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Abstract

We address the problem of evaluating the quality of self-supervised learning (SSL) models
without access to supervised labels, while being agnostic to the architecture, learning
algorithm or data manipulation used during training. We argue that representations can be
evaluated through the lens of expressiveness and learnability. We propose to use the Intrinsic
Dimension (ID) to assess expressiveness and introduce Cluster Learnability (CL) to assess
learnability. CL is measured as the learning speed of a KNN classifier trained to predict
labels obtained by clustering the representations with K-means. We thus combine CL and
ID into a single predictor – CLID. Through a large-scale empirical study with a diverse
family of SSL algorithms, we find that CLID better correlates with in-distribution model
performance than other competing recent evaluation schemes. We also benchmark CLID on
out-of-domain generalization, where CLID serves as a predictor of the transfer performance
of SSL models on several visual classification tasks, yielding improvements with respect to
the competing baselines.

1 Introduction

Despite impressive recent progress in self-supervised learning (SSL) (Chen et al., 2020a; Caron et al., 2021;
Grill et al., 2020; Caron et al., 2020; 2018; He et al., 2020; Chen & He, 2021), the problem of properly
evaluating the quality of the learned representations without using labelled data has not been fully explored.
This is an important problem: solving it could give us a practical tool to choose which SSL model to use
when downstream task labels are not accessible, or when the costs of fine-tuning every model to choose the
best one are prohibitive. It can also shed light on how these methods work.

In this paper, we approach it by drawing an analogy between unsupervised learning and the evolution of
human language. It has been suggested in the language evolution literature (see e.g., Smith et al., 2013) that
linguistic structure results from competing pressures for expressiveness (to discriminate objects and concepts
of the world) and learnability (to be transmitted across generations). Here, we take the view that a similar
guiding principle may be applied to representations of natural images. Just as a language associates objects
and scenes with utterances, SSL algorithms do it with continuous vectors to images. We hypothesize that a
good representation should not only cover the diverse visual concepts in the datasets, but also compress them
in a manner that could be efficiently learned. Our goal is to test this hypothesis by (i) proposing tractable
metrics to assess expressiveness and learnability, (ii) designing performance predictors based on these, and
(iii) testing these predictors through a large-scale empirical study of a diverse class of SSL methods.
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Figure 1: We propose to use Cluster Learnability (CL) to measure learnability and Intrinsic Dimension
(ID) for expressiveness. Left: Each circle is a SSL pre-trained checkpoint, and the color is used to show
its KNN Top1 ImageNet accuracy. Red indicates high accuracy, while blue indicates low accuracy. Good
self-supervised learning representations are learnable and expressive, distributed over the upper-right portion
of the graph. Right: Our predictor is highly correlated with ImageNet performance, even without access to
gold labels and by staying agnostic to the model’s architecture or training algorithm.

Concretely, we propose to quantify expressiveness via an estimator of the intrinsic dimension (ID) of the data
representations (Facco et al., 2017; Ansuini et al., 2019). To assess learnability, we take inspiration from Laina
et al. (2020) and propose a novel method called Cluster Learnability (CL), based on the learning speed of a
KNN learner trained to predict labels induced by clustering held-out representations with K-Means. We
show that a combination of CL and ID, dubbed CLID, correlates with the model performance across different
architectures (see Figure 1), better than existing evaluation scheme baselines (Wang & Isola, 2020; Reed et al.,
2021; Yu et al., 2020). To further demonstrate the usefulness of our framework, we conduct out-of-domain
generalization prediction experiments on seven downstream transfer tasks. We find that the proposed CLID
predictor outperforms baseline concurrent methods at predicting transfer performance.

Our contributions are summarized below:

• We propose an evaluation framework for self-supervised learning relying on expressiveness and
learnability, yielding new insights into existing techniques in the literature.

• We propose tractable and generic metrics to quantify (i) expressiveness via the Intrinsic Dimension
(ID) and (ii) learnability via our novel Cluster Learnability (CL) metric.

• We show that CLID predictors are well correlated with Top-1 KNN classification accuracies on
ImageNet, and are robust with respect to the choice of hyperparameters.

• We show that CLID predictors predict the transfer performance of pretrained SSL models on several
visual classification task, especially when used jointly with in-domain accuracies.
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2 Learnability and Expressiveness

In this section, we briefly discuss existing evaluation schemes of self-supervised learning methods, which will
be used as baselines in our experiments. We then describe our own evaluation scheme, based on specific
metrics to quantify learnability and expressiveness.

Notation We consider the following setting: we assume we have an unlabelled dataset {xi}N
i=1 represented

in X ⊂ Rd, where xi ∼ P are sampled i.i.d. from some distribution P over X . We also consider representation
maps F : X → Rm, typically pretrained neural networks, which represent any input as an m-dimensional
vector. Any such map forms a representation dataset Z = {zi}N

i=1 where zi = F(xi).

