
On the Duality between Gradient Transformations and Adapters

Lucas Torroba-Hennigen 1 Hunter Lang 1 Han Guo 1 Yoon Kim 1

Abstract
We study memory-efficient optimization of neu-
ral networks (in particular language models) with
linear gradient transformations, where the gradi-
ents are linearly mapped to a lower dimensional
space than the full parameter space, thus saving
memory required for gradient accumulation and
optimizer state persistence. The model parame-
ters are updated by first performing an optimiza-
tion step in the lower dimensional space and then
going back into the original parameter space via
the linear map’s transpose. We show that op-
timizing the model in this transformed space is
equivalent to reparameterizing the original model
through a linear adapter that additively modi-
fies the model parameters, and then only opti-
mizing the adapter’s parameters. When the trans-
formation is Kronecker-factored, this establishes
an equivalence between GaLore (Zhao et al.,
2024) and one-sided LoRA (Hu et al., 2022). We
show that this duality between gradient transfor-
mations and adapter-based reparameterizations
unifies existing approaches to memory-efficient
training and suggests new techniques for improv-
ing training efficiency and memory use.

1. Introduction
Training neural networks, in particular large language mod-
els (LLMs), can be extremely memory-intensive. Stan-
dard approaches for LLM training use gradient accumu-
lation across multiple batches and optimizers such as
Adam (Kingma & Ba, 2015), which maintains estimates of
the first and second moments of the (stochastic) gradient.
Hence, the amount of GPU memory needed for standard
training can be as much as four times the amount of mem-
ory needed to store the model (assuming the gradients/opti-
mization states are kept in the same precision as the model
parameters).

1Massachusetts Institute of Technology. Correspondence to:
Lucas Torroba-Hennigen <lucastor@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

In response, a wealth of literature has developed around
memory-efficient training methods. Most of these fall
into one of two families. The first involves modifications
to the model parameterization, in particular by introduc-
ing “adapters” to the model architecture that have a small
number of additional parameters, and only tuning those
adapters (Houlsby et al., 2019; Li & Liang, 2021; Hu et al.,
2022). Adapters such as LoRA increase the total number
of parameters but reduce the number of trainable param-
eters, resulting in overall memory savings. While LoRA
was originally introduced for memory-efficient finetuning,
recent works such as ReLoRA (Lialin et al., 2024), LoRA-
the-Explorer (LTE; Huh et al., 2024), and Flora (Hao et al.,
2024) find that LoRA can even enable memory-efficient
pretraining if the adapters are periodically merged back
into the full model (and then reinitialized).

The second family of methods involves more direct
changes to the optimization strategy, either by designing
optimizers that store fewer extra bits of information per
parameter (Anil et al., 2019; Shazeer & Stern, 2018), or
(broadly) compressing the gradients, e.g., via quantiza-
tion (Bernstein et al., 2018; Dettmers et al., 2022; Li et al.,
2024a) or low-rank approximations (Gooneratne et al.,
2020; Huang et al., 2023). For LLMs, GaLore (Zhao et al.,
2024) has recently emerged as a promising gradient com-
pression approach for memory-efficient pretraining. Ga-
Lore transforms the gradient matrices of linear layers via
projections derived from an SVD of the gradient matrix,
and then performs optimization in this projected space.

Is there a relationship between methods that directly trans-
form/compress gradients, and adapter-based methods that
reparameterize the underlying model into frozen and train-
able components? In the case of GaLore and LoRA, recent
works find that the answer is yes, in particular showing that
training a LoRA adapter with one side frozen can be seen as
a form of gradient compression where the gradient matri-
ces are sketched to a lower dimensional space with random
matrices (Hao et al., 2024) or through SVD-based projec-
tions (Loeschcke et al., 2024).

In this work, we show that the connection between GaLore
and LoRA is more general by proving that training a neu-
ral network by applying an arbitrary linear transformation
to the gradient vector is equivalent (in the sense that the re-

1



On the Duality between Gradient Transformations and Adapters

sulting models are the same and have the same optimization
trajectory) to reparameterizing the neural network through
a linear adapter that additively modifies the original pa-
rameters, and then only training the adapter. When applied
to (vectorized) matrices with a particular Kronecker factor-
ization of the linear map, our results recover the equiva-
lence between GaLore and one-sided LoRA.

Our empirical experiments study this connection between
linear gradient transformations and adapter-based repa-
rameterizations in the context of memory-efficient LLM
training. First, we perform a comparison across gra-
dient projection-based and LoRA-based approaches for
memory-efficient training and find that randomly sketch-
ing gradients works particularly well (§4.1). We also ex-
ploit the adapter view of projected-gradient training1 by de-
veloping a QLoRA-style (Dettmers et al., 2023) approach
to GaLore-style training. Second, we show that the gra-
dient projection view of LoRA adapters can improve dis-
tributed training of LLMs with parallel LoRA adapters
(Huh et al., 2024) by suggesting an initialization scheme
of worker-specific LoRA adapters tailored for distributed
training (§4.2). These results collectively demonstrate that
this duality between linear gradient transformations and
adapter-based reparameterizations is a productive lens with
which to view neural network optimization, since it unifies
several existing approaches and suggests new techniques
for improving training efficiency and performance.

2. Background
2.1. Memory Characteristics of LLM Training

LLM training makes use of accelerators like GPUs, which
requires storing important data in rapidly accessible, on-
device memory.2 The bulk of this memory consumption
can be broken down into four main categories.

Model parameters. We must keep the model’s parame-
ters in memory, since these are used in various stages of
the training process (e.g., to compute gradients). Here, it
is useful to distinguish trainable parameters (which get up-
dated regularly during training) from non-trainable param-
eters (which are not updated during training but may still
be used in gradient computation).

Gradients. LLMs are trained using (variants of) stochastic
gradient descent, which requires an estimate of the gradient
of the loss function with respect to each trainable parame-
ter. Standard LLM training uses a large number of samples
to estimate the gradient, which necessitates gradient accu-

1Note that this notion of performing gradient descent with pro-
jections of the gradient is distinct from projected gradient descent
(PGD) from the optimization literature.

2While offloading to CPU is theoretically possible, bandwidth
limitations often make this infeasible in practice.

mulation across multiple mini-batches of data.3

Optimizer states. In addition to the gradient itself,
most optimizers used in LLM training persist other
state across steps. Adam (Kingma & Ba, 2015) and
AdamW (Loshchilov & Hutter, 2019) maintain running av-
erages of the gradient and the gradient squared (i.e., an
estimate of first- and second-order moments), which re-
quire two floats per trainable parameter. Examples of
techniques that reduce optimizer memory include 8-bit
Adam (Dettmers et al., 2022), which stores Adam states in
lower precision, and AdaFactor (Shazeer & Stern, 2018),
which modifies Adam to use fewer floats per parameter.

Activations. LLM gradients are almost always obtained
using reverse-mode automatic differentiation (Griewank &
Walther, 2008). This consists of building a description of
the LLM during a forward pass, in terms of a computation
graph of its operations, and storing all (possibly intermedi-
ate) results required to subsequently compute the gradients
of the neural network. The simplest way to reduce acti-
vation memory is by breaking batches into smaller micro-
batches and performing more gradient accumulation steps.
Other techniques include gradient checkpointing (Chen
et al., 2016; Jain et al., 2020), which trades off compute for
activation memory by recomputing quantities during the
backward pass, and random projections (Bershatsky et al.,
2022; Liu et al., 2023), which produce stochastic estimators
of gradients based on sketched activations.

