be conducted on consecutive tissue sections.
Linking individual cell profiles with elemental abundance poses
significant challenges, often requiring studies at a broader scale,
such as examining the relationship between cellular interaction
densities and the presence of metals and their mixtures.
Furthermore, dewaxing of formalin-fixed paraffin-embedded tissue
sections is currently recommended for LA-ICPTOF-MS applica-
tions to reduce the likelihood of signal intensity fluctuations
though the impact of paraffin removal on metal distribution is cur-
rently understudied. While further spatial genomics analysis can
currently be achieved by exporting and analysing co-registered
data, future enhancements will offer interactive clustering tools,
identification of metal hotspots using local spatial autocorrelation
statistics, advanced machine learning analytics (Paul ez al. 2021),
and enhanced nonlinear co-registration techniques. Although sev-
eral multimodal analysis tools have been developed for this pur-
pose, an in-depth discussion and comparison of these downstream
tools falls outside the scope of this manuscript. Instead, this work
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focuses on data preparation for such analyses and the initial com-
parison of tissue regions based on elemental abundance.
References have been provided for readers interested in exploring
these tools further (Ji et al. 2020, Bredikhin et al. 2022, Velten
et al. 2022, Park et al. 2022, Arutyunyan et al. 2023, Dimitrov
et al. 2024, Marconato et al. 2024, Vicari et al. 2024).
Deployment on cloud platforms like Amazon Web Services is
planned to improve accessibility. Additionally, high-resolution
viewing of highly multiplexed imaging will be enabled through
bioimaging software like ViV, Vitessce, and Avivator, using stan-
dard NGFF formats (Keller et al. 2021, Manz et al. 2022). The in-
tegration of these features, which currently require external
analysis of exported data, will further enhance the application’s
capabilities.
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