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ABSTRACT

Although membership inference attacks (MIAs) and machine-generated text de-
tection target different goals, identifying training samples and synthetic texts, their
methods often exploit similar signals based on a language model’s probability
distribution. Despite this shared methodological foundation, the two tasks have
been independently studied, which may lead to conclusions that overlook stronger
methods and valuable insights developed in the other task. In this work, we the-
oretically and empirically investigate the transferability, i.e., how well a method
originally developed for one task performs on the other, between MIAs and ma-
chine text detection. For our theoretical contribution, we prove that the metric
that achieves the asymptotically highest performance on both tasks is the same.
We unify a large proportion of the existing literature in the context of this optimal
metric and hypothesize that the accuracy with which a given method approximates
this metric is directly correlated with its transferability. Our large-scale empirical
experiments, including 7 state-of-the-art MIA methods and 5 state-of-the-art ma-
chine text detectors across 13 domains and 10 generators, demonstrate very strong
rank correlation (p > 0.6) in cross-task performance. We notably find that Binoc-
ulars, originally designed for machine text detection, achieves state-of-the-art per-
formance on MIA benchmarks as well, demonstrating the practical impact of the
transferability. Our findings highlight the need for greater cross-task awareness
and collaboration between the two research communities. To facilitate cross-task
developments and fair evaluations, we introduce MINT, a unified evaluation suite
for MIAs and machine-generated text detection, with implementation of 15 recent
methods from both tasks/[]

1 INTRODUCTION

Large language models (LLMs) have demonstrated human-level generative and understanding ca-
pabilities, impacting fields such as creative writing (Chakrabarty et al.l [2024), news reporting (Fu-
turism, [2023), and even scientific discovery (Lu et al.,|2024). Despite many positive societal impli-
cations, their negative consequences have increasingly been reported. For instance, LLMs may leak
personal (Lukas et al.,[2023)) or copyrighted information (Wei et al.L[2024) due to their memorization
of training data (Morris et al., |2025; |Carlini et al.| 2021)). In addition to privacy issues, LLMs also
raise challenges to authorship authenticity, as they can be exploited for mass-producing propaganda
(Goldstein et al., 2024)) or cheating on student assignments (Guardian, [2025).

Many recent works aim to mitigate such negative implications of LLMs. One major direction is
membership inference attacks (MIAs), which attempt to classify whether a given text sample is a
member of the training data of a language model (Carlini et al.| [2022; [Mattern et al., 2023} |Shi et al.,
2024). This helps identify potential leaks of personal information and copyright infringement. To
address the challenges of authorship authenticity, another major line of work is machine-generated
text detection, which distinguishes between human-written and machine-generated texts (Ippolito
et al., [2020; [Mitchell et al., |2023; [Hans et al., 2024; Yang et al., [2024). This safeguards against
misuse of LLMs (e.g., misinformation and academic misconduct) by flagging suspicious texts.

While these two tasks, membership inference and machine text detection, target different goals,
their methods often leverage similar signals based on a language model’s probability distribution.
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Figure 1: Predicted score distributions of Min-K%-++ (state-of-the-art MIA) and Binoculars (state-
of-the-art machine text detector) on both tasks. Shaded areas indicate the cross-task setting. We see
that, although Binoculars and Min-K%++ were developed for two separate tasks, the distributions
across populations induced by both metrics are strikingly similar, suggesting their transferability.

In membership inference, documents that are members of a model’s training dataset tend to show
higher likelihood under the model than non-members. Similarly, in machine text detection, machine-
generated texts typically exhibit higher likelihoods under the target model than human-written texts.
Thus, both tasks use text likelihood or entropy as standard baselines. Notably, Neighborhood attack
(Mattern et al., [2023)) from membership inference and DetectGPT (Mitchell et al.l [2023) from ma-
chine text detection have been noted as essentially identical (Shi et al.}[2024; |Naseh & Mireshghal-
lahl |2025). Both estimate the probability curvature around a target text by perturbing the text. More-
over, Figure (1| shows strikingly similar score distributions of the state-of-the-art MIA and detector
on both tasks. Despite this broader shared methodological foundation, the two tasks have been inde-
pendently studied. This may result in biased evaluations that overlook stronger methods developed
for one task and consequently lead to conclusions that miss valuable insights from the other.

Motivated by this gap, we theoretically and empirically study the transferability, i.e., how well
a method originally developed for one task performs on the other, between MIAs and machine
text detection. For our theoretical contribution, we prove that both tasks share the same optimal
metric for achieving asymptotically highest performance: the likelihood ratio test between the target
model distribution and the true population distribution (§2.3). We unify a large proportion of the
existing methods from both tasks as approximations of this optimal metric and hypothesize that the
transferability of a particular method is correlated with how well it approximates this metric.

To empirically quantify the transferability, we conduct large-scale experiments, spanning 7 state-
of-the-art MIA methods and 5 state-of-the-art machine text detectors across 13 domains and 10
generators (§[31]). For each method, we evaluate its performance on both tasks, MIAs and machine
text detection, and then compute the rank correlation between their performance rankings on the
two tasks. We find that many methods effective in MIAs remain effective in machine text detection,
and vice versa, with a strong rank correlation (p > 0.6) in their cross-task performance (§3.2).
Furthermore, we notably find that Binoculars (Hans et al., [2024), originally designed for machine
text detection, achieves state-of-the-art performance on MIAs as well, demonstrating the practical
impact of the transferability.

2 THEORETICAL TRANSFER BETWEEN MIA AND MGTD

2.1 TASK FORMULATION

Let X be the set of all token sequences and let Q be an oracle that models the “true” probability
distribution Py of human-written text over X'. Let M be a language model inducing distribution
Py over X and D5, C X denote the unknown training set used to fit M. For a given text z € X
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our two tasks have the following hypotheses:

Machine-Generated Text Detection — Hy : © ~ Pg, Hj :xz ~ Py
Membership Inference — Hy : x € X, Hi : x € Dirgin

Both tasks aim to develop some function f(z;M) that can accept or reject their respective null
hypotheses with maximum statistical power.

2.2 MOTIVATION: IDENTICAL PAIRS

We will start our discussion of theoretical transferability with a motivating example. Let z =
{wo,- -+ ,xn} be a sequence of tokens and let L(z, M) = —>_  log Pr(z;) be the surprisal
of the sequence according to some model M. The Neighborhood Attack (Mattern et al.,[2023)) is a
membership inference method that is defined as follows

Neighborhood(x; M; ¢) = L(x; M) — % Z L£(zED: M) (D)

i=1

Where {z(1) ... 2"} ~ ¢(z) is a set of perturbations (") that differ slightly from  but are
approximately equally likely to appear in the general distribution X’. In parallel to this, DetectGPT
(Mitchell et al.| 2023)) is a popular and widely used machine-generated text detection method that is
defined as follows

DetectGPT(z; M; ¢) = L(z; M) — Bz (a) L£(T; M)

We echo [Naseh & Mireshghallah| (2025) in noting that these two methods are approximately iden-
tical (the first is simply a finite sample approximation of the other). Given that this metric was
proposed independently for both tasks it naturally invites further exploration into what other metrics
may share this property. In the next section we provide a theoretical framework for understanding
why this metric and others like it exhibit such strong performance on both tasks.

