
DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Haeyeon Kim* 1 Minsu Kim* 2 Federico Berto 2 Joungho Kim 1 Jinkyoo Park 2

Abstract
In this paper, we present DEVFORMER, a novel
transformer-based architecture for addressing the
complex and computationally demanding prob-
lem of hardware design optimization. Despite
the demonstrated efficacy of transformers in do-
mains including natural language processing and
computer vision, their use in hardware design
has been limited by the scarcity of offline data.
Our approach addresses this limitation by intro-
ducing strong inductive biases such as relative
positional embeddings and action-permutation
symmetricity that effectively capture the hard-
ware context and enable efficient design opti-
mization with limited offline data. We apply
DEVFORMER to the problem of decoupling ca-
pacitor placement and show that it outperforms
state-of-the-art methods in both simulated and
real hardware, leading to improved performances
while reducing the number of components by
more than 30%. Finally, we show that our ap-
proach achieves promising results in other of-
fline contextual learning-based combinatorial op-
timization tasks.

1. Introduction
The development of artificial intelligence (AI) has been
greatly facilitated by advancements in high-performance
computing systems. However, as the need for faster data
processing grows with recent advances in AI architecture
scaling, the complexity of hardware design is increasing.
As a result, human experts are no longer able to design
hardware without the aid of electrical design automation
(EDA) tools; despite their utility, the use of these tools is of-
ten hindered by long simulation times and insufficient com-

*Equal contribution 1Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST)
2Department of Industrial and Systems Engineering, Korea Ad-
vanced Institute of Science and Technology (KAIST). Correspon-
dence to: Jinkyoo Park <jinkyoo.park@kaist.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Industrial & Systems Engineering

Figure 1 (FEDE)

10

5
12 14

22
[𝟓𝟓, 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏] [𝟓𝟓, 𝟏𝟏𝟐, 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏] [𝟓,𝟏𝟒, 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏]

AP-Symmetric Solution Group

5
12 14

22

5
12 14

22

5

1412

14 22

22

12

22 14

Figure 1: Example of action-permutation (AP) symmetric solu-
tions: different action trajectories lead to the same solution group.

puting resources, making the application of machine learn-
ing (ML) techniques in hardware design more and more
crucial.

Recent studies have shown the potential of deep rein-
forcement learning (DRL) for sequential decision-making
in various tasks in chip design, including chip placement
(Mirhoseini et al., 2021; Agnesina et al., 2020), routing
(Liao et al., 2019; 2020), circuit design (Zhao & Zhang,
2020), logic synthesis (Hosny et al., 2020; Haaswijk et al.,
2018) and bi-level hardware optimization (Cheng & Yan,
2021). However, these methods have limitations. Firstly,
they rely on online simulators, which are both slow and in-
accurate. As a result, learning with offline expert data is
more reliable, but such data is limited. Secondly, hardware
design involves multi-level problems that change depend-
ing on the context, making it necessary to have a policy that
can generalize to new problem contexts.

The Transformer has been recognized as a promising ar-
chitecture for contextual models, owing to its capability to
process sequential data in parallel, handle long-term de-
pendencies and exhibit high expressivity (Vaswani et al.,
2017). This has led to their widespread adoption in a va-
riety of domains, including natural language processing
(NLP) (Brown et al., 2020), computer vision (Dosovitskiy
et al., 2020), graph representation learning (Ying et al.,
2021), combinatorial optimization (Kool et al., 2019) and
reinforcement learning (Chen et al., 2021). However, de-
riving an effective offline contextual policy with the Trans-
former requires a huge amount of offline data covering the
broad context and input data space, which is often infeasi-
ble in the semiconductor industry.

1

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Training a flexible contextual design policy based on Trans-
former with a limited volume of offline data is a challeng-
ing task. The current study aims to overcome this issue
by utilizing inductive biases for the target hardware design
problem. For example, the device placement problem has
an input order invariance property in that input permuta-
tions do not affect the output, while Transformers have a
strong order bias. Fig. 1 illustrates this property: for exam-
ple, {1, 2, 3, 4} and {2, 3, 1, 4} are considered action per-
mutation (AP) symmetric solutions. In addition, the rel-
ative locations of hardware devices matter more than their
absolute positions, while Transformer heavily uses an abso-
lute positional encoding. Thus, we can exploit such prop-
erties of the target problem to modify Transformer archi-
tecture for deriving an effective contextual policy with a
limited offline dataset.

In this paper, we present DEVFORMER, a novel trans-
former model for solving contextual offline hardware de-
sign problems. By incorporating strong domain-specific in-
ductive biases, our model learns more efficiently and effec-
tively, overcoming the limitations of traditional transformer
architectures. We demonstrate the proposed approach on a
novel hardware benchmark and validate its applicability on
a real-world high bandwidth memory.

We summarize our contributions as follows:

• We propose a new positional embedding technique for
the encoder of the transformer, utilizing relative chip
location, and a probing-port context network (PCN)
for the decoder. To address the issue of order bias in
traditional positional embedding, we propose a recur-
rent context network (RCN) that only references the
previously selected node. The PCN, RCN, and en-
coded node embeddings are used in an attentive man-
ner to generate actions during the decoding process.

• To address order biases and impose AP symmetric-
ity, we introduce a novel regularization loss term for
the placement problem symmetricity. This approach
can also be applied to other sequential design meth-
ods, such as DRL, with similar order bias issues.

• We demonstrate our approach to the decap placement
problem (DPP) and release the novel DPP benchmark
for researchers to evaluate and improve ML method-
ologies for hardware design challenges. As a means of
promoting transparency and reproducibility, we make
the source codes of our method and the baselines dis-
cussed in this paper publicly available online1 as well
as an accompanying interactive demonstration pro-
gram2 to facilitate engagement and experimentation.

1https://github.com/kaist-silab/devformer
2https://dppbench.streamlit.app

Industrial & Systems Engineering 6

Package
PDN

Interposer
PDN

Hardware
Device

On-chip
PDN

𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑍𝑍1,1 ⋯ 𝑍𝑍1, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

EM simulation at the probing port

𝑱𝑱(𝒂𝒂;𝒙𝒙)Keep-Out
Probing Port

Decap

Frequency-dependent Impedances

Objective function

Figure 2: Grid representation of the target on-chip PDN of a hard-
ware device and the EM simulation at the probing port to evaluate
the objective function.

2. Preliminaries and Background
2.1. Decap Placement Problem (DPP)

This paper seeks to solve the decap placement problem
(DPP), one of the essential hardware design problems. A
decoupling capacitor (decap) is a hardware component that
reduces power noise along the power distribution network
(PDN) of hardware devices such as CPUs, GPUs, and AI
accelerators, and improves the power integrity (PI).

Formally, DPP is a black-box contextual optimization
problem to find the optimal placement of decap a =
{a1, ...,aK} that maximizes the PI objective J (;x). Note
the objective is contextualized by the target hardware fea-
ture vectors x with the constraint of a limited number of
decap K. Our research aims to solve:

a∗ = argmax
a
J (a;x)

s.t K ≤ K∗, x ∈ X

X refers to the context space of the target hardware. Note
that the number of decap K is a crucial budget for DPP
optimization as placing a decap is costly in semiconductor
industries (Koo et al., 2018).

2.2. Contextual Markov Decision Processes (cMDP)
We formulate DPP as a contextual Markov decision process
(Hallak et al., 2015, cMDP) to decompose the joint action
policy into a sequential component policy to overcome the
high dimensionality issue. Specifically, our objective func-
tion J (;x) is determined by the PDN, which is contextual-
ized by x. The contextualized PDN is represented as a set
of three-dimensional feature vectors x = {xi}Nrow×Ncol

i=1 ,
where each grid (i.e., port) on the PDN is represented as
xi = (xi, yi, ci), in which xi, yi indicate the 2D coordi-
nates of the location; ci ∈ {0, 1, 2} indicates the condi-
tion of the port, whether it belongs to a probing port, keep-
out regions, or decap allowed ports, respectively. See Ap-
pendix A.3 for further details.

2

https://github.com/kaist-silab/devformer
https://dppbench.streamlit.app

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Industrial & Systems Engineering

Device Transformer (Figure 1 a FEDE) v3

5

(a) Device Transformer Module

𝐍𝐍 × 𝐋𝐋

Encoder Decoder

Node
Embedding

+

𝒉𝒉

PCN RCN

+Relative
Position

Linear 𝐾𝐾 𝑄𝑄

Context Query
Embedding (c)

Probing Positional
Embedding (b)

Initial Layout
s0

𝒂𝒂𝟏𝟏

𝒂𝒂𝒕𝒕

𝒂𝒂𝒕𝒕−𝟏𝟏

Keep-Out
Probing Port

Decap

𝑉𝑉

Multi-head Attention

Linear

SoftmaxTransformer
Encoder Block

Input
State

Output
Actions

(a) Overall DEVFORMER architecture

Industrial & Systems Engineering

Device Transformer (Figure 1 b FEDE) v2

16

Compute
Relative
Position

(b) Relative Position for PPE

Distance
Edges

(b) Probing Positional Embedding

Industrial & Systems Engineering

Device Transformer (Figure 1 c FEDE) v3

7

(c) PCN and RCN

Encoder

𝒉𝒉𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒉𝒉𝒂𝒂𝒕𝒕−𝟏𝟏

Linear

ReLU

Linear

PCN

Linear

ReLU

Linear

RCN

𝒉𝒉 𝒂𝒂𝒕𝒕−𝟏𝟏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

(c) Context Query Embedding

Figure 3: (a) Given design constraints and previous actions, the DEVFORMER model generates the optimal device placement action at.
(b) Probing Positional Embedding () uses relative positions with respect to the probing port. (c) PCN (probing port context network

) and RCN (recurrent context network) use embedding h to capture contextual information of initial design conditions and stages of
the partial solution, respectively.