This work is mostly concerned with training LLMs in
memory-constrained regimes where the model, optimizer,
and gradient memory dominate, since activation storage
can be made small by, e.g., reducing the microbatch size.
As such, we will only focus on those categories in our cal-
culations.

2.2. LoRA and GaLore

This paper centers mainly around two memory-efficient
training techniques: low-rank adapters (LoRA; Hu et al.,
2022) and gradient low-rank projections (GaLore; Zhao
et al., 2024). LoRA reparameterizes the model’s linear
layers as Y = (W + AB)X, where W is the model’s
original weight matrix and A,B are matrices such that
rank(AB) < rank(W). W remains frozen and only
A,B are optimized; thus, while the total number of model
parameters is increased, the number of trainable parameters
is decreased, which can lead to memory savings. Recent

3While there are methods that perform an optimizer step as
soon as a gradient is estimated (thus eliminating the need to al-
locate memory for gradient accumulation; e,g., LOMO, Lv et al.,
2024), this is not standard in LLM training since it can place re-
strictions on sequence length: for example GaLore with LOMO
only trains on 256-length sequences. We thus train with gradient
accumulation in the present work.

2



On the Duality between Gradient Transformations and Adapters

works obtain even further memory savings by working with
a compressed version of W (Dettmers et al., 2023; Guo
et al., 2024; Li et al., 2024b). While LoRA was originally
proposed in the context of memory-efficient finetuning,
ReLoRA (Lialin et al., 2024), LoRA-the-Explorer (Huh
et al., 2024), and Flora (Hao et al., 2024) show that by pe-
riodically merging the low-rank components with the full
weights and reinitializing them, LoRA can enable reason-
ably performant memory-efficient pretraining from scratch.

GaLore provides an alternative approach to memory-
efficient pretraining. Instead of reparameterizing the
weights to be a combination of full-rank and low-
rank matrices—which increases the number of model
parameters—GaLore performs a low-rank compression of
the gradient matrix W instead. The optimizer update is
computed in this lower dimensional space, transformed
back to the original space, and only then applied to the
parameters. Specifically, given a gradient matrix W ∈
Rm×n, GaLore uses a matrix P ∈ Rk×m (with k < m)
to transform the gradient via PW ∈ Rk×n, feeds this
compressed gradient into a regular optimizer to obtain a
pseudo-parameter update ∆ ∈ Rk×n, and then updates the
original parameters via P⊤∆. In practice, P is given by
the top singular vectors of W, where in order to amortize
the cost of SVD, P is updated only every so often. As with
LoRA, GaLore reduces the memory needed to store the op-
timizer states, since optimization happens in the lower di-
mensional space.

3. Duality between Linear Gradient
Transformations and Adapters

In this section, we prove that training a neural network us-
ing linear transformations of the gradient is equivalent to
reparameterizing the neural network using specific linear
adapters. We begin with the general case, where all pa-
rameters are treated as arbitrary vectors (Thm. 1). We then
show how applying a Kronecker-factored linear transfor-
mation to the gradients of linear layers of the network is
equivalent to training the model with a version of LoRA
which inserts a trainable matrix between the LoRA matri-
ces (Prop. 2). From this, we further show that specializing
to a specific choice of Kronecker-factored transformation
establishes an equivalence between GaLore (Zhao et al.,
2024) and “one-sided” LoRA (Hu et al., 2022) where one
of the LoRA matrices is initialized in a particular way and
kept frozen, while only the other one is trained (Cor. 3); this
recovers the equivalence established in recent work (Hao
et al., 2024; Loeschcke et al., 2024).

3.1. General Case

Let f(X; Θ) be a neural network over input X with train-
able parameters Θ ∈ Rd, and further let Θ ∈ Rd be the

gradient of some differentiable loss function L of the net-
work f with respect to Θ, computed on a random data
minibatch. We use the superscript (·)(t) to specify a par-
ticular quantity’s value after t optimizer steps, e.g., Θ(t)

are the network’s parameters after t optimizer steps. We
are also interested in the optimization trajectory of a model
(Θ(0),Θ(1), . . . ,Θ(t)). Our results show that two opti-
mization trajectories—one from training with linear gra-
dient transformations, and one from training with linear
adapters—are equivalent.

Typical approaches to neural network optimization use op-
timizers that maintain a state ξ

(t)
Θ and obtain Θ(t+1) via,

(∆
(t)
Θ , ξ

(t+1)
Θ ) = Optimizer(Θ

(t)
, ξ

(t)
Θ ) (1)

Θ(t+1) = Θ(t) +∆
(t)
Θ . (2)

For example, Adam4 (Kingma & Ba, 2015) maintains first-
and second-moment estimates of the gradient entries in its
state ξ

(t)
Θ = (µ

(t)
Θ ,ν

(t)
Θ ), and the optimizer update is:

µ
(t+1)
Θ,i = (1− β1)Θ

(t)
i + β1µ

(t)
Θ,i

ν
(t+1)
Θ,i = (1− β2)(Θ

(t)
i )2 + β2ν

(t)
Θ,i

∆
(t)
Θ,i = −γ

µ
(t+1)
Θ,i√

ν
(t+1)
Θ,i +ϵ

where γ ∈ R+ is the learning rate, β1, β2 ∈ [0, 1) control
the exponential moving averages of the gradient moments,
and ϵ is present for numerical stability. In this case, the
dimensionality of the optimizer states is proportional to the
dimensionality of our gradient estimate dim(Θ

(t)
) = d,

i.e., ∆(t+1)
Θ ∈ Rd, ξ

(t)
Θ ∈ R2d.

Now consider optimizing Θ with linearly transformed gra-
dient dynamics, where the gradient Θ is mapped to an r-
dimensional space by a matrix S ∈ Rr×d. In this case, we
can use the transpose of the linear map to go back into the
original parameter space resulting in the following update:

(∆
(t)
SΘ, ξ

(t+1)
SΘ ) = Optimizer(SΘ

(t)
, ξ

(t)
SΘ)

Θ(t+1) = Θ(t) + S⊤∆
(t)
SΘ,

where we have used the subscript SΘ to emphasize the fact
that the optimizer is now operating on a different space, i.e.,
as if we were optimizing on Rr, instead of the original pa-
rameter space, Rd. For example, if we were using Adam as
our optimizer, then this change would cause the dimension-
ality of the optimizer update and states to be proportional
to r instead of d, viz., ∆(t+1)

SΘ ∈ Rr, ξ
(t)
SΘ ∈ R2r.

Let us further consider a reparameterization of the neu-
ral network parameters as f(X; Θ + S⊤Λ) with Λ ∈ Rr.
Specifically, suppose that we keep Θ and S fixed, and only

4We omit bias correction for simplicity; one can easily han-
dle it by adding the current timestep to our optimizer state. This
change would also allow us to add learning rate schedules.

