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Abstract

Subseasonal forecasting of the weather two to six weeks in advance is critical
for resource allocation and advance disaster notice but poses many challenges
for the forecasting community. At this forecast horizon, physics-based dynami-
cal models have limited skill, and the targets for prediction depend in a complex
manner on both local weather and global climate variables. Recently, machine
learning methods have shown promise in advancing the state of the art but only
at the cost of complex data curation, integrating expert knowledge with aggrega-
tion across multiple relevant data sources, file formats, and temporal and spatial
resolutions. To streamline this process and accelerate future development, we
introduce SubseasonalClimateUSA, a curated dataset for training and benchmark-
ing subseasonal forecasting models in the United States. We use this dataset to
benchmark a diverse suite of subseasonal models, including operational dynamical
models, classical meteorological baselines, and ten state-of-the-art machine learn-
ing and deep learning-based methods from the literature. Overall, our benchmarks
suggest simple and effective ways to extend the accuracy of current operational
models. SubseasonalClimateUSA is regularly updated and accessible via the
https://github.com/microsoft/subseasonal_data/ Python package.

1 Introduction

Weather and climate forecasting are fundamental scientific problems with many applications, includ-
ing agriculture, energy grids, transportation and disaster prevention [36, 71, 55]. Indeed, short-term
and long-term operational forecasts are critically employed in many sectors of our society and the
world economy. However, skillful forecasts for the subseasonal regime—that is, 2 to 6 weeks ahead—
still present operational challenges due to the chaotic nature of the weather [32] and to the interaction
of weather and climate variables operating at different spatial and temporal scales [66].

In recent years, these challenges have spurred intense activity from both the meteorological and
machine learning communities. On the one hand, steady advances have extended the reach of physics-
based dynamical models of the atmosphere and oceans into the subseasonal realm [64, 50, 29]. On
the other, parallel efforts from the machine learning community have led to improved predictive
skill through new models trained on historical observational data and dynamical model forecasts
[31, 8, 23, 2, 19, 78, 67–69, 60, 39].

Nevertheless, developing and benchmarking new subseasonal models remains challenging due to
a lack of standardized, curated datasets targeting this forecast horizon. The data necessary for
subseasonal predictions are often collected from multiple data sources, each with its own data
processing pipeline, and then standardized into a common spatial and temporal resolution. Because
there is uncertainty regarding the main drivers of subseasonal phenomena, domain experts are
typically needed to determine which features are likely to carry signal, and different developers

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/microsoft/subseasonal_data/


employ different aggregation techniques over time and space. Finally, the changing nature of weather
makes the forecasting task hard to compare across different regions and years. This, in turn, has
spurred several subseasonal forecasting challenges to benchmark existing solutions [47, 46, 65].

In this paper, we introduce SubseasonalClimateUSA, a diverse collection of ground-truth measure-
ments and dynamical forecasts for subseasonal prediction over the contiguous United States (U.S.).
We include spatiotemporal measurements with known subseasonal impact (including, e.g., tempera-
ture, precipitation, sea surface temperature, and geopotential height); the states of known subseasonal
drivers such as El Niño-Southern Oscillation (ENSO) and the Madden-Julian oscillation (MJO); and
dynamical predictions for temperature and precipitation from eight operational models including
the U.S. Climate Forecast System version 2 (CFSv2) and the leading subseasonal model from the
European Centre for Medium-Range Weather Forecasts (ECMWF). The dataset is regularly updated
and accessible via the open-source subseasonal_data Python package for easy retrieval.

We then use the SubseasonalClimateUSA data to benchmark a wide range of subseasonal mod-
els, highlighting their strengths and weaknesses. These models include traditional meteorological
benchmarks (e.g., Persistence and Climatology), operational dynamical models (e.g., CFSv2 and
ECMWF), and ten state-of-the-art deep learning (e.g., N-BEATS [48] and Informer [79]) and machine
learning (e.g., CFSv2++ [39] and Prophet [62]) forecasters. Two of these models (Salient 2.0, the
best-performing deep learning method, and LocalBoosting) were new creations of this work, and nine
required new subseasonal forecasting implementations now available via the subseasonal_toolkit
Python package. Model performance is measured for four standard subseasonal tasks: predicting
average temperature 3-4 and 5-6 weeks ahead and predicting accumulated precipitation 3-4 and 5-6
weeks ahead. They are evaluated in terms of accuracy (measured by spatial root mean squared error)
and skill (measured by uncentered anomaly correlation), over the years 2011–2020. Overall, we
find that the simplest learned models typically outperform the meteorological baselines, the leading
operational models, and the remaining learning methods. Additionally, we show that ensembling
different methods through online learning leads to further gains in terms of both accuracy and skill.

Our aims in releasing SubseasonalClimateUSA are twofold. First, we aim to facilitate the devel-
opment of skillful learning-based subseasonal forecasting models by providing a comprehensive,
standardized, and machine-learning-friendly dataset. Second, we aim to provide standardized bench-
marks for subseasonal forecasting progress. To this end, we define four core subseasonal prediction
tasks that users can use as benchmarking targets: forecasting (i) temperature in weeks 3–4, (ii)
temperature in weeks 5–6, (iii) precipitation in weeks 3–4, and (iv) precipitation in weeks 5–6.
Significant advances in any of these tasks would have significant implications for the allocation of
water resources, agricultural production, and disaster relief [47, 71].

Related Work There are several datasets available for benchmarking weather models. For
example, both the National Oceanic and Atmospheric Administration (NOAA) and the ECMWF
provide reanalysis datasets tracking weather variables from the whole globe from the 1940s until
today [24, 21], and global model simulations can be found in datasets provided by the World Climate
Research Programme [13] and ECMWF [6]. More recently, several new datasets have been made
available targeting specific AI applications in weather. For instance, classifying clouds [53], studying
storm morphology [18] and nowcasting [16], predicting tropical cyclone intensity [35] and air quality
metrics [4], and analyzing watershed-scale hydrometeorological time series [1] and river flows
[17]. There are also more general-purpose datasets, such as WeatherBench [52], which provides a
benchmark for forecasting different medium-range weather variables 3 to 5 days out. For a general
overview of weather datasets for machine learning, see [11].

While these datasets have helped advance weather prediction in different tasks, there are no general
datasets specifically targeting the subseasonal scale for the U.S. There have been instead several com-
petitions targeting this lead time including the U.S. Bureau of Reclamation (USBR) Sub-Seasonal Cli-
mate Forecast Rodeos [47, 46] and the World Meteorological Organization Seasonal-to-Subseasonal
(S2S) Artificial Intelligence (AI) Challenge [65]. Furthermore, the SubX Experiment [50] also
makes a series of subseasonal models available for benchmarking (which are included in the Sub-
seasonalClimateUSA dataset). Finally, the precursor of this work, the SubseasonalRodeo dataset of
[23], targets only the Western U.S., offers only a static data snapshot ending in 2018, provides no
forecasts from the leading subseasonal dynamical model (ECMWF), and includes only coarse-grained
(monthly) forecasts from the North American Multi-Model Ensemble, with limited utility for weekly
or biweekly forecasting.
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In contrast, SubseasonalClimateUSA is a modern, regularly updated resource targeting the contiguous
U.S. with granular (daily and subweekly) forecasts from ECMWF and seven other operational
dynamical models in the SubX consortium [25]. Notably, both the present work and past studies
have found complementary predictive signals in physics-based dynamical model forecasts and pure
observational data that can lead to better forecasts than either data source alone [see, e.g., 23, 39].
In fact, recent work has demonstrated that even the least skillful operational dynamical models can
produce forecasts with skill comparable to the best when corrected suitably with observational data
[39]. As a result, we have endeavored to include both granular measurements and granular model
forecasts in the SubseasonalClimateUSA dataset to best equip future model developers, researchers,
and forecasters.

2 The SubseasonalClimateUSA dataset

The SubseasonalClimateUSA dataset houses a diverse collection of ground-truth measurements
and dynamical model forecasts relevant to forecasting at subseasonal timescales. The dataset is
regularly updated, CC BY 4.0 licensed, accessible via the open-source subseasonal_data Python
package, and documented at the URL https://github.com/microsoft/subseasonal_data/
blob/main/DATA.md. We summarize dataset contents, sources, and processing steps below and
provide supplementary details in Appendix A.

Data Collection and Processing Figure 1 summarizes the SubseasonalClimateUSA data collection
and processing pipeline. The pipeline collects raw data from seven meteorological data sources
(contributing different variables, resolutions, and file formats), passes all data through a common pre-
processing pipeline, and outputs a standardized collection of machine-learning-ready Python Pandas
DataFrames and Series objects stored in HDF5 format. Each file contributes data variables falling
into one of three categories: (i) spatial (varying with the target grid point but not the target date);
(ii) temporal (varying with the target date but not the target grid point); (iii) spatiotemporal (varying
with both the target grid point and the target date). Data representing ground-truth measurements are
typically downloaded daily on 0.25◦ or 0.5◦ latitude-longitude grids. However, subseasonal forecasts
are typically issued on coarser 1◦ or 1.5◦ grids and averaged over two-week periods [47, 46, 65].
As a result, unless otherwise noted below, temporal and spatiotemporal variables arising from daily
data sources were derived by averaging input values over a 14-day rolling window, and spatial and
spatiotemporal variables were derived by interpolating input data to a 1◦ latitude-longitude grid and
retaining only the grid points belonging to the contiguous U.S. To accommodate ECMWF forecasts,
which were only made available on a 1.5◦ latitude-longitude grid [12], we additionally download
SubX forecasts at 1.5◦ resolution and interpolate temperature and precipitation onto the same grid.
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Figure 1: Schematic of the SubseasonalClimateUSA data collection and processing pipeline.
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Following the protocol adopted by the USBR Sub-Seasonal Climate Forecast Rodeos [47, 46],
our temperature and precipitation variables are interpolated onto fixed 1◦ × 1◦ (NUM_LAT=181,
NUM_LON=360) and 1.5◦ × 1.5◦ (NUM_LAT=121, NUM_LON=240) grids using the NCAR Command
Language function area_hi2lores_Wrap with arguments new_lat = latGlobeF(NUM_LAT,
“lat”, “latitude”, “degrees_north”); new_lon = lonGlobeF(NUM_LON, “lon”,
“longitude”, “degrees_east”); wgt = cos(lat*pi/180.0) (so that points are weighted
by the cosine of the latitude in radians); opt@critpc = 50 (to require only 50% of the values to be
present to interpolate); and fiCyclic = True (indicating global data with longitude values that do
not quite wrap around the globe). All remaining spatial and spatiotemporal variables are interpolated
using the Climate Data Operators operator remapdis (distance-weighted average interpolation) with
target grid r360x181.

Data Features The variables comprising the SubseasonalClimateUSA dataset include:

• Temperature (global and U.S., 1979–present): daily mean of maximum and minimum temperature
at 2 meters in ◦C [14, 40].

• Precipitation (global and U.S., 1948–present): daily accumulated precipitation in mm, aggregated
by summing over a rolling two-week window instead of averaging [77, 7, 76, 41, 42].

• Sea surface temperature and sea ice concentration (global, 1981–present): daily variables that
track variability in the oceans; the top three principal components for each variable were extracted
using global 1981–2010 loadings [54, 45].

• Stratospheric geopotential height, zonal winds, and longitudinal winds (global, 1948–present):
daily geopotential height at 10, 100, 500, 850 millibars and zonal and longitudinal winds at 250
and 925 millibars as indicators of polar vortex variability; the top three principal components of
each feature were extracted from global 1948–2010 loadings [24, 44].

• Surface pressure and relative humidity (U.S., 1948–present): daily pressure and relative humidity
near the surface (sigma level 0.995) [24, 44].