The design process sequentially places a pre-defined num-
ber K of decaps on the available PDN ports. We model this
cMDP with state, action, and policy as follows.

State st contains the task-condition (i.e., problem con-
text vectors) x and the previous selected actions: st =
{x,a1:t−1}.
Action at ∈ {1, ..., Nrow × Ncol} \ st−1 is defined as an
allocation of a decap to one of the available ports on PDN.
The available ports are the ports on PDN, except for the
probing port, keep-out, and previously selected ports. The
concatenation of sequentially selected actions a = a1:K
indicates the final decap placement solution.

Policy πθ(a|x) is the probability of producing a specific
solution a = a1:K , given the problem context vectors x,
and is factorized as:

πθ(a|x) =
K∏
t=1

pθ(at|st), (1)

where pθ(at|st) is the segmented one-step action policy
parameterized by the neural network.

The objective of DPP is to find the optimal parameter θ∗ of
the policy πθ(·|x) as:

θ∗ = argmax
θ

Ex∼pX (x)Ea∼πθ(·|x)
[
J (a;x)

]
, (2)

where pX (x) is the probability distribution for varying
task-condition x and J is objective function. Finding the
optimal policy for various DPPs with changing conditions
is a contextual learning problem, in which each DPP has
a distinct context. Once the task x is sampled by pX (x),
the state-action space with complexity of

(
Nrow×Ncol

K

)
is de-

termined. Then, an efficient policy πθ(a|x) should capture
the contextual features among varying task conditions x.

Note that DPP is an episodic task, where the reward is de-
fined as the objective of the final state solution; the reward
is the same as objective J .

2.3. Objective Function J
The objective function is a black-box simulator based on
the electrical magnetic (EM) simulation or lab-level elec-
trical measurement on fabricated products. To benchmark
DPP as an ML task, we implemented the objective func-
tion with approximated modeling of electrical components
as the fast Python simulator. As shown in Fig. 2, cal-
culating objective function requires frequency-dependent
impedances calculated through EM simulation at the prob-
ing port, and such process is costly in terms of time and
computation. See Appendix A.4 for a detailed description
of our modeling of the objective function.

3. Methodology
3.1. DEVFORMER Architecture

DEVFORMER, illustrated in Fig. 3, is a novel transformer-
based architecture that incorporates hardware-aware prior
components, such as the probing port positional embed-
ding () for the encoder and the probing port context net-
work () and recurrent context network () for the decoder.
The encoder, fenc, maps the task condition x to a high-
dimensional embedding h, through the function fenc(x).
Similarly to the decoding scheme in pointer network
(PointerNet) (Vinyals et al., 2015) and attention model
(AM) (Kool et al., 2019), our decoder pdec(at|h,at−1)
samples the indices of the placements in an auto-regressive
manner: at ∼ pdec(at|h,at−1).

Encoder Our encoder consists of L layers of multi-head
attention (MHA) and feedforward (FF), akin to the trans-
former network proposed in Vaswani et al. (2017) as illus-
trated in Fig. 3a. Before processing by MHA and FF, the
task condition x is processed by two networks: node em-
bedding and probing port positional embedding (PPE).

3

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Industrial & Systems Engineering

Figure 2 (FEDE v3)

16

Self-Exploitation

Expert Data
𝒂𝒂∗ = [3, 7, 12, 16]

𝑻𝑻𝑨𝑨𝑨𝑨

𝑎𝑎𝑃𝑃∗=[3,7,12,16]
𝑎𝑎1∗ = [7,12,16,3]
𝑎𝑎0∗ = [16,12,7,3]

...

Policy 𝝅𝝅𝜽𝜽Augmented Data

Expert Exploitation

Self-Generated Data
𝒂𝒂′ = [24, 5, 22, 11][11, 5, 24, 22]

Transformed Data

𝑻𝑻𝑨𝑨𝑨𝑨

Figure 4: Collaborative symmetricity exploitation (CSE) framework with DEVFORMER policy. Training is carried out via expert ex-
ploitation (EE), which employs offline high-quality data, while self-exploitation (SE) uses data generated by a copy of the policy itself.
AP-symmetricity is imposed through the TAP transformation on both expert and self-generated data.

The node embedding is the node-wise linear embedding of
x: ϕnode(x). The PPE is the linear projection ϕPPE of rela-
tive positions with respect to the probing port node xprobe:
ϕPPE

(
{||xi − xprobe||}Ni=1

)
as shown in Fig. 3b. The sum

of processed node embeddings and PPE is then fed into the
L-layered MHA and FF to generate h3:

h0 ← ϕnode(x) + ϕPPE({||xi − xprobe||}Ni=1)

hl+1 ← BN
(
ΦFF

(
BN

(
ΦMHA

(
hl
))))

where BN stands for batch normalization.

Decoder The decoder pdec(at|h,at−1) is composed of a
single layer MHA to generate the action probability distri-
bution with SoftMax. We improve generalization capabil-
ities by capturing contextual information: we generate the
query key Q via a context query embedding divided into a
probing port context network (PCN) and recurrent con-
text network (RCN), as shown in Fig. 3c. The PCN fo-
cuses on processing the embedding of probing port hprobe
where RCN recurrently focuses on the embedding of pre-
viously selected action hat−1 :

ϕPCN(hprobe) = MLP(hprobe)

ϕRCN(hat−1) = MLP(hat−1)

Q =ϕLinear(ϕPCN(hprobe) + ϕRCN(hat−1))

Then, the probability distribution is computed with MHA
and linear projection ϕLinear:

pdec(at|h,at−1) = SoftMax (ϕLinear ((MHA (Q,K, V))))

where K and V are a linear projection of h.

3.2. Action-permutation Symmetricity and Order Bias

The symmetricity found in placement problems is the
action-permutation (AP)-symmetricity, i.e., placement or-
der does not affect the design performance. Let us denote
ti as a permutation of an action sequence {1, ...,K}, where
K is the length of the action sequence. We then define the
AP-transformation TAP = {ti}K!

i=1 as a set of all possible

3Note that we indicate hL as a high dimensional embedding
h for a simple notation.

permutations. The AP-symmetricity of DPP is the property
that we want to impose on the design solver.

Definition 1 (AP-symmetricity). For any a ∈ A, x ∈ X ,
t ∈ TAP , the following holds:

• A scalar-valued function f : A × X → R is AP-
symmetric if f(a,x) = f(t(a),x).

• A conditional probability distribution π is AP-
symmetric if π(a|x) = π(t(a)|x).

A is the solution space and X is the task-condition space.

The objective function J : A × X → R of DPP is an
AP-symmetric function because a and t(a) have identical
placement design. AP-symmetricity can thus be induced
to the policy π (conditional probability) to reflect the AP-
symmetricity of an objective function J . Moreover, we
define an order bias metric, b(π;p), to measure the AP-
symmetricity.

Definition 2 (Order bias on distributions p). For a con-
ditional probability π(a|x), where x ∈ X and a ∈ A, the
order bias b(π;p), where p = {pX , pA, pTAP

}, refers to:

b(π;p) = EpX (x)EpA(a)EpTAP (t)
[||π(a|x)− π(t(a)|x)||1]

Intuitively, the order bias b(π;p) is a general property of
a sequential solution generation scheme. It measures how
much the solver π(a|x) has different probabilities of gener-
ating AP-symmetric solutions. The order bias metric holds
for the following theorem:

Theorem 1. A task-conditioned policy π(a|x) is AP-
symmetric if and only if its order bias is zero (b(π;p) = 0)
while the distributions are non-zero, pX (x) > 0, pA(a) >
0, pTAP

(t) > 0, for any x ∈ X , a ∈ A and t ∈ TAP .

We report the detailed proof of Theorem 1 in Appendix F.

3.3. Collaborative Symmetricity Exploitation (CSE)

To induce the AP-symmetricity to the trained DEV-
FORMER, and thus to improve its generalization capabil-
ity and data efficiency in training with low-data regimes,
we design a novel training framework called collaborative

4

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

symmetricity exploitation (CSE). Fig. 4 shows the overall
scheme: CSE exploits symmetricity in both expert and self-
generated data.

Expert Exploitation The major role of expert exploita-
tion is to train high-quality symmetric contextualized
policies for various task conditions x by leveraging
offline expert data a∗ from the offline expert dataset
Dexp = {(x(i), a(i)∗)}Ni=1 with TAP. TAP transforms
each offline expert data a∗ for P times to augment
the offline expert dataset to reflect the AP-symmetric
nature of the placement task. Specifically, we ran-
domly choose {t1, ..., tP } ⊂ TAP to generate Daug =
{
(
x(i), a(i)∗

)
,
(
x(i), t1(a

(i)∗)
)
, ...,

(
x(i), tP (a

(i)∗)
)
}Ni=1.