2.1 Existing SSL Evaluation

Alignment and Uniformity (Wang & Isola, 2020) By decomposing contrastive learning loss, Wang
& Isola (2020) proposes to understand SSL with alignment and uniformity. Formally, they introduce two
metrics,

Lalign := Ex∼P,x′∼Paug (·|x)∥F(x) − F(x′)∥α
2 , α > 0

Lunif := logEx1,x2∼P

[
e−t||F̂(x1)−F̂(x2)||2

2)
]

, t > 0 (1)

where Paug is the conditional distribution defined by the data augmentation procedure, F̂(x) := F(x)/∥F(x)∥
are the normalized features and t, α are tunable parameters. These two metrics respectively correspond to
the intuition of learnability and expressiveness. By making the feature of positive pairs to be similar, the
minimization of Lalign induces learnable representations that can generalize from one positive example to
another. Minimizing the other component Lunif ensures that the (normalized) features are distributed over a
hyper-sphere, so that the representations can cover more concepts and achieve high expressiveness.

Maximal Coding Rate Reduction (MCR2) (Yu et al., 2020) MCR2 measures the reduction of the
average coding length per sample, a.k.a. the coding rate, of a representation, induced by the knowledge of
some category structure (e.g., the membership of the samples in different classes). The goal of this approach is
to learn representations that discriminates between classes while being maximally diverse (MCR2 corresponds
to the intuition of learning a diverse and yet compressible (w.r.t. the class partition) representations.

Mutual Information (MI) and Pretext Tasks Maximizing mutual information between inputs and
representations (Oord et al., 2018; Bachman et al., 2019a) can be viewed as increasing the expressiveness
of the representations. However, as pointed out by Tschannen et al. (2020), MI is not a good predictor of
the model performance. Our view is that this is because MI alone does not cover take into account the
learnability of the representations. Similar arguments can be applied to pretext tasks evaluation scheme like
rotation prediction and solving jigsaw puzzles (Reed et al., 2021).

2.2 Our Proposal

Here we describe our evaluation scheme under the view of learnability and expressiveness. Our proposed
metrics can be efficiently evaluated on the validation set of the dataset1.

Intrinsic Dimension (ID) We propose to use the notion of intrinsic dimensionality (ID) of the data in the
representation space (Pettis et al., 1979a) to quantify expressiveness. Our intuition is that, as more and more
fine-grained categories emerge in the representation space, we expect the manifold complexity to increase.
Intrinsic dimension is a way to quantify this complexity, characterized as the number of parameters needed
to describe the representation manifold without loss of information.

Inferring the intrinsic dimension of a highly nonlinear manifold is a challenging problem (e.g., Levina &
Bickel, 2005). In this work, we leverage the nearest neighbor-based method of Facco et al. (2017) to estimate

1We have also experimented with metrics computed on the train set but we observed no significant difference in the results.
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ID2. This estimator (TwoNN) is shown to be reliable with respect to representation dimensions and scalable
to real-world datasets with deep neural networks (Ansuini et al., 2019). The concept of intrinsic dimension is
also connected to entropy (we discuss this point in detail in Appendix B).

Formally, given zi ∈ Z and an integer k ≥ 1, we denote by rik = D(zi, NN(zi, k)) the distance3 of zi to its k-th
nearest neighbor NN(zi, k). Assuming that the points are sampled on a manifold with intrinsic dimension d,
it can be shown that, under the assumption of local uniformity4, the ratio of distances µi := ri2/ri1, 1 ≤ i ≤ N ,
follow a Pareto distribution with parameter d + 1 on [1, ∞), i.e., µi ∼ P (µ|d) := dµ−(d+1). While d can be
computed by maximizing the likelihood, we follow a much simpler method proposed by Facco et al. (2017)
based on the cumulative distribution F (µ) = 1 − µ−d associated with P (µ|d). The idea is to estimate d with
a linear regression on the empirical cumulate of the distribution. Specifically, assuming we sort µi ascendingly,
that is µ1 ≤ µ2 ≤ ... ≤ µN , we estimate the cumulative distribution as F emp

i = i/N and fit a straight line on
the datasets {(log µi, − log(1 − F emp

i ))}N
i=1 in the two dimensional plane. The slope is the estimated ID.

Cluster Learnability (CL) Let {zi, ỹi}N
i=1 be the labelled dataset obtained by clustering the representation

(e.g., with K-means). We define the learnability of the representation as the learning speed of a KNN
classifier with this labelled dataset. To formalize this, we use a prequential approach (Dawid, 1984). Let
ŷi = KNN(zi|{zk<i, ỹk<i}) denote the prediction of the i-th label after seeing the pairs (zk, ỹk) for k < i.
Learnability is defined as the online learning accuracy of our KNN classifier:

CL = 1
N

N∑
i=1

[ŷi == ỹi] (2)

In order to scale to large datasets, we choose to chunk our dataset and average the chunk accuracies. This
metric can be connected to the prequential codelength of the cluster assignment dataset where a KNN
classifier plays the role of conditional model We elaborate on this connection in Appendix C.

CLID Predictor We apply our CL and ID in the context of predicting models performance ranking. As a
result, for each checkpoint model, we combine the computed CL and ID values into a single numeric predictor,
which can be used to rank the models. In the case of without any image labels, we simply adding up these
values after standardization

CLID : CL + ID

Furthermore, if we have access to the in-domain performance of the models, we can learn a linear regression

W-CLID : w[CL, ID]

where w is a weight that can be learned by linear regression. This predictor can be further used when
predicting out-of-domain performances.

3 Empirical Study

3.1 Setup

We select in total 28 self-supervised learning checkpoints trained on ImageNet over different algorithms,
architecture, and training epochs. A complete list can be found in Table 4 in the appendix. We use the

2We experiment with the ID estimator based on the maximum likelihood estimation (Levina & Bickel, 2004; Ma et al., 2018),
without noticing a difference in performance.