2.3 UNIFYING DETECTION AND MEMBERSHIP INFERENCE AS LIKELIHOOD RATIO TESTS

Theorem 2.3 (Unified Optimality). Let X be the set of all token sequences and let Q be an oracle
that models the “true” distribution Pg of human-written text over X'. Let M be a language model
trained with cross-entropy to minimize the likelihood of some training set Di;,q;, C X. Then the

test statistic "
Yor i log Pa(zs|z<i) _ L(x; M)
iz log Po(wilr<i)  L(x;Q)
achieves optimal accuracy at a given false positive rate (type I error) for both machine-generated
text detection and membership inference under standard asymptotic regularity conditions, with
coressponding maximum advantage (improvement over random guessing) bounded by
Dy (Po||Pm)

dv <) —~—="""7,
adv < 3

Az) =

Proof. We prove this by showing that A(z) coincides with the likelihood ratio test for both tasks.
Step 1: Machine-generated text detection. Consider testing
Hy:x~Pgo, H :x~ Py
The likelihood ratio test for this hypothesis is
L(z; M)
A _ =\
MGT(QC) r (x; Q)

which exactly coincides with the proposed statistic A(z). By the Neyman-Pearson lemma (Neyman
& Pearsonl [1933)), this test is uniformly most powerful for any given Type I error.

Step 2: Membership inference. Consider testing

Hy:xe X versus Hi:x € Dyain-
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Since M is trained via cross-entropy, it is a maximum likelihood estimator. Under standard asymp-
totic assumptions (sufficient model capacity, infinite training samples), £(x; M) converges to the
likelihood of x under H;. Therefore, the likelihood ratio test for this hypothesis is also
L(z; M)
A Ead Sl RAAA

so A(x) is also asymptotically optimal for membership inference.

Step 3: Advantage bound. For a binary hypothesis test with statistic A(z), the Bayes error is
1 —=TV(Pum, Po)

= 5 ;

where TV (-, -) denotes total variation distance. Applying Pinsker’s inequality,

1
TV(Ppm, Pg) < §DKL(PQ||PM)7

yields the stated bound on the error and the corresponding maximum advantage.

*

Remark. When M has sufficient capacity and is trained on asymptotically many samples from
Dirain» the performance of the provided statistic A(z) on membership inference will approach the
optimal bound. However, since language models typically only get one pass through their training
data in practice, it may be the case that other, more creative approximations of P(x € Dirqin)
perform better than Pa(x) in real-world scenarios. Our result is not meant to discourage further
work on these approximations, but rather to give an underlying theoretical framework for why the
tasks of machine text detection and membership inference are so fundamentally connected.

Discussion. A key implication of this result is that any method that effectively approximates A(x)
will have high transferability, i.e., perform well on both machine-generated text detection and mem-
bership inference. In the remainder of this paper, we analyze a collection of state-of-the-art metrics
using this framework and measure their degree of transferability in the context of this result.

2.4 CLASSIFYING METRICS AS APPROXIMATE LIKELIHOOD RATIO TESTS

Since the true population distribution of human-written text Pg is inaccessible, methods in both
tasks have employed various strategies to approximate this distribution. These strategies can be
broadly divided into two approaches:

Approximation via External Reference. The first approach approximates the true distribution by
leveraging an external distribution Py, , as a surrogate for the true population distribution Pg,

L(x; Q) = L(x; Myey).

The surrogate distribution Py, , can be approximated via another language model (Reference (Car-
lini et al.,|2021) from MIAs), a byte-level frequency distribution induced by Huffman encoding (Zlib
(Carlini et al., |2021)) from MIAs), a token-level frequency distribution from an external corpus (DC-
PDD (Zhang et al.| [2024) from MIAs), or cross-model entropy (Binoculars (Hans et al.,2024) from
machine text detection).

Approximation via Text Sampling. The second approach leverages text sampling to approximate
the true distribution Pg. The likelihood under the true distribution is approximated by the expected
likelihood of multiple perturbations & of the target text x,

L(w; Q) = Bz ) [L(E; M)];

where ¢(-|x) is a perturbation function that samples variations of the target text . This strategy
is employed by the Neighborhood attack (Mattern et al., |2023) from MIAs, DetectGPT (Mitchell
et al., [2023)), and Fast-DetectGPT (Bao et al.,|2024) from machine text detection.

In Table[I| we provide a breakdown of the metrics we test in our work and where applicable include
a reformulation to fit the categorization we propose. We discuss in more detail in Appendix [A] the
steps we took to get to this general formulation for each example in the author’s own notation.
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Metric Task ‘ Equational form
Reference (Carlini et al.,[2021) MIA L(x; M) — L(z; Myey)
Zlib (Carlini et al., 2021) MIA L(z; M) / Zlib(x)
DetectLLM (Su et al.;|2023)) Detection | Egzoga)[R(Z; M)] / R(x; M)
ReCall (Xie et al.,[2024) MIA Ezmo@) [L(Z; M)] [ L(x; M)
DC-PDD (Zhang et al.,[2024) MIA Eznm [L(Z; Myey)]
Binoculars (Hans et al.,[2024) Detection | L(z; M) / Ez m[L(Z; Myey)]
DetectGPT (Mitchell et al.,[2023) Detection | L(x; M) — Ezmg(a) [L(Z; M)]
Neighborhood (Mattern et al.,[2023) | MIA L(x; M) — Ezrg(z) [L(Z; M)]
Fast-DetectGPT (Bao et al., 2024) Detection | @ (L(z; M) — Ezg(a) [L(E; M)])
Min-k% (Shi et al.|[2024) MIA 2 ieminng L(@i; M)
Min-k%-++ (Zhang et al., [2025) MIA Y icminne © (L(zis M) — B pm[L(Fi3 M)])
Lastde (Xu et al.| 2025) Detection | £(z; M) / StdDev({DE(z,7)}_;)
Lastde++ (Xu et al.,[2025) Detection | ® (Lastde(x) — Ezo() [Lastde(i‘)])
Table 1: Unified formulations of membership inference and machine text detection metrics.

L(z; M) denotes negative log likelihood, R(x; M) denotes average log rank, ¢(x) denotes an
arbitrary perturbation function, and ®(z) = = denotes division by the standard deviation. See
Appendix E]for more details on how we derive each formula.

2.5 DISCUSSION

While our general formulation covers many methods from both tasks, there are metrics that fall
outside of our core framing—most notably, the metrics that are not ratios but single quantities (e.g.,
DC-PDD, Min-K%). For these methods, we assess transferability empirically and defer a more fully
unified theoretical investigation to future work.