Then, LExpert is expressed as a teacher-forcing imitation
learning scheme with the augmented expert dataset Daug .

LExpert = −Ea∗,x∼Daug [logπθ(a
∗|x)] (3)

Note that expert exploitation is expected to reduce order
bias defined with the three uniform distributions; x of
UDexp(x), a of UDexp(a), and t of UTAP(t).

Self-Exploitation While Daug only contains expert qual-
ity data, self-exploitation uses self-generated data, whose
quality is poor initially but improves over the training
phase. Thus, the self-exploitation scheme is designed to
induce the AP-symmetricity in a wider action space to
achieve greater generalization capability.

LSelf = EUX (x)Eπθ̃(·|x)EUTAP (t)
[||πθ̃(a

′|x)−πθ(t(a
′)|x)||1]

(4)
Formally, the self-exploitation loss is a special form of
order bias defined based on the distributions, x ∼ UX ,
a ∼ πθ̃ (current policy) and t ∼ UTAP , where U is a uniform
distribution; LSelf = b(πθ,p = {UX , πθ̃,UTAP}).

Loss function We design the DEVFORMER loss term
L consisting of expert exploitation loss LExpert and self-
exploitation loss LSelf to reduce order bias (Definition 2):

L := LExpert + λLSelf (5)

where λ is a hyperparameter that adjusts the weighted ratio
between LExpert and LSelf.

4. Experimental Results
4.1. Dataset and Benchmark

Benchmark Description The DPP is an important de-
sign optimization task to improve the power integrity per-
formance of hardware to find optimal design a of context
x that maximizes objective value J (a;x) with a limited
number of decaps K. In this benchmark (1) we measure

objective score with K = 20 and (2) we measure mini-
mum K for satisfying target objective J = J∗. Also, we
evaluate the sample efficiency both for training time and
test time. For the training time efficiency, we measure the
number of offline datasets N . For the test time efficiency,
the number of simulation shots M .

Baselines We report various existing baselines for DPP
devised by hardware domain researchers. We categorize
them into four categories:

• Test Time Search. A traditional search method of
random search and genetic algorithm (GA) on the test
time are benchmarked.

• Online Test Time Adaptation. Online DRL meth-
ods for DPP that directly solve test problems with the
learning procedure are reported: CNN deep Q learn-
ing (Park et al., 2020b, CNN-DQN), CNN double
DQN (Zhang et al., 2020, CNN-DDQN), pointer net-
work policy gradient (Kim et al., 2021, Pointer-PG),
and AM policy gradient (Park et al., 2020a, AM-PG).

• Online Contextual Pretraining. Existing online con-
textual DRL methods for DPP, which amortize the
search process by pretraining are reported: pointer
network with contextual RL (Kim et al., 2021,
Pointer-CRL) and (Park et al., 2022b, AM-CRL).

• Offline Contextual Pretraining. Imitation learning-
based contextual methods for DPP which amortize the
search process with the expert dataset are reported:
Pointer-CIL and AM-CIL.

Dataset and Simulator For the DPP score simulator, a
chip-package hierarchical PDN is used. The PDN model
is represented as a Nrow × Ncol = 10 × 10 grid over 201
frequency points linearly distributed between 200MHz and
20GHz, which gives 100 × 100 × 201 ≈ 2M impedances
to be evaluated per each task; simulation intensive.

We use N expert data, collected by a genetic algorithm
(GA) with a specific number of simulations M = 100 per
each. For the test dataset of performance evaluation, 100
PDN cases are used. See Appendix A.2 and Appendix A.5
for detailed data construction.

Implementation For DevFormer, we use encoder layers
of L = 3 and 128 hidden dimensions of MHA, and 512
hidden dimensions for feed-forward. See Appendix C.1 for
a detailed setup of training hyperparameters. For the im-
plementation of baseline, methods see Appendix C.2 and
Appendix C.3 for details.

5

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Table 1: Performance evaluation results. We report the number of
shots and average score of 100 test problems. Each method was
sweeped for 5 different seeds and the average score and S.D. are
reported.

Method Num. Shot (M) ↓ Score ↑
Online Test Time Search

GA (expert) 100 12.56 ± 0.017
RS 10,000 12.70 ± 0.000

Online Test Time Adaptation

Pointer-PG 10,000 9.66 ± 0.206
AM-PG 10,000 9.63 ± 0.587
CNN-DQN 10,000 9.79 ± 0.267
CNN-DDQN 10,000 9.63 ± 0.150

Online Contextual Pretraining & Zero Shot Inference

Pointer-CRL Zero Shot 9.59 ± 0.232
AM-CRL Zero Shot 9.56 ± 0.471

Offline Contextual Pretraining & Zero Shot Inference

Pointer-CIL Zero Shot 10.49 ± 0.119
AM-CIL Zero Shot 11.74 ± 0.075
DEVFORMER-CSE Zero Shot 12.88 ± 0.003

4.2. Performance Evaluation

For performance evaluation, we set N = 2000 for the of-
fline pretraining and M > 200000 for online pretraining
shots. The pretraining methods are evaluated with zero-
shot inference at the test time.

As shown in Table 1, our DEVFORMER significantly out-
performed all baselines in terms of average performance
score. See Eq. (S1) in Appendix A.4 for the performance
metric. Online search methods generally find solutions
that give a high average performance. This is due to a
large number of searching iterations M , which incurs the
same number of costly simulations. On the other hand, the
contextual pretrained methods including DEVFORMER do
not require simulations to generate solutions; once trained,
they only require a single simulation to measure the per-
formance after zero shot inference. DEVFORMER is the
only learning-based method capable of finding a solution
that outperforms the highly iterative online search methods
even by a zero-shot inference.

The online DRL methods showed poor performance in gen-
eral. When the number of costly simulations was lim-
ited, RL-based methods (AM-CRL, Pointer-CRL) showed
poorer generalization capability than their IL versions
(AM-CIL, Pointer-CIL) due to inefficiency in exploring
over extremely large combinatorial action space of DPP.
We believe that the imitation learning approach, fitting the
policy with offline expert data, has greater exploration ca-
pability with the help of expert policy thus able to achieve

0 20 40 60 80 100
Epochs

10.5

11.0

11.5

12.0

12.5

A
ve

ra
ge

sc
or

e

AM

AM+PPE

AM+PCN+RCN

DevFormer

(a)

0 20 40 60 80 100
Epochs

10.5

11.0

11.5

12.0

12.5

A
ve

ra
ge

sc
or

e

AM

DevFormer

AM + CSE

DevFormer + CSE

(b)

Figure 5: (a) Ablation on DEVFORMER components without
CSE. Note that DEVFORMER architecture is based on AM-CIL
with newly devised PPE, PCN and RCN. AM refers to AM-
CIL. (b) Ablation on AM and DEVFORMER architecture with and
without CSE learning scheme.

higher performance with a limited simulation budget (see
Appendix C.2).

Among the CIL approaches, DEVFORMER showed the
highest performance. We believe that such higher zero-
shot performance comes from both symmetricity exploita-
tion schemes and the newly devised neural architecture: (1)
expert exploitation and self-exploitation with symmetric la-
bel transformation amplify the number of data to train with
and induce solution symmetricity to improve generaliza-
tion capability. (2) PPE, PCN, and RCN in DEVFORMER
make the policy easily adapt to new task conditions.

Extrapolation over Expert Method The DEVFORMER
is trained with the offline expert data generated by the GA
outperformed the GA. That is, the DEVFORMER policy
trained with lower-quality data produces higher-quality de-
signs. We believe this is possible because we trained a fac-
torized form of the policy that does not predict labels in a
single step but produced a solution through a serial iterative
roll-out process, during which a good strategy for placing
decaps can be identified.

4.3. Ablation Study

Effectiveness of DEVFORMER Components and CSE.
We conducted ablation studies to verify the effectiveness
of the proposed DEVFORMER neural architecture and CSE
training scheme. A detailed ablation on DEVFORMER
components without CSE is reported in Fig. 5a. The ad-
dition of PPE, PCN and RCN on top of AM-CIL baseline
showed clear performance improvement. Furthermore, in
Fig. 5b, both AM and DEVFORMER neural architectures
perform better with the presence of CSE and DEVFORMER
always outperforms the AM despite the presence of CSE.
Thus, we verified that both CSE and DEVFORMER con-
tribute to the performance improvement.

6

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

500 1000 1500 2000

Number of offline data (N)

10.0

10.5

11.0

11.5

12.0

12.5

13.0

A
ve

ra
ge

sc
or

e

DevFormer (Ours)

AM-CIL

Pointer-CIL

(a)

0 20 40 60 80 100
Epochs

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

A
ve

ra
ge

sc
or

e

DevFormer (N=2000)

DevFormer (N=1000)

DevFormer (N=500)

DevFormer (N=100)

AM-CIL (N=2000)

AM-CIL (N=1000)

AM-CIL (N=500)

AM-CIL (N=100)

(b)

Figure 6: Sample efficiency of DEVFORMER in comparison to
other CIL methods. (a) Performance evaluation depending on the
number of offline data used for training. (b) Training convergence
graph depending on the number of offline data used for training.