3While we generally consider nearest neighboors w.r.t Euclidean distance, in practice we will also use the cosine distance
function, D(z1, z2) = 2 − 2 cos(z1, z2). Both produce similar results in our experiments.

4While the original derivation (Facco et al., 2017) assumes global uniformity, a post-hoc analysis shows that it only needs
local uniformity up to the second neighbor.
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KNN evaluation on the validation data using the ground-truth labels to measure the performance of the
model, which has been shown to be well correlated with the linear evaluation but computationally less
expensive (Caron et al., 2021).

For the computation of cluster learnability, we choose the square root of the dataset size as the number of
clusters in Kmeans. We report results with 1 neighbor for our KNN learner. We also show that our results
are robust to other choices of hyper-parameters. We normalize the features and use cosine distance for the
K-means clustering and KNN learner5. Other configurations of cluster numbers and neighbor numbers are
also explored in section 3.4. All our experiments are computed on a single V100 GPU.

3.2 Baselines

Wang & Isola (2020) also proposes to predict the ImageNet performance of pre-trained SSL checkpoints as an
evaluation scheme. Therefore, in our experiments, we follow the official implementation6 with α = 2 and t = 2
as default values for the tunable parameters in Eqn 1. We additionally define −Lcontrast = −Lalign − Lunif

to compute the predictor for Wang & Isola (2020)’s method, which reduces to the negative contrastive loss.
We add a negative sign, since we require a predictor to be in proportional to the model performance.

The original MCR2 (Yu et al., 2020) requires a class partition to be pre-specified. In order to adapt it into
an unsupervised evaluation scheme, we use a K-means clustering as the dataset partition. We follow the
default settings7 and we normalize the features. We also experiment with using the ground-truth label as the
dataset partition, but we found no improvements. We use the coding rate reduction ∆R (see Yu et al., 2020,
Equation 6) to be maximized as a predictor.

For the Mutual Information baseline, we use MINE (Belghazi et al., 2018) with a fixed student ResNet18
network (He et al., 2016) to estimate the mutual information between inputs and representation. We use a
batch size 128, learning rate 0.0005 and weight decay 0.001. The network is trained for 50000 steps on the
training images, and we report MINE on the validation data. We find that training longer is computational
intensive, while the results are similar.

For the pretext task, we experiment with rotation prediction by constructing a 4-way classification. We
randomly rotate the training images by 0, 90, 180, 270 degrees, train a KNN classifier on the training images
to predict a 4-way classification, and then report the rotation prediction accuracy on the validation images.
This is shown to be an effective evaluation in both self-supervised learning (Reed et al., 2021) and architecture
search (Liu et al., 2020).

3.3 Is CLID scheme correlated with ImageNet performance?

We first investigate whether the proposed evaluation scheme is useful for in-domain (ImageNet) generalization.
We perform both qualitative and a quantitative examination and show the results in Figure 1. On the left,
we find that the self-supervised learning checkpoints with higher ImageNet accuracies tend to be both more
learnable and more expressive (e.g., in the upper-right corner of the graph). In the meantime, we find that
methods favouring only of these qualities at the expanse of the other, like PCLv1 and PIRL, also have poor
ImageNet accuracies. In Figure 1 middle and right, we compute the correlation of our CLID predictors with
respect to the ImageNet accuracy of the model considered and show that we achieve a Pearson ρ of 0.92 for
CLID.

In Table 1, we compare our results with the baselines. The regression plots for the baselines can be found in
Figure 3. Our proposed predictors achieve the highest correlation both in terms of Pearson ρ and Kendall τ
coefficient. We find that Lcontrast achieves a relatively low correlation ρ = 0.37, which apparently contradicts
the observation made in Wang & Isola (2020). We hypothesize that this is due to the fact that their analysis
is restricted to SSL checkpoints trained with contrastive learning, and therefore Lcontrast might not be general
enough to characterize representations obtained by alternative approaches. Additionally, the results in Wang
& Isola (2020) are computed on the representations used to compute the noise-contrastive objective, which

5We find similar results when using L2 distance.
6See https://github.com/SsnL/moco_align_uniform
7See https://github.com/ryanchankh/mcr2
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Table 1: Correlation results between ImageNet performances and different predictors. We compute both
Pearson ρ and Kendall τ . Our CLID predictors achieve the highest correlation.

Predictors Pearson ρ Kendall τ

−Lalign 0.42 0.26
−Lunif -0.05 0.03
Lcontrast 0.37 0.24
∆R -0.62 -0.33
MI 0.13 0.08
Pretext 0.61 0.27
Ours

CL 0.74 0.44
ID 0.12 0.09
CLID 0.92 0.75

are usually transformed by a final projection layer that is not always present in other SSL methods. This
limits its generality. Interestingly, we find that MCR2 (∆R) gives negative correlation which warrants further
investigation. While the MI baseline only achieves ρ = 0.13, the pretext task baseline is still surprisingly
good with a ρ = 0.61, suggesting that the rotation prediction task remains a simple but effective baseline.