3



On the Duality between Gradient Transformations and Adapters

optimize Λ, resulting in the following update:

(∆
(t)
Λ , ξ

(t+1)
Λ ) = Optimizer(Λ

(t)
, ξ

(t)
Λ ) (3a)

Λ(t+1) = Λ(t) +∆
(t)
Λ . (3b)

Because the above is adapting a neural network indirectly
via another vector Λ that is linearly mapped to the original
parameter space, we refer to this as using a linear adapter,
akin to the usage of “adapter” in the parameter-efficient
finetuning literature (Houlsby et al., 2019; Hu et al., 2022).
Since S⊤ ∈ Rd×r, we have dim(∆

(t)
Λ ) = dim(∆

(t)
SΘ) and

dim(ξ
(t)
Λ ) = dim(ξ

(t)
SΘ), i.e., the output and states of our

optimizers have the exact same dimension in both cases.
This is not a coincidence: we now show that optimizing
this linear adapter when Λ is initialized to 0 is equivalent
to optimizing Θ in the original neural network with lin-
early transformed gradient dynamics. (For this and all sub-
sequent proofs, refer to App. A).
Theorem 1 (Equivalence of gradient transformations and
linear adapters). Suppose we are given initial parameters
Θ(0) and state ξ

(0)
SΘ. Let Θ(t) be the parameters after t up-

date steps with the linearly transformed gradient dynamics
with S. Now consider a linear adapter which reparameter-
izes the model as Θ(0) + S⊤Λ, where Λ(0) is initialized to
0 and the optimizer state ξ(0)Λ is initialized to ξ

(0)
SΘ, and only

Λ is optimized. Then we have Θ(t) = Θ(0) + S⊤Λ(t) for
all t, i.e., the optimization trajectories are equivalent.
Remark. The above only requires that the reparameterized
model is equivalent to the original model at initialization,
and can therefore be straightforwardly extended to cases
where the adapter is not initialized to 0, as long as we have
Θ(0) = Θ̃ + S⊤Λ(0) for some Θ̃ and Λ(0).
Remark. The above theorem holds for any optimizer of the
form in eq. (2), e.g, Adam (Kingma & Ba, 2015). Notably,
AdamW (Loshchilov & Hutter, 2019) does not fit this def-
inition due to the way that weight decay is applied. See
App. B for a discussion about weight decay, and what ad-
justments are required to preserve the equivalence.

3.2. Kronecker-factored Gradient Transformations

The formulation in Thm. 1 assumes very little about the
neural network being trained and the gradient transforma-
tion (or, equivalently, linear adapter) being applied, which
makes it difficult to enable practical memory savings. Con-
cretely, consider applying an arbitrary linear transforma-
tion to just a single linear layer of a neural network with pa-
rameters W ∈ Rm×n, i.e., f(X; Θ) = WX. In this case
we have Θ = vec (W) ∈ Rmn,5 and thus arbitrary linear
maps of the form S ∈ Rr×mn require O(mnr) memory
to store. This cost is already non-trivial for a single linear

5Intuitively, vec (·) sends a matrix to its vectorized form (i.e.,
stacks its columns into a vector), and vec−1 (·) is its inverse (i.e.,
unstacks vector back into matrix form).

layer of moderate size, and becomes rapidly intractable if
we consider applying gradient transformations to the en-
tirety of a model’s parameters. As such, practical applica-
tions need to consider matrices S that are efficient to store
in memory (and also efficient to apply to Θ).

To this end, we consider Kronecker-factored linear maps
of the form S = R⊤ ⊗ L where L ∈ RdL×m,R ∈
Rn×dR , dLdR = r. This particular parameterization of S
reduces the memory requirement to O(dLm + ndR) and
FLOPs to min{O(dLmn+dLndR), O(mndR+dLmdR)}
(since SΘ = vec

(
LWR

)
), which can be memory-

efficient if dL, dR are small enough. We now show apply-
ing Thm. 1 to such an S establishes an equivalence between
training with gradients transformed by LWR, and repa-
rameterizing the linear layer as W + L⊤AR⊤ and only
training A ∈ RdL×dR .

Proposition 2 (Kronecker-factored parameterization of the
linear map). Let W ∈ Rm×n be the parameter matrix of
a linear layer with corresponding gradient matrix W ∈
Rm×n. Further let Θ = vec (W) and Θ = vec

(
W

)
.

Consider training Θ as above with S = R⊤ ⊗ L, i.e., by
transforming the gradient matrix via LWR. Then the opti-
mizer trajectory of W is equivalent to reparameterizing the
model as W = W(0) + L⊤AR⊤, and then just training
A (after initializing A(0) = 0).

Remark. Prop. 2 shows that MoRA (Jiang et al., 2024),
LoRA-XS (Bałazy et al., 2024), and PMSS (Wang et al.,
2025), which are recent approaches to parameter-efficient
finetuning which reparameterize a linear layer as W +
BAC and only train A, can be interpreted as training the
model with linearly-transformed gradients where the linear
transformation has a Kronecker factorization.

Finally, as a simple corollary we now show that one can set
S in a way that recovers GaLore, which in reparameterized
form corresponds to one-sided LoRA, i.e., fixing one of the
adapter matrices and only the training the other.

Corollary 3 (GaLore is one-sided LoRA). Let W ∈
Rm×n be the parameter matrix of a linear layer with cor-
responding gradient matrix W ∈ Rm×n. Without loss of
generality, assume m ≤ n. Now consider training W with
Optimizer using GaLore, i.e., where we linearly transform
the gradient matrix with a matrix P, apply the optimizer,
and transform the update via P⊤, viz.,

(∆
(t)
W, ξ

(t+1)
W ) = Optimizer(vec

(
PW

(t)
)
, ξ

(t)
W)

W(t+1) = W(t) +P⊤ vec−1
(
∆

(t)
W

)
where P is an arbitrary matrix of size Rd×m and d ≤ m
controls the dimensionality of the transformation. Then the
optimizer trajectory of this network is equivalent to a net-
work trained with the reparameterization W = W(0) +
P⊤A, where only A is learned.

4



On the Duality between Gradient Transformations and Adapters

Method Adapter Parameterization Trained Frozen Persisted

Baseline W W − W
ReLoRA (Lialin et al., 2024) W +BA A,B W W,A,B
Gradient SVD (GaLore; Zhao et al., 2024) W +P⊤A, P⊤ = SVD(W) A W,P W,P,A
Gaussian (Flora; Hao et al., 2024) W +P⊤A, P ∼ kN (0, I) A W,P W,A
Rademacher W +P⊤A, P ∼ kUnif({−1,1}) A W,P W,A
Random Semi-orthogonal W +P⊤A, P⊤P = kI A W,P W,P,A
Two-sided Gaussian W + L⊤AR⊤, L,R ∼ kN (0, I) A W,L,R W,A
Two-sided Gradient SVD W + L⊤AR⊤, L⊤, R⊤ = SVD(W) A W,L,R W,L,R,A

Table 1: A summary of methods tested for our pretraining experiments, where we list the gradient transformation method (which is not
relevant for Baseline/ReLoRA) and the corresponding adapter parameterization. We also break down the reparameterized model into
trained and frozen components, alongside the the set of components that need to be persisted in memory; for methods that make use
of easy-to-materialize random sketching matrices (e.g., Gaussian) one only needs to persist the random number generator seeds for the
gradient transformation, saving memory. Random semi-orthogonal matrices—a tall/wide matrix whose columns/rows are orthonormal
vectors—are also random but are not straightforwardly materializable from a seed, and hence may need to be persisted across optimiza-
tion steps. In the Gaussian and Rademacher cases, we use k as shorthand for the constant that ensures that E[PP⊤] = I.