• Sea level pressure, precipitable water for entire atmosphere, and potential evaporation (U.S.,
1948–present): daily mean of pressure in millibars, amount of water in the atmosphere available
for precipitation in kg/m2, and potential evaporation rate at surface [24, 44].

• Elevation and Köppen-Geiger climate classification (global): multi-resolution terrain elevation
data [9] and Köppen-Geiger climate classification [26] for each grid point.

• Madden-Julian Oscillation (MJO, 1974–present): daily measure of tropical convection known to
impact subseasonal climate; phase and amplitude were extracted (but not aggregated) [70, 38].

• Multivariate ENSO index (MEI.v2, 1979–present): bimonthly scalar summary of the state of the
El Niño–Southern Oscillation, an ocean-atmosphere coupled climate mode [73–75, 43].

• CFSv2 (U.S., 1999–present): daily 32-member ensemble mean forecasts of temperature and
precipitation from the coupled atmosphere-ocean-land dynamical model with 0.5-29.5 day lead
times [57, 25, 61].

• SubX (U.S., 1999–present): subweekly forecasts and hindcasts from seven dynamical models
(GMAO-GEOS, NRL-NESM, RSMAS-CCSM4, ESRL-FIM, EMC-GEFS, ECCC-GEM, NCEP-
CFSv2) and their multi-model mean for temperature and precipitation on a 1.5◦ × 1.5◦ latitude-
longitude grid [25, 61].

• ECMWF (U.S., 1995–present): control and perturbed forecasts and reforecasts of precipitation
and temperature on a 1.5◦ × 1.5◦ latitude-longitude grid [64, 12].

An example of SubseasonalClimateUSA observations and dynamical model forecasts is displayed
in Figure 2.

Dataset Limitations Here, we highlight several limitations of the SubseasonalClimateUSA
dataset. First, the dataset was designed for forecasting in the contiguous U.S., and hence several
variables are only available in that region. In future work, we aim to develop an analogous dataset for
global subseasonal forecasting. Second, subseasonal forecasts are commonly made at the biweekly
temporal resolution and 1◦ or 1.5◦ spatial resolution provided in the SubseasonalClimateUSA dataset
[47, 46, 65]; however, these resolutions alone are insufficient for more localized forecasting problems
without additional downscaling. Finally, many of our variables have undergone regridding via
interpolation, which, while standard, can still introduce inaccuracies.
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Figure 2: Example of SubseasonalClimateUSA observations and dynamical model forecasts.

3 Subseasonal Forecasting Tasks

We study model performance through four canonical subseasonal forecasting tasks: predicting two
variables—average temperature (◦C) and accumulated precipitation (mm) over a two-week period—
each over two time horizons: 15–28 days ahead (weeks 3–4) and 29–42 days ahead (weeks 5–6).
We forecast each variable at G = 862 locations on a 1◦ × 1◦ latitude-longitude grid covering the
contiguous U.S. These prediction targets and time horizons were the focus of the Sub-Seasonal
Climate Forecast Rodeos [47, 46], two yearlong real-time forecasting competitions sponsored by
USBR and NOAA to advance the state of subseasonal climate prediction. The same targets are used
by water managers to apportion water resources, control wildfires, and anticipate droughts and other
extreme weather [47, 71].

We evaluate each forecast according to two metrics recommended by the USBR [47, 46]: root mean
squared error (RMSE) and skill (also known as uncentered anomaly correlation [72]). For a two-week
period starting on date t, let yt ∈ RG denote the vector of ground-truth measurements yt,g for each
grid point g and ŷt ∈ RG denote a corresponding vector of forecasts. In addition, define climatology
ct as the average ground-truth values for a given month and day over the years 1981-2010. Then the
RMSE is given by

RMSE(ŷt,yt) =
√

1
G

∑G
g=1(ŷt,g − yt,g)2 ∈ R+

with a smaller value indicating a more accurate forecast, and skill is defined by

skill(ŷt,yt) =
⟨ŷt−ct,yt−ct⟩

∥ŷt−ct∥2·∥yt−cT ∥2
∈ [−1, 1]

with a larger value indicating higher quality. For a collection of dates, we report average RMSE and
average percentage skill, which is 100 times the average skill.

Training and Validation Recommendations We recommend adopting the Wednesdays of each
complete year from 2011 onward as a standard test set when evaluating performance year by year
(as in Figure 3) and the Wednesdays from the ten year period 2011–2020 as a standard test set when
comparing with the overall (Table 1) or seasonal (Figure 3) performance reported in this work. We also
recommend a progressive training and validation protocol in which, to produce a forecast for a given
target date, a model can be (re)trained and (re)tuned using any data fully observable on the associated
forecast issuance date (i.e., 14 days prior for weeks 3–4 and 28 days prior for weeks 5–6). All of the
models evaluated in Section 5 respect this protocol. In addition, the SubseasonalClimateUSA dataset
provides convenient combination dataframes containing target variables associated with predictive
features lagged by an appropriate amount to ensure that each predictive feature was fully observed on
the issuance date associated with the target date.
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4 Benchmark Models

Our experiments will evaluate three classes of forecasting methods: three standard meteorological
baselines, the adaptive bias correction (ABC) models introduced in [39], and seven other state-of-
the-art machine learning and deep learning methods drawn from the literature. We will also evaluate
ensemble forecasts derived from these models. Open-source model implementations are available via
the subseasonal_toolkit Python package. Most models train on all available data (subject to the
progressive training and validation constraint of Section 3) and tune hyperparameters using a second
round of progressive evaluation over the prior three years. Appendix B contains supplementary
implementation details for each model, including training, hyperparameter tuning, and testing details.

Meteorological Baselines We first consider three standard subseasonal forecasting baselines.

CLIMATOLOGY. Climatology is a standard subseasonal benchmark for the expected temperature or
precipitation at a location. For a given grid point and target date, it forecasts the average value of the
target variable on the same day and month over 1981-2010 [3].

DEBIASED CFSV2. CFSv2 is the U.S. operational dynamical model commonly used for subseasonal
forecasting [57]. Debiased CFSv2 is a corrected ensemble forecast used as a benchmark in the two
Subseasonal Climate Forecast Rodeo competitions [46, 23]. First, a CFSv2 ensemble forecast is
formed by averaging 32 forecasts for the target period based on 4 different model initializations
produced at 8 different lead times. The ensemble is then debiased by adding the mean value of the
target variable on the target month and day over the period 1999-2010 and subtracting the mean
ensemble CFSv2 reforecast over the same period.

PERSISTENCE. This baseline [37, 69] forecasts the most recently observed two-week target value.

ABC Models We next evaluate the ABC models introduced in [39]. ABC is a hybrid physics-plus-
learning approach that takes as input a dynamical model forecast (here, CFSv2) and uses the historical
record of prior forecasts and observations to correct the model’s output and improve predictive skill.
While the three learning models contributing to ABC described below are simple and computationally
inexpensive, Section 5 shows that each enhancement improves over both operational practice and
state-of-the-art learning techniques.

CLIMATOLOGY++. Climatology++ is as an adaptive form of Climatology that learns how many prior
years and how many dates in a window around the target date to include in a smoothed historical
mean or geometric median estimate for a given grid point, target date, and target variable; importantly,
unlike a static climatology, Climatology++ allows these learned window sizes to vary over time to
adapt to noise levels and variability.

CFSV2++. CFSv2++ is a learned correction for raw CFSv2 forecasts. After averaging CFSv2
forecasts over a range of issuance dates and lead times, CFSv2++ debiases the ensemble forecast by
adding the mean value of the target variable and subtracting the mean forecast over a learned window
of observations around the target day of year. The range of ensembled lead times, the number of
averaged issuance dates, and the size of the observation window employed are selected adaptively.

PERSISTENCE++. For each grid point and target date, Persistence++ predicts a target variable as
a function of lagged measurements, Climatology, and CFSv2 forecasts observable for the same
grid point on the forecast issuance date. These features are combined using a linear least squares
regression trained on all available historical data available as of the forecast issuance date.

State-of-the-art Learning Methods We also consider seven state-of-the-art learning methods.

AUTOKNN. AutoKNN [23] was part of a winning solution in the Subseasonal Climate Forecast
Rodeo I [46]. Our implementation adapts it to target RMSE as an error metric.

INFORMER. The Informer [79] is a transformer-based deep learning model for time series shown to
have state-of-the-art performance on a number of short term weather forecasting tasks.

LOCALBOOSTING. LocalBoosting is a decision tree model using CatBoost [51] over features in a
bounding box around the target to extract meaningful spatial information.

MULTILLR. The MultiLLR [23] model is a customized backward stepwise procedure to select
SubseasonalClimateUSA features relevant for prediction and local linear regression to combine those
features into a forecast for each grid point.
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N-BEATS. N-BEATS [48] is a neural network time series forecaster that obtained state-of-the-art
results on the Makridakis M3 [33] and M4 [34] benchmarks for time-series forecasting.

PROPHET. The Prophet model of [62] is an additive regression model for time-series and a winning
solution in the Subseasonal Forecast Rodeo II [46].

SALIENT 2.0. Salient 2.0 is an ensemble of fully-connected neural networks, trained on historical
sea surface temperature (SST) data. It is based on Salient [59], a winning solution for the Subseasonal
Forecast Rodeo I [46].

Ensembles Ensemble forecasts that combine the predictions of multiple models have been shown
to improve the performance of long-, mid-, and short-range operational forecasting [10, 49, 23]. Here,
we evaluate two ensembling strategies: Uniform ABC, which forms an equal-weighted average of the
ABC model forecasts [27], and Online ABC, which uses the AdaHedgeD algorithm of [15] to choose
weights adaptively to reflect relative model performance. See Appendices B.11 and B.12 for details.

5 Benchmark Results

We now turn to evaluating the models of Section 4 on the four subseasonal forecasting tasks of
Section 3. We generate forecasts for each Wednesday in the years 2011–2020 and, for each reported
period, we assess both mean RMSE relative to a baseline model and average percentage skill.

Overall Performance Table 1 summarizes model performance across the entire ten-year period
2011–2020. On each task, we find that the ABC models provide both the best RMSE and the best
skill performance. For example, on the two precipitation tasks, Climatology++ alone improves upon
debiased CFSv2 RMSE by 9% and skill by 161-250%, outperforming each of the meteorological
baselines and state-of-the-art learning methods. On the two temperature tasks, CFSv2++ and Per-
sistence++ each outperform all meteorological baselines and state-of-the-art learning methods, with
CFSv2++ improving debiased CFSv2 RMSE by 6-7% and skill by 30-53%. On every task, we
observe further improvements in both RMSE and skill by ensembling the predictions of the three
ABC models.

One might wonder how the simple ABC models are able to outperform both the standard meteorolog-
ical baselines and the state-of-the-art learning methods. We believe the answer to this question is
multifaceted. First, even the leading physics-based dynamical models are subject to inaccuracies due
to inexact measurement, incomplete representation of the environment, imperfect simulation, and
chaos [32]. Second, many of the more elaborate machine learning models studied in this work appear
to be prone to overfitting in the presence of the relatively high noise levels of subseasonal forecasting.
Third, the best-performing models, while relatively simple, are hybrid physics-plus-learning models
designed to leverage the strengths of an underlying dynamical model while simultaneously enhancing
its predictive skill by reducing its systemic bias.

Amongst the state-of-the-art learning methods, we find that Prophet performs the best for temperature
weeks 5-6 and the two precipitation tasks, while MultiLLR performs the best for temperature weeks
3-4. Amongst the neural network methods (Informer, N-BEATS, and Salient 2.0), Salient 2.0 is the
top performer with skill that rivals the other learning methods and precipitation RMSE that outpaces
debiased CFSv2. In the more detailed analyses to follow, we omit Informer and N-BEATS due to
space constraints and their relatively poor performance overall.