In addition, while most methods exhibit a large degree of transferability, there are some methods
whose transferability is less strong. Of particular interest is the zlib method which, despite being
an approximate likelihood ratio, performs relatively poorly on generated text detection. We discuss
some hypotheses for why this is the case in more detail in Section[3.3]

3 MIAS AND MACHINE TEXT DETECTION ARE TRANSFERABLE

3.1 EXPERIMENTAL SETUP

Membership Inference. We evaluate MIAs on the MIMIR dataset (Duan et al., [2024)), which
is a large-scale MIA benchmark consisting of 5 domainf] included in the Pile (Gao et al., [2020):
Wikipedia (knowledge), Pile CC (general web), PubMed Central and ArXiv (academic), Hack-
erNews (dialogue). Members and non-members are sampled from the training and test sets of the
Pile, respectively and 13-gram filtering is used to ensure no leakage. We target the PYTHIA suite: 5§
models of PYTHIA (Biderman et al., 2023) with 160M, 1.4B, 2.8B, 6.7B, and 12B parameters.

Machine Text Detection. To evaluate the performance of the methods on machine text detection,
we utilize the RAID dataset (Dugan et al., [2024), which is a large-scale detection benchmark con-
sisting of generated text and human-written text in 8 domains: Wikipedia and News (knowledge),
Abstracts (academic), Recipes (instructions), Reddit (dialogue), Poetry (creative), Books (narrative),
Reviews (opinions), as well as 5 models: GPT-2-XL (Radford et al.,[2019), MPT-30B-Chat (Team)
2023), LLaMA-2-70B-Chat (Touvron et al., 2023) as open-source models and ChatGPT (OpenAl
2023) and GPT-4 (OpenAl et al., 2024) as closed-source models.

Evaluation Measures. To assess the empirical transferability, we compute the performance rank-
ing of all methods on both tasks using AUROC score and report the Spearman’s rank correlation

2To compare the two tasks under a common condition, we focus on textual domains as in machine text de-
tection. See Appendix[gfor full results on MIAs, including technical domains: GitHub and DM Mathematics.
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coefficient to judge how closely the two rankings match each other. A high rank correlation implies
that the state-of-the-art metrics for one task will perform at or near state-of-the-art on the other.

Methods Tested. For membership inference we consider 7 methods: Reference (Carlini et al.,
2021)), ZIlib (Carlini et al.l 2021), Neighborhood attack (Mattern et al., [2023), Min-K% Prob (Shi
et al., [2024), Min-K%++ (Zhang et al.l 2025), ReCaLL (Xie et al., [2024)), and DC-PDD (Zhang
et al.l 2024). For machine text detection, we consider 5 methods: DetectGPT (Mitchell et al.,
2023)), Fast-DetectGPT (Bao et al., [2024), Binoculars (Hans et al., [2024)), DetectLLM (Su et al.,
2023)), and Lastde++ (Xu et al.,[2025). We also compute the Loss, Rank, LogRank, and Entropy as
general baseline methods. An overview of the methods tested can be found in Table[I] more details
on each method can be found in Appendix[A] and the configurations can be found in Appendix [B]

Detection Scenarios. For our main rank correlation result we target a white-box setting for both
MIAs and machine text detection, where token probability distributions of target models are acces-
sible. This allows us to compare the two tasks under a common condition and is consistent with our
theoretical formulation, which relies on signals derived from target model probabilities.

To further examine transferability in real-world scenarios, we additionally investigate the black-box
setting for machine text detection, targeting closed-source models such as ChatGPT and GPT—4E] In
this case, where the target model’s logits are not available, we employ surrogate models (PYTHIA-
160M (Biderman et al.| [2023) and Llama-3-3.2B (Grattafiori et al., 2024))) and report the average
detection performance across the surrogates.

3.2 MAIN RESULTS

Substantial Rank Correlation Between MIAs and Machine Text Detection. Figure[2illustrates
the relationship between the rankings of all methods when evaluated on MIAs and on machine text
detection. The rankings are based on average performance on MIAs (across five domains and five
target models) and machine text detection (across eight domains and three generators). We compute
the rank correlation over all 15 methods and obtain a statistically significant Spearman’s correlation
of p = 0.66 (p < 0.01). This result indicates that many methods originally proposed for MIAs
also perform well in machine text detection, and vice versa. Notably, when focusing on stronger
methods (top-10 on MIAs), we observe an even stronger correlation of p = 0.78 (p < 0.01),
suggesting strong transferability.

Reference

Superior Performance from the Other Task. - 15{p=0.66 :

Figure [3] shows the AUROC performance of 214 '

all methods from both MIAs and machine text & 13 ; Fptropy
detection evaluated on MIAs, and their per- 212 jreantotoos I
formance evaluated on machine text detection. @11 Recatl.

The results on MIAs are averaged across five 210 " i
domains and five target models, while those T ° o

on machine text detection are averaged across E 8 LogRank
eight domains and three generators. Remark- — x ; Min-K%++/"/

ably, we observe that Binoculars, originally & s JSstdet+

proposed as a machine text detector, achieves 8 | e Min-K%

the best average performance in both MIAsand ¢ Fast, BetectGPT

machine text detection. This result suggests s ,| | DetectLLM

that current evaluations in MIAs may be biased & ;| g8inoculars

by overlooking stronger methods from machine
text detection, potentially leading to conclu-
sions that miss valuable insights. Conversely, in
machine text detection, methods from MIAs al-
ready demonstrate competitive or even superior
performance. These findings call for greater
cross-task awareness and development.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Performance Rank in MIAs
Figure 2: Relationship between method rankings
across MIAs and machine text detection. Blue and
red plots show MIA methods and machine text
detectors. Gray plots indicate general baselines.
Dashed line denotes equal ranks.

3Since the training data of such closed-source models is not accessible, true ground truth for MIAs is
inherently not feasible in this setting. Therefore, MIAs are evaluated only in a white-box setting.
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Figure 3: AUROC scores for membership inference attacks (blue bars) and generated text detectors
(red bars) across both tasks. Top: Membership inference results on the MIMIR benchmark with
13-gram de-duplication filtering averaged over five domains and five models. Middle and Bottom:
Generated text detection results on white-box and black-box settings from the RAID benchmark,
averaged over eight domains and five models. Both MIA methods (blue bars) and machine text
detectors (red bars) have comparable performance in the cross-task setting. Notably, Binoculars
achieves the best average performance in both tasks. Full results are provided in Appendix E}

3.3 ANALYSIS

Transferability in Real-World Scenarios. We further assess transferability in real-world scenar-
ios by evaluating how well MIA methods perform in a black-box setting of machine text detection
on texts generated by ChatGPT and GPT-4. Figure [3|shows the average AUROC performance of all
methods from MIAs and machine text detection across eight domains and the two generators. While
Binoculars still outperforms other methods by a large margin, MIA methods such as Min-K% and
DC-PDD achieve performance on par with or better than strong detectors. These results provide
promising evidence of the transferability of MIAs to machine text detection in real-world scenarios.