Remark. The original GaLore work advocates for swap-
ping out the gradient transformation every 200 optimizer
steps. This does not break the equivalence in Cor. 3. In
the adapter formulation, recomputing the gradient transfor-
mation corresponds to merging the learned adapter into the
frozen weights, updating the frozen part of the adapter, and
resetting the learned part to zero. This effectively amounts
to ReLoRA (Lialin et al., 2024), where one side of the
adapter is kept frozen throughout training.

While Prop. 2 and Cor. 3 focus on the case of a single linear
layer, it is straightforward to generalize them to multiple
linear layers. For example, one could treat the parameters
of all layers as a single vector living in the product space of
the individual layers’ parameter spaces, and define the gra-
dient transformation map S on that space as applying the
correct projection to each of the layers’ parameters individ-
ually. This can be implemented by modifying the optimizer
step to apply a separate linear transformation to each layer.

Finally, we note that Hao et al. (2024) and Loeschcke et al.
(2024) also show that training LoRA adapters with one side
frozen with ordinary SGD is equivalent to applying a linear
transformation to the gradient matrix, and Muhamed et al.
(2024) further shows this for more general optimizers as in
Cor. 3. Our Thm. 1 can be thus be seen as a generalization
of these recent results, where we show that this equivalence
generalizes to arbitrary parameters of the neural network.

4. Empirical Study
The equivalences in §3 are agnostic to the choice of left and
right transformations in S = R⊤⊗L. However, one might
expect that the choice of L and R should matter for down-
stream performance. Hence, in the following sections, we
first explore how the choice of S affects pretraining6 per-

6We target the pretraining setting as the gap between ordinary
training and memory-efficient training methods is typically larger
in pretraining than it is in finetuning.

formance, and how by viewing gradient transformations as
adapters, we further improve memory efficiency by com-
bining the technique with QLoRA-style (Dettmers et al.,
2023) training (§4.1). We then show how the converse is
also useful: by viewing LoRA adapters through the lens of
gradient transformations, we can improve distributed train-
ing of LoRA adapters by coordinating the LoRA adapter
initialization across different workers (§4.2).

Experimental setup. We consider two moderate-scale lan-
guage modeling settings: a 200M setting (training on 5B
tokens) and a 1.3B setting (training on 10B tokens).7 We
use the Llama Transformer architecture (Touvron et al.,
2023a) and train on the SlimPajama (Soboleva et al.,
2023) dataset, tokenized using the Llama-2 (Touvron et al.,
2023b) tokenizer, using sequences of length 2048. All
numbers we report are perplexity on a disjoint (validation)
set of SlimPajama. We use AdamW (Loshchilov & Hutter,
2019) with weight decay 0.1, β1 = 0.9 and β2 = 0.95.
We warm up the learning rate to 4×10−4, before decaying
it via a cosine decay schedule to 1 × 10−4. We conduct
all training in bfloat16 precision. See App. D for more
details on our experimental setup.

4.1. Study 1: Memory-Efficient Pretraining

The discussion in §3 establishes a direct link between Ga-
Lore and one-sided LoRA. But how should we set S in
practice? From the perspective of accurate gradient esti-
mation, it would be ideal to have S⊤S ≈ I, since in the
vanilla SGD case this would be equivalent to performing
SGD with sketched gradients, where S⊤SΘ ≈ Θ (Murray
et al., 2023). For the GaLore case with S = I ⊗ P, this
amounts to setting P such that PP⊤ ≈ I, which could be
achieved by, e.g., using random sketching matrices with the

7While this is not large by modern standards, due to our lim-
ited compute resources this is the largest setting at which we can
feasibly perform experiments.

5



On the Duality between Gradient Transformations and Adapters

Model 200M 1.3B

PPL Mem. PPL Mem.

Full pretraining 18.58 1.32 12.44 8.04
ReLoRA 20.40 1.03 13.94 5.77
QGaLore (INT8) 23.86 0.94 15.23 5.15

Gradient SVD (GaLore) 21.34 0.96 13.62 5.27
+ INT8 21.38 0.81 13.65 4.06
+ NF4 (LoQT) 26.52 0.73 16.10 3.46

Gaussian (Flora) 20.57 0.93 13.88 5.02
+ INT8 20.55 0.78 13.87 3.81
+ NF4 23.61 0.70 15.64 3.21

Rademacher 20.24 0.93 13.86 5.02
+ INT8 20.26 0.78 13.78 3.81
+ NF4 23.37 0.70 15.64 3.21

Random Semi-orthogonal 20.13 0.96 13.71 5.27
+ INT8 20.32 0.81 13.75 4.06
+ NF4 23.41 0.73 15.44 3.46

Two-sided Gaussian 23.98 0.93 15.28 5.02
+ INT8 23.94 0.78 15.20 3.81
+ NF4 27.93 0.70 16.95 3.20

Two-sided Gradient SVD 22.26 1.13 14.27 6.55
+ INT8 22.08 0.97 14.16 5.35
+ NF4 26.81 0.90 17.14 4.74

Table 2: Pretraining results at 200M and 1.3B scales. We re-
port validation perplexity and estimated memory requirements
(excluding activations) in GBs. GaLore + NF4 quantization is
equivalent to LoQT (Loeschcke et al., 2024). QGaLore (Zhang
et al., 2024) quantizes both the base weights and the SVD projec-
tion to INT8, but does not adopt the LoRA parameterization.

property E[PP⊤] = I.8 As noted by Hao et al. (2024), us-
ing a random sketching matrix can enable further savings
as only the random number generator (RNG) seed needs
to be persisted across optimization steps. We thus experi-
ment with a variety of sketching matrices for LoRA-based
pretraining as shown in Tab. 1.

Another benefit of the adapter parameterization of gra-
dient projections is that it allows us to be more mem-
ory efficient by quantizing the base weights as done in
QLoRA (Dettmers et al., 2023). Specifically, given the
adapter parameterization Θ+ S⊤Λ we can quantize Θ and
only train Λ, thus enabling further memory savings. Fi-
nally, the adapter parameterization has the additional ben-
efit of reducing the number of trainable parameters being
registered for automatic differentiation, which allows for
gradient accumulation to happen in a lower dimensional
space. (See App. D for more discussion.)

Results. The results are shown in Tab. 2, where we fol-
low the original GaLore paper and use a rank of 256 for the
200M model and a rank of 512 for the 1.3B model,9 and

8This sketching view of LoRA provides a possible perspective
on why one-sided LoRA finetuning works well in practice (Zhang
et al., 2023; Zhu et al., 2024; Hayou et al., 2024).