Performance by Season and by Year We observe the same trends when performance is disaggre-
gated by season or by year (Figure 3). For example, in every season, Climatology++ outperforms
debiased CFSv2 and each state-of-the-art learner for the two precipitation tasks, while CFSv2++
and Persistence++ outperform debiased CFSv2 and each state-of-the-art learner each season for the
two temperature tasks. Similarly and despite significant heterogeneity in all models’ performances
from year to year, the ABC models provide the best RMSE performance in 9 out of 10 years for
temperature weeks 3-4 and in 10 out of 10 years for the two precipitation tasks. Indeed, Persistence++
alone dominates the temperature weeks 3-4 baselines and learners every year save 2019, and the
more detailed RMSE summary of Appendix C.2 shows that the Uniform and Online ABC ensembles
dominate the precipitation baselines and learners every year. In Figure 3, we observe nearly identical
improvement patterns for skill.
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Table 1: Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE
across 2011–2020 in the contiguous U.S. along with a 95% bootstrap confidence interval. The best
performing model in each model group is bolded, and the best performing model overall is shown in
green.

% IMPROVEMENT OVER MEAN DEB. CFSV2 RMSE AVERAGE % SKILL
TEMPERATURE PRECIPITATION TEMPERATURE PRECIPITATION

GROUP MODEL WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6

BASELINES CLIMATOLOGY 0.13±1.33 2.93±1.23 7.79±0.55 7.51±0.48 − − − −
DEB. CFSV2 − − − − 24.94±1.88 19.12±1.94 5.77±1.11 4.28±1.09
PERSISTENCE −109.94±5.3 −170.1±7.56 −28.27±1.47 −31.92±1.53 10.64±2.26 6.22±2.38 8.31±0.99 7.41±1.01

ABC CLIMATOLOGY++ 2.06±1.35 4.83±1.18 8.86±0.53 8.57±0.5 18.61±1.95 18.87±1.92 15.04±1.02 14.99±1.03
CFSV2++ 5.94±1.08 7.09±1.02 8.37±0.5 8.06±0.45 32.38±1.75 29.19±1.76 16.34±1.03 16.09±1.07
PERSISTENCE++ 6.00±1.06 6.43±0.99 8.61±0.51 7.89±0.45 32.4±1.71 26.73±1.67 13.38±0.91 9.77±0.9

LEARNING AUTOKNN 0.93± 1.33 3.22± 1.25 7.73± 0.56 7.33± 0.49 12.43±1.67 8.56±1.52 6.66±1.23 5.93±1.33
INFORMER −40.61±4.4 −39.57±3.89 −2.05±0.86 −2.53±0.83 0.55±2.22 0.01±2.20 6.15±1.28 5.86±1.31
LOCALBOOSTING −0.76±1.24 −0.29±1.24 7.36±0.58 6.89±0.5 14.44±1.59 12.69±1.64 10.82±0.87 9.72±0.86
MULTILLR 2.45±1.18 2.21±1.24 7.12±0.51 6.65±0.47 24.5±1.77 16.68±1.85 9.49±1.03 7.97±1.04
N-BEATS −46.71±2.48 −52.05±2.89 −19.19±0.92 −21.32±0.89 9.21±1.40 4.16±1.39 5.48±0.59 4.46±0.62
PROPHET 1.13±1.4 3.78±1.26 8.42±0.55 8.12±0.51 20.21±1.54 19.78±1.57 13.51±0.87 13.41±0.89
SALIENT 2.0 −6.95±1.69 −4.05±1.73 2.97±0.74 2.65±0.69 11.24±2.04 11.77±2.03 10.11±1.36 9.99±1.31

ENSEMBLES UNIFORM ABC 6.47±1.09 7.55±0.99 9.47±0.5 9.05±0.45 33.58±1.8 30.56±1.7 18.94±0.98 18.35±1.01
ONLINE ABC 6.67±0.99 7.67±0.98 9.51±0.51 9.04±0.42 33.27±1.71 30.06±1.72 18.86±1.01 17.91±1.01

Spatial Performance Figure 4 displays how the errors of the leading models are distributed across
the contiguous U.S. Here we focus on the ABC models, the best deep learning model (Salient 2.0),
the best learning model (Prophet), and the best ensemble model (Online ABC) and provide RMSE
improvement maps for the remaining models in Appendix C.4. At each grid point location, darker
green indicates stronger improvement over debiased CFSv2, and we simultaneously witness two
noteworthy phenomena. First, the improvements of each model are heterogeneous across space with
the strongest improvements often occurring in the Western U.S., in Florida, or in Maine. Second,
despite this heterogeneity, the ABC models consistently outperform the state-of-the-art learners.

ECMWF Comparison To compare the ABC models with the state-of-the-art ECMWF S2S
dynamical model, we evaluate on the 1.5◦ × 1.5◦ grid and 2016-2020 twice-weekly target date range
available from [12, 66]. We debias both the ECMWF control forecast and its 50-member ensemble
forecast following the operational protocol described by [69]; see Appendix B.13 for more details.
Table 2 summarizes model performance. Remarkably, for precipitation, Climatology++ improves
upon both the skill and the RMSE of ECMWF, despite making no use of dynamical model forecasts.
Meanwhile, the Uniform ABC ensemble outperforms ECMWF in both metrics for all four tasks.

Table 2: Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE
across 2016-2020 in the contiguous U.S. along with a 95% bootstrap confidence interval. The best
performing model in each model group is bolded, and the best overall is shown in green.

% IMPROVEMENT OVER MEAN DEB. CFSV2 RMSE AVERAGE % SKILL
TEMPERATURE PRECIPITATION TEMPERATURE PRECIPITATION

GROUP MODEL WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6 WEEKS 3-4 WEEKS 5-6

BASELINES CLIMATOLOGY 1.56±1.39 3.92±1.27 8.7±0.5 7.56±0.53 − − − −
DEB. CFSV2 − − − − 22.64±2.01 15.71±2.09 2.84±1.16 1.68±1.11
PERSISTENCE −105.57±5.58 −169.22±7.39 −28.05±1.56 −33.43±1.65 9.12±2.48 2.27±2.48 8.11±1.07 6.21±1.04

ABC CLIMATOLOGY++ 3.88±1.38 6.44±1.13 9.79±0.53 8.61±0.51 22.09±1.89 23.2±1.91 15.34±1.05 15.06±1.07
CFSV2++ 5.65±1.04 6.65±0.96 8.94±0.51 7.6±0.46 30.91±1.8 26.87±1.93 14.6±1.23 13.85±1.2
PERSISTENCE++ 7.06±1.05 7.86±0.95 9.06±0.48 7.57±0.46 31.46±1.92 28.04±1.87 10.03±0.99 6.61±0.95

ECMWF DEBIASED CONTROL −29.05±2.39 −33.25±2.69 −30.81±1.45 −31.84±1.43 18.52±1.82 13.71±1.85 0.82±1.07 3.17±1.08
DEBIASED ENSEMBLE 4.62±1.19 3.69±1.27 7.90±0.5 6.41±0.46 32.27±1.69 26.61±1.71 13.12±1.16 9.10±1.09

ENSEMBLES UNIFORM ABC 7.43±1.05 8.27±0.94 10.04±0.5 8.77±0.46 32.77±1.79 29.75±1.87 16.53±1.15 15.71±1.17
ONLINE ABC 7.2±1.07 7.96±0.98 10.08±0.48 8.62±0.47 32.22±1.82 28.38±1.87 17.19±1.12 15.42±1.15

Graphcast Comparison Recently, the GraphCast deep learning model [28] was shown to out-
perform both the leading dynamical model and the Pangu-Weather deep learning model [5] on a
range of 0 to 10-day weather forecasting tasks. While GraphCast was not developed for subseasonal
forecasting, we can, as recommended by an anonymous reviewer, benchmark its performance on
our subseasonal forecasting tasks. For this evaluation, we restrict our standard test set to the years
2018–2020, as GraphCast was trained on data through 2017, and report performance and additional
experimental details in Appendix C.6. Consistent with the other deep learning methods benchmarked
in Table 1, GraphCast outperforms debiased CFSv2 in terms of skill, underperforms debiased CFSv2
in terms of RMSE, and strongly underperforms the ABC ensemble models in both metrics when
forecasting either temperature or precipitation in weeks 3-4.
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Figure 3: Per season and per year average skill and improvement over mean debiased CFSv2 RMSE
across the contiguous U.S. and the years 2011–2020. Despite their simplicity, the ABC models (solid
lines) consistently outperform debiased CFSv2 and the state-of-the-art learners (dotted lines).

Western U.S. Competition Results Finally, we evaluate our models on the exact geographic
region and target dates of the recent Subseasonal Climate Forecast Rodeo II competition. Specifically,
we produce forecasts for the Western U.S. region, delimited by latitudes 25N to 50N and longitudes
125W to 93W, at a 1◦ × 1◦ resolution for a total of G = 514 grid points. Forecasts were issued every
two weeks for a yearlong period with initial issuance date October 29, 2019 and final issuance date
October 27, 2020, leading to a noisier evaluation with only 26 observations.

Table 8 in Appendix C.7 compares the predictive accuracy of the models studied in this work with
the accuracy of the contest baselines (debiased CFSv2, Climatology, and, for precipitation only,
the Rodeo I Salient model of [59]) and the performance of the top competitors for each task. For
temperature weeks 3-4, Persistence++ provides a 16.59% improvement over the mean debiased
CFSv2 RMSE, outperforming the contest baselines, the state-of-the-art learning methods, and all but
two of the competitors (the top three competitors improved by 17.12%, 16.67%, and 15.47%). For
temperature weeks 5-6, CFSv2++ provides a 9.26% improvement over debiased CFSv2 and, despite
its simplicity, outperforms the contest baselines, the state-of-the-art learning methods, and all of the
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Figure 4: Percentage improvement over mean debiased CFSv2 RMSE in the contiguous U.S. over
2011–2020. White grid points indicate negative or 0% improvement.

competitors in the subseasonal forecasting competition (the top competitor improved by 8.47%). On
this task, the Uniform and Online ABC ensembles also outperform all competitors.

On the precipitation tasks, the Salient baseline performed strongly and ultimately placed second and
fourth respectively for the weeks 3-4 and weeks 5-6 tasks. Our Salient 2.0 model also performs
remarkably well, outscoring all contestants and baselines with 12.65% improvement for weeks 3-4.
For comparison, the top competitors for weeks 3-4 and weeks 5-6 improved by 11.54% and 8.63%
respectively. Our Uniform ABC ensemble outperforms the remaining baselines and state-of-the-art
learning methods but falls short of the exceptional Salient performance. In this setting, applying the
adaptive online learning ensemble to the union of the ABC models and the state-of-the-art learners
(denoted by Online ABC + Learning in Table 8) allows the user to exploit the irregular complementary
benefits of the learning methods yielding 12.52% and 8.18% improvements in weeks 3-4 and 5-6.