Table 2: Valuation of Order Bias

b(π,p = {UX , π,UTAP
})

AM-CIL 8.70×10−21

DEVFORMER 1.25× 10−28

Order Bias Measurement To empirically prove that our
CSE induces AP-symmetricity, we measured b(π,p =
{UX , π,UTAP

} for sample width 100 and took the average
value. As shown in Table 2, our CSE significantly reduced
the order bias defined in Definition 2, verifying that CSE
successfully induced the AP-symmetricity.

4.4. Sample Efficiency Evaluation for Offline Dataset

We investigated how the number N of offline data gener-
ated by the GA affects the performance of DEVFORMER,
compared to AM-CIL and Pointer-CIL. As shown in Fig. 6,
DEVFORMER outperforms the baselines in all N variation;
DEVFORMER trained with N = 100 even outperformed
the baselines trained with N = 2000.

Table 3: Scalability evaluations on larger power distribution
network (PDN) scale and a varying number of deep K. The
scale × scale indicates the size of input grids for PDN. K refers
to the number of decap placed on the target PDN. Scores in bold
indicate the best scores. A lower K with a higher score value in-
dicates a Pareto score.

Scale Variables Methods

PDN K GA AM-CIL Ours

10×10

12 11.77 10.22 12.23
16 12.25 11.13 12.60
20 12.53 11.71 12.81
24 12.79 12.20 12.95
30 13.02 12.62 13.11

15×15 20 7.61 6.23 8.47
40 7.69 7.75 8.54

20 40 60 80

Number of Decaps (K)

26.0

26.2

26.4

26.6

26.8

P
er

fo
rm

an
ce

GA

Arb-CIL

AM-CIL

DevFormer (Ours)

(a)

100 101

Frequency [GHz]

100

101

Im
p

ed
an

ce
[O

h
m

]

Initial Impedance

AM-CRL

AM-CIL

DevFormer (Ours)

(b)

Figure 7: (a) Performance comparison with the number of decap
variation on HBM PDN. (b) Magnitude of resulting impedance
suppression over wide frequency range after decap placement.

Industrial & Systems Engineering 4

C4 bump
Interposer

Package

PHY

On-chip
TSV

Microbump

Figure 8: Structure of a three-layer HBM PDN model.

4.5. Zero shot Generalization to various tasks

To verify zero shot capability on various scales of tasks,
learning-based DPP methods were pretrained for a fixed
scale PDN (10×10) and a fixed number of decaps, K = 20.
Then, the pretrained models are asked to place decaps of
varying K on (10 × 10) PDN and a larger (15 × 15) PDN
without additional training (i.e., zero-shot). As shown in
Table 3, our DEVFORMER outperformed GA and AM-CIL
for all scales. Furthermore, DEVFORMER achieved greater
performance with fewer decaps. Reducing the number of
decaps has a significant industrial impact; as hardware de-
vices are mass-produced, reducing a single decap saves
enormous fabrication costs.

4.6. Application on Real-world Hardware

To verify the practical applicability of the DEVFORMER,
we applied the proposed DEVFORMER to a real-world
hardware application, the high bandwidth memory (HBM),
which is an interposer-based 2.5D IC. As shown in Fig. 8,
the hierarchical PDN model of HBM is composed of (40×
40) package PDN, (40×60) interposer PDN and (15×20)
on-chip PDN, each layer connected by TSV + C4 bumps
and microbumps.

For performance evaluation, we compared DEVFORMER to
GA, AM-CIL, and Pointer-CIL on placing a varying num-
ber of decaps, K, for 100 unseen test cases. The pretrained
solvers with K = 20 were used for DEVFORMER, AM-
CIL, and Pointer-CIL without additional training.

7

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Industrial & Systems Engineering 3

𝒂𝒂 = {𝟏𝟏, 5, 4, 3, 2}

1

2
4

5

3

Cycle Symmetric
Transformation

𝒂𝒂 = {5, 4, 3, 2,1}

1

2
4

5

3

Figure 9: Example of cycle symmetricity in the traveling sales-
man problem (TSP).

20 40 60 80 100
Epochs

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

T
ou

r
le

gn
th

AM-IL

AM-IL + CSE (ours)

(a) TSP (N = 20)

20 40 60 80 100
Epochs

10.0

10.5

11.0

11.5

12.0

12.5

13.0

T
ou

r
le

gn
th

AM-IL

AM-IL + CSE (ours)

(b) TSP (N = 100)

Figure 10: CSE application on TSP cyclic symmetricity. AM-IL
stands for the imitation learning trained AM with sparse expert
labels. The CSE greatly improves the performance of AM-IL as
TSP (N = 20) and (N = 100).

The results in Fig. 7a demonstrate that DEVFORMER
achieves higher performance with significantly fewer de-
caps than other methods. The performance score of 26.68,
which was attained with 40 decaps by the GA and 34 de-
caps by AM-CIL method, was achieved with only 26 de-
caps by DEVFORMER in a zero-shot setting. The pointer-
CIL method could not achieve the same performance score
even with 80 decaps.

The resulting impedance over a wide frequency range after
decap placement by each method is illustrated in Fig. 7b. It
shows that decap placement by DEVFORMER suppressed
the impedance the most, leading to greater power integrity
and objective value.

We also conducted a power noise analysis on a test case
(see Appendix D.3). DEVFORMER was able to reduce the
power noise by 94.2% using only 26 decaps, while GA re-
duced by 93.5% using 40 decaps. As hardware devices are
mass-produced, reducing even a single decap can greatly
reduce production costs (Koo et al., 2018). With a more
than 30% reduction in the number of decaps compared to
the best-performing baseline, our DEVFORMER can signif-
icantly contribute to the industry.

4.7. Application to Other Offline Contextual Designs
Our CSE learning scheme induces AP-symmetricity in the
DEVFORMER neural architecture and can also be applied to

other architectures for offline contextual design. We tested
its versatility by implementing it on the AM transformer
model (Kool et al., 2019) to solve the traveling sales-
man problem (TSP), a combinatorial optimization problem
whose objective is to find the optimal tour sequence that
visits all cities with minimum tour length. CSE is used to
enforce cyclic symmetricity in the TSP solutions by con-
sidering the N (the number of cities) symmetric solutions
that can be obtained by permuting the initial cities, where
the tour length is invariant (see Fig. 9).

We conducted a benchmark using a TSP problem with
sparse expert data, using only 100 labels derived from the
TSP Concorde (Applegate et al., 2006) solver. As shown
in Fig. 10, CSE significantly improves the performance of
AM on 100 randomly generated synthetic test data. This in-
dicates that our newly devised CSE can be further applied
to various domains that require solution symmetricity, e.g.,
molecular generation, considering the symmetric nature of
the molecular graph (Bengio et al., 2021).

5. Related Works
Symmetricity Learning in Solution Space. Several stud-
ies have leveraged symmetricity in solution space. POMO
(Kwon et al., 2020) proposed a reinforcement learning
scheme that leverages symmetricity in TSP, using the cyclic
property that identical solutions can be expressed as mul-
tiple permutations of initially visited nodes. GFlowNet
(Bengio et al., 2021) uses a generative flow to train pol-
icy distributions proportional to reward distributions and
applies a directed acyclic graph (DAG) instead of a clas-
sical tree structure to induce symmetricity. Our method is
similar to POMO in that it leverages symmetricity in the
solution space through regularization, but it applies this ap-
proach to imitation learning.

New Transformers. There have been numerous efforts to
adapt the transformer architecture (Vaswani et al., 2017) to
new domains beyond natural language processing (NLP)
(Brown et al., 2020). Examples include the vision trans-
former (ViT) (Dosovitskiy et al., 2020), graph transformer
(Graphormer) (Ying et al., 2021), attention model for com-
binatorial optimization (AM) (Kool et al., 2019), and de-
cision transformer for reinforcement learning (DT) (Chen
et al., 2021). These efforts aim to incorporate domain-
specific knowledge and remove unnecessary priors from
the original transformer architecture, which was primarily
designed for sequential data and language modeling. Our
proposed method is a novel transformer for device opti-
mization in hardware and is part of this ongoing research
trend.

8

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

6. Conclusion
In this paper, we presented DEVFORMER, a novel trans-
former model for solving contextual offline hardware de-
sign problems, and CSE, a learning scheme that induces
AP-symmetricity to the neural architecture. By incorpo-
rating strong domain-specific inductive biases, our model
learns more efficiently and effectively, overcoming the lim-
itations of traditional transformer architectures. We have
demonstrated the proposed approach on a novel hardware
benchmark and validated its extensibility to other combi-
natorial optimization problems. DEVFORMER achieved
higher performance compared to other methods while con-
siderably reducing production costs on a real-world high
bandwidth memory. Future works include exploring its ap-
plicability to other hardware design tasks and investigating
its scalability to larger and more complex design problems.

Acknowledgement
We thank Hyeonah Kim, Hyunwook Park, Subin Kim, and
the anonymous reviewers for their invaluable contributions
in providing insightful feedback on our manuscript.