Similar Prediction Score Distributions across Methods. To further illustrate the transferability
between MIAs and machine text detection, we compare the prediction score distributions of an MIA
method and a machine text detector when applied to the same task. Figure[I]presents the distributions
of Min-K%-++ and Binoculars, which demonstrate strong cross-task performance, on MIAs and
machine text detection. The domain in both tasks is Wikipedia, and the target model or generator
is PYTHIA-12B. To quantify the similarity in distributional shape, we compute the Jensen—Shannon
distance between the prediction score distributions produced by Min-K%-++ and Binoculars within
each task: 0.14 for MIAs and 0.11 for machine text detection. These small distances indicate that
Min-K%-++ and Binoculars produce closely aligned prediction score distributions within both tasks,
providing further evidence of their transferability.

Zlib as an Outlier Illustrates a Task Difference: Different Prior Distributions. We take Zlib
as an example of limited transferability between MIAs and machine text detection. Zlib ranks 10th
out of 15 methods in MIAs but drops to 14th in detection, where it calibrates the loss by dividing it
by the zlib compression entropy.

In MIAs, both classes are drawn from the same human-written text distribution, whereas this is not
the case for machine text detection. Machine-generated texts are known to be more compressible
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Figure 4: Zlib compression entropy distribution in MIAs (non-members vs. members) and ma-
chine text detection (humans vs. machines), averaged over 3,000 randomly sampled texts for each
dataset. The entropy converges between classes in MIAs but diverges in detection with a long tail,
due to different prior distributions.

than human-written ones (Tulchinskii et al.l 2023 [Mao et al., 2025)), and we also find the trend in
our setting. As shown in Figure[d] the zlib entropy converges between classes in MIAs but diverges
in machine text detection, based on 3,000 randomly sampled texts from all domains and models in
each dataset. In the detection, both the loss and the zlib entropy shift in the same direction between
human-written and machine-generated texts, yielding similar Zlib scores across classes and little
discriminative signal. Consequently, while moderately effective for MIAs, Zlib transfers poorly to
machine text detection, highlighting a key task difference: different prior distributions. We leave
a comprehensive analysis of other methods with limited transferability for future work.

4 RELATED WORK

Proximity between MIAs and Machine Text Detection. Previous studies have briefly noted the
similarity between specific methods in MIAs and machine text detection. For instance, [Shi et al.
(2024) and Naseh & Mireshghallah| (2025) mention that Neighborhood attack (Mattern et al., 2023)
from MIAs and DetectGPT (Mitchell et al., [2023) from machine text detection are essentially iden-
tical, both of which estimate the probability curvature around a target text by perturbing the text.
Most recently, Naseh & Mireshghallahl (2025) suggested that MIAs may function as machine text
detectors, based on their observations that current MIAs often misclassify machine-generated non-
members as members. In contrast to such prior work, we go beyond these limited observations
and conduct the first comprehensive study of transferability, introducing a general formulation and
validating it with large-scale experiments.

Optimality of Likelihood Ratio Tests for MIA. Foundational work by |Carlini et al.| (2022) was
the first to utilize the optimality of the likelihood ratio test as a starting point from which to derive
membership inference attacks. They propose an online likelihood ratio attack (LiRA) where they
train sets of “shadow” models on random samples of the data distribution with and without the target
point z. They then fit two gaussians to the confidences of the “in” and “out” models to approximate
a parametric likelihood ratio test. They show that these tests achieve strong performance at low false
positive rates. While their specific technique is not as practical in the context of multi-billion pa-
rameter foundation models with trillion-token pretraining datasets, their work nonetheless provides
solid empirical justification for the usage of likelihood ratio tests as a framework from which to
reason about strong MIA performance.

Membership Inference. Membership inference is a task to determine whether a given sample
was part of a given model’s training data (Shokri et al.l [2017). In the context of language models,
recent studies have applied MIAs to pre-training data detection. Since language models tend to show
higher likelihood on members compared to non-members, such studies leverage statistical features
of a target model, such as likelihood (Carlini et al.,2021), likelihood calibrated by another language
model (Carlini et al.l [2021)), negative log probability curvature (Mattern et al., [2023)), and average
log-likelihood of the k% tokens with lowest probabilities (Shi et al.,|2024)). Other MIA methods are
detailed in Appendix
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Machine-generated Text Detection. Many studies on machine text detection have investigated
supervised methods, including training a classifier with human-written and machine-generated texts
with labels. Supervised classifiers aim to capture stylistic or semantic differences between human-
written and machine-generated texts, with simple n-gram features (Ippolito et al., 2020; |Crothers
et al., 2023 |Verma et al.,|2024) or neural representations (L1 et al., |2024; |Wang et al., [2024)). Since
MIAs fundamentally examine how much a target model memorizes a text by exploiting signals from
the target model such as likelihood, our investigation of the transferability focuses on zero-shot de-
tectors that similarly rely on statistical features from the model, rather than supervised classifiers that
do not. Zero-shot detectors leverage statistical features, including entropy (Lavergne et al., |2008),
likelihood (Solaiman et al.|[2019), negative curvature of log probabilities (Mitchell et al., 2023), and
cross-model entropy (Hans et al.l 2024). Other zero-shot detectors are detailed in Appendix

5 CONCLUSION

We comprehensively study the transferability between membership inference attacks (MIAs) and
machine-generated text detection. Our theoretical and empirical investigations reveal that 1) Many
methods from both tasks that exhibit high transferability can be reduced to a general formulation
that measures the discrepancy between the surprisal of a text under a target model and under the true
distribution, reflecting their shared objective to approximate the true distribution and contributing
to the transferability and 2) Many methods originally proposed for MIAs perform well in machine
text detection, and vice versa, as evidenced by substantial rank correlation across the tasks and 3)
Notably, a method originally designed for machine text detection surpasses state-of-the-art MIA
methods on MIAs, demonstrating the practical impact of the transferability. These findings call
for greater cross-task awareness, closer collaboration, and fair evaluation across the two research
communities.
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A DETAILS OF METHODS

A.1 BASELINES

(1) Loss simply uses the target sample x’s loss against the model M: f(x; M) = L(x; M). The
hypothesis is that members and machine-generated texts will have a higher likelihood on average
than non-members and human-written texts.

(2) Entropy measures the expected likelihood of the next token given the preceding tokens at each
time step under the model’s distribution. f(x; M) = Ez.m[L(Z; M)]. The hypothesis is that
machine-generated texts and member texts will have low entropy as the model “understands” the
context more and can better model the next token distribution.