6 Conclusion

In this work, we release SubseasonalClimateUSA, a dataset for subseasonal forecasting in the U.S.
It is routinely updated and can be accessed as a Python package. The dataset includes a variety of
features that are relevant at the subseasonal timescale, including precipitation, temperature, surface
pressure, relative humidity, geopotential height, sea surface temperature, sea ice concentration, MJO,
and MEI. We use this dataset to train and benchmark multifarious models, including deep learning
solutions, dynamical models, and simple learned corrections, as well ensembling strategies. Our
experiments with temperature and precipitation forecasting in the contiguous U.S. show that simple
learning-based corrections to operational dynamical models yield low-cost strategies that are 10%
more accurate and 329% more skillful than the U.S. operational CFSv2 and outperform state-of-the-
art machine and deep learning methods, as well as the leading ECMWF dynamical model. Overall,
we find that the SubseasonalClimateUSA dataset facilitates both the training and benchmarking of
subseasonal forecasting models and hope that it will stimulate new advances in extended range
forecasting.
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Supplementary Material for SubseasonalClimateUSA:
A Dataset for Subseasonal Forecasting and Benchmarking

A SubseasonalClimateUSA Supplementary Details

The subseasonal_data Python package provides a detailed description of the SubseasonalClima-
teUSA dataset contents, sources, and processing steps at the following URL:

https://github.com/microsoft/subseasonal_data/blob/main/DATA.md

A.1 Computational Environment Details

The SubseasonalClimateUSA update pipeline runs in a Docker container on an Azure E16-4ds_v4
instance with 4 vCPUs/cores and 128 GB of RAM. The update pipeline runs in under 6 hours at a total
cost of $5. All benchmarking experiments were run on the Massachusetts Institute of Technology
engaging cluster (https://engaging-web.mit.edu/eofe-wiki/).

A.2 Western U.S. Competition Data Details

Following [23], for the Western U.S. competition experiments of Section 5, the sea surface temperature
and sea ice concentration variables were formed by identifying the top three principal components for
each variable restricted to the Pacific basin region (20S to 65N, 150E to 90W) using loadings from
1981-2010.

B Model Implementation Details

This section describes the implementation details for each learning model, including the training,
hyperparameter tuning, and validation protocols. All models were implemented in Python 3.

B.1 Climatology++

Climatology++ was trained and tuned following the protocol described in [39]; see Algorithm 1.
Figure 5 displays the selected window length (the span s) and number of years Y for each target date
in 2011–2020 when forecasting for the contiguous U.S. We see that the temperature models preferred
fewer training years and larger windows around the target day in recent history but focused more
exclusively on the target day of year (via a span of 0) in 2013-2016 and preferred more training years
in 2011. Meanwhile, the precipitation models selected the largest available window (corresponding
to higher bias but lower variance estimates) for nearly every target date.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
years = all, span = 10

years = all, span = 7

years = all, span = 0

years = 29, span = 10

years = 29, span = 0

years = 29, span = 7
U.S. temperature, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. temperature, weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020years = all, span = 10

years = all, span = 7
U.S. precipitation, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. precipitation, weeks 5-6

Figure 5: Climatology++ hyperparameters automatically selected for each target date in 2011–2020.

B.2 CFSv2++

CFSv2++ was trained and tuned following the protocol described in [39]; see Algorithm 2. Figure 6
displays the selected window length (the span s), lead time range, and issuance date count for
each target date in 2011–2020 when forecasting for the contiguous U.S. In each task, we observe a
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Algorithm 1 Climatology++

input test date t⋆; # train years Y ; span s; loss∈{RMSE,MSE}; training set ground truth (yt)t∈T
initialize days per year D = 365.242199

S = {t ∈ T : year_diff := ⌊ t⋆−t
D ⌋ ≤ Y and day_diff := 365

2 −|⌊(t⋆− t) mod D⌋− 365
2 | ≤

s}
output argminy

∑
t∈S loss(y,yt)

significant amount of variability in the optimal span, lead, and date count selections, highlighting
the value of adaptive ensembling and debiasing over the static ensembling and debiasing strategies
employed by standard debiased CFSv2.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
span = 28, dates = 14, leads = 29-29
span = 14, dates = 7, leads = 29-29
span = 28, dates = 7, leads = 15-22

span = 14, dates = 42, leads = 29-29
span = 14, dates = 14, leads = 29-29
span = 14, dates = 7, leads = 15-22

span = 14, dates = 14, leads = 15-22
span = 28, dates = 14, leads = 15-22
span = 35, dates = 14, leads = 15-22
span = 28, dates = 14, leads = 15-15
span = 35, dates = 14, leads = 15-15
span = 28, dates = 42, leads = 0-29
span = 35, dates = 7, leads = 15-15
span = 28, dates = 7, leads = 15-15
span = 35, dates = 7, leads = 15-22
span = 28, dates = 7, leads = 29-29
span = 28, dates = 7, leads = 0-29
span = 28, dates = 1, leads = 0-29

span = 35, dates = 42, leads = 29-29
U.S. temperature, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
span = 28, dates = 42, leads = 29-29

span = 14, dates = 42, leads = 29-29

span = 14, dates = 28, leads = 29-29

span = 28, dates = 28, leads = 29-29

span = 14, dates = 14, leads = 29-29

span = 28, dates = 7, leads = 29-29

span = 28, dates = 14, leads = 29-29

span = 35, dates = 7, leads = 29-29

span = 35, dates = 14, leads = 29-29

span = 35, dates = 28, leads = 29-29

span = 35, dates = 42, leads = 29-29
U.S. temperature, weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
span = 35, dates = 42, leads = 29-29

span = 28, dates = 42, leads = 29-29

span = 28, dates = 28, leads = 15-22

span = 28, dates = 28, leads = 29-29

span = 28, dates = 14, leads = 15-22

span = 35, dates = 28, leads = 15-22

span = 28, dates = 28, leads = 0-29

span = 28, dates = 14, leads = 0-29

span = 35, dates = 14, leads = 0-29

span = 35, dates = 42, leads = 0-29

span = 28, dates = 42, leads = 0-29

span = 35, dates = 28, leads = 0-29
U.S. precipitation, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
span = 28, dates = 42, leads = 29-29

span = 35, dates = 42, leads = 29-29

span = 28, dates = 28, leads = 29-29

span = 35, dates = 28, leads = 29-29
U.S. precipitation, weeks 5-6

Figure 6: CFSv2++ hyperparameters automatically selected for each target date in 2011–2020.

Algorithm 2 CFSv2++

input test date t⋆; lead time l⋆; # issuance dates d⋆; span s; training set ground truth and CFSv2
forecasts (yt, ft,l)t∈T ,l∈L

initialize days per year D = 365.242199; # training years Y = 12
S = {t ∈ T : year_diff := ⌊ t⋆−t

D ⌋ ≤ Y and day_diff := 365
2 −|⌊(t⋆− t) mod D⌋− 365

2 | ≤
s}
// Form CFSv2 ensemble forecast across issuance dates and lead times l ∈ L
for training and test dates t ∈ S ∪ {t⋆} do
f̄t = mean((ft−l⋆−d+1,l)1≤d≤d⋆,l∈L)

output f̄t⋆ + mean((yt − f̄t)t∈S)

B.3 Persistence++

Persistence++ was trained and tuned following the protocol described in [39]; see Algorithm 3.
Figures 7 to 10 display the learned Persistence++ regression weights for the final target date in 2020
for each of the four contiguous U.S. forecasting tasks. In each case, we observe significant spatial
variation in the optimal weights used to combine lagged measurements, climatology, and CFSv2
ensemble forecasts.
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Algorithm 3 Persistence++

input lead time l⋆; training set ground truth, climatology, and dynamical forecasts
(yt, ct, ft,l)t∈T ,l∈L

initialize forecast period length L = 14
// Form dynamical ensemble forecast across subseasonal lead times l ≥ l⋆

for training dates t ∈ T do
f̄t = mean((ft,l)l≥l⋆)

// Combine ensemble forecast, climatology, and lagged measurements
for grid points g = 1 to G do
β̂g ∈ argminβ

∑
t∈T (yt,g − β⊤[1, ct,g, yt−l⋆−L−1,g, yt−2l⋆−L−1,g, f̄t−l⋆−1,g])

2

output coefficients (β̂g)
G
g=1

Figure 7: Spatial variation in Persistence++ learned regression weights when forecasting temperature
in weeks 3-4 for the final target date, December 23, 2020.

Figure 8: Spatial variation in Persistence++ learned regression weights when forecasting temperature
in weeks 5-6 for the final target date, December 23, 2020.
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Figure 9: Spatial variation in Persistence++ learned regression weights when forecasting precipitation
in weeks 3-4 for the final target date, December 23, 2020.

Figure 10: Spatial variation in Persistence++ learned regression weights when forecasting precipita-
tion in weeks 5-6 for the final target date, December 23, 2020.

B.4 AutoKNN

The AutoKNN model of [23] was part of a winning solution in the Subseasonal Climate Forecast
Rodeo I [46] and was shown to outperform deep fully connected neural networks [19]. AutoKNN first
identifies a set of historical dates most similar to the target date and then forecasts a weighted locally
linear combination of the anomalies measured on similar dates and recent dates. Our implementation
matches that of [23] but adapts the model to target our primary RMSE objective by (i) using mean
(negative) RMSE as the similarity measure instead of mean skill, (ii) using raw measurement vectors
yt instead of anomaly vectors at, and (iii) using equal datapoint weights in the final local linear
regression.

Training The k-nearest neighbors (KNN) step of AutoKNN identifies a set of historical dates
most similar to the target date and while the autoregression step forecasts a weighted locally linear
combination of the anomalies measured on similar dates and recent dates. For a given target date
t⋆ and lead time l⋆, the AutoKNN training set is restricted to data fully observable one day prior to
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the issuance date, that is, to dates t ≤ t⋆ − l⋆ − L− 1 where L = 14 represents the forecast period
length.

Tuning All hyperparameters were set to the default values specified in [23].

B.5 Informer

The Informer [79], a transformer-based deep learning model, was retrained every four months to
predict temperature from past temperature and precipitation from past precipitation independently at
each grid point.

Features For a given grid point and target date t⋆, the input features used to construct a forecast
are the lagged target variable observations from dates tlast, tlast − 1, tlast − 2, · · · , tlast − 95 for where
tlast = t⋆ − l⋆ − L represents the last complete observation prior to t⋆ and L = 14 represents the
forecast period length.

Training We divide the set of target dates in 2011–2020 into consecutive, non-overlapping four-
month blocks and retrain the Informer model after every four-month block. For a given lead time l⋆,
grid point, and four-month block beginning with date t⋆:

1. The training set is chosen to start at most 10, 000 days before t (or at the beginning of the training
set, whichever is later) and then ends 301 days before t.

2. The validation set is chosen to start 300 days before t and to end on the date prior to t⋆ − l⋆ − L.

3. We use early stopping with patience equal to three to determine when to stop the training: when
we have three consecutive epochs e+ 1, e+ 2, e+ 3 with validation loss no lower than that of
epoch e, we terminate training and use the model at epoch e as the final trained model.

4. We use the trained model to generate forecasts for each target date in the four-month block.

Tuning We use the default Informer architecture and hyperparameters for univariate time series
forecasting: the model has 3 encoder layers, 2 decoder layers, and has an 8-headed attention with
7-dimensional keys and feed-forward layers with 1024 hidden units, and has GeLU activations [20].

B.6 LocalBoosting

In recent subseasonal experiments of [19], boosted decision tree models yielded the best performance.
Our boosted decision tree model, based on CatBoost [51], uses as features the value of 10 Subseason-
alClimateUSA variables in a geographic region around the target grid point. This gives the algorithm
enough flexibility to adapt the weights of the features to each particular grid point while still taking
into account neighboring spatial information. The geographic region is determined by a bounding
box of 2 degrees in each direction, and the 10 variables are chosen for each task via their predictive
power on validation years.

Training For a given target date t⋆ and lead time l⋆, the LocalBoosting training set T is restricted
to data fully observable one day prior to the issuance date, that is, to dates t ≤ t⋆ − l⋆ −L− 1 where
L = 14 represents the forecast period length. LocalBoosting uses CatBoost [51] to regress, for each
gridpoint and each date, the value of a set of lagged weather variables in a geographic region around
the gridpoint.

Tuning There are two hyperparameters to consider: (i) which lagged weather variables to use; and
(ii) the number of neighborhood cells around a gridpoint to define the geographic region. Bounding
boxes of with side length of 2 or 3 cells were considered. Larger sizes were computationally
infeasible. In each case, the 10 or 20 most important features in the SubseasonalClimateUSA dataset
were considered. Here, features were chosen by their performance over 2001-2010 in terms of RMSE.