References
Agnesina, A., Chang, K., and Lim, S. K. Vlsi place-

ment parameter optimization using deep reinforcement
learning. In Proceedings of the 39th International
Conference on Computer-Aided Design, ICCAD ’20,
New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450380263. doi: 10.1145/
3400302.3415690. URL https://doi.org/10.
1145/3400302.3415690.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-
corde tsp solver. 2006. URL http://www.math.
uwaterloo.ca/tsp/concorde/m.

Bello, I. et al. Neural combinatorial optimization with rein-
forcement learning. CoRR, abs/1611.09940, 2016. URL
http://arxiv.org/abs/1611.09940.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.

Decision transformer: Reinforcement learning via se-
quence modeling. Advances in neural information pro-
cessing systems, 34:15084–15097, 2021.

Cheng, R. and Yan, J. On joint learning for solving place-
ment and routing in chip design. Advances in Neural
Information Processing Systems, 34, 2021.

de Paulis, F., Cecchetti, R., Olivieri, C., and Buecker,
M. Genetic algorithm pdn optimization based on min-
imum number of decoupling capacitors applied to arbi-
trary target impedance. In 2020 IEEE International Sym-
posium on Electromagnetic Compatibility Signal/Power
Integrity (EMCSI), pp. 428–433, 2020. doi: 10.1109/
EMCSI38923.2020.9191458.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth
16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Repre-
sentations, 2020.

Erdin, I. and Achar, R. Multi-objective optimization
of decoupling capacitors for placement and component
value. IEEE Transactions on Components, Packag-
ing and Manufacturing Technology, 9(10):1976–1983,
2019. doi: 10.1109/TCPMT.2019.2930565.

Fan, J., Knighten, J., Orlandi, A., Smith, N., and Drewniak,
J. Quantifying decoupling capacitor location. In IEEE
International Symposium on Electromagnetic Compat-
ibility. Symposium Record (Cat. No.00CH37016), vol-
ume 2, pp. 761–766 vol.2, 2000. doi: 10.1109/ISEMC.
2000.874717.

Farrahi, S. and Koether, E. Effect of power plane induc-
tance on power delivery networks. In DesignCon, 2019.

Haaswijk, W., Collins, E., Seguin, B., Soeken, M., Kaplan,
F., Süsstrunk, S., and De Micheli, G. Deep learning for
logic optimization algorithms. In 2018 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp.
1–4, 2018. doi: 10.1109/ISCAS.2018.8351885.

Hallak, A., Di Castro, D., and Mannor, S. Con-
textual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

Hosny, A., Hashemi, S., Shalan, M., and Reda, S. Drills:
Deep reinforcement learning for logic synthesis. In 2020
25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pp. 581–586, 2020. doi: 10.1109/
ASP-DAC47756.2020.9045559.

Hwang, J., Pak, J. S., Yoon, D., Lee, H., Jeong, J.,
Heo, Y., and Kim, I. Enhancing on-die pdn for opti-
mal use of package pdn with decoupling capacitor. In

9

https://doi.org/10.1145/3400302.3415690
https://doi.org/10.1145/3400302.3415690
http://www.math.uwaterloo.ca/tsp/concorde/m
http://www.math.uwaterloo.ca/tsp/concorde/m
http://arxiv.org/abs/1611.09940

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

2021 IEEE 71st Electronic Components and Technol-
ogy Conference (ECTC), pp. 1825–1830, 2021. doi:
10.1109/ECTC32696.2021.00288.

Juang, J., Zhang, L., Kiguradze, Z., Pu, B., Jin, S., and
Hwang, C. A modified genetic algorithm for the selec-
tion of decoupling capacitors in pdn design. In 2021
IEEE International Joint EMC/SI/PI and EMC Europe
Symposium, pp. 712–717, 2021. doi: 10.1109/EMC/SI/
PI/EMCEurope52599.2021.9559292.

Kim, H., Park, H., Kim, M., Choi, S., Kim, J., Park, J.,
Kim, S., Kim, S., and Kim, J. Deep reinforcement learn-
ing framework for optimal decoupling capacitor place-
ment on general pdn with an arbitrary probing port. In
2021 IEEE 30th Conference on Electrical Performance
of Electronic Packaging and Systems (EPEPS), pp. 1–3,
2021. doi: 10.1109/EPEPS51341.2021.9609194.

Kim, J. et al. Chip-package hierarchical power distribu-
tion network modeling and analysis based on a segmen-
tation method. IEEE Transactions on Advanced Packag-
ing, 33(3):647–659, 2010. doi: 10.1109/TADVP.2010.
2043673.

Koo, K., Luevano, G. R., Wang, T., Özbayat, S., Michalka,
T., and Drewniak, J. L. Fast algorithm for minimizing the
number of decap in power distribution networks. IEEE
Transactions on Electromagnetic Compatibility, 60(3):
725–732, 2018. doi: 10.1109/TEMC.2017.2746677.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxBFsRqYm.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33, 2020.

Liao, H., Zhang, W., Dong, X., Poczos, B., Shimada, K.,
and Burak Kara, L. A Deep Reinforcement Learning
Approach for Global Routing. Journal of Mechani-
cal Design, 142(6), 11 2019. ISSN 1050-0472. doi:
10.1115/1.4045044. URL https://doi.org/10.
1115/1.4045044. 061701.

Liao, H., Dong, Q., Qi, W., Fallon, E., and Kara, L. B.
Track-assignment detailed routing using attention-based
policy model with supervision. In Proceedings of the
2020 ACM/IEEE Workshop on Machine Learning for
CAD, pp. 105–110, 2020.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori,
E., Wang, S., Lee, Y.-J., Johnson, E., Pathak, O., Nazi,
A., Pak, J., Tong, A., Srinivasa, K., Hang, W., Tuncer,

E., Le, Q., Laudon, J., Ho, R., Carpenter, R., and Dean,
J. A graph placement methodology for fast chip de-
sign. Nature, 594:207–212, 06 2021. doi: 10.1038/
s41586-021-03544-w.

Park, H., Kim, M., Kim, S., Jeong, S., Kim, S., Kang, H.,
Kim, K., Son, K., Park, G., Son, K., Shin, T., and Kim,
J. Policy gradient reinforcement learning-based optimal
decoupling capacitor design method for 2.5-d/3-d ics us-
ing transformer network. In 2020 IEEE Electrical De-
sign of Advanced Packaging and Systems (EDAPS), pp.
1–3, 2020a. doi: 10.1109/EDAPS50281.2020.9312908.

Park, H., Park, J., Kim, S., Cho, K., Lho, D., Jeong, S.,
Park, S., Park, G., Sim, B., Kim, S., Kim, Y., and Kim, J.
Deep reinforcement learning-based optimal decoupling
capacitor design method for silicon interposer-based 2.5-
d/3-d ics. IEEE Transactions on Components, Packaging
and Manufacturing Technology, 10(3):467–478, 2020b.
doi: 10.1109/TCPMT.2020.2972019.

Park, H., Kim, M., Kim, S., Kim, K., Kim, H., Shin,
T., Son, K., Sim, B., Kim, S., Jeong, S., Hwang, C.,
and Kim, J. Transformer network-based reinforcement
learning method for power distribution network (pdn)
optimization of high bandwidth memory (hbm). IEEE
Transactions on Microwave Theory and Techniques, 70
(11):4772–4786, 2022a. doi: 10.1109/TMTT.2022.
3202221.

Park, H., Kim, M., Kim, S., Kim, K., Kim, H., Shin,
T., Son, K., Sim, B., Kim, S., Jeong, S., Hwang, C.,
and Kim, J. Transformer network-based reinforcement
learning method for power distribution network (pdn)
optimization of high bandwidth memory (hbm). IEEE
Transactions on Microwave Theory and Techniques, 70
(11):4772–4786, 2022b. doi: 10.1109/TMTT.2022.
3202221.

Swaminathan, M. and Engin, A. Power Integrity Mod-
eling and Design for Semiconductors and Systems.
Prentice Hall Press, USA, first edition, 2007. ISBN
9780136152064.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polo-
sukhin, I. Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems, volume 30, pp. 5998–6008. Curran Associates,
Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

10

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1115/1.4045044
https://doi.org/10.1115/1.4045044
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc., 2015. URL https://proceedings.
neurips.cc/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.
pdf.

Xu, Z., Wang, Z., Sun, Y., Hwang, C., Delingette, H., and
Fan, J. Jitter-aware economic pdn optimization with a
genetic algorithm. IEEE Transactions on Microwave
Theory and Techniques, 69(8):3715–3725, 2021. doi:
10.1109/TMTT.2021.3087188.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? Advances in Neural Informa-
tion Processing Systems, 34:28877–28888, 2021.

Zhang, L., Huang, W., Juang, J., Lin, H., Tseng, B.-
C., and Hwang, C. An enhanced deep reinforcement
learning algorithm for decoupling capacitor selection in
power distribution network design. In 2020 IEEE In-
ternational Symposium on Electromagnetic Compatibil-
ity Signal/Power Integrity (EMCSI), pp. 245–250, 2020.
doi: 10.1109/EMCSI38923.2020.9191512.