3.4 Is CLID sensitive to its hyper-parameters?

In this section, we check the sensitivity of CLID to its hyperparameters. Since ID does not have any
hyper-parameters, we mainly examine the following hyper-parameters for CL: the number of clusters and the
number of neighbors used in the KNN Learner.
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Figure 2: Robustness Analysis for ImageNet. Left: The heat map of Pearson Coefficient between the Top-1
accuracy and W-CLID predictor. Right: Pearson coefficient vs. the ratio between the number of clusters
and the dataset size when using one neighbor. The result is stable with a reasonably large number of clusters,
e.g., the square-root of the dataset size (Green Dashed Line).

The results can be found in Figure 2. The resulting predictors can still produce a higher correlation than the
rotation prediction for a wide range of the configurations we tried. We observe that decreasing the number of
neighbors leads to a better predictor. Given our result, we recommend setting this number to be 1.
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Table 2: Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are not available.
The CLID predictor has the best predictive performance for transfer tasks. Full results in Table 5, including
results for the few-shot experiments.

CLID −Lcontrast ∆R MI Pretext
foods 0.75 0.17 -0.35 0.01 0.51
flowers 0.81 0.25 -0.35 0.14 0.46
pets 0.71 0.23 -0.25 -0.08 0.54
caltech101 0.56 0.11 -0.18 -0.05 0.67
stl10 0.56 0.02 -0.34 -0.21 0.41
aircraft 0.67 0.21 -0.27 0.16 0.57
cars 0.81 0.32 -0.28 0.16 0.48
Avg 0.70 0.19 -0.29 0.02 0.52

Table 3: Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are obtained.
The results are computed with the joint rank product between the predictors and the ImageNet accuracy.
While the ImageNet accuracy can predict the transfer accuracy reasonabley, the proposed CLID predictor
could further enhance the result. Full results in Table 6. Including results with few-shot experiments. Blue
cells indicates the joint ranking outperform using ImageNet accuracy alone.

Imagenet CLID W-CLID Source Ent Target Ent Lcontrast Pretext
foods 0.86 0.84 0.81 0.88 0.84 0.56 0.75

flowers 0.70 0.79 0.74 0.74 0.71 0.58 0.64
pets 0.75 0.77 0.78 0.66 0.72 0.55 0.76

caltech101 0.62 0.59 0.58 0.60 0.66 0.41 0.77
stl10 0.76 0.71 0.71 0.61 0.71 0.36 0.64

aircraft 0.60 0.66 0.61 0.68 0.64 0.50 0.62
cars 0.68 0.79 0.74 0.72 0.74 0.64 0.66
Avg 0.71 0.74 0.71 0.70 0.72 0.52 0.69

We observe that there is an optimal cluster number so that the choice of neighbor numbers can be more
flexible. If the cluster number is too low, the results become worse. Recall that for different checkpoints, the
clusters are produced with the same K-means algorithm, so the separability among clusters might be roughly
controlled. As a result, we hypothesize that the number of clusters might control the underlying difficulty of
the classification problem faced by the KNN learner. In the extreme case, we either have 1 cluster or as many
clusters as data points. In the former, KNN accuracy would always be 100% and in the latter always be close
to 0%8. As a result, neither of them would be suitable enough to distinguish the collected checkpoints. As a
rule of thumb, we recommend using a reasonably large number of clusters, e.g., the square root of the dataset
size.

3.5 Can CLID be used to predict transfer performance?

Here we investigate whether CLID can be a good predictor of the performance on downstream tasks. We
collect 7 out-of-domain downstream visual classification tasks. For each domain, we compare the ranking
of our SSL checkpoints induced by CLID, and the ranking induced by the actual test performance on that
domain. We report the Kendall τ correlation score, which is consistent with the existing benchmarks on
out-of-domain generalization (Vedantam et al., 2021).

We first investigate the scenario where the ImageNet labels are not accessible (Table 2). This is an extension
of our previous scenario, and it is also a realistic assumption especially when the models are pretrained

8To be specific it’s 1/N , where N is the dataset size. It’s close to 0% when N is large.
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on web-scale data without clear annotations. We find that our CLID predictor is the best, even beating
the W-CLID predictor. One reason is because the linear coefficients w are obtained from regressing in the
ImageNet domain, which might increase overfitting and hurt transfer. We also find that −Lcontrast is not a
good predictor, and a simple pretext task like rotation prediction already has reasonable performance even in
transfer settings.

In the second setting, we assume to have access to ImageNet labels (Table 3) and explore whether transfer
performance prediction can be improved using this additional information. We find that the ImageNet
accuracies have pretty high correlation with the downstream tasks, with an average Kendall coefficients of
0.71. To integrate ImageNet performance information to each our competing predictors, we proceed as follows.
Let ri

pred be the ranking of i-th checkpoint from the predictor, and ri
img be that from the ImageNet accuracy.

We compute a joint ranking by computing the rank product, which is the geometric mean of these two ranks:

ri
joint =

√
ri

predri
img

In addition to comparing with previously presented baselines, we also add the strongest baselines from (Vedan-
tam et al., 2021): we train a linear classifier and measure the negative label entropy −H(Y |X). Since the
entropy can be measured on either source domain or target domain, we denote each variant as “Source Ent”
and “Target Ent”. The underlying intuition is that, if the model has more confidence in the prediction (lower
entropy), it should generalize better.