For each target date, LocalBoosting is run with the hyperparameter configuration that achieved
the smallest mean RMSE over the preceding 3 years. See Figure 11 for a visualization of the
hyperparameters automatically selected for each target date in 2011–2020.
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
re_2-feat_10-m_56-iter_50-depth_2-lr_0_17

re_2-feat_20-m_56-iter_50-depth_2-lr_0_17

re_3-feat_10-m_56-iter_50-depth_2-lr_0_17
U.S. temperature, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. temperature, weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

re_2-feat_10-m_56-iter_50-depth_2-lr_0_17

U.S. precipitation, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. precipitation, weeks 5-6

Figure 11: LocalBoosting hyperparameters automatically selected for each target date in 2011–2020.

B.7 MultiLLR

The MultiLLR model of [23] was also part of a winning solution in the Subseasonal Climate Forecast
Rodeo I [46] and has since been used to improve subseasonal precipitation prediction in China [67].
For each target date, MultiLLR uses a backward stepwise procedure to select the most predictive
features and then applies local linear regression for each grid point to combine those features into a
final prediction. Our implementation matches that of [23] but adapts the model to target our primary
RMSE objective by using mean (negative) RMSE instead of mean skill as the feature selection
criterion. In addition, we replace their MEI features with corresponding MEI.v2 features and their
monthly dynamical forecast features with daily debiased CFSv2 forecasts.

Training For a given target date t⋆ and lead time l⋆, the MultiLLR training set is restricted to
data fully observable one day prior to the issuance date, that is, to dates t ≤ t⋆ − l⋆ − L − 1
where L = 14 represents the forecast period length. The coarse-grained dynamical input feature
nmme_wo_ccsm3_nasa of [23] was replaced with the daily debiased CFSv2 forecast features

• subx_cfsv2_tmp2m-14.5d_shift15 and subx_cfsv2_tmp2m-0.5d_shift15 for predicting
temperature at weeks 3-4,

• subx_cfsv2_tmp2m-28.5d_shift29 and subx_cfsv2_tmp2m-0.5d_shift29 for predicting
temperature at weeks 5-6,

• subx_cfsv2_precip-14.5d_shift15 and subx_cfsv2_precip-0.5d_shift15 for predict-
ing precipitation at weeks 3-4, and

• subx_cfsv2_precip-28.5d_shift29 and subx_cfsv2_precip-0.5d_shift29 for predict-
ing precipitation at weeks 5-6.

Tuning All hyperparameters were set to the default values specified in [23], save for the tolerance
parameter which was set to 0.001 to accommodate the new RMSE selection criterion.

B.8 N-BEATS

N-BEATS [48], a neural network for time series data, is retrained N-BEATS every two months to
predict temperature from past temperature and precipitation from past precipitation independently at
each grid point.

Features For a given grid point and target date t⋆, the input features used to construct a forecast are
the lagged target variable observations from dates tlast, tlast − 4, tlast − 8, · · · , tlast − 48 for where
tlast = t⋆ − l⋆ − L represents the last complete observation prior to t⋆ and L = 14 represents the
forecast period length.

Training We divide the set of target dates in 2011–2020 into consecutive, non-overlapping two-
month blocks and retrain the N-BEATS model after every two-month block. For a given lead time l⋆,
grid point, and two-month block beginning with date t⋆:

1. We train on all dates t ≤ t⋆ − l⋆ − L.
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2. For the initial two-month block, we train for 30 epochs.

3. For subsequent two-month blocks, we initialize our model weights to the learned weights from
the prior block and then fine-tune for 8 epochs.

4. We use the trained model to generate forecasts for each target date in the two-month block.

Tuning We use the default N-BEATS architecture and hyperparameters for univariate time series
forecasting [48]. The N-BEATS model has two stacks, where each stack is used to understand
different patterns. Each stack consists of three blocks, which themselves are each comprised of six
fully connected layers with ReLU activations. We used the Adam optimizer with learning rate 0.001
and a batch size of 512.

B.9 Prophet

The Prophet model of [62] was one of the winning solutions in the Subseasonal Forecast Rodeo
II [46]. Prophet is an additive regression model for time-series forecasting that predicts weekly and
yearly seasonal trends on top of a piecewise linear or logistic growth curve. We trained the model to
predict each grid point independently with yearly seasonality enabled (to capture predictable whether
trends) and weekly seasonality disabled.

Training Prophet takes as input a sequence of (univariate) time-series values and then predicts the
next k dates from those, arbitrarily far in the future.

First, we split the problem into a many univariate time-series prediction problems. When evaluating,
we consider periods of 4 moths (e.g. January 2010 - April 2010), train the model on all available
historical temperatures (which may depend on the lead time) at that grid point, and make predictions
for that four month period. We then run this for all relevant periods of four months.

Tuning The prophet model is trained in the univariate mode with yearly seasonality on (to capture
predictable weather trends), weekly seasonality off (as weekends are unlikely to be special).

B.10 Salient 2.0

We developed the Salient 2.0 model based on Salient [59], a winning solution for the Subseasonal
Forecast Rodeo I [46]. Salient consists of an ensemble of feed-forward fully-connected neural
networks, using historical sea surface temperature (SST) data from 1990 to 2017 and an encoding of
the day of the year as features. Salient’s training protocol follows a multi-task learning framework [56].
It starts by training 50 randomly generated fully connected neural networks, each of which provides a
prediction for the average temperature and accumulated precipitation at 3, 4, 5, and 6 weeks ahead,
at every grid cell. The forecasts are then obtained by combining the predictions for weeks 3 and 4
and for weeks 5 and 6. The final ensemble model forecasts correspond to the mean of the top 10
ensemble members with the lowest validation error.

For Salient 2.0 in this work, the input features were augmented with geopotential heights at different
pressure levels (10, 100, 500 and 850 hPa) along with MEI and MJO indices. In addition, instead of
training the ensemble on the whole of the 1990-2017 data, a sequence of models was trained using
data up until each of the years in our validation period of 2010-2020. These submodels with earlier
training data cut-offs were then used to generate hindcasts that informed the model’s tuning decisions.

Salient 2.0 relies on two sources of sea surface temperature training data. The first data source is
the weekly sea surface temperature from NOAA [54] and covers dates from 17 January 1990 to 02
February 2017. This dataset contains weekly data cenetered around Wednesdays and has a 1◦ × 1◦

resolution. It was re-gridded to a 4◦ × 4◦ using spline interpolation of order equal to 2, under the
Python Scipy package [63].

For dates from February 2017 to present, a second source of sea surface temperature data from the
MET Office [30] is used. This dataset has a daily temporal resolution and is averaged to obtain
weekly data centered around Wednesdays. This data is initially downloaded in a 0.25◦×0.25◦ spatial
resolution and is re-gridded to a 4◦ × 4◦. A linear interpolation is then used to fill in any missing
values (under the Python Scipy package [63]).
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Training Salient 2.0 is an ensemble of 50 feed-forward fully connected neural networks. All 50
neural networks are trained on a pre-determined combination of input features, including weekly sea
surface temperature, MEI, as well as the phase and amplitude features of MJO. The combinations of
input features considered are:

• d2wk_cop_sst: sea surface temperature,

• d2wk_cop_sst_mei: sea surface temperature and ENSO,

• d2wk_cop_sst_mjo: sea surface temperature and MJO,

• d2wk_cop_sst_mei_mjo: sea surface temperature, ENSO and MJO.

In total, four ensemble models, corresponding to the four input feature combinations above, each
including 50 neural networks, are trained. Each ensemble model is trained in a rolling fashion, where
the start year of the training dataset is 1990 and the ensemble is trained up until each year in the range
[2006, 2019], where a model ending on a year y is used to generate forecasts for target dates with
year y + 1.

For each of the 50 neural networks within a given ensemble model, the input features can further
be augmented using a time vector obtained by converting dates to a float representing the fraction
of the year passed by that date. The addition of the time vector is decided by generating a random
integer in the range [0, 1], with 1 corresponding to the addition of the time vector and 0 otherwise.
Additionally, for each of the 50 neural networks, the input feature vector for an individual training
example consists of a concatenation of the prior 10 weeks of data.

For each of the 50 neural networks within a given ensemble model, the output consists of a prediction
for the average temperature and accumulated precipitation at 3, 4, 5 and 6 weeks ahead. The
predictions for weeks 3 and 4 and the predictions for weeks 5 and 6 are combined separately, by
averaging temperatures and summing precipitation. The top 10 neural networks with the lowest
validation error are selected as the final ensemble members. The final predictions for each ensemble
model correspond to the mean of the 10 selected ensemble members.

Tuning Each of the 50 neural networks within a given ensemble model is trained using a batch
size equal to 128 and a train ratio equal to 0.89. In addition, each neural network’s hyperparamaters
are randomly generated, with the number of epochs sampled in the range [100, 500], the number of
layers in the range [3, 7], and the number of units per layer in the range [100, 600].

At test time, for each target date, Salient 2.0 is run using the ensemble model that achieved the
smallest mean RMSE over the preceding 3 years. Figure 12 shows which ensemble models were used
to generate predictions for which target dates.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
d2wk_cop_sst_mei_mjo

d2wk_cop_sst_mei

d2wk_cop_sst_mjo

d2wk_cop_sst
U.S. temperature, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. temperature, weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
d2wk_cop_sst_mei_mjo

d2wk_cop_sst_mei

d2wk_cop_sst
U.S. precipitation, weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

U.S. precipitation, weeks 5-6

Figure 12: Salient 2.0 hyperparameters automatically selected for each target date in 2011–2020.

B.11 Uniform Ensemble

We consider two Uniform Ensemble models, where the ensemble is produced using a set of models
C as input:
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1. Uniform ABC: C = { Climatology++, CFSv2++, Persistence++ }
2. Uniform ABC + Learning: C = { Climatology++, CFSv2++, Persistence++, LocalBoosting,

MultiLLR, AutoKNN, Prophet, Salient 2.0 }, the ABC models plus all learning models save the
very low performing Informer and N-BEATS models.

Uniform ensemble forecasts are produced as the uniform or unweighted average of input models.
Letting Xt,c be the forecast made by model c ∈ C on target date t, we produce the forecast:
ŷt =

1
|C|

∑
c∈C Xt,c.

B.12 Online Ensemble

We consider two Online Ensemble models, where the ensemble is produced using a set of models C
as input:

1. Online ABC: C = {Climatology++, CFSv2++, Persistence++}
2. Online ABC + Learning: C = { Climatology++, CFSv2++, Persistence++, LocalBoosting,

MultiLLR, AutoKNN, Prophet, Salient 2.0 }, the ABC models plus all learning models save the
very low performing Informer and N-BEATS models.

To learn a time-dependent adaptive ensemble weight wt, we employ the online learning method
presented in [15]. We applied the AdaHedgeD algorithm with the recommended recent_g optimism
setting. The algorithm was run with a delay parameter of D = 2 for the 3-4 weeks horizon tasks and
D = 3 for the 5-6 weeks horizon tasks. We ran the online learning algorithm over the full set of target
dates T = 520, without performing the yearly resetting suggested in the original implementation.
The learner optimized the RMSE loss over gridpoints in the region of interest, as described in the
experimental details of [15].

Online ensemble forecasts are produced as the weighted average of input models, with weight
wt determined by the online learning algorithm. Letting Xt,c be the forecast made by model
c ∈ C on target date t and wt be the weights produced by AdaHedgeD, we produce the forecast:
ŷt =

∑
c∈C wt,c ∗Xt,c.