(3) Rank measures the average rank of the next token in the model’s probability distribution at each
time step. f(z; M) = % >, Rank(z;; M). The hypothesis is that generated text and member
text will have a higher average rank than human-written text.

(4) LogRank measures the average log rank of the next token: flzs M) =
L5 log(Rank(z;; M)).  This metric smooths out contributions from very low rank to-
kens to reflect the probabilistic nature of rank information. Similarly to the previous metric, the
hypothesis is that generated text and member text have a high average log rank.

A.2 MEMBERSHIP INFERENCE ATTACKS

(1) Reference (Carlini et al., 2021) uses the difference in the target sample z’s loss between
the model M and another reference model M,.s. We follow the original author’s implemen-
tation by taking a smaller-size reference model for each of the models we tested: f(x; M) =
L(x; M) — L(x; Mycr). This method falls into the external reference category of likelihood ra-
tio approximation.

(2) Zlib (Carlini et al.| [2021) employs the ratio of £(x; M) and the zlib compression score of the
target sample x: f(x; M) = L(x; M) / zlib(x). The zlib compression score is computed by con-
structing a dictionary of repeated substrings from the text and encoding each dictionary entry into a
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string of bits using Huffman Coding (Huffman, |1952). The compression rate is thus a representa-
tion of the entropy of the empirical substring distribution of the text. Thus the zlib method can be
equivalently rewritten as f(x; M) = L(x; M) / Ezom,., [L£(X; Myey)] where M,..; represents
that empirical substring distribution. We see here that this method falls into the external reference
category of likelihood ratio approximation.

(3) Neighborhood attack (Mattern et al., 2023) compares £(x; M) to the average loss of neigh-
borhood samples X, which are samples crafted by perturbing the target sample z: f(x; M) =
Lx; M) — L5, L(%x®; M). Tt hypothesizes that members will show a lower loss compared
to their neighborhood samples. Since the quantity + > | L(ED: M) ~ Eqmg(z) [L(T, M)] we
consider this method to be in the text sampling category of likelihood ratio approximation.

(4) Min-K % (Shi et al.,|2024) calculates the average of log-likelihood of the k% tokens with lowest
probabilities: f(x; M) = £ 37, Emin-k(x) 108 p(x; | x<i; M). The intuition is that members will
include fewer outlier tokens with low probability compared to non-members.

(5) Min-K%++ (Zhang et al., 2025) computes the average of the log-likelihood of the k% tokens

with lowest probabilities, where each value is standardized over the model’s vocabulary: f(x; M) =
20 eminks (108 P(2i | £<i; M) — pia_,) /05, In our notation this can be written as:

koo VB m[(L(xi; M) = Bz o [£(25, M)])?]

for brevity in our Table [I| we use ®(x) = = as shorthand for the normalization by the standard
deviation. Intuitively this metric measures how unexpectedly surprising a particular token is over
the vocabulary distribution.

(6) ReCaLL (Xie et al.,[2024) computes the relative conditional log-likelihood between x and PG«
where P is a set of non-member examples P = p; & - - - & p,. It hypothesizes that non-members
will have lower log-likelihoods than members, given a non-member context. We represent this in
our table as Bz (1) [L(Z; M)] / L(2; M) where ¢(x) = P @ . We consider this method to be in
the likelihood ratio by text sampling category.

(7) DC-PDD (Zhang et al.l 2024) computes the cross-entropy between the token likelihoods un-
der the model M and the empirical laplace-smoothed unigram token frequency distribution un-
der some reference corpus D’. In the authors’ notation this is f(x; M) = —1 3" | p(z;; M) -

log p(x;; D') where p(z;; D) = % In our table we represent this metric equivalently as

Ezm[L(Z, Mycy)] where M,.. s represents the unigram token frequency distribution under D’.

A.3 MACHINE-GENERATED TEXT DETECTORS

(1) DetectGPT (Mitchell et al., [2023)) computes the degree to which the log-likelihood function
under the suspected model has negative curvature for the given target text. They do this by perturbing
the sequence using a TS5 model Raffel et al.| (2023)) and evaluating the change in probability. The
functional form looks like f(z; M) = logp(2; M) — Ezq(.|2) log p(x; M). We directly lift this
notation for use in our Table[I] This metric is an example of a text sampling based likelihood ratio
approximation.

(2) Fast-DetectGPT (Bao et al 2024) forgoes the expensive perturbation approach used by De-
tectGPT in favor of using the token likelihoods of the perturbation model directly to compute the
expectation. They also divide by the mean of sample variances to further smooth out the metric. The
full formulation is

log p(x; M) — Ezq(a) [log p(2; M)]

flo M) = VEi~q()[(log p(Z; M) — Egg(s) [log p(2; M)])?]

We report this using the shorthand ®(z) = % in our Table o represent this quantity. We consider
this metric another example of the text sampling based likelihood ratio approach.
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(3) Binoculars (Hans et al.,[2024) computes the ratio of the perplexity to the cross entropy of the text
under some reference model M, ;. The full formulation using the authors’ notation is as follows:

i log (M (s):)
BM1,M2 (S) = T !
>ic1 Ma(s)i - log (Ma(s)i)
We re-formulate this objective equivalently in our own notation as:
£(l‘, M) / EJ)NM [£($, MT'ef)]

The intuition behind this metric is that it measures how much more likely a given text is than what we
would expect according to some reference model. We consider this metric a case of approximation
via reference model.

(4) DetectLLM (Su et al.,[2023) is a variant of DetectGPT that uses the log rank as the core quan-
tity to test rather than the log likelihood. The authors propose two metrics, Log-Likelihood Log-
Rank Ratio (LRR) and Normalized Log-Rank Perturbation (NPR). For the purposes of our work
we consider the NPR metric which has superior performance and is characterized by the following

formulation: | < R
LS logro(@)
log 7g()

where 7 (x;) represents the rank of the token x in the model’s output distribution. We reformulate
this equivalently as

NPR =

Eino(a) [R(Z; M)]
R(x; M)
using the notation R (z; M) to denote the log rank similar to how £(z; M) denotes the log likeli-
hood. While this metric doesn’t quite fall cleanly into our likelihood ratio categorization (since it
does not compute likelihood) we nonetheless note the strong similarities between this metric and
other approximate likelihood ratios.

(5) Lastde++ (Xu et al., [2025) utilizes a quantity known as multi-scale diversity entropy (MDE)
(Wang et al.| 2021} to measure the local fluctuations in likelihood across a particular text sequence.
Their metric is:

. B L(z; M)
Lastde(z; M) = StdDev({DE(s, ¢,1), ..., DE(s,&,7')})

1 g
DE(s,&,7) = —3— > | P m P
=1

Where Pfﬂ measures the diversity of text, i.e. the extent to which adjacent segments of tokens have
similar probability sequences (see | Xu et al.| (2025))). Intuitively the Lastde metric can be thought
of as comparing likelihood to the expected diversity. Lastde++ takes this quantity and applies a
sampling based perturbation and normalization similar to FastDetectGPT (Bao et al., 2024).