We find that the proposed CLID predictor can further enhance the ImageNet accuracies predictions, with an
average Kendall coefficients of 0.74 for the joint ranking. We find that “Target Ent.” and “Source Ent.” both
have a reasonable performance, which is consistent with observation in Vedantam et al. (2021), but they
underperform our predictor. Note that computing “Target Ent.” and “Source Ent.” requires training an extra
linear layer, which increases their computational requirements.

4 Related Work

Representation Evaluation Several recent works address the question of representation evaluation in
self-supervised learning. Whitney et al. (2021) propose to use the learning dynamics of the downstream
classifiers to measure the representation complexity. However their method still depends on extra human
labels. Pretext tasks like jigsaw or rotation prediction are shown to be well correlated with the self-supervised
evaluation (Reed et al., 2021; Deng & Zheng, 2021) and architecture search (Liu et al., 2020). However, they
also rely on crafting ad-hoc data augmentations. Ericsson et al. (2021) argues that it is important to look at
the transfer performance of the SSL models in order to judge its quality. We agree with this statement and
therefore also test our method for out-of-domain generalization settings (section 3.5). Closely related to our
work, a very recent paper Garrido et al. (2022) proposes to evaluate joint-embedding self-supervised methods
without access to supervised labels, by means of the effective rank of the learned embedding matrix.

The concepts of learnability and expressiveness, while not being explicitly mentioned, can be found in existing
literature. For example, many SSL strategies emphasize maximizing the mutual information between inputs
and representations (Vincent et al., 2008; Higgins et al., 2017; Oord et al., 2018; Bachman et al., 2019b). These
can be viewed as attempts to increase expressiveness, since high mutual information leads to correspondence
between inputs and representations, and thus the visual concepts among the inputs are mapped to the
representation space. Recent works also pay attention to the emerging properties of learnability in the
cluster structure from SSL models through human studies (Laina et al., 2020). The emphasis of learnability
can be also found in the recent attempt to design a compression regularizor called Conditional Entropy
Bottleneck (Lee et al., 2021). Finally, the intuition of a trade-off between learnability and expressiveness
underpins other representation analysis frameworks, such as alignment and uniformity (Wang & Isola, 2020)
or Maximal Coding Rate Reduction (Yu et al., 2020), which are further explained in Section 2. In this paper,
we aim at turning this intuition into a practical self-supervised evaluation tool, especially on predicting
performances in out-of-distribution transfer tasks.

Learnability, Ease-of-Transmission and Compression Learnability has been argued to be a hallmark
of the human language in order to be effortlessly transmitted through generations (Kirby et al., 2014;
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Rafferty et al., 2011; Beckner et al., 2017; Zhou & Yurovsky, 2021; Kampen, 2004), and it is also true for
visual concepts like color (Xu et al., 2010), categories (Griffiths et al., 2006), shapes (Portelance et al., 2021)
etc. In deep learning, it has been explored in the context of emergent communication (Ren et al., 2020;
Guo et al., 2019; Li & Bowling, 2019), language drift (Lu et al., 2020), and neural module networks (Vani
et al., 2021), but it is less explored for vision representation learning, except for a human study on just two
SSL methods (Laina et al., 2020). While Lee et al. (2021) also investigates a regularizor for compressive
self-supervised learning, it is unclear whether such notion is useful as a representation evaluation framework.
Learnability has a tight connection to compression (Chaitin, 2007) and prequential codelength (Dawid, 1984),
which quantifies the compression levels with the online learning error. Existing work (Blier & Ollivier, 2018)
has uses it to support the generalization ability of the learner (e.g., deep neural nets) on the dataset (e.g.,
labeled images). Here, we use this concept to quantify the learnability of the representation, in the sense
that if the emerged Kmeans clustering is more learnable, then the same KNN learner could achieve a lower
compression bound via prequential coding.

Manifold Intrinsic Dimension Intrinsic dimension can be thought of as the smallest number of variable
needed to approximate the representation manifold. Applying local neighborhood information to estimate
the intrinsic dimension is not a new idea, and it was shown to be more efficient than the global eigenvalue
approach (Pettis et al., 1979b). Ansuini et al. (2019) apply the TwoNN estimator (Facco et al., 2017) to
the non-linear representation manifold of modern deep neural nets. They find that the intrinsic dimension
is inversely correlated to the classification accuracy Their work is further extended to confirm that natural
images lies in a low-dimension manifold (Pope et al., 2021), and that lower ID datasets leads to better
generalization. Recanatesi et al. (2019) further highlights the connections between intrinsic dimension and the
generalization properties, by comparing the models before and after supervised training. Intrinsic dimension
can also be estimated locally with a Maximum Likelihood Estimator (Levina & Bickel, 2004), which Ma et al.
(2018) propose to use as a regularizor against overfitting noisy labels. While the above work mainly focus on
ID with supervised learning models, our work on SSL models presents a more nuanced view about ID. It
is indeed the case that lower intrinsic dimension can lead to better accuracy, especially among supervised
checkpoints (see “sup_RN18”, “sup_RN34”, “sup_RN50”in Figure 1). However, we hypothesize that when
learning representation from scratch without labels, e.g., self-supervised learning, the representation manifold
still need a certain amount of complexity in order to include enough information from the dataset.