Zhao, Z. and Zhang, L. Deep reinforcement learning for
analog circuit sizing. In 2020 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pp. 1–5, 2020.
doi: 10.1109/ISCAS45731.2020.9181149.

11

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

Appendix for “DevFormer: A Symmetric Transformer for Context-Aware
Device Placement”

A. DPP Electrical Modeling and Problem Definition
This section provides electrical modeling details of PDN and decap models used for verification of DEVFORMER in DPP.
Note that these electrical models can be substituted by those of the reader’s interest. There are three methods to extract
PDN and decap models that are also used for objective evaluation; 3D EM simulation tool, ADS circuit simulation tool,
and unit-cell segmentation method. For each method, there exists a trade-off between time complexity and accuracy. See
Table 1. Out of the three methods, we used the unit-cell segmentation method for a benchmark. Simulation time was
evaluated using the same PDN model on a machine equipped with a 40 threads Intel© Xeon Gold 6226R CPU and 512GB
of RAM. Note that simulation time depends on the size and the structural complexity of the PDN model.

Table 1: Time Taken for an Objective Evaluation of a PDN model described in Appendix A.2

Simulation Method Time Taken

EM Simulation Tool ≈10 hours
ADS Circuit Simulation Tool 23.58 sec

A.1. Domain Perspective Decap Placement Problem

The development of AI has led to an increased demand for high-performance computing systems. High-performance
computing systems not only require the precise design of hardware chips such as CPU, GPU, and DRAM but also require
stable delivery of power to the operating integrated circuits. Power delivery has become a huge technical bottleneck
of hardware devices due to the continuously decreasing supply voltage margin along with the technology shrink of the
transistors (Hwang et al., 2021).

Fig. S1 (a) shows the power distribution network (PDN) consisting of all the power/ground planes from the voltage source
to operating chips. Power is generated in the voltage regulator module (VRM) and delivered through electrical interconnec-
tions of PCB, package and chip. Finding ways to meet the desired voltage and current from the power source to destinations
along the PDN is detrimental because failure in achieving power integrity (PI) leads to various reliability problems such
as incorrect switching of transistors, crosstalk from neighboring signals, and timing margin errors (Swaminathan & Engin,
2007). Decoupling capacitors (decaps) placed on the PDN allows a reliable power supply to the operating chips, thus im-
proving the power integrity of hardware. As shown in Fig. S1 (b)-(c), the role of decap is analogous to that of water storage
tanks, placed along the city, apartment, and household, that can provide water uninterruptedly and reliably. As placing
more water tanks can make the water supply more stable, placing more decaps can make the power supply more reliable.
However, because adding more decaps requires more space and is costly, optimal placement of decaps is important in terms
of PI and cost/space-saving.

A.2. PDN and Decap Models for Verification

Unit-Cell Segmentation Method. The segmentation method (Kim et al., 2010) is a simple and fast way to generate
approximated electrical models. Because the analysis of the full electrical model using EM simulation is very time-
consuming, we divided the full PDN model into smaller unit-cells and constructed the full PDN model using the unit-cell
segmentation method. For fast simulation, we used an equation-based implementation in Python of the segmentation
method, illustrated in Fig. S2.

The segmentation method was used for the generation of the PDN model consisting of a chip layer and a package layer
for verification as illustrated in Fig. S2 (a). The segmentation method was also used for the objective evaluation of DPP.
When a solution for DPP is made, decaps are placed on the corresponding ports on PDN using the segmentation method
as illustrated in Fig. S2 (b).

12

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

(a) An example of hierarchical power distribution network (PDN).

(b) Electrical circuit model of the hierarchical PDN in (a).

(c) Water supply chain from the source to household.

Figure S1: Illustration of Hierarchical Power Distribution Network (PDN) analogous to Water Supply Chain. Similarly to how placing
more water tanks can make the water supply more stable, placing more decaps can make the power supply more reliable

.

The PDN model we used for verification has a two-layer structure; a package layer at the bottom and a chip layer on top
of it as illustrated in Fig. S3. The PDN was modeled through the unit-cell segmentation method. The package layer was
composed of 40 × 40 package unit-cells and the chip layer was composed of 10 × 10 (i.e, Nrow × Ncol) chip unit-cells.
Because the DPP benchmark places MOS-type decaps, which are placed on the chip, ports are only available on the chip.
Thus, we extracted 10 × 10 ports information from the chip layer. See Fig. S6 (a), illustrating the chip PDN divided into
10× 10 units and each unit-cell numbered.

The electrical models of package and chip unit-cells that are used to build the PDN model for verification are described in
Fig. S4. The chip layer is composed of 10 × 10 unit-cells, and the package layer is composed of 40 × 40 unit-cells using
the segmentation method. The corresponding values of electrical parameters are listed in Table 2.

Table 2: Width and Electrical Parameters for Chip and Package Unit-Cells used for Verification.

Unit-Cell Model W R L G C

Chip 300µm 0.26 Ω 22pH 1.2mS 0.77pF
Package 0.5mm 0.093 Ω 0.25nH 5.4µS 0.045pF

We implemented MOS type decap for verification. The Decap model and its electrical parameters are shown in Fig. S5.
As mentioned in Fig. S2 (b), the solution to DPP is evaluated using the segmentation method.

Note that these electrical parameters and PDN structures were used as a benchmark. For practical use of DEVFORMER,
these PDN and decap models can be substituted by those of the reader’s interest.

13

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

(a) Generation of Chip PDN.

(b) Decap Placement.

(c) Segmentation Method.

Figure S2: Segmentation Method Implemented for PDN Generation and Decap Placement on PDN.

(a) Top-View of PDN model. (b) Side-View of PDN model.

Figure S3: Top-view and Side-view of PDN Model used for Verification

A.3. Input Problem PDN and Output Decap Placement Data Structure

Each unit-cell (i.e, port) of the PDN model described in Appendix A.2 is represented as a set of 3D feature vectors
composed of x-coordinate, y-coordinate and port condition; 1 representing the keep-out region, 2 representing a probing
port and 0 for the decap allowed ports. Total 10 × 10 (i.e, Nrow × Ncol) 3D vectors represent the problem PDN. The
solution to DPP is the placement of decaps. As illustrated in Fig. S6 (b), the solution is given as a set of port numbers
corresponding to each decap location.

14

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

(a) Balanced Transmission Line Model of Chip Unit-Cell.

(b) Balanced Transmission Line Model of Package Unit-Cell.

Figure S4: Electrical Modeling of Chip and Package Unit-Cells for PDN Model generation.

Figure S5: Decap Unit-Cell with the Electrical Parameters used for Verification.

(a) Input Problem PDN. (b) Output Decap Placement Solution.

Figure S6: Illustration of how the DPP problem with specific conditions is given as an input and decap placement solution is generated
as an output.

15

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

A.4. Objective Function of DPP

The objective of DPP is evaluated by power integrity (PI) simulation that computes the level of impedance suppression
over a specified frequency domain:

J :=
∑
f∈F

(Zinitial(f)− Zfinal(f)) ·
1GHz
f

(S1)

where Zinitial and Zfinal are the initial and final impedance at the frequency f before and after placing decaps, respec-
tively. F is the set of specified frequency points. The more impedance is suppressed, the better the power integrity and the
higher the performance score. Remark that DPP cannot be formulated as a conventional mixed-integer linear programming
(MILP)-based combinatorial optimization because PI performance can not be formulated as a closed analytical form but
can only be measured or simulated.

A.5. Random Problem Generation of DPP

To randomly generate decap placement problems (DPPs) with distinct conditions for training, testing and validation, a
probing index Iprobe is selected randomly from a uniform distribution of {1, ..., Nrow × Ncol}. Then keep-out region
indices Ikeepout are randomly selected through the following two stages: the number of keep-out regions |Ikeepout| is
randomly selected from a uniform distribution of 0 ∼ 15. Then, a set of indices of keep-out ports Ikeepout is generated
by random selection from the uniform distribution of {1, ..., Nrow × Ncol}. We generated 100 test problems and 100
validation problems for 10 × 10 PDN and 50 test problems and 50 validation problems for 15 × 15 PDN. We made sure
the training, test, and validation problems do not overlap.

B. Expert Label Collection

Figure S7: Process Flow of Genetic Algorithm for DPP.

We used a genetic algorithm (GA) as the expert policy to collect expert guiding labels for imitation learning. GA is the
most widely used search heuristic method for DPP (Erdin & Achar, 2019; de Paulis et al., 2020; Xu et al., 2021; Juang
et al., 2021). We devised our own GA for DPP, which aims to find the placement of a given number (K) of decaps on PDN
with a probing port and 0-15 keep-out regions that best suppresses the impedance of the probing port.

Notations. M is the number of samples to undergo an objective evaluation to give the best solution. The value of M is
defined by the size of population P0 times the number of generation G. K refers to the number of decaps to be placed.
Pelite is the number of elite population.

Guiding Dataset. To generate expert labels, guiding problems were generated in the same way the test dataset was
generated. We ensured the guiding data problems do not overlap with the test dataset problems. Also, we made sure each
guiding problem does not overlap. Each guiding data problem goes through the process described in Fig. S7 to collect the
corresponding expert label.