_ Lastde(z; M) — Ez (s [Lastde(z, M)]
 VEiws(|(Lastde(Z, M) — Ezg(,) [Lastde(z, M)])2]

This can be thought of as measuring whether or not the quantity tracked by Lastde(x) is at a local
maximum for the particular sequence of text.

Lastde++(x)

We consider neither Lastde++ or Lastde to be approximating likelihood ratios as the diversity-
entropy (DE) metric seems to be more intuitively thought of as measuring variance rather than
likelihood. We leave to future work a more thorough analysis of these variance-based metrics.

B MODELING INFORMATION OF METHODS

B.1 MEMBERSHIP INFERENCE ATTACKS

Reference (Carlini et al.,|2021) Following the original author’s implementation, we take a smaller-
size reference model for each target model. In MIAs, we use PYTHIA-70M for all target models. In
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white-box machine text detection, we use GPT2-Small as the smaller model for GPT2-XL, MPT-
7B-Chat for MPT-30B-Chat, and LLaMA-7B-Chat for LLaMA-70B-Chat. In black-box machine
text detection, we use LLaMA-3-1B as the smaller model for LLaMA-3-3.2B and PYTHIA-70M for
PYTHIA-160M.

Neighborhood attack (Mattern et al., |2023) We use the repositoryﬂ default settings, namely T5-
Large as mask filling model and 0.3 as the masking rate, across MIAs, white-box machine text
detection, and black-box machine text detection.

Min-K% (Shi et al.,[2024) We use the setting that was found to ensure the favorable performance
in the original paper, namely k£ = 20 as the percent of tokens with the lowest probabilities. Likewise,
the token percentage k for Min-K%-++ (Zhang et al.,[2025)) is also set as k = 20 for fair comparison.

ReCaLL. (Xie et al.| 2024) We set the number of prefixes to n = 10, which has been shown
in the original paper to yield favorable performance. In MIAs, for each domain, we retrieve non-
members as prefixes from the Pile dataset, excluding those in the MIMIR benchmark. To adapt
ReCaLL to machine text detection, we use human-written texts as prefixes, since they belong to the
negative class. For each domain, these human-written prefixes are retrieved from a subset of the
RAID benchmark that was not used in our test set.

DC-PDD (Zhang et al., 2024) Following the official GitHub repositoryﬂ we take a subset of C4
(Raffel et al.,|2023)) and build a token frequency distribution with the tokenizer of each target model
in MIAs and white-box machine text detection, and of each surrogate model in black-box detection.

B.2 MACHINE TEXT DETECTORS

DetectGPT (Mitchell et al., |2023) We follow the repositoryﬂ default settings, namely T5-Large as
mask filling model and 0.3 as the masking rate, across MIAs, white-box machine text detection, and
black-box machine text detection.

Fast-DetectGPT (Bao et al.,2024) Following the original paper, we employ the target model as
both the scoring and perturbation model in MIAs and white-box machine text detection. In black-
box detection, we instead use surrogate models as those (see §3.1).

Binoculars (Hans et al.| 2024) is reported to work best when the target and reference models are
similar in performance. Following the original setting, we use the official codeﬂ] to compute per-
plexity under a reference model. For MIAs, since the PYTHIA does not provide corresponding chat
versions for each model size, we use the PYTHIA-deduped models as references. In white-box detec-
tion, we use GPTZ-XL-Chat for GPT2-XL, MPT-30B for MPT-30B-Chat, and LLaMA-2-70B for
LLaMA-2-70B-Chat. In black-box detection, we adopt LLaMA-3.2-3B-instruct for LLaMA-3-3.2B
and PYTHIA-160M-deduped for PYTHIA-160M.

DetectLLM (Mitchell et al., 2023) In line with Fast-DetectGPT, we utilize the target model as
both the scoring and perturbation model in MIAs and white-box detection. For black-box detection,
we instead use surrogate models (see §3.1)).

Lastde++ (Xu et al.,2025) In our implementation, we use the official code and use the repositoryﬂ
default settings of the sliding window size s = 4, the interval precision € = 8, and the number of
scales 7/ = 15.

Ynttps://github.com/mireshghallah/neighborhood-curvature-mia
Shttps://github.com/zhang—wei-chao/DC-PDD
®https://github.com/eric-mitchell/detect-gpt
"nttps://github.com/ahans30/Binoculars
$1gaalves/gpt2-x1_lima
nttps://github.com/TrustMedia-zju/Lastde_Detector
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C FULL PERFORMANCE ON MEMBERSHIP INFERENCE AND MACHINE TEXT
DETECTION

Figure |2} Figure |3} and [4| report the full results on membership inference, white-box machine text
detection, and black-box machine text detection, respectively.

Table 2: Full comparison of membership inference performances (AUROC) of MIA methods and
machine text detectors on the MIMIR benchmark with 13-gram deduplication. Target models are
PyTHIA with 160M, 1.4B, 2.8B, 6.9B, and 12B parameters. Gray, blue, and red areas indicate
general baseline methods, MIA methods, and machine text detectors, respectively. Textual domains
are the bolded columns (Wikipedia, Pile CC, PubMed, ArXiv, HackerNews).