5 Limitation and Potential Negative Societal Impacts

Limitations While our proposed evaluation scheme is designed to be general, a potential limitation is that
it might be only suitable to the classification tasks, since we put emphasis on the emergence of learnable
cluster structure. As a result, the proposed predictor might not be as useful for other downstream tasks like
object detection or segmentation. While our results is true for a population of models, there are also some
outliers. E.g., in Figure 1 “deepclusterv1” seems to have higher CL and ID than “simclrv2”, but its accuracy
is lower.

Societal impact This paper follows a line of work aiming at a better understanding of deep learning
algorithms. Even though it does not directly contribute to any specific application, it promotes the development
and dissemination of the deep learning technology, which, as any technology, can be used for harmful purposes.
Moreover, we acknowledge that deep learning has been proved in the past to potentially reduce or amplify
bias.

6 Conclusion & Discussion

We propose a unifying view to evaluate self-supervised representation learning through expressiveness and
learnability. We propose to estimate expressiveness with intrinsic dimension (ID), and learnability with the
acquisition speed of a KNN learner on the K-means clustering of the representation. We show that the
proposed CLID evaluation scheme better predicts the ImageNet accuracy than other evaluation schemes. We
further demonstrate that our CLID can also predict the transfer task performance.

9
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Our work is a solid step towards understanding the current SSL algorithms and opens up interesting research
directions. Future works could further explore the expressiveness-learnability in a more theoretical context,
extend this framework to other field like pretrained language models, as well as devise new SSL algorithms
that directly maximize intrinsic dimension or cluster learnability.

References
Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data

representations in deep neural networks. Advances in Neural Information Processing Systems, 32:6111–6122,
2019.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual
information across views. Advances in Neural Information Processing Systems, 32:15535–15545, 2019a.

Philip Bachman, R. Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual
information across views. In NeurIPS, pp. 15509–15519, 2019b.

Clay Beckner, Janet B Pierrehumbert, and Jennifer Hay. The emergence of linguistic structure in an online
iterated learning task. Journal of Language Evolution, 2(2):160–176, 2017.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville,
and Devon Hjelm. Mutual information neural estimation. In International Conference on Machine Learning,
pp. 531–540. PMLR, 2018.

Léonard Blier and Yann Ollivier. The description length of deep learning models. arXiv preprint
arXiv:1802.07044, 2018.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
132–149, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised
learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294, 2021.

Gregory J Chaitin. Thinking About Godel And Turing: Essays On Complexity, 1970–2007. World scientific,
2007.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. arXiv preprint arXiv:2002.05709, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-supervised
models are strong semi-supervised learners. Advances in Neural Information Processing Systems, 33:
22243–22255, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020c.

A Philip Dawid. Present position and potential developments: Some personal views statistical theory the
prequential approach. Journal of the Royal Statistical Society: Series A (General), 147(2):278–290, 1984.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation? In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15069–15078, 2021.

10



Under review as submission to TMLR

Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models transfer? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5414–5423,
2021.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of
datasets by a minimal neighborhood information. Scientific reports, 7(1):1–8, 2017.

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing the downstream
performance of pretrained self-supervised representations by their rank. arXiv:2210.02885 [cs.LG], 2022.

Thomas L Griffiths, Brian R Christian, and Michael L Kalish. Revealing priors on category structures through
iterated learning. In Proceedings of the 28th annual conference of the Cognitive Science Society, volume
199, 2006.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. Advances in Neural Information Processing Systems,
33, 2020.

Shangmin Guo, Yi Ren, Serhii Havrylov, Stella Frank, Ivan Titov, and Kenny Smith. The emergence of
compositional languages for numeric concepts through iterated learning in neural agents. arXiv preprint
arXiv:1910.05291, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9729–9738, 2020.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.

Jacqueline van Kampen. The learnability of syntactic categories. LOT Occasional Series, 3:245–256, 2004.

Simon Kirby, Tom Griffiths, and Kenny Smith. Iterated learning and the evolution of language. Current
opinion in neurobiology, 28:108–114, 2014.

Iro Laina, Ruth Fong, and Andrea Vedaldi. Quantifying learnability and describability of visual concepts
emerging in representation learning. Advances in Neural Information Processing Systems, 33, 2020.

Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive visual
representations. Advances in Neural Information Processing Systems, 34, 2021.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. Advances in neural
information processing systems, 17, 2004.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In
L. Saul, Y. Weiss, and L. Bottou (eds.), Advances in Neural Information Processing Sys-
tems, volume 17. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/2004/file/
74934548253bcab8490ebd74afed7031-Paper.pdf.

Fushan Li and Michael Bowling. Ease-of-teaching and language structure from emergent communication. In
Advances in Neural Information Processing Systems, pp. 15825–15835, 2019.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of unsupervised
representations. In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=KmykpuSrjcq.

11

https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://openreview.net/forum?id=KmykpuSrjcq
https://openreview.net/forum?id=KmykpuSrjcq


Under review as submission to TMLR

Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels necessary for
neural architecture search? In European Conference on Computer Vision, pp. 798–813. Springer, 2020.

Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, and Aaron Courville. Countering language drift
with seeded iterated learning. arXiv preprint arXiv:2003.12694, 2020.

Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi Wijewickrema,
and James Bailey. Dimensionality-driven learning with noisy labels. In International Conference on
Machine Learning, pp. 3355–3364. PMLR, 2018.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6707–6717,
2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding,
2018. URL http://arxiv.org/abs/1807.03748. cite arxiv:1807.03748.