16

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

(a) Initial Population Generation. (b) Elitism.

(c) Crossover. (d) Mutation.

Figure S8: Illustration of each GA Operators used for DPP Guiding Data Generation.

Population and Generation. For GA {M = 100} (expert policy), we fixed the population size as P0 = 20 and the
generation number G = 5, which makes up the total number of samples to be M = P0 × G = 100. Each solution
in the initial population is generated randomly. As described in Fig. S6 (b), each solution consists of K numbers, each
representing a decap location on PDN. Note that each solution consists of random numbers from 0 to 99 except numbers
corresponding to probing port and keep-out region locations.

Once the initial population is generated randomly, a new population is generated through elitism, crossover, and mutation.
This whole process of generating a new population makes one generation; the generation process is iterated for G − 1
times.

Elitism. Once the initial population is formulated, the entire population undergoes objective evaluation and gets sorted in
order of objective value. The size of elite population is pre-defined as Pelite = 4 for GA {M = 100} (expert policy). That
means the top 4 solutions in the population become the elite population and are kept for the next generation.

Crossover. Crossover is a process by which new population candidates are generated. Each solution of the current popula-
tion, including the elites, is divided in half. Then, as described in Fig. S8 (c), half the solutions on the left and the other half
on the right go through random crossover for P0 times to generate a new population. If the elite population is available,
P0 − Pelite random crossover takes place so that the total population size becomes P0, including the elite population.

Mutation. According to Fig. S8 (d), solutions with overlapping numbers may exist after the random crossover. We replace
the overlapping number with a randomly generated number, and we call this mutation.

Select Best. When G is reached, the final population is evaluated by the performance metric. Then, a solution with the
highest objective value becomes the final guiding solution for the given DPP.

The guiding problems and corresponding solutions generated from GA are saved and used as guiding expert labels for
imitation learning.

17

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

C. Detailed Experimental Settings
This section provides detailed experimental settings for main experiments and ablation studies.

C.1. Training Hyperparameters.

There are several hyperparameters for training; we tried to fix the hyperparameters as Kool et al. (2019) did to show
their frameworks’ practicality. We then provided several ablation studies on each hyperparameter to analyze how each
component contributes to performance improvement.

Training hyperparameters are set to be identical to those presented in AM for TSP (Kool et al., 2019) except learning rate,
unsupervised regularization rate λ, the number of expert data N , number of action permutation transformed data per expert
data P and batch size B.

Table 3: Hyperparameter setting for training model.

Hyperparameter Value

learning rate 10−5

λ ×1032

N 2000
P 4
B 100

C.2. Implementation of ML Baselines.

There are two main ML baselines, Pointer-CRL (Kim et al., 2021) and AM-CRL (Park et al., 2022a).

Pointer-CRL. Pointer-CRL is a PointerNet-based DPP solver proposed by Kim et al. (2021). However, reproducible
source code was not available. Therefore, we implemented the Pointer-CRL following the implementation of Bello et al.
(2016) 4 and paper of Kim et al. (2021). We set the training step 1, 600 with batch size B = 100, which makes a total
160, 000 PI simulations.

Pointer-CIL. Pointer-CIL is an imitation learning version of Pointer-CRL trained by our training data. We set N = 2000,
B = 1000 for training Pointer-CIL.

AM-CRL. AM-CRL is a AM-based DPP solver proposed by Park et al. (2022a). We reproduced AM-CRL by following
implementation of Kool et al. (2019)5 and paper of Park et al. (2022a). We set the training step 2, 000 with batch size
B = 100, which makes a total of 200, 000 PI simulations.

AM-CIL. AM-CIL is an imitation learning version of AM-CRL trained by our training data. For experiments in Table
1, we set N = 2000 and B = 1000 for training. For the ablation study, we mainly ablate N , when N = 100 we set
B = 100. Here is the training sample complexity (the number of PI simulations during training) of each ML baseline and
DEVFORMER:

Table 4: Training sample complexity of pre-trained ML baselines and DEVFORMER.

Methods Number of PI simulations for Training
Pointer-CRL 200,000
AM-CRL 200,000
Pointer-CIL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)
AM-CIL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)

DEVFORMER {N = 100} (ours) 10,000 (N = 100, M = 100 from GA expert)
DEVFORMER {N = 500} (ours) 50,000 (N = 500, M = 100 from GA expert)
DEVFORMER {N = 1000} (ours) 100,000 (N = 1000, M = 100 from GA expert)
DEVFORMER {N = 2000} (ours) 200,000 (N = 2000, M = 100 from GA expert)

During the inference phase, each learned model produces a greedy solution from their policies (i.e., M = 1) following
(Kool et al., 2019).

4https://github.com/pemami4911/neural-combinatorial-rl-pytorch
5https://github.com/wouterkool/attention-learn-to-route

18

https://github.com/pemami4911/neural-combinatorial-rl-pytorch
https://github.com/wouterkool/attention-learn-to-route

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

C.3. Implementation of Meta-Heuristic Baselines.

Genetic Algorithm (GA). GA {M = 100} and GA {M = 500} are implemented as baselines. For detailed procedures
and operators used for GA, see Appendix B. GA {M = 100} is the expert policy used to generate expert data for imitation
learning in DEVFORMER. For GA {M = 100}, the size of population, P0, is 20, number of generation, G, is 5 and elite
population, Pelite, is 4. For GA {M = 500}, P0 is 50, G is 10 and Pelite is 10.

Random Search (RS). The random search method generates M random samples for a given problem and selects the best
sample with the highest objective value.

102 103 104

Number of Iterations (M)

11.8

12.0

12.2

12.4

12.6

12.8

A
ve

ra
ge

sc
or

e

Genetic Algorithm

Random Search

DevFormer(Ours) M=1

Figure S9: Performance of GA and RS with a varying number of iterations (M) in comparison to DEVFORMER at M = 1.

Fig. S9 shows the performance of GA and RS depending on the number of iterations (M). The performance was measured
by taking the average of 100 test data solved by each method at each M . GA outperformed RS at every M , and the
performance increased with increasing M for both methods. However, the gradient of performance increment decreased
with increasing M . On the other hand, our DEVFORMER showed higher performance than GA{M = 100} and RS
{M = 10, 000} with a single inference M = 1.

D. Experimental Results in terms of Power Integrity
The objective of DPP is to suppress the probing port impedance as much as possible over a specified frequency range and
is measured by the objective metric, Obj :=

∑
f∈F (Zinitial(f) − Zfinal(f)) · 1GHz

f . Performance of DEVFORMER was
evaluated in comparison to GA {M = 100} (expert policy), GA {M = 500}, RS {M = 10, 000}, AM-CRL and AM-CIL
on unseen 100 PDN cases. Each method was asked to place 20 decaps (K = 20) on each test.

19

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

D.1. Impedance Suppression Plots

10−1 100 101

Frequency [GHz]

100Im
p

ed
a
n

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(a) Test Case 1.

10−1 100 101

Frequency [GHz]

100

Im
p

ed
a
n

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(b) Test Case 2.

10−1 100 101

Frequency [GHz]

100

Im
p

ed
an

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(c) Test Case 3.

10−1 100 101

Frequency [GHz]

100

Im
p

ed
an

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(d) Test Case 4.

10−1 100 101

Frequency [GHz]

100

Im
p

ed
an

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(e) Test Case 5.

10−1 100 101

Frequency [GHz]

100

Im
p

ed
an

ce
[O

h
m

]

Initial Impedance, K=0

AM-CRL, M=1

AM-CIL, M=1

GA, M=100

GA, M=500

RS, M=10000

DevFormer(ours), M=1

(f) Test Case 6.

Figure S10: Impedance suppressed by each method, GA {M = 100} (expert policy), GA {M = 500}, RS {M = 10, 000}, AM-CRL,
AM-CIL and DEVFORMER (Ours) for 6 examples PDN cases out of 100 test dataset. (The lower, the better.)

20

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

D.2. Decap Placement Tendency Analysis

(a) GA {M = 100}.

(b) GA {M = 500}.

(c) RS {M = 10, 000}.

(d) AM-CRL {M = 1}.

(e) AM-CIL {M = 1}.

(f) DEVFORMER(ours){M = 1}.

Figure S11: Corresponding decap placement solutions to Fig. S10 by each method. Red represents probing port, black represents keep-
out ports and blue represents decap locations.

21

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

Fig. S12 shows the decap placement solutions of 6 PDN cases plotted in Fig. S10. The solutions by the search-heuristic
methods, GA and RS, tend to be scattered, while the solutions by learning-based methods, AM-CRL, AM-CIL, and DE-
VFORMER, are clustered. Since search-heuristic methods are based on random generations, they do not show a clear
tendency. On the other hand, learning-based methods are based on a policy, having a distinct tendency to place decaps.

The role of placing decaps in hardware design is to decouple the loop inductance of PDN. In terms of PI, analysis of loop
inductance is critical, but at the same time, is complex (Farrahi & Koether, 2019). The loop inductance distribution of PDN
highly depends on various design parameters such as the location of the probing port, spacing between power/ground, size
of PDN, and hierarchical layout of PDN (Fan et al., 2000). When human experts place decaps on PDN, there are too many
domain rules to consider. On the other hand, DEVFORMER understands the PDN structure and its electrical properties
by data-driven learning. According to Fig. S12, DEVFORMER tends to place decaps near the probing port, which is a
well-known expert rule in the PI domain.