9The only exceptions are for the double-sided methods. For
the two-sided Gaussian, we set the rank as to match the number of

0 2000 4000 6000 8000 10000
Training steps

10 1

101

Pr
oj

ec
tio

n 
er

ro
r

SVD
Gaussian

Rademacher
Random Semi-orthogonal

Two-sided SVD
Two-sided Gaussian

Figure 1: Average of gradient reconstruction error ∥Θ−S⊤SΘ∥22
of the various transformations across training steps at 200M scale.

further merge the adapters into the full weights and reini-
tialize them every 200 steps. We see that one-sided trans-
formations, regardless of their nature, perform somewhat
similarly at both 200M and 1.3B scale, suggesting that us-
ing a random gradient transformation matrix that can be
cheaply rematerialized on-the-fly may be more economical
than using the top singular vectors derived from the gradi-
ent as in GaLore. We also find that ReLoRA performs com-
parably to one-sided gradient transformations, suggesting
that the additional flexibility of ReLoRA (i.e., optimizing
two sides of a LoRA adapter instead of only one side) is not
necessary. Using two-sided Gaussian gradient transforma-
tions degrades performance when memory consumption is
matched to one-sided methods; two-sided SVD-based pro-
jections fare slightly better but still trail behind one-sided
methods and incur a much larger memory cost, since two
projection matrices must be persisted. While Zhao et al.
(2024) report no gap between GaLore and full pretraining,
we did not find this to be true on our setup,10 and instead
observe a non-trivial gap between regular (full) training and
these memory-efficient pretraining methods.

When adding quantization to the base weights (where we
use groups of size 256), we find that, across the board, 8-bit
integer quantization can be performed without major per-
formance degradation, whereas 4-bit NormalFloat quan-
tization begins to incur a penalty (4-bit integer did even
worse). This suggests that adapter-based training, with a
rematerializable gradient transformation and 8-bit integer
quantization of the base weights, is a promising recipe for
memory-efficient pretraining. Finally, we find that QGa-
Lore (Zhang et al., 2024), which quantizes the weights to
INT8 precision and trains these INT8 weights directly
using an SVD gradient transformation, underperforms a
QLoRA-style approach to quantized GaLore training.

trainable parameters in the one-sided Gaussian approach. For the
two-sided SVD, we use the same rank as in two-sided Gaussian,
which incurs more memory since the projection matrices must be
persisted across optimization steps.

10Which is different from theirs in many ways, e.g., we train on
longer sequences with gradient accumulation using bfloat16.

6



On the Duality between Gradient Transformations and Adapters

Method Projection Init. 200M 1B

Dist. Training (DiLoCo) − 18.00 12.77
Dist. ReLoRA (LTE) − 20.97 13.72

Identical Random Pi = Pj 21.51 14.28
Independent Random E[PiP

⊤
j ] = 0 20.11 13.66

Distributed Random PiP
⊤
j = 0 19.81 13.51

Table 3: Results of the distributed training experiments, where
four workers are trained independently and synchronized ev-
ery 500 steps, following DiLoCo (Douillard et al., 2024). We
use random semi-orthogonal matrices for the distributed (one-
sided) LoRA experiments. For the (re)initializations of worker-
specific projections {Pk}Kk=1, identical shares the projection ma-
trix across workers, independent initializes each worker’s projec-
tion independently, and distributed initializes the worker projec-
tions such that they are all orthogonal to one another. The top two
rows are our baselines, viz., DiLoCo and a distributed variant of
ReLoRA, which is similar to LTE (Huh et al., 2024).

Analysis. We have motivated our experiments with sketch-
ing matrices from the perspective of accurate gradient com-
pression, i.e., we use S to compress the gradient, and then
S⊤ to decompress it. From this compression viewpoint,
one may then wonder whether different gradient transfor-
mations exhibit different reconstruction capabilities, and
whether this ultimately dictates the performance of the re-
sulting model. As shown in Fig. 1, we find that the gradient
reconstruction error does not correlate with performance.
As expected, methods that perform SVD on the gradients
have low reconstruction error (since SVD explicitly mini-
mizes a reconstruction objective), but as shown in Tab. 2,
SVD performs similarly to sketching matrices, which have
higher reconstruction error. We believe that the relation-
ship between the nature of the gradient transformation and
downstream performance is fairly complex, and merits fur-
ther investigation. Fig. 2 of App. C shows similar results
for cosine similarity instead of squared error.

4.2. Study 2: Distributed Pretraining

Our second experiment targets distributed pretraining of
LLMs across poorly-connected and resource-constrained
workers, which is important for many applications of inter-
est, from federated training of LLMs to scaling up LLMs
across data centers that are not co-located, i.e., where tech-
niques like FSDP are not possible. DiLoCo (Douillard
et al., 2024) is a recent and effective approach that has
workers train independently for some number of iterations
using an inner optimizer, and then uses the average change
in parameters from each worker as a “pseudo-gradient” on
an outer optimizer that updates a global copy of the param-
eters (i.e., as in federated learning; McMahan et al., 2017;
Reddi et al., 2021). This approach has since been scaled up
to train 10B LLMs across distributed workers.11

11See INTELLECT-1 and (Jaghouar et al., 2024).

However, DiLoCo still assumes that each worker has
enough memory to perform a full forward/backward pass
on the model, i.e., it does not target memory efficiency.
A memory-efficient distributed training approach that is
of particular interest in light of the equivalence in §3 is
LoRA-the-explorer (LTE; Huh et al., 2024), which can be
seen as an extension of ReLoRA to the distributed set-
ting. LTE has K independent workers train separate LoRA
adapters for a small number of local steps, and then per-
forms a global step by averaging the adapters across work-
ers. The globally-averaged adapter is then merged into the
base weights, and optimization continues by resetting and
traiing the worker-specific LoRA adapters.

We will now describe how the equivalence in §3 can be
used to derive an improved version of LTE, which trains
only one side of the LoRA adapter in each worker, but ini-
tializes the frozen side in a worker-aware manner. Consider
a one-sided analogue of LTE, where the weight W(g,l)

k for
the kth worker after g global and l local updates is

W
(g,l)
k = W

(g,0)
k +P

(g)
k

⊤
A

(g,l)
k

and only A is trained. The global step is given by,

W
(g+1,0)
k = W

(g,0)
k +

1

K

K∑
k=1

P
(g)
k

⊤
A

(g,L)
k

where we have assumed that the global step is performed
after L local steps. After a global step, we would also reset
A by setting A

(g+1,0)
k = 0 and similarly swap out Pk for

another (e.g., random) matrix for all k.

By Cor. 3, local steps must correspond to training the
worker weights using a gradient transformation,

W
(g,l)
k = W

(g,0)
k +P

(g)
k

⊤
∆

(g,l)
PW,

where we use ∆
(g,l)
PW to denote the optimizer update that

was performed in the lower dimensional transformed space.
Further, a global step in this view can be equivalently seen
as defining a global pseudo-gradient ∆(g) as the average of
for the local pseudo-gradients {∆(g)

1 , . . . ,∆
(g)
K },

∆(g) =
1

K

K∑
k=1

∆
(g)
k , ∆

(g)
k = W

(g,L)
k −W

(g,0)
k

The global weight update is then given by a step using the
global pseudo-gradient,

W
(g+1,0)
k = W(g,0) +∆(g).

This can be straightforwardly generalized to the use of dif-
ferent learning rates and more advanced optimizers.