Karl W. Pettis, Thomas A. Bailey, Anil K. Jain, and Richard C. Dubes. An intrinsic dimensionality estimator
from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1
(1):25–37, 1979a. doi: 10.1109/TPAMI.1979.4766873.

Karl W. Pettis, Thomas A. Bailey, Anil K. Jain, and Richard C. Dubes. An intrinsic dimensionality estimator
from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1
(1):25–37, 1979b. doi: 10.1109/TPAMI.1979.4766873.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension of
images and its impact on learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=XJk19XzGq2J.

Eva Portelance, Michael C Frank, Dan Jurafsky, Alessandro Sordoni, and Romain Laroche. The emergence
of the shape bias results from communicative efficiency. arXiv e-prints, pp. arXiv–2109, 2021.

Anna N Rafferty, Thomas L Griffiths, and Marc Ettlinger. Exploring the relationship between learnability
and linguistic universals. In Proceedings of the 2nd Workshop on Cognitive Modeling and Computational
Linguistics, pp. 49–57, 2011.

Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and Eric Shea-Brown.
Dimensionality compression and expansion in deep neural networks. arXiv preprint arXiv:1906.00443,
2019.

Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. Selfaugment: Automatic
augmentation policies for self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2674–2683, 2021.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B Cohen, and Simon Kirby. Compositional languages emerge
in a neural iterated learning model. arXiv preprint arXiv:2002.01365, 2020.

Kenny Smith, Monica Tamariz, and Simon Kirby. Linguistic structure is an evolutionary trade-off between
simplicity and expressivity. In Proceedings of the annual meeting of the cognitive science society, volume 35,
2013.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning? arXiv preprint arXiv:2005.10243, 2020.

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual infor-
mation maximization for representation learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rkxoh24FPH.

12

http://arxiv.org/abs/1807.03748
https://openreview.net/forum?id=XJk19XzGq2J
https://openreview.net/forum?id=rkxoh24FPH


Under review as submission to TMLR

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron Courville. Iterated learning for
emergent systematicity in {vqa}. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pd_oMxH8IlF.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of domain
generalization with empirical risk minimizers. Advances in Neural Information Processing Systems, 34,
2021.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with
denoising autoencoders. In International Conference on Machine Learning proceedings. 2008.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and
uniformity on the hypersphere. In International Conference on Machine Learning, pp. 9929–9939. PMLR,
2020.

William F Whitney, Min Jae Song, David Brandfonbrener, Jaan Altosaar, and Kyunghyun Cho. Evaluating
representations by the complexity of learning low-loss predictors. In Neural Compression: From Information
Theory to Applications–Workshop@ ICLR 2021, 2021.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3733–3742, 2018.

Jing Xu, Thomas Griffiths, and Mike Dowman. Replicating color term universals through human iterated
learning. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 32, 2010.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction. Advances in Neural
Information Processing Systems, 33:9422–9434, 2020.

Yuchen Zhou and Dan Yurovsky. A common framework for quantifying the learnability of nouns and verbs.
In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 43, 2021.

13

https://openreview.net/forum?id=Pd_oMxH8IlF


Under review as submission to TMLR

Appendix

A Futher Discussion on Current SSL Practice

We further discuss the motivation behind our framework, and how can approach some of the SSL practice
throught the lense of expressiveness and learnability.

Contrastive Learning With our new view on representation quality by expressiveness-learnability, we can
try to analyze some of the practice in the contrastive learning and see why it works and fails. Contrastive
learning is a typical example of such a trade-off, and it has the following objective:

Ex,x+,x− log
( eF(x)T F(x+)

eF(x)T F(x+) + eF(x)T F(x−)

)
It aims to output distinguishable feature vectors between positive and negative examples which turns out
to increase the expressiveness. Meanwhile, it aims to make the output vectors among positive examples to
be similar by which a higher value of learnability is ensured, since ideally the another learner only need to
see one example to generalize to other positive examples. As a result, the degree of learnability here can be
controlled by the definition of positive examples. A more diverse selection of the positive examples should
make the F leaning toward the learnability side, since each example could represent a larger fraction of the
inputs. It is well acknowledged in the self-supervised community that a diverse data augmentation is an
essential part of the contrastive learning, and under this framework, it is a source of the learnability pressure.

Clustering-based Learning Perhaps our expressiveness-learnability framework is more obvious in the
clustering-based algorithm like DeepCluster (Caron et al., 2018) and SwAV (Caron et al., 2020). In these
algorithms, you learn not only F but also a bank of cluster centroids C as well as assignments ỹ = CT F(x).
As a result, we can also view these algorithms as finding ỹ = G(x), where G is composed of F and C.

In these methods, the expressiveness is achieved by using a large number of clusters as well as some uniformity
constraint, and this can ensure each data has a distinctive cluster assignment. SwAV achieves it with the
SinkHorn iterations, while the DeepCluster, at least in the early version, would balance the sampling ratio of
images to make the cluster uniform as well as resolving the empty cluster issues.

The learnability requirements are implicitly enforced as well. Since the space of ỹ is usually less than x, there
are usually multiple data being assigned to the same cluster. This already ensure that a new learner should
able to see a few examples to generalize within the cluster. In addition, these algorithms also leverage the
data augmentation, so that G(x) and G(x+) should have the same ỹ, which further improves the learnability.