Method Wikipedia GitHub Pile CC PubMed Central
etho

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B
Loss 51.2 53.4 54.1 55.6 56.5 76.3 80.2 81.4 82.7 83.6 50.1 51.0 51.2 52.1 52.7 50.9 52.1 52.7 53.4 54.0
Rank 49.7 52.9 539 56.2 57.5 70.0 74.6 75.7 77.4 77.8 50.9 51.6 51.8 52.2 52.1 51.9 52.3 52.4 53.0 53.6
LogRank 51.3 53.5 54.3 55.6 56.9 75.9 80.0 81.2 82.5 83.3 50.3 51.0 51.2 52.3 52.7 50.8 51.8 52.4 53.3 53.7
Entropy 50.9 52.1 52.6 53.1 53.4 76.3 79.7 80.7 81.9 82.7 49.6 50.2 50.5 50.9 51.3 51.7 51.8 52.1 52.2 52.3
Reference 51.7 54.4 552 57.4 58.5 37.3 41.0 41.8 43.2 43.6 509 52.7 52.8 53.9 54.5 494 52.2 52.6 53.5 54.1
Zlib 50.4 53.1 54.0 55.7 56.7 79.7 82.9 83.9 85.0 85.7 51.1 52.1 52.3 53.2 53.6 51.5 52.6 53.1 53.7 54.2
Neighborhood 51.2 54.4 54.8 56.0 57.7 75.4 74.7 74.1 74.8 749 51.4 52.7 53.3 54.8 54.7 52.6 55.0 55.8 56.5 57.0
Min-K% 50.6 53.5 54.7 56.7 57.8 752 79.8 81.0 82.5 83.4 50.7 51.4 51.6 52.5 52.9 51.4 52.6 53.0 53.9 54.8
Min-K%++ 51.2 552 56.4 59.6 60.7 73.2 78.2 79.7 81.1 82.4 50.9 52.4 52.2 54.0 54.7 50.6 52.2 52.8 54.3 55.2
ReCaLL 50.5 54.2 54.6 57.2 57.7 722 77.3 79.6 80.6 81.9 48.2 49.4 50.7 51.5 51.2 52.1 52.6 55.1 54.9 56.0
DC-PDD 524 539 54.5 55.8 56.4 82.1 85.2 86.2 86.9 87.6 50.8 52.6 52.7 53.3 53.6 50.5 51.7 52.5 52.9 53.2
DetectGPT 51.2 54.4 54.8 56.0 57.7 75.4 74.7 74.1 74.8 749 51.4 52.7 53.3 54.8 54.7 52.6 55.0 55.8 56.5 57.0
Fast-DetectGPT 51.9 54.9 56.3 60.0 62.9 57.8 67.2 69.6 71.4 72.3 51.8 54.2 53.9 55.6 56.1 49.1 51.7 52.8 55.1 56.4
Binoculars 51.7 552 56.7 58.5 60.6 71.8 77.2 74.5 80.3 81.7 51.2 53.6 54.5 55.1 55.0 50.4 52.4 53.0 55.2 55.9
DetectLLM 51.6 54.0 55.4 58.3 61.4 56.4 66.8 69.6 71.3 71.8 52.2 53.7 53.5 55.5 55.8 49.0 51.3 52.5 54.8 55.7
Lastde++ 50.8 54.2 55.7 59.3 61.4 52.8 64.7 66.8 68.6 69.7 50.9 52.3 52.7 54.6 54.5 50.7 52.2 53.0 54.6 56.4

ArXiv DM Mathematics HackerNews Avg. (textual domains)
Method

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B
Loss 54.6 55.8 56.4 57.5 58.1 67.8 67.5 67.2 67.3 67.3 50.5 51.8 52.6 53.4 542 51.5 52.8 53.4 54.4 55.1
Rank 52.0 52.4 52.6 54.6 55.0 60.6 60.4 60.7 60.6 60.6 51.7 52.7 52.5 53.6 54.5 51.2 52.4 52.6 53.9 54.5
LogRank 544 55.6 56.1 57.5 579 66.3 66.4 66.2 66.4 66.2 50.4 51.7 52.4 53.7 54.3 51.4 527 53.3 54.5 55.1
Entropy 54.8 55.4 55.1 55.7 557 68.4 67.6 67.4 67.2 67.1 50.5 52.2 52.0 52.1 52.1 51.5 52.3 52.5 52.8 53.0
Reference 51.2 53.3 54.1 55.8 56.8 45.0 44.8 444 44.4 443 50.0 52.1 53.8 552 56.6 50.6 52.9 53.7 55.2 56.1
Zlib 54.2 553 55.7 56.7 572 64.6 64.7 64.6 64.6 64.6 51.2 51.9 52.4 529 534 51.7 53.0 53.5 544 55.0
Neighborhood  53.1 54.7 54.2 54.9 55.0 53.3 51.8 53.1 50.8 53.3 51.1 51.0 51.8 51.9 52.6 51.0 52.2 52.6 53.4 53.9
Min-K% 53.3 55.0 55.8 57.3 58.4 64.7 65.2 64.9 65.1 65.1 50.9 51.8 53.1 54.3 553 51.4 52.9 53.6 54.9 55.8
Min-K%++ 51.3 53.8 55.9 56.9 59.9 58.8 57.9 58.7 58.4 58.2 51.1 51.5 53.1 54.6 56.4 51.0 53.0 54.1 559 574
ReCalLL 53.4 54.5 55.4 57.3 58.3 58.0 56.4 56.8 53.7 53.1 52.6 52.4 52.4 53.7 54.0 51.4 52.6 53.6 54.9 55.4
DC-PDD 54.7 56.3 56.3 57.4 577 63.9 63.8 63.5 63.4 63.6 49.4 51.0 51.4 52.1 52.7 51.6 53.1 53.5 54.3 54.7
DetectGPT 53.1 54.7 54.2 549 55.0 53.3 51.8 53.1 50.8 53.3 51.1 51.0 51.8 51.9 52.6 51.0 52.2 52.6 53.4 53.9
Fast-DetectGPT 51.5 53.2 54.9 57.4 59.3 52.4 53.1 54.2 54.0 54.7 50.1 49.5 51.9 54.1 56.4 50.9 52.7 54.0 56.4 58.2
Binoculars 54.1 54.6 54.9 57.6 59.9 55.7 53.8 53.5 52.1 52.8 49.6 50.4 51.5 53.8 55.6 51.3 53.3 54.2 56.1 57.5
DetectLLM 51.5 53.1 54.7 57.6 58.6 51.9 51.8 53.2 53.6 53.0 49.8 49.2 51.1 53.6 55.5 50.8 52.3 53.4 56.0 57.4
Lastde++ 50.8 52.9 54.7 56.1 58.1 52.3 51.6 52.1 52.2 52.3 50.0 51.1 52.0 54.0 56.0 50.6 52.5 53.6 55.7 57.3
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Table 3: Full comparison of white-box machine text detection performances (AUROC) of MIA
methods and machine text detectors on the RAID benchmark. Target models are GPT-2: GPT-
2-XL, MPT: MPT-30B-Chat, LLaMA: LLaMA-2-70B-Chat. Gray, blue, and red areas indicate
general baseline methods, MIA methods, and machine text detectors, respectively.

Abstracts Books News Poetry
Method

GPT-2 MPT LLaMA GPT-2 MPT LLaMA GPT-2 MPT LLaMA GPT-2 MPT LLaMA
Loss 974 98.6 100.0 98.6 999 100.0 946 99.9 1000 96.8 983 96.2
Rank 982 539 9338 994 919 96.5 955 703  86.1 98.0 85.6 88.8
LogRank 98.5 964 100.0 994 999 100.0 965 99.7 100.0 97.6 983 956
Entropy 61.6 550 999 60.7 974 999 389 923 999 89.3 903 954
Reference 21.7 524 535 59.7 817 652 459 978 814 408 887 73.6
Zlib 87.1 47.0 999 64.1 66.8 96.0 558 804  99.7 734 739 87.6
Neighborhood ~ 953 584  94.7 92.1 648 86.3 853 67.7 889 83.0 732 762
Min-K% 99.8 988 100.0 999 99.9 100.0 994 99.9 100.0 993 99.0 96.8
Min-K%++ 99.6 99.6 97.1 99.8 99.0 982 99.7 995 989 99.4 99.1 903
ReCalLL 626 87.1 99.6 81.1 953 978 68.8 89.9 933 769 817 97.6
DC-PDD 48.6 953 100.0 64.1 99.8 99.8 474 993 999 825 97.0 942
DetectGPT 953 584 947 92.1 648 863 853 677 889 83.0 732 762
Fast-DetectGPT 99.7 100.0 99.8 99.8 100.0 99.9 99.7 100.0 100.0 993 100.0 944
Binoculars 99.8 999 100.0 99.8 100.0 100.0 99.8 99.9 100.0 99.5 100.0 100.0
DetectLLM 99.7 100.0 100.0 99.8 100.0 99.8 99.7 100.0 100.0 994 999 932
Lastde++ 99.7 100.0 97.8 99.8 100.0 98.8 99.6 100.0 100.0 994 999 888