B.13 Debiased ECMWF

We implement the operational ECMWF bias correction protocol detailed in [69]. For each target
forecast date, we debias both our ECMWF control and ensemble forecasts using the last 20 years of
reforecasts with dates within ±6 days from the target forecast date. The average of the 1 control and
10 ensemble reforecasts on the 1.5x1.5 degree grid are used for debiasing.

C Supplementary Results

C.1 Percentage Improvement over Meteorological Baselines

To highlight the improvement of individual ABC models over their traditional counterparts, Figures 13
and 14 show the percentage RMSE improvements of Climatology++, CFSv2++, and Persistence++
relative to their respective baselines Climatology, debiased CFSv2, and Persistence by season and by
year.

For all four tasks, the ABC models are consistently better across seasons and years. The result is
particularly striking for Persistence++ and highlights the value of integrating lagged measurements,
numerical weather prediction, and climatology. Figures 13 and 14 show the per season and per year
improvement of each ABC model over its corresponding baseline across the contiguous U.S. and the
years 2011–2020. Note the learned ABC benchmarks yield consistent improvements in mean RMSE.

C.2 Yearly Percentage Improvement over Mean Debiased CFSv2 RMSE

Tables 3 and 4 present the yearly improvement of each model over debiased CFSv2, as measured by
mean RMSE across the contiguous U.S. in the years 2011–2020.
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Figure 13: Per season improvement of each ABC model over its corresponding baseline across
the contiguous U.S. and the years 2011–2020. The learned ABC benchmarks yield consistent
improvements in mean RMSE.
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Figure 14: Per year improvement of each ABC model over its corresponding baseline across the con-
tiguous U.S. and the years 2011–2020. The learned ABC benchmarks yield consistent improvements
in mean RMSE.

Table 3: Percentage improvement over mean debiased CFSv2 RMSE when forecasting temperature
in the contiguous U.S. The best performing models within each class of models are shown in bold,
while the best performing models overall are shown in green.

Temperature, weeks 3−4

Group Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Overall

Baselines Climatology −0.89±3.85 −7.52±4.56 5.8±3.62 1.32±3.86 −7.91±4.85 −5.54±5.79 3.93±3.72 4.32±3.62 2.1±4.43 3.81±4.36 0.13±1.35
Persistence −122.09±14.57 −117.74±11.91 −120.23±16.63 −115.49±19.12 −112.3±18.61 −128.89±17.9 −78.66±12.11 −98.39±13.72 −111.15±23.56 −101.39±16.54 −109.94±5.29

ABC Climatology++ 0.68±3.58 −7.03±4.31 5.17±3.72 1.87±3.86 −3.74±4.36 −4.99±6.12 5.83±3.84 6.25±3.24 4.43±4.01 10.15±3.66 2.06±1.3
CFSv2++ 5.35±3.63 8.71±3.04 3.12±3.26 7.36±3.85 2.68±3.38 6.17±3.86 7.94±3.28 6.87±2.77 7.88±2.89 4.29±3.29 5.92±1.05
Persistence++ 7.06±3.21 4.33±3.37 5.91±3.04 5.54±3.77 0.23±3.67 4.11±4.19 6.1±3.31 10.16±2.54 3.12±3.2 13.21±2.79 6.0±1.06

Learning AutoKNN 0.52±4.05 −7.99±4.65 5.74±3.17 1.25±3.86 −7.27±4.92 −4.6±5.47 4.93±3.48 4.71±3.59 2.75±3.88 7.44±4.14 0.93±1.34
LocalBoosting −3.74±4.23 −6.89±4.57 2.92±2.98 −1.92±4.19 −5.86±4.28 −5.23±5.7 −0.6±3.76 5.62±3.15 1.45±3.18 5.19±3.54 −0.76±1.23
MultiLLR 6.37±3.53 0.97±3.85 3.0±3.47 2.57±3.54 −2.43±3.03 −7.23±5.75 3.83±3.68 3.8±3.25 8.3±3.08 4.15±3.09 2.45±1.17
Prophet 0.19±4.22 −7.89±4.41 1.81±3.83 1.07±4.4 −7.88±4.82 −2.5±4.9 5.95±4.07 6.59±3.52 2.22±4.69 9.97±4.18 1.13±1.36
Salient 2.0 −7.6±4.9 −13.08±5.82 −7.81±4.41 −22.21±6.47 −11.02±4.4 −19.04±6.79 2.71±3.44 9.03±3.05 −10.54±6.2 6.48±5.16 −6.95±1.76

Ensembles Uniform ABC 6.23±3.41 4.08±3.34 6.32±2.91 6.57±3.69 1.12±3.73 4.39±4.17 7.34±3.25 9.14±2.78 7.08±3.06 11.79±2.79 6.46±1.05
Online ABC 5.57±3.26 6.49±3.25 5.2±3.07 7.3±3.78 2.39±3.33 6.49±3.9 7.86±3.16 9.01±2.62 6.77±2.59 10.44±2.66 6.71±1.01

Temperature, weeks 5−6

Baselines Climatology −3.49±3.33 −8.66±5.54 12.91±3.38 4.36±3.68 0.26±3.81 0.66±4.39 7.89±2.84 4.93±2.63 6.71±3.88 −0.05±4.37 2.93±1.23
Persistence −206.03±22.74 −187.94±22.83 −169.31±24.87 −172.6±28.7 −147.71±27.59 −190.83±16.81 −127.66±18.96 −161.7±19.97 −169.53±27.67 −183.02±26.03 −170.1±7.56

ABC Climatology++ −1.88±3.47 −8.17±5.4 12.32±3.64 4.89±3.3 4.11±3.39 1.18±4.4 10.0±2.54 6.84±2.5 8.93±3.45 6.55±3.85 4.83±1.18
CFSv2++ 1.68±3.13 2.2±4.34 8.06±3.06 11.17±3.36 9.72±2.99 7.57±2.41 6.44±2.96 6.13±2.71 6.68±3.19 7.52±3.9 7.09±1.02
Persistence++ 2.07±2.66 −1.33±4.6 11.68±2.86 5.35±3.09 4.81±2.84 6.31±3.44 8.87±2.39 7.99±1.94 8.26±2.96 8.45±3.25 6.43±0.99

Learning AutoKNN −3.49±3.43 −9.57±5.81 13.19±3.28 4.41±3.83 0.68±3.99 0.58±4.2 8.25±2.71 4.99±2.51 6.47±3.45 2.98±4.04 3.22±1.25
LocalBoosting −9.97±5.0 −11.73±5.92 6.41±4.17 −3.2±4.09 2.21±3.31 −6.55±4.16 4.91±3.01 4.51±2.57 3.89±2.89 2.46±3.46 −0.29±1.24
MultiLLR −3.27±4.39 −4.22±5.07 8.45±3.41 2.44±5.18 −1.58±3.55 2.76±3.46 4.0±2.79 3.18±2.7 6.35±3.66 1.98±4.3 2.21±1.24
Prophet −2.7±3.69 −9.59±5.74 9.09±3.88 3.72±3.98 0.02±3.66 3.29±3.94 10.18±3.38 7.48±3.01 6.71±3.77 6.4±4.22 3.78±1.26
Salient 2.0 −9.34±5.44 −17.35±7.14 2.23±4.74 −21.18±6.46 −2.22±3.73 −14.66±5.25 5.78±3.57 9.22±3.34 −2.46±5.35 4.98±4.09 −4.05±1.73

Ensembles Uniform ABC 2.35±2.95 −0.06±4.57 11.92±2.83 8.38±3.08 7.57±2.91 7.67±3.03 9.19±2.42 7.96±2.28 8.88±3.19 8.84±3.43 7.45±0.99
Online ABC 2.15±2.75 0.94±4.65 11.06±2.91 9.41±3.16 9.19±2.71 7.04±2.76 8.49±2.59 7.96±2.22 8.6±2.92 8.87±3.49 7.54±0.98
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Table 4: Percentage improvement over mean debiased CFSv2 RMSE when forecasting precipitation
in the contiguous U.S. The best performing models within each class of models are shown in bold,
while the best performing models overall are shown in green.

Precipitation, weeks 3-4

Group Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Overall

Baselines Climatology 5.37±1.87 7.91±1.69 7.62±1.65 9.42±2.11 9.42±1.82 10.36±1.8 10.1±2.05 5.95±1.28 6.26±1.31 5.35±1.49 7.79±0.54
Persistence −29.66±4.88 −26.25±4.43 −28.19±3.37 −26.57±3.83 −24.47±5.02 −32.78±5.7 −21.24±5.48 −31.45±3.72 −31.65±4.46 −29.99±4.1 −28.27±1.4

ABC Climatology++ 6.03±1.77 10.48±1.58 8.31±1.6 10.58±2.29 9.5±1.93 11.82±1.91 11.17±1.92 6.78±1.29 6.36±1.36 7.63±1.43 8.86±0.54
CFSv2++ 8.62±1.78 8.72±1.74 8.5±1.44 9.71±1.99 7.31±1.57 9.32±1.49 10.32±1.82 6.03±1.54 6.66±1.29 7.73±1.24 8.26±0.51
Persistence++ 7.6±1.67 8.82±1.65 9.04±1.45 10.19±1.99 9.55±1.78 10.33±1.72 9.77±1.84 6.79±1.33 7.04±1.3 6.93±1.26 8.61±0.51

Learning AutoKNN 6.33±1.99 9.68±1.93 8.03±1.67 9.66±2.08 8.78±2.13 9.8±1.95 10.14±1.89 4.76±1.49 4.83±1.67 5.36±1.6 7.73±0.58
LocalBoosting 4.37±1.82 8.88±1.58 8.65±1.65 8.4±2.39 6.81±2.17 6.87±2.43 10.36±1.84 6.65±1.37 6.03±1.46 6.96±1.6 7.36±0.56
MultiLLR 4.91±1.8 5.15±2.29 8.3±1.37 9.69±1.94 7.38±1.66 9.15±1.52 9.57±1.79 5.14±1.22 5.71±1.25 6.16±1.36 7.12±0.51
Prophet 6.96±1.8 8.1±1.78 8.3±1.59 10.29±2.21 8.63±1.99 11.04±1.82 10.48±1.97 6.6±1.28 6.5±1.36 7.33±1.45 8.42±0.53
Salient 2.0 3.2±2.45 6.37±2.33 5.18±2.17 2.76±2.67 3.07±3.0 2.16±2.73 5.64±2.28 −1.06±2.05 −0.21±2.24 3.1±1.93 2.97±0.78

Ensembles Uniform ABC 8.34±1.73 10.35±1.62 9.47±1.37 11.01±2.03 9.9±1.76 11.46±1.61 11.13±1.84 7.21±1.33 7.4±1.34 8.26±1.26 9.45±0.5
Online ABC 8.82±1.81 10.24±1.64 9.35±1.46 10.94±2.07 10.01±1.68 11.79±1.68 11.18±1.89 7.16±1.3 7.3±1.34 8.28±1.24 9.5±0.5

Precipitation, weeks 5-6

Baselines Climatology 5.1±1.57 textbf6.98±1.46 textbf6.93±1.56 textbf9.67±1.43 textbf12.12±1.74 textbf11.09±1.87 textbf7.45±1.31 textbf4.22±0.95 textbf6.97±1.33 textbf3.52±1.36 textbf7.51±0.48
Persistence −37.12±5.31 −32.23±4.32 −27.77±3.88 −29.87±3.39 −26.92±4.95 −34.16±5.52 −29.11±4.56 −35.06±5.24 −34.24±4.6 −33.06±3.93 −31.92±1.43