D.3. Power Noise Analysis on HBM PDN

0.1 1 10 100

Frequency [GHz]

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Im
p

ed
an

ce
[Ω

]

Initial Impedance {K = 0}
GA {M = 100, K = 40}
DevFormer (Ours) {M = 1, K = 26}

(a) Impedance suppression

0 20 40 60 80 100

Time [ns]

-6

-4

-2

0

2

4

6

S
S

N
[m
V

]

Vpp = 10.546 mV

−5.273 mV

5.273 mV

Initial Impedance {K = 0}
GA {M = 100, K = 40}
DevFormer (Ours) {M = 1, K = 26}

(b) Initial power noise before decap placement

0 20 40 60 80 100

Time [ns]

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

S
S

N
[m
V

]

Vpp = 0.682 mV

Vpp = 0.610 mV

−0.341 mV

0.341 mV

−0.305 mV

0.305 mV

GA {M = 100, K = 40}
DevFormer (Ours) {M = 1, K = 26}

(c) Power noise after decap placement by our DEVFORMER{M = 1, K = 26} and GA{M = 100, K = 40}

Figure S12: Power noise analysis in terms of simultaneous switching noise (SSN) on HBM PDN before and after decap placement by
our DEVFORMER{M = 1,K = 26} and GA{M = 100,K = 40}. DEVFORMER reduces power noise more than GA while reducing
the needed decap number K by more than 30%.

Appendix D.3 analyzes the performance of DEVFORMER in comparison to GA{M = 100} in terms of power noise. Out of
100 test cases on HBM PDN, we randomly chose a test case and carried out peak-to-peak power noise analysis for a circuit
block, phase-locked loop (PLL), operating at 5GHz. Note that DEVFORMER placed 26 decaps and GA{M = 100} placed
40 decaps. DEVFORMER reduced power noise more than GA{M = 100} with 14 less decaps. The impedances of the
probing port on the power distribution network (PDN) before and after decap placed by DEVFORMER and GA{M = 100}
are presented in Fig. S12a. The time-domain power noise before and after decap placement by each method is shown
in Fig. S12b. For performance comparison, Fig. S12c shows the time-domain power noise after decap placement by
DEVFORMER and GA{M = 100}.

22

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

E. Further Ablation Study
This section reports further ablation studies on the hyperparameters N (number of offline expert data used), λ (weight of
self-exploitation loss term), and P (number of permutation transformed labels).

E.1. Ablation Study on N

N is the number of expert labels generated by the expert policy, GA {M = 100}. We ablate N ∈ {100, 500, 1000, 2000}
with fixed P = 4 and λ = 5 and compare to AM-CIL baseline for all N . As shown in Table 5, DEVFORMER with
N = 2000 gives the best performance, and DEVFORMER outperforms AM-CIL for all N variations. The performance of
AM-CIL is saturated at N > 500 while the performance of DEVFORMER continuously increases with the increase of N .

Table 5: Ablation study on N for DEVFORMER (P = 4, λ = 8) and AM-CIL.

Validation Score

AM-CIL {N = 100} 11.02
DEVFORMER (ours) {N = 100} 12.76
AM-CIL {N = 500} 11.80
DEVFORMER (ours) {N = 500} 12.85
AM-CIL {N = 1000} 11.99
DEVFORMER (ours) {N = 1000} 12.86
AM-CIL {N = 2000} 11.77
DEVFORMER (ours) {N = 2000} 12.88

0 2 4 6 8 10
Number of epochs

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

A
ve

ra
ge

sc
or

e

DevFormer (N=100)

DevFormer (N=500)

DevFormer (N=1000)

DevFormer (N=2000)

AM-CIL (N=100)

AM-CIL (N=500)

AM-CIL (N=1000)

AM-CIL (N=2000)

Figure S13: Validation graph of DEVFORMER and AM-CIL for varying number of offline expert data N ∈ {100, 500, 1000, 2000}.

23

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

E.2. Ablation Study on λ

λ refers to the weight of self-exploitation loss term LSelf , in the collaborative learning loss L := LExpert + λLSelf . To
set λ × LU to be 0.1 ∼ 1, we first multiplied 1032 to λ because the probability of a specific solution is extremely small.
Then, we ablated for λ ∈ {1, 2, 4, 6, 7, 8, 9, 10} (1032 is omitted) with fixed N = 2000 and P = 4. For every λ, it prevents
overfitting of the model in comparison to the baselines trained only with LExpert (see Fig. S14). According to the Table 7,
λ = 8 gives the best validation scores.

Table 6: Ablation study of λ on fixed P = 4 and N = 2000.

λ (×1032) Validation Score
1 12.863
2 12.865
3 12.866
4 12.870
5 12.877
6 12.874
7 12.862
8 12.871
9 12.871
10 12.870
Only IL 11.832

0 20 40 60 80 100
Epochs

11.0

11.5

12.0

12.5

A
ve

ra
ge

sc
or

e

λ=1

λ=2

λ=3

λ=4

λ=5

λ=6

λ=7

λ=8

λ=9

λ=10

AM-CIL

Figure S14: Validation graph of λ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} on fixed P = 4 and N = 2000.

24

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

E.3. Ablation Study on P

P is the number of permutation-transformed labels per each expert label used for imitation learning-based expert exploita-
tion. We ablate P ∈ {4, 6, 8} with fixed N = 2000 and λ = 5 and compared collaborative symmetricity exploitation (i.e.,
both expert and self-exploitation) to only expert exploitation training cases. As shown in Table 7, P = 4 with {Expert ex-
ploitation + Self-exploitation} give best performances. For every P , {Expert exploitation + Self-exploitation} gives better
performances, indicating the self-exploitation scheme well prevents overfitting the training process for the sparse dataset.

Table 7: Ablation study on P with and without unsupervised loss term.

Validation Score

Expert exploitation {P = 4} 12.85
+ Self- exploitation {λ = 5} 12.88
Expert exploitation {P = 6} 12.87
+ Self- exploitation {λ = 5} 12.88
Expert exploitation {P = 8} 12.88
+ Self- exploitation {λ = 5} 12.88

0 10 20 30 40 50 60
Epochs

11.00

11.25

11.50

11.75

12.00

12.25

12.50

12.75

A
ve

ra
ge

sc
or

e P=1

P=2

P=3

P=4

P=5

P=6

P=7

P=8

Figure S15: Validation score of P ablation with and without self-exploitation loss term.

25

DevFormer: A Symmetric Transformer for Context-Aware Device Placement

F. Proof of Theorem 1
(→) Suppose that policy π(a|x) is AP-symmetric. Then, by the Definition 1, π(a|x) = π(t(a)|x) for any a ∈ A, x ∈ X ,
t ∈ TAP .

Therefore,
b(π;p) = Ex∼pX (x)Ea∼pA(a)Et∼pTAP

(t)[||π(a|x)− π(t(a)|x)||1] = 0

(←) Suppose that b(π;p) = 0, where pX (x) > 0, pA(a) > 0, pTAP
(t) > 0.

Assume that there exist a∗ ∈ A, x∗ ∈ X , and t∗ ∈ TAP , such that π(a∗|x∗) ̸= π(t(a∗)|x∗).

Then,

b(π;p) = Ex∼pX (x)Ea∼pA(a)Et∼pTAP
(t)[||π(a|x)− π(t(a)|x)||1]

≥ pX (x∗)pA(a
∗)pTAP

(t∗)||π(a∗|x∗)− π(t(a∗)|x∗)||1 > 0,

which results in a contradiction. Therefore, π(a|x) = π(t(a)|x) for any Fa ∈ A, x ∈ X , t ∈ TAP : i.e, policy π(a|x) is
AP-symmetric.

26

	Introduction
	Preliminaries and Background
	Decap Placement Problem (DPP)
	Contextual Markov Decision Processes (cMDP)
	Objective Function J

	Methodology
	DevFormer Architecture
	Action-permutation Symmetricity and Order Bias
	Collaborative Symmetricity Exploitation (CSE)

	Experimental Results
	Dataset and Benchmark
	Performance Evaluation
	Ablation Study
	Sample Efficiency Evaluation for Offline Dataset
	Zero shot Generalization to various tasks
	Application on Real-world Hardware
	Application to Other Offline Contextual Designs

	Related Works
	Conclusion
	DPP Electrical Modeling and Problem Definition
	Domain Perspective Decap Placement Problem
	PDN and Decap Models for Verification
	Input Problem PDN and Output Decap Placement Data Structure
	Objective Function of DPP
	Random Problem Generation of DPP

	Expert Label Collection
	Detailed Experimental Settings
	Training Hyperparameters.
	Implementation of ML Baselines.
	Implementation of Meta-Heuristic Baselines.

	Experimental Results in terms of Power Integrity
	Impedance Suppression Plots
	Decap Placement Tendency Analysis
	Power Noise Analysis on HBM PDN

	Further Ablation Study
	Ablation Study on N
	Ablation Study on
	Ablation Study on P

	Proof of thm:order-bias