Recipes Reddit Reviews Wikipedia
Method

GPT-2 MPT LLaMA GPT-2 MPT LLaMA GPT-2 MPT LLaMA GPT-2 MPT LLaMA
Loss 704 100.0 100.0 97.7 974 99.7 979 999 99.9 91.4 100.0 99.9
Rank 823 488 175 983 739 64.6 98.8 828 953 97.0 734 813
LogRank 715 999 100.0 983 962 99.7 98.8 999 99.9 955 999 99.8
Entropy 402 984 100.0 723 783 99.7 59.0 98.6 99.9 37.6 945  99.1
Reference 349 847 126 51.8 532 854 604 78.0 859 46.8 926 649
Zlib 61.0 98.0 999 96.0 509 99.6 603 659 99.2 874 993 99.8
Neighborhood ~ 82.5 582  89.2 975 57.0 921 90.6 70.8 972 937 824 88.6
Min-K% 89.4 100.0 100.0 993 96.6 99.7 99.7 99.9 100.0 99.4 100.0 99.9
Min-K%++ 989 988 992 993 969 917 99.4  99.7 99.5 99.6  99.6 99.7
ReCaLL 602 97.1 100.0 405 87.8 98.6 67.4 894 958 37.0 71.1 979
DC-PDD 413 999 100.0 629 977 999 622 99.8 999 383 983 989
DetectGPT 825 582 892 97.5 57.0 921 90.6 70.8 972 937 824 88.6
Fast-DetectGPT 99.1 100.0 100.0 99.8 999 945 99.6 99.8 99.6 99.8 100.0 100.0
Binoculars 99.6 100.0 100.0 99.7 99.1 100.0 998 99.9 100.0 99.8 100.0 100.0
DetectLLM 99.0 100.0 99.9 99.8 999  96.7 99.7 99.8  99.7 99.8 100.0 99.9
Lastde++ 99.0 100.0 99.4 99.8 99.6 85.1 99.5 99.6 98.0 999 100.0 99.9
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Table 4: Full comparison of black-box machine text detection performances (AUROC) of MIA
methods and machine text detectors on the RAID benchmark. Target models are ChatGPT and
GPT-4. Surrogate models are Llama: LLaMA-3-3.2B, Pythia: PYTHIA-160M. Gray, blue, and red
areas indicate general baseline methods, MIA methods, and machine text detectors, respectively.

Abstracts Books News Poetry

Method ChatGPT GPT4 ChatGPT GPT-4 ChatGPT GPT-4 ChatGPT GPT-4

Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia

Loss 96.0 956 385 519 998 982 79.1 720 995 99.1 66.1 840 889 794 460 510
Rank 73.6 829 49.1 573 995 918 960 593 932 923 626 692 856 739 480 365
LogRank 96.6 962 403 538 998 975 776 651 997 988 681 804 889 76.1 441 430
Entropy 745 683 19.8 392 994 862 837 623 99.1 874 680 693 874 623 447 373
Reference 37.6 503 290 389 584 892 506 704 500 548 338 421 795 772 714 501
Zlib 533 397 124 148 725 598 641 622 896 769 705 727 682 560 602 634
Neighborhood ~ 61.0 77.1 294 459 789 874 574 588 816 883 539 614 745 780 667 618
Min-K% 983 975 56.1 625 998 964 744 586 996 985 635 763 898 770 423 372
Min-K%-++ 99.1 993 719 687 903 989 367 704 736 99.7 380 863 655 924 444 69.0
ReCaLL 993 98.0 81.1 974 963 876 656 832 874 665 470 557 89.0 73.8 523 545
DC-PDD 887 859 385 625 990 961 772 860 936 851 476 720 872 809 510 649
DetectGPT 61.0 771 294 459 789 874 574 588 816 883 539 614 745 780 667 618
Fast-DetectGPT 99.3 985 77.0 587 839 96.1 380 699 722 994 465 880 709 89.7 532 79.0
Binoculars 100.0 98.1 965 945 994 971 770 705 988 786 830 512 989 859 574 730
DetectLLM 989 98.0 77.1 577 856 949 427 667 778 99.1 51.0 852 757 88.6 560 748
Lastde++ 98.6 969 758 583 836 918 402 606 69.1 986 452 842 719 847 530 670
Recipes Reddit Reviews Wikipedia
Method ChatGPT GPT-4 ChatGPT GPT-4 ChatGPT GPT-4 ChatGPT GPT-4

Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia Llama Pythia

Loss 99.7 99.0 934 948 988 966 916 870 999 995 89.0 809 99.0 97.1 738 824
Rank 569 89.7 480 905 877 862 790 757 991 947 757 631 948 933 772 754
LogRank 99.5 989 929 946 985 956 904 843 999 992 862 722 992 974 760 823
Entropy 99.7 926 935 831 965 885 908 821 999 934 912 660 987 834 736 729
Reference 55.6 365 365 294 605 833 524 746 768 948 588 824 524 500 413 429
Zlib 969 934 909 90.8 780 649 940 928 912 758 685 653 999 999 98.0 98.6
Neighborhood  66.3 875 58.6 788 764 86.6 746 721 943 876 727 553 929 91.7 717 68.0
Min-K% 99.5 987 928 939 983 939 875 796 999 981 795 654 995 979 789 812
Min-K%++ 951 997 766 945 89.0 968 648 786 915 992 46.0 81.6 845 993 523 808
ReCaLL 959 88.0 692 742 970 773 582 432 879 650 584 677 803 280 346 229
DC-PDD 982 944 881 847 986 960 873 862 998 970 867 908 883 719 452 552
DetectGPT 663 875 586 788 764 866 746 721 943 87.6 727 553 929 917 717 68.0
Fast-DetectGPT 84.1 99.8 672 988 858 941 663 850 812 998 404 866 79.8 999 549 93.0
Binoculars 999 982 978 947 996 913 946 761 995 965 84.0 838 988 977 851 778
DetectLLM 822 998 666 99.1 859 926 674 836 846 997 422 848 821 999 568 92.6
Lastde++ 839 994 678 979 839 904 66.6 839 842 993 409 804 81.6 998 574 920
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