ABC Climatology++ 5.78±1.67 9.59±1.44 7.61±1.52 textbf10.82±1.53 textbf12.2±1.91 12.55±1.95 8.46±1.3 textbf5.06±0.92 7.06±1.41 textbf5.84±1.39 textbf8.57±0.49
CFSv2++ 7.84±1.31 7.87±1.53 9.22±1.4 9.82±1.38 10.5±1.7 10.13±1.3 6.46±1.32 4.94±1.16 textbf7.28±1.23 5.71±1.25 8.03±0.44
Persistence++ 6.44±1.33 7.42±1.46 8.28±1.4 9.71±1.32 11.62±1.79 10.71±1.77 7.05±1.23 4.83±0.96 7.19±1.23 4.85±1.19 7.89±0.45

Learning AutoKNN 5.85±1.59 textbf8.31±1.76 7.5±1.44 9.57±1.48 textbf11.64±2.05 10.87±1.9 6.94±1.33 2.85±1.09 5.34±1.4 3.66±1.38 7.33±0.5
LocalBoosting 4.94±1.71 5.76±1.55 7.24±1.58 7.84±1.66 9.89±1.98 9.64±2.02 7.28±1.29 textbf4.97±1.07 6.94±1.44 3.59±1.51 6.89±0.49
MultiLLR 4.94±1.45 5.51±1.63 7.2±1.52 8.49±1.32 9.07±1.74 9.17±1.73 7.49±1.32 3.85±1.06 6.04±1.3 4.18±1.45 6.65±0.46
Prophet textbf6.65±1.56 7.19±1.61 7.71±1.51 textbf10.53±1.5 11.38±1.97 textbf11.77±1.86 textbf7.64±1.32 4.84±0.96 textbf7.19±1.48 textbf5.52±1.46 textbf8.12±0.48
Salient 2.0 2.93±2.06 5.39±2.14 4.53±1.88 3.01±2.09 5.89±2.97 2.89±2.53 3.22±2.11 −3.3±1.68 0.51±1.86 1.24±1.89 2.65±0.7

Ensembles Uniform ABC 7.7±1.39 textbf9.35±1.44 textbf9.19±1.29 11.0±1.35 12.39±1.79 12.26±1.54 8.05±1.2 5.58±0.94 7.89±1.31 6.35±1.22 9.05±0.44
Online ABC textbf7.79±1.39 9.35±1.46 9.06±1.38 11.06±1.36 12.17±1.71 textbf12.31±1.59 textbf8.23±1.27 5.49±0.93 7.72±1.32 6.46±1.22 9.03±0.43
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C.3 Yearly Average Skill

Tables 5 and 6 present the yearly average skill of each model across the contiguous U.S. in the years
2011–2020.

Table 5: Average percentage skill when forecasting temperature in the contiguous U.S. The best
performing models within each group are shown in bold, while the best performing models overall
are shown in green.

Temperature, weeks 3-4

Group Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Overall

Baselines Deb. CFSv2 33.26±5.13 26.66±6.65 17.32±5.58 27.66±5.85 35.73±5.71 33.07±5.77 13.36±5.92 19.42±6.07 18.39±6.12 24.14±6.43 24.94±1.88
Persistence 27.76±5.36 -1.64±7.59 -2.16±7.09 17.98±7.15 20.41±7.15 7.5±7.86 3.78±7.49 -0.39±7.24 13.74±6.99 19.19±7.52 10.64±2.31

ABC Climatology++ 11.5±5.68 12.83±5.84 7.48±6.58 10.93±5.82 29.44±6.06 16.45±6.02 20.17±6.11 18.19±5.86 22.39±5.97 36.79±4.32 18.61±1.93
CFSv2++ 34.46±4.77 43.23±5.63 13.67±5.27 32.3±5.41 37.36±5.18 43.06±4.79 26.1±5.29 26.93±6.4 33.85±5.32 30.77±5.91 32.2±1.74
Persistence++ 41.21±3.96 47.39±4.86 12.48±4.78 27.99±5.7 37.44±4.89 41.03±5.11 24.48±4.95 32.64±6.16 18.51±6.01 40.53±5.51 32.4±1.72

Learning AutoKNN 16.77±4.53 3.01±5.08 5.62±5.28 4.74±4.77 12.99±5.19 14.6±5.07 14.46±4.65 11.32±4.85 11.65±5.32 29.2±5.38 12.43±1.61
LocalBoosting 10.51±5.65 17.85±5.14 5.12±3.99 15.5±5.34 20.68±4.03 17.94±5.17 1.99±5.67 18.95±4.69 17.46±5.18 17.88±5.48 14.44±1.63
MultiLLR 34.05±5.15 31.03±5.95 9.57±4.75 22.7±5.94 29.87±5.92 23.93±5.57 18.85±5.64 20.68±5.78 29.98±5.46 24.16±6.31 24.5±1.8
Prophet 18.31±4.37 14.51±5.05 3.86±4.15 14.3±4.41 14.8±4.94 27.74±5.03 26.6±5.11 25.76±6.84 20.76±5.14 35.74±3.6 20.21±1.57
Salient 2.0 6.29±6.46 2.31±6.3 0.01±6.17 -5.73±6.59 15.13±5.68 -4.32±6.57 23.01±6.03 28.83±6.02 14.54±6.08 32.73±6.21 11.24±2.03

Ensembles Uniform ABC 40.16±4.4 45.49±5.27 12.4±5.5 30.33±5.84 39.06±5.18 42.23±5.15 28.85±4.96 29.12±6.1 30.31±5.58 37.34±5.66 33.55±1.72
Online ABC 35.98±4.49 45.1±5.59 12.5±5.13 31.75±5.46 38.57±5.11 44.09±4.74 27.77±5.23 29.35±6.46 31.04±5.31 36.26±5.91 33.26±1.72

Temperature, weeks 5-6

Baselines Deb. CFSv2 33.4±4.82 36.09±5.92 1.35±6.32 15.48±6.27 25.72±5.32 26.47±5.69 4.31±6.1 15.82±6.26 8.47±6.63 23.54±6.31 19.12±1.94
Persistence 20.28±5.93 −9.52±7.92 0.4±7.5 18.22±6.96 23.24±7.51 −1.24±8.34 −3.89±7.43 −5.41±7.6 6.15±6.75 13.55±7.53 6.22±2.38

ABC Climatology++ 11.5±5.68 12.83±5.84 7.48±6.58 10.93±5.82 29.44±6.06 16.45±6.02 22.79±5.83 18.19±5.86 22.39±5.97 36.79±4.32 18.87±1.92
CFSv2++ 31.11±4.28 38.71±5.27 8.61±4.91 34.55±5.07 38.72±6.01 43.36±5.12 12.94±5.46 24.37±6.33 19.7±5.9 35.38±5.04 28.8±1.76
Persistence++ 34.74±4.19 39.38±4.31 6.45±4.79 16.37±5.83 32.26±4.63 36.06±5.07 16.26±4.9 25.05±5.81 18.43±5.8 41.9±4.71 26.73±1.67

Learning AutoKNN 4.73±4.61 −0.32±4.79 8.06±4.63 5.8±4.68 11.43±4.93 6.28±4.29 9.89±3.57 8.21±4.67 4.44±5.19 27.12±5.43 8.56±1.52
LocalBoosting 8.63±5.64 15.77±5.19 3.24±4.12 5.81±5.66 22.93±4.12 7.99±5.41 7.84±5.85 18.43±4.74 13.22±5.18 22.87±4.84 12.69±1.64
MultiLLR 19.89±5.49 23.05±5.76 3.55±5.5 17.71±4.98 13.2±6.72 26.98±5.67 12.09±6.44 12.08±5.39 14.44±5.91 23.63±6.36 16.68±1.85
Prophet 17.23±4.41 13.04±4.9 3.45±4.18 12.99±4.43 13.74±4.98 27.2±5.03 27.74±5.05 26.16±6.87 20.72±5.14 35.83±3.61 19.78±1.57
Salient 2.0 7.13±6.54 −1.75±6.46 8.14±6.08 −5.24±6.69 13.94±5.63 −9.7±6.46 23.99±5.86 30.29±6.11 16.04±5.68 35.36±6.17 11.77±2.03

Ensembles Uniform ABC 36.14±4.11 41.1±4.8 8.66±5.13 28.47±5.75 39.19±5.42 41.42±5.24 17.67±5.08 26.02±5.83 21.86±5.88 41.15±4.68 30.22±1.7
Online ABC 33.3±4.15 40.1±5.18 7.82±4.86 30.41±5.23 39.61±5.79 42.12±5.07 15.76±5.31 25.86±6.16 21.32±5.91 40.74±4.78 29.76±1.72

Table 6: Average percentage skill when forecasting precipitation in the contiguous U.S. The best
performing models within each group are shown in bold, while the best performing models overall
are shown in green.

Precipitation, weeks 3-4

Group Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Overall

Baselines Deb. CFSv2 15.26±3.38 8.99±3.52 5.96±3.72 5.69±3.88 3.69±3.74 2.19±3.61 0.34±4.05 4.01±3.44 3.76±3.08 7.19±3.76 5.77±1.11
Persistence 14.24±3.03 9.61±3.68 5.96±3.07 6.46±3.24 7.2±3.63 1.3±2.83 13.46±3.89 6.72±2.76 8.43±3.27 10.32±2.81 8.31±1.0

ABC Climatology++ 12.24±3.22 24.09±3.46 13.4±2.89 15.67±2.83 7.97±3.69 17.88±3.04 14.29±3.69 13.39±3.2 8.76±3.11 22.65±2.67 15.04±1.06
CFSv2++ 24.58±3.4 19.08±2.81 17.44±3.11 16.15±2.86 7.98±3.5 12.42±3.08 14.75±3.79 13.42±3.18 13.09±4.11 23.05±2.74 16.21±1.04
Persistence++ 21.98±2.17 14.03±2.36 16.63±2.96 13.9±2.78 9.38±3.46 8.12±2.6 5.1±3.38 13.33±3.06 12.89±2.74 17.48±2.74 13.38±0.89

Learning AutoKNN 13.86±3.37 18.66±4.01 10.13±3.87 8.6±4.08 3.11±4.87 3.03±4.03 5.29±4.94 -0.5±3.7 -3.27±3.72 7.56±3.35 6.66±1.29
LocalBoosting 6.32±2.88 15.96±2.16 15.73±2.54 7.7±2.82 4.27±2.83 2.64±2.63 11.77±3.52 13.79±2.4 10.68±2.47 19.46±2.48 10.82±0.88
MultiLLR 12.44±3.12 4.87±3.46 14.72±3.11 10.74±3.54 5.47±3.97 5.75±3.18 8.49±3.52 7.83±2.43 8.28±3.25 16.16±2.23 9.49±1.02
Prophet 18.23±2.77 12.42±3.04 14.29±2.41 15.85±2.14 5.33±3.13 13.49±2.58 11.31±3.34 13.19±2.79 10.77±2.65 20.01±2.46 13.51±0.9
Salient 2.0 17.06±4.21 20.38±3.88 17.82±4.1 11.24±4.06 5.95±5.5 3.0±4.14 5.45±5.33 2.44±3.89 2.28±4.19 14.99±3.35 10.11±1.37

Ensembles Uniform ABC 26.72±3.12 23.2±2.64 19.9±3.37 19.79±2.7 11.21±3.47 15.46±2.98 15.01±3.75 16.49±3.25 14.98±3.73 25.16±2.6 18.84±0.99
Online ABC 24.72±3.31 23.45±2.65 18.74±3.2 20.07±2.65 11.44±3.62 18.29±3.11 15.35±3.86 16.29±3.25 14.38±3.7 25.03±2.49 18.81±1.03

Precipitation, weeks 5-6

Baselines Deb. CFSv2 11.73±3.16 10.98±3.22 8.35±3.71 1.03±3.35 −4.91±3.37 0.98±3.46 2.77±3.58 4.24±3.21 −1.3±3.12 8.73±3.7 4.28±1.06
Persistence 6.85±3.87 6.96±3.42 12.34±3.26 4.32±3.2 3.83±3.61 1.87±3.05 10.9±3.5 8.73±2.91 5.62±3.22 13.04±2.77 7.41±1.02