B Intrinsic Dimension and Entropy Estimation

In this section, we briefly discuss how Intrinsic Dimension can be connected to Entropy Estimation for highly
non-linear manifolds under the MLE principle.

Suppose we have i.i.d. dataset X = {X1, X2, ..., Xn}. Let S(x, R) be a sphere around x and radius R. We
assume when R is small, the local density is constant (local uniformity). That is we assume there is a constant
f(x) inside S(x, R). Then we denote N(r, x) as the number of data that appears inside the sphere S(x, r),
out of n data. When r goes from 0 to R, we assume the stochastic process {N(r, x)} can be described as a
homogeneous Poisson Process inside S(x, R). Then the rate of such process w.r.t. r is

λ(r) = f(x)V (D)DtD−1

where D is the intrinsic dimension, and V (D) = πD/2[Γ(D/2 + 1)]−1 is the volume of unit sphere in RD.

Let’s say D and θ = log f(x) is our parameters for this model. Then the likelihood is the conditional
probability of the observation {N(r, x)}. That is

L(D, θ) =
∫ R

0
log λ(r)dN(r, x) −

∫ R

0
λ(r)dr
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This is derived in the other paper that I do not fully understand now. But let’s say this is true, we can
estimate both parameter with MLE

∂L

∂D
= 0,

∂L

∂θ
= 0

This gives us the estimation of D w.r.t. the choice of sphere S(x, R) as

D̂(x, R) =

 1
N(R, x)

N(R,x)∑
j=1

log R

Tj(x)

−1

where Tj(x) is the distance of j-th neighbor to x. If we control R by the predefined the number of neighbor
k, then

D̂(x, k) =

 1
k − 1

k−1∑
j=1

log Tk(x)
Tj(x)

−1

which is the expected log distance ratio between k-th neighbor and other neighbors.

Also from above, we have
N(R, x)

RD
= eθV (D)

to be true for all x. Therefore

log f(x) = θ = log N(R)
RDV (D) = log N(R) − D log R − log V (D)

which suggest that given the local intrinsic dimension, we have an estimation of the local density f(x). If we
also use number of neighbors k to represent R, and use our local intrinsic dimension estimate D̂(x, k), we
have estimated local density

log f̂(x) = log(k − 1) − D̂(x, k) log Tk(x) − log V (D̂(x, k))

Then our estimate of entropy based on dataset can be

Ĥ(X, k) = − 1
n

n∑
i

log f̂(Xi) (3)

= 1
n

n∑
i

(
D̂(Xi, k) log Tk(Xi) + log V (D̂(Xi, k))

)
− log(k − 1) (4)

C Cluster Learnability and Prequential Codelength

Note that Epn. 2 can be connected to the compression lower bound of the emerged cluster assignments
datasets {zi, ỹi}N

i=1 via prequential coding (Dawid, 1984). The prequential codelength is defined as

Lpreq = −
∑

i

log p(ỹi|(zk≤i, ỹk<i)) (5)

where p(ỹi|(zk≤i, ỹk<i)) is a conditional model, which can be computed from our KNN classifier probabilities.
If Eqn. 2 is the online learning accuracy, then Eqn. 5 is online learning cross-entropy loss. Higher CL lead to
lower prequential compression bounds on the emerged clusters.
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Name Method Architecture
infomin Unsupervised ResNet
insdis Unsupervised ResNet

pcl_v1 Unsupervised ResNet
pcl_v2 Unsupervised ResNet

pirl Unsupervised ResNet
byol Unsupervised ResNet

deepclusterv2_400ep_2x224 Unsupervised ResNet
deepclusterv2_400ep Unsupervised ResNet
deepclusterv2_800ep Unsupervised ResNet

dino_deitsmall8 Unsupervised ViT
dino_deitsmall16 Unsupervised ViT

dino_vitbase8 Unsupervised ViT
dino_vitbase16 Unsupervised ViT

dino_xcit_small_12_p16 Unsupervised XCiT
moco_v1_200ep Unsupervised ResNet
noco_v2_200ep Unsupervised ResNet
moco_v2_800ep Unsupervised ResNet

resnet18 Supervised ResNet
resnet34 Supervised ResNet
resnet50 Supervised ResNet

selav2_400ep_2x224 Unsupervised ResNet
selav2_400ep Unsupervised ResNet

simclrv2_r501xsk0 Unsupervised ResNet
simclrv2_r501xsk1 Unsupervised ResNet

simclrv1_resnet50_1x Unsupervised ResNet
swav_100ep Unsupervised ResNet
swav_200ep Unsupervised ResNet
swav_800ep Unsupervised ResNet

Table 4: Full list of the pretrained checkpoints collected. The list of SSL methods are: MoCo-v1 (He et al.,
2020), MoCo-v2 (Chen et al., 2020c), SeLA-v2 (Caron et al., 2020), DeepCluster-v2 (Caron et al., 2020),
SwAV (Caron et al., 2020), DINO (Caron et al., 2021), SimCLR v2 (Chen et al., 2020b), SimCLR-v1 (Chen
et al., 2020a), PCL-v1 (Li et al., 2021), PCL-v2 (Li et al., 2021), PIRL (Misra & Maaten, 2020), BYOL (Grill
et al., 2020), InfoMin (Tian et al., 2020), InsDis (Wu et al., 2018).
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Figure 3: Regression results for baselines w.r.t ImageNet accuracies.
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