One approach to initialize/reset the frozen side of worker-
specific LoRA adapters (i.e., the gradient projections Pk)
is to sample a projection and broadcast it to all workers.
However, the GaLore–LoRA duality suggests a different
scheme. Thm. 1 shows that training with linear gradi-

7

https://www.primeintellect.ai/blog/intellect-1


On the Duality between Gradient Transformations and Adapters

Method (Rank, Workers)

(128, 8) (256, 4) (512, 2)

Dist. Training (DiLoCo) 17.81 18.00 18.56
Dist. ReLoRA (LTE) 23.76 20.97 19.54
Identical Random 23.96 21.51 20.32
Independent Random 20.64 20.11 19.97
Distributed Random 20.32 19.81 19.66

Table 4: Results of the distributed pretraining experiments as we
vary the rank of the gradient projections and number of work-
ers. For the DiLoCo baseline, we only vary the number of work-
ers, which means that as we increase the number of workers,
the DiLoCo baseline can only benefit since we are training on
more data without any downside (i.e., a rank restriction). Note
that the for the distributed ReLoRA baseline (which is similar to
LTE, Huh et al., 2024), we have double the number of trainable
parameters as in the one-sided methods.

ent transformations only optimizes a subspace of the full
model, namely range(S⊤) where S⊤ = I⊗P⊤ in the Ga-
Lore case. This suggests a different approach to distributed
LoRA training, wherein the frozen part of each LoRA
adapter, S1, . . . ,SK , is initialized differently, so that the
sum of their ranges allows a larger subspace to be trained.
For example, we could sample random semi-orthogonal
matrices P1, . . . ,PK uniformly at random, assign each
worker Si = I ⊗ P⊤

i , and they will likely each cover
different portions of the space. An even stronger strategy
would be to demand that range(S⊤

1 ), . . . , range(S
⊤
K) must

be mutually orthogonal, which can be realized by keeping
the Pi’s as semi-orthogonal, but enforcing that PiP

⊤
j = 0

(e.g., by generating a random m×m orthogonal matrix and
having each worker take a different d×m submatrix.) Intu-
itively, this ensures that no worker is duplicating the work
of another, since their projections are pairwise orthogonal.
We experiment with such identical random, independent
random, distributed random initialization schemes.

Results. The results for the main set of experiments
are shown in Tab. 3. We consider two baselines: (i)
DiLoCo (Douillard et al., 2024), which has each worker
training independently for 500 steps before computing a
pseudo-gradient that is used to update the global parame-
ters using SGD with Nesterov momentum (Sutskever et al.,
2013), and (ii) distributed ReLoRA, which is an analog of
ReLoRA but adapted to train like DiLoCo, i.e., one trains
the LoRA adapter for 500 steps and defines the adapter
weight as the pseudo-gradient for the Nesterov step; this is
very close to LTE.12 Our distributed GaLore experiments
make use of random semi-orthogonal projections since the
distributed random initialization for it is easy to compute,
and does not add significant communication overhead.13

12LTE can be seen as using SGD as the optimizer on the
pseudo-gradients, but we found this led to worse results in pre-
liminary experiments.

13Each worker just needs the seed used to sample the orthogo-
nal matrix, and the indices of the rows it will keep.

As in §4.1, distributed GaLore leads to degradations at
both 200M and 1.3B scales compared to the full distributed
training baseline (i.e., DiLoCo). However, our distributed
random initialization scheme, where workers are “aware”
of each, performs well, thus demonstrating the utility of
the gradient transformation–adapter duality from §3.

Analysis. We perform a study at the 200M scale over how
the number of workers and rank affect performance. Intu-
itively, larger ranks lead to a larger subspace being trained
by each worker (and, in the limit, we should recover some-
thing akin to DiLoCo when there is no rank reduction), so
we would expect performance to improve as we increase
the rank. Indeed, the results for this ablation (shown in
Tab. 4) confirm this intuition, likely because DiLoCo ben-
efits from more workers to get a better estimate of the
pseudo-gradient for the outer optimizer step. More sur-
prisingly, we find that this gap is largely bridged by ensur-
ing that different gradient transformations are assigned to
each worker, with the distributed initialization once again
performing the best. It would be interesting to further
study how the effectiveness of the distributed initialization
scheme changes as we go to more extreme settings (e.g.,
hundreds of extremely low-rank workers).

5. Discussion and Limitations
The preceding studies focus on two situations in which the
duality between linear adapters and gradient transforma-
tions offers practical insights. We believe there are many
other avenues that merit further exploration. For instance,
Thm. 1 makes no assumptions about the structure of S;
while we only considered Kronecker-factorized matrices,
other linear maps that admit efficient storage and compu-
tation would be interesting to explore. The transformation
also just needs to be applied to a gradient vector, suggest-
ing that one could compress the gradient of multiple layers
in a network jointly. This amounts to sharing LoRA pa-
rameters across layers on the GaLore–LoRA case, which
has been found to be successful for parameter-efficient fine-
tuning (Renduchintala et al., 2024; Song et al., 2024). ee-
gardless of the structure of S, as discussed in §4.1, what
characterizes a good S is not clear but has a large impact.
It may be possible to learn a good S with meta-learning-
style approaches, which can be seen as learning an op-
timizer (Andrychowicz et al., 2016; Li & Malik, 2016;
Wichrowska et al., 2017; Bello et al., 2017, i.a.).14 Fi-
nally, while we focused on linear gradient transformations,
where we proved exact equivalence with a linear adapter
parameterization, it may be possible to establish approxi-

14In the GaLore/LoRA case, learning P in this meta-learning
sense is different from learning P in the ordinary LoRA sense,
i.e., when both P and A are trained with gradient descent against
the same loss function.

8



On the Duality between Gradient Transformations and Adapters

mate equivalence between non-linear gradient transforma-
tions and other types of adapters.

Our work has several limitations. Due to compute con-
straints, we were only able to scale our experiments to
1.3B, which is small by industry standards. While our
duality results are more general, our experiments primar-
ily focus on the special case of the GaLore–LoRA dual-
ity. We chose to focus primarily on a wide array of gra-
dient transformations, but forgo a study of the interaction
between such transformations and the choice of optimizer,
projection reinitialization schedule, etc. Ultimately, we be-
lieve that our results signal that these techniques could be
applied at larger scales, especially when performing dis-
tributed training in memory-constrained regimes.

6. Related Work
Memory-efficient training. There is a growing body of
research focused on memory-efficient LLM training. This
work explores the connections among GaLore (Zhao et al.,
2024), LoRA (Hu et al., 2022), QLoRA (Dettmers et al.,
2023), and ReLoRA (Lialin et al., 2024). Various ap-
proaches in low-rank adaptations have been proposed to en-
hance these techniques (Renduchintala et al., 2024; Sheng
et al., 2024; Zhang et al., 2023; Xia et al., 2024; Wang
et al., 2023b; Hao et al., 2024; Wang et al., 2025), includ-
ing efforts to train models from scratch (Kamalakara et al.,
2022; Wang et al., 2023a; Zhao et al., 2023). Broadly,
memory-efficient training also encompasses methods such
as adapters (Houlsby et al., 2019; Karimi Mahabadi et al.,
2021), which insert trainable layers and prompt tuning (Li
& Liang, 2021; Lester et al., 2021), which optimizes con-
tinuous prompts. Additionally, its combination with quan-
tization techniques (Kwon et al., 2022) and other methods
that update subparts of the parameter vector (Guo et al.,
2021; Ben Zaken et al., 2022; Sung et al., 2021) are also
relevant.

Memory-reduction via randomization. Randomization
has been used in other contexts to reduce memory con-
sumption in automatic differentiation. Adelman et al.
(2021) and Liu et al. (2023) perform row/column subsam-
pling to reduce the amount of computation and memory
required to compute gradients. Bershatsky et al. (2022)
also explores Gaussian projections, but in the context of re-
ducing activation memory by sketching them. Oktay et al.
(2021) construct gradient estimators by computing the gra-
dient on a subsample of the paths in the computation graph.
More tangentially, MeZO (Malladi et al., 2023) amounts to
sketching the gradient of a neural network by performing
forward-mode automatic differentiation on random vectors.

7. Conclusion
We proved a general equivalence between training an LLM
with linear transformations of gradients and training with
additive linear adapters, and showed the GaLore–LoRA
equivalence is a special case of this result. We then used
this equivalence to derive more memory-efficient and per-
formant methods for LLM pretraining, including combina-
tions of quantization and gradient-projection methods and
improved initialization for distributed adapter pretraining.

Impact Statement
The last few years have seen widespread interest in LLMs.
Perhaps the most salient finding from the race to build the
best LLMs is that increasing parameter counts in tandem
with data is of paramount importance. This makes it very
hard to train competitive LLMs unless one has the best
and latest hardware, which offers the most memory ca-
pacity and thus the ability to actually train these models
in practice. Our research targets exactly this setting, of-
fering a mathematical connection between two methods at
the cornerstone of memory-efficient training, and showing
how this connection can lead to further improvements in
memory-efficiency and distributed training.

Acknowledgements
We thank Shannon Zejiang Shen, Li Du, Aniruddha
Nrusimha, Jeremy Bernstein, Jyothish Pari, Sami Jaghouar,
Johannes Hagemann, and the anonymous reviewers for
helpful discussions and feedback. This study was sup-
ported by MIT-IBM Watson AI Lab.

References
Adelman, M., Levy, K. Y., Hakimi, I., and Silberstein,

M. Faster neural network training with approximate
tensor operations. In Neural Information Processing
Systems, 2021. URL https://dl.acm.org/doi/
10.5555/3540261.3542396.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoff-
man, M. W., Pfau, D., Schaul, T., Shillingford, B., and
de Freitas, N. Learning to learn by gradient descent
by gradient descent. In Neural Information Processing
Systems, 2016. URL https://dl.acm.org/doi/
10.5555/3157382.3157543.

Anil, R., Gupta, V., Koren, T., and Singer, Y. Memory-
efficient adaptive optimization. In Neural Information
Processing Systems, 2019. URL https://dl.acm.
org/doi/10.5555/3454287.3455161.

Bałazy, K., Banaei, M., Aberer, K., and Tabor, J. LoRA-
XS: Low-rank adaptation with extremely small number

9

https://dl.acm.org/doi/10.5555/3540261.3542396
https://dl.acm.org/doi/10.5555/3540261.3542396
https://dl.acm.org/doi/10.5555/3157382.3157543
https://dl.acm.org/doi/10.5555/3157382.3157543
https://dl.acm.org/doi/10.5555/3454287.3455161
https://dl.acm.org/doi/10.5555/3454287.3455161


On the Duality between Gradient Transformations and Adapters

of parameters. arXiv preprint, 2024. URL https://
arxiv.org/abs/2405.17604.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V.
Neural optimizer search with reinforcement learn-
ing. In International Conference on Machine Learn-
ing, 2017. URL https://dl.acm.org/doi/10.
5555/3305381.3305429.

Ben Zaken, E., Goldberg, Y., and Ravfogel, S. BitFit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. In Association for
Computational Linguistics, 2022. URL https://
aclanthology.org/2022.acl-short.1.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. signSGD: Compressed optimi-
sation for non-convex problems. In International
Conference on Machine Learning, 2018. URL
https://proceedings.mlr.press/v80/
bernstein18a.html.

Bershatsky, D., Mikhalev, A., Katrutsa, A., Gusak, J.,
Merkulov, D., and Oseledets, I. Memory-efficient back-
propagation through large linear layers. arXiv preprint,
2022. URL https://arxiv.org/abs/2201.
13195.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost. arXiv preprint, 2016.
URL https://arxiv.org/abs/1604.06174.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer,
L. 8-bit optimizers via block-wise quantization. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=shpkpVXzo3h.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettle-
moyer, L. QLoRA: Efficient finetuning of quantized
LLMs. In Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=OUIFPHEgJU.

Douillard, A., Feng, Q., Rusu, A. A., Chhaparia, R.,
Donchev, Y., Kuncoro, A., Ranzato, M., Szlam, A., and
Shen, J. DiLoCo: Distributed low-communication train-
ing of language models. arXiv preprint, 2024. URL
https://arxiv.org/abs/2311.08105.

Gooneratne, M., Sim, K. C., Zadrazil, P., Kabel, A., Beau-
fays, F., and Motta, G. Low-rank gradient approximation
for memory-efficient on-device training of deep neu-
ral network. In International Conference on Acoustics,
Speech and Signal Processing, 2020. URL https://
ieeexplore.ieee.org/document/9053036.

Griewank, A. and Walther, A. Evaluating Derivatives. So-
ciety for Industrial and Applied Mathematics, second
edition, 2008. URL https://doi.org/10.1137/
1.9780898717761.

Guo, D., Rush, A., and Kim, Y. Parameter-efficient
transfer learning with diff pruning. In Association for
Computational Linguistics, 2021. URL https://
aclanthology.org/2021.acl-long.378/.

Guo, H., Greengard, P., Xing, E., and Kim, Y. LQ-
LoRA: Low-rank plus quantized matrix decomposi-
tion for efficient language model finetuning. In In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=xw29VvOMmU.

Hao, Y., Cao, Y., and Mou, L. FLORA: Low-rank
adapters are secretly gradient compressors. In In-
ternational Conference on Machine Learning, 2024.
URL https://dl.acm.org/doi/10.5555/
3692070.3692770.

Hayou, S., Ghosh, N., and Yu, B. The impact of initial-
ization on LoRA finetuning dynamics. In Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=sn3UrYRItk.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M.,
and Gelly, S. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learn-
ing, 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Huang, S., Hoskins, B. D., Daniels, M. W., Stiles, M. D.,
and Adam, G. C. Low-rank gradient descent for
memory-efficient training of deep in-memory arrays.
ACM Journal on Emerging Technologies in Comput-
ing Systems, 2023. URL https://doi.org/10.
1145/3577214.

Huh, M., Cheung, B., Bernstein, J., Isola, P., and Agrawal,
P. Training neural networks from scratch with parallel
low-rank adapters. arXiv preprint, 2024. URL https:
//arxiv.org/abs/2402.16828.

Jaghouar, S., Ong, J. M., and Hagemann, J. OpenDiLoCo:
An open-source framework for globally distributed low-
communication training. arXiv preprint, 2024. URL
https://arxiv.org/abs/2407.07852.

10

https://arxiv.org/abs/2405.17604
https://arxiv.org/abs/2405.17604
https://dl.acm.org/doi/10.5555/3305381.3305429
https://dl.acm.org/doi/10.5555/3305381.3305429
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://proceedings.mlr.press/v80/bernstein18a.html
https://proceedings.mlr.press/v80/bernstein18a.html
https://arxiv.org/abs/2201.13195
https://arxiv.org/abs/2201.13195
https://arxiv.org/abs/1604.06174
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://arxiv.org/abs/2311.08105
https://ieeexplore.ieee.org/document/9053036
https://ieeexplore.ieee.org/document/9053036
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://aclanthology.org/2021.acl-long.378/
https://aclanthology.org/2021.acl-long.378/
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=xw29VvOMmU
https://dl.acm.org/doi/10.5555/3692070.3692770
https://dl.acm.org/doi/10.5555/3692070.3692770
https://openreview.net/forum?id=sn3UrYRItk
https://openreview.net/forum?id=sn3UrYRItk
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1145/3577214
https://doi.org/10.1145/3577214
https://arxiv.org/abs/2402.16828
https://arxiv.org/abs/2402.16828
https://arxiv.org/abs/2407.07852


On the Duality between Gradient Transformations and Adapters

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. In Machine Learning and Systems, 2020. URL
https://arxiv.org/abs/1910.02653.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei, F.,
Deng, W., Sun, F., Zhang, Q., Wang, D., and Zhuang, F.
MoRA: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint, 2024. URL https://arxiv.
org/abs/2405.12130.

Kamalakara, S. R., Locatelli, A., Venkitesh, B., Ba, J.,
Gal, Y., and Gomez, A. N. Exploring low rank train-
ing of deep neural networks. arXiv preprint, 2022. URL
https://arxiv.org/abs/2209.13569.

Karimi Mahabadi, R., Ruder, S., Dehghani, M., and Hen-
derson, J. Parameter-efficient multi-task fine-tuning for
transformers via shared hypernetworks. In Association
for Computational Linguistics, 2021. URL https:
//aclanthology.org/2021.acl-long.47/.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015. URL https://arxiv.org/
abs/1412.6980.

Kwon, S. J., Kim, J., Bae, J., Yoo, K. M., Kim, J.-H., Park,
B., Kim, B., Ha, J.-W., Sung, N., and Lee, D. AlphaTun-
ing: Quantization-aware parameter-efficient adaptation
of large-scale pre-trained language models. In Empir-
ical Methods in Natural Language Processing (Find-
ings), 2022. URL https://aclanthology.org/
2022.findings-emnlp.240.

Lester, B., Al-Rfou, R., and Constant, N. The
power of scale for parameter-efficient prompt tuning.
In Empirical Methods in Natural Language Process-
ing, 2021. URL https://aclanthology.org/
2021.emnlp-main.243.

Li, B., Chen, J., and Zhu, J. Memory efficient optimizers
with 4-bit states. Neural Information Processing Sys-
tems, 2024a. URL https://openreview.net/
forum?id=nN8TnHB5nw.

Li, K. and Malik, J. Learning to optimize. arXiv
preprint, 2016. URL https://arxiv.org/abs/
1606.01885.

Li, X. L. and Liang, P. Prefix-Tuning: Optimizing con-
tinuous prompts for generation. In Association for
Computational Linguistics, 2021. URL https://
aclanthology.org/2021.acl-long.353.

Li, Y., Yu, Y., Liang, C., Karampatziakis, N., He,
P., Chen, W., and Zhao, T. LoftQ: LoRA-fine-
tuning-aware quantization for large language models.
In International Conference on Learning Representa-
tions, 2024b. URL https://openreview.net/
forum?id=LzPWWPAdY4.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. ReLoRA: High-rank training through low-rank up-
dates. In International Conference on Learning Rep-
resentations, 2024. URL https://openreview.
net/forum?id=DLJznSp6X3.

Liu, Z., Wang, G., Zhong, S., Xu, Z., Zha, D., Tang, R.,
Jiang, Z., Zhou, K., Chaudhary, V., Xu, S., and Hu,
X. Winner-take-all column row sampling for memory
efficient adaptation of language model. In Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=SquMNyrk1O.

Loeschcke, S. B., Toftrup, M., Kastoryano, M., Belongie,
S., and Snæbjarnarson, V. LoQT: Low-rank adapters for
quantized pretraining. In Neural Information Processing
Systems, 2024. URL https://openreview.net/
forum?id=Pnv8C0bU9t.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

Lv, K., Yang, Y., Liu, T., Guo, Q., and Qiu, X. Full param-
eter fine-tuning for large language models with limited
resources. In Association for Computational Linguis-
tics, 2024. URL https://aclanthology.org/
2024.acl-long.445.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. Fine-tuning language models
with just forward passes. In Neural Information Process-
ing Systems, 2023. URL https://openreview.
net/forum?id=Vota6rFhBQ.

McMahan, B., Moore, E., Ramage, D., Hampson,
S., and Agüera y Arcas, B. Communication-
efficient learning of deep networks from decentral-
ized data. In Artificial Intelligence and Statis-
tics, 2017. URL https://proceedings.mlr.
press/v54/mcmahan17a.html.

Muhamed, A., Li, O., Woodruff, D., Diab, M. T.,
and Smith, V. GRASS: Compute efficient low-
memory LLM training with structured sparse gra-
dients. In Association for Computational Linguis-
tics, 2024. URL https://aclanthology.org/
2024.emnlp-main.835/.

11

https://arxiv.org/abs/1910.02653
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2209.13569
https://aclanthology.org/2021.acl-long.47/
https://aclanthology.org/2021.acl-long.47/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2022.findings-emnlp.240
https://aclanthology.org/2022.findings-emnlp.240
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://openreview.net/forum?id=nN8TnHB5nw
https://openreview.net/forum?id=nN8TnHB5nw
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=SquMNyrk1O
https://openreview.net/forum?id=SquMNyrk1O
https://openreview.net/forum?id=Pnv8C0bU9t
https://openreview.net/forum?id=Pnv8C0bU9t
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.acl-long.445
https://aclanthology.org/2024.acl-long.445
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://aclanthology.org/2024.emnlp-main.835/
https://aclanthology.org/2024.emnlp-main.835/


On the Duality between Gradient Transformations and Adapters

Murray, R., Demmel, J., Mahoney, M. W., Erichson, N. B.,
Melnichenko, M., Malik, O. A., Grigori, L., Luszczek,
P., Dereziński, M., Lopes, M. E., Liang, T., Luo, H., and
Dongarra, J. Randomized numerical linear algebra: A
perspective on the field with an eye to software. arXiv
preprint, 2023. URL https://arxiv.org/abs/
2302.11474.

Oktay, D., McGreivy, N., Aduol, J., Beatson, A., and
Adams, R. P. Randomized automatic differentiation. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=xpx9zj7CUlY.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adap-
tive federated optimization. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=LkFG3lB13U5.

Renduchintala, A., Konuk, T., and Kuchaiev, O. Tied-
LoRA: Enhancing parameter efficiency of LoRA
with weight tying. In North American Chap-
ter of the Association for Computational Linguis-
tics, 2024. URL https://aclanthology.org/
2024.naacl-long.481.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International
Conference on Machine Learning, 2018. URL
https://proceedings.mlr.press/v80/
shazeer18a.html.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang, S.,
Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gonzalez, J.,
and Stoica, I. S-LoRA: Serving thousands of concurrent
lora adapters. In Machine Learning and Systems, 2024.
URL https://arxiv.org/abs/2311.03285.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of RedPa-
jama, 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Song, Y., Zhao, J., Harris, I. G., and Jyothi, S. A.
ShareLoRA: Parameter efficient and robust large lan-
guage model fine-tuning via shared low-rank adaptation.
arXiv preprint, 2024. URL https://arxiv.org/
abs/2406.10785.

Sung, Y.-L., Nair, V., and Raffel, C. A. Training neural
networks with fixed sparse masks. In Neural Information
Processing Systems, 2021. URL https://dl.acm.
org/doi/10.5555/3540261.3542113.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G.
On the importance of initialization and momentum in