ABC Climatology++ 12.28±3.21 24.11±3.5 13.33±2.89 15.67±2.83 7.97±3.69 17.88±3.04 13.66±3.64 13.39±3.2 8.76±3.11 22.65±2.67 14.99±1.06
CFSv2++ 23.11±3.33 18.75±2.81 22.87±2.96 14.88±2.59 8.42±3.33 13.44±3.44 7.74±4.31 15.34±3.21 13.4±3.7 22.17±2.67 16.11±1.04
Persistence++ 17.44±2.65 9.98±2.81 16.9±2.61 7.68±2.76 2.44±3.38 3.83±2.83 3.6±3.58 11.26±2.42 7.6±2.6 16.26±2.22 9.77±0.89

Learning AutoKNN 12.33±3.58 16.31±4.18 11.16±3.96 6.85±3.82 3.31±5.04 5.07±4.13 1.53±5.06 −1.05±3.72 −4.58±3.64 7.88±3.51 5.93±1.3
LocalBoosting 9.81±2.98 9.26±2.38 13.24±2.34 4.53±3.04 5.31±2.96 6.7±2.7 10.25±3.7 13.55±2.78 10.31±2.71 14.3±2.44 9.72±0.9
MultiLLR 12.42±3.58 5.99±3.05 10.69±2.76 7.46±3.39 0.63±4.03 1.97±3.32 10.03±3.54 8.46±2.79 6.83±3.13 15.5±2.37 7.97±1.03
Prophet 17.92±2.78 12.41±3.04 14.74±2.42 15.86±2.14 5.44±3.1 13.54±2.61 10.06±3.45 13.08±2.79 10.75±2.65 19.94±2.48 13.41±0.91
Salient 2.0 17.06±4.18 20.26±3.86 17.73±4.03 11.48±4.03 5.91±5.47 2.77±4.09 5.1±5.29 2.06±3.99 2.1±4.19 14.86±3.41 9.99±1.37

Ensembles Uniform ABC 25.31±3.11 23.05±2.64 23.45±2.82 17.89±2.62 9.17±3.4 16.63±3.57 11.23±4.0 16.8±3.08 13.93±3.34 25.24±2.37 18.35±0.98
Online ABC 23.28±3.2 23.32±2.72 21.65±2.86 18.11±2.54 7.69±3.59 17.29±3.5 12.48±3.96 16.29±3.12 12.86±3.5 25.24±2.41 17.88±1.02
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C.4 Spatial Improvement over Mean Debiased CFSv2 RMSE

Figure 15 presents the spatial improvement of each model over debiased CFSv2 when predicting
U.S. temperature across 2011–2020. For both the weeks 3-4 and the weeks 5-6 lead times, the ABC
models uniformly improve over debiased CFSv2 and outperform both the baseline models and the
state-of-the-art learning methods. The best overall performance at each lead time is obtained by the
Online ABC ensemble.

Figure 15: Percentage improvement over mean debiased CFSv2 RMSE when forecasting temperature
in the contiguous U.S. over 2011–2020. White grid points indicate negative or 0% improvement, and
the mean percentage improvement is given in parentheses.

Figure 16 displays the spatial improvement of each model over debiased CFSv2 when forecasting
U.S. precipitation across 2011–2020. For precipitation, all models exhibit larger gains over debiased
CFSv2, and all models, including Climatology, achieve larger improvements in the Western U.S. than
in the Eastern U.S.

Figure 16: Percentage improvement over mean debiased CFSv2 RMSE when forecasting precipitation
in the contiguous U.S. over 2011–2020. White grid points indicate negative or 0% improvement, and
the mean percentage improvement is given in parentheses.

29



C.5 Spatial Bias Maps

This section explores the spatial bias (the mean forecast minus the mean observation at each grid
point in the contiguous U.S.) of each model across 2011–2020. The temperature maps of Figure 17
indicate a cold bias for most models over the southern half of the U.S. and an additional warm bias
for several models in the center north. This warm bias is particularly pronounced for Salient 2.0. In
precipitation maps of Figure 18, all models Salient 2.0 and AutoKNN show wet biases in the western
half of the U.S. and dry biases in the eastern half. AutoKNN exhibits a dry bias extending from the
Eastern U.S. to include the Northern U.S. as well, while Salient 2.0 displays a strong dry bias across
the entire contiguous U.S. that is especially pronounced in the eastern half.

The Prophet model is noticeably less biased than the other evaluated models; however, this bias
reduction does not immediately translate into improved performance, as Prophet is outperformed by
ABC models with larger bias in all four tasks. This indicates that Prophet’s reduced bias comes at a
cost of unnecessarily high variance relative to the dominating ABC model forecasts.

Figure 17: Model bias when forecasting temperature in the contiguous U.S. over 2011–2020.

Figure 18: Model bias when forecasting precipitation in the contiguous U.S. over 2011–2020.

C.6 GraphCast Comparison Details

To generate a weeks 3-4 GraphCast forecast of temperature and precipitation for a given target date,
we

1. downloaded the pretrained GraphCast - ERA5 1979-2017 - resolution 0.25 -
pressure levels 37 - mesh 2to6 - precipitation input and output model
weights from https://console.cloud.google.com/storage/browser/dm_graphcast,

2. initialized the model with the three days of ECMWF Reanalysis v5 (ERA5) data preceding the as-
sociated issuance date, as described in https://github.com/google-deepmind/graphcast,

3. repeatedly ran the model (using autoregressive rollout as in https://github.com/
google-deepmind/graphcast/blob/main/graphcast_demo.ipynb) for the maximum sup-
ported number of time steps (12) and reinitialized the model with its own forecasted output until
30 days of forecasts had been produced,
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4. aggregated the 2m_temperature and total_precipitation_6hr forecasts over days 14-28,

5. regridded the aggregated forecasts to our standard 1× 1◦ grid using xarray interp_like [22],
and

6. converted temperature to degrees Celsius and precipitation to millimeters.

Since GraphCast was trained on data through 2017, Table 7 summarizes the performance of GraphCast
across the post-training years 2018–2020. Similarly to the deep learning models previously evaluated
in Table 1, GraphCast outperforms debiased CFSv2 in terms of skill, underperforms debiased CFSv2
in terms of RMSE, and strongly underperforms the ABC ensemble models in both metrics when
forecasting either temperature or precipitation in weeks 3-4.

Table 7: Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE
across 2018–2020 in the contiguous U.S. along with a 95% bootstrap confidence interval. The best
performing model overall is shown in green.

RMSE % IMPROVEMENT AVERAGE % SKILL
WEEKS 3-4

GROUP MODEL TEMPERATURE PRECIPITATION TEMPERATURE PRECIPITATION

BASELINES DEB. CFSV2 – – 19.98±4.84 3.12±2.99

LEARNING GRAPHCAST −34.96±7.46 −34.26±7.57 20.17±4.70 5.55±2.81

ENSEMBLES UNIFORM ABC 9.70±2.19 8.41±1.18 34.37±4.58 18.34±2.59
ONLINE ABC 9.37±2.07 8.37±1.25 34.67±4.71 18.07±2.76

Figure 19 displays the spatial improvement of GraphCast over debiased CFSv2 when forecasting
U.S. temperature and precipitation across 2018–2020. Unlike the ensemble ABC models, GraphCast
seldom improves over the debiased CFSv2 baseline.

GraphCast (-35.71%) Uniform ABC (10.11%) Online ABC (9.42%)
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U.S. Temperature, weeks 3-4

GraphCast (-59.62%) Uniform ABC (9.79%) Online ABC (9.77%)
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10%
15%
20%
25%
30%

U.S. Precipitation, weeks 3-4

Figure 19: Percentage improvement over mean debiased CFSv2 RMSE when forecasting temperature
or precipitation in the contiguous U.S. over 2018–2020. White grid points indicate negative or 0%
improvement, and the mean percentage improvement is given in parentheses.

Figure 20 compares the spatial bias (the mean forecast minus the mean observation at each grid
point in the contiguous U.S.) of GraphCast versus the ABC ensemble models across 2018–2020. For
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precipitation, GraphCast has a substantially drier bias than the ABC models throughout most of the
contiguous U.S. For temperature, GraphCast has a warmer bias in the West.
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Figure 20: Bias of GraphCast vs. ABC ensembles when forecasting temperature or precipitation in
the contiguous U.S. over 2018–2020.

C.7 Western U.S. Competition Results

Table 8 displays the performance improvement over the baseline debiased CFSv2 in the Western U.S.,
over 26 dates in 2019-2020. This region was the focus of the Subseasonal Forecast Rodeo I, and we
include the performance of the three best contestants in the table. The ABC ensembles were either
very competitive or better than the other contestants.

Table 8: Percentage improvement over mean debiased CFSv2 RMSE over 26 contest dates (2019-
2020) in the Western U.S. The best performing models within each class of models are shown in bold,
while the best performing models overall are shown in green.

Group Model Temp. weeks 3-4 Temp. weeks 5-6 Precip. weeks 3-4 Precip. weeks 5-6

Contest baselines Salient − − 11.10 7.02
Climatology 10.22 −0.76 5.82 2.25

Contestants 1st place 17.12 8.47 11.54 8.63
2nd place 16.67 7.04 11.10 8.03
3rd place 15.47 6.90 10.62 7.94

Learning AutoKNN 13.09 2.90 7.50 3.05
LocalBoosting 12.85 4.09 7.25 3.71
MultiLLR 9.54 1.12 8.95 4.58
Prophet 15.68 6.86 6.88 3.40
Salient 2.0 11.15 2.91 12.65 8.56

ABC Climatology++ 15.54 6.43 8.35 4.69
CFSv2++ 6.67 9.26 8.70 5.51
Persistence++ 16.59 8.27 8.20 4.51

Ensembles Uniform ABC 14.96 9.58 9.31 5.89
Uniform ABC + Learning 15.89 8.79 10.43 6.79
Online ABC 16.71 8.70 8.85 5.19
Online ABC + Learning 14.70 7.97 12.52 8.18
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C.8 Salient 2.0 Dry Bias

We hypothesized that the exceptional Western U.S. contest performance of Salient 2.0 in Table 8 was
due in part to the dry bias observed in Figure 18, as 2020 was an unusually dry year in the Western
U.S. To explore this hypothesis, we focus on forecasting precipitation weeks 3-4 in the Western
U.S. and display in Figure 21 (left) the percentage improvement of Salient 2.0 and CFSv2++ over
debiased CFSv2 alongside the inverse total precipitation each year in 2011–2020. As anticipated, the
steep decrease in cumulative precipitation for 2020 is accompanied by a steep increase in Salient 2.0
predictive accuracy. In addition, the rises and falls in total precipitation track the accuracy of Salient
2.0 well but appear largely unassociated with the performance curve of other accurate models like
CFSv2++. The scatter plots and best-fit lines of Figure 21 (right) paint a similar picture. Salient 2.0
exhibits a distinctly negative correlation between percentage improvement and total precipitation in
the Western U.S., while this relationship is absent for other accurate models like CFSv2++.
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Figure 21: Temporal plot (left) and scatter plot (right) of yearly total precipitation and percentage
improvement over mean debiased CFSv2 RMSE in the Western U.S. across 2011–2020.

The developers of the Rodeo I Salient model attribute this dry bias to the log-normal distribution
of precipitation, which leads to more frequent anomalously dry conditions than anomalously wet
conditions and in turn encourages drier model forecasts [58].

More recent versions of the Salient model mitigate this bias by training on seasonal anomalies in
place of raw temperature and precipitation values [58].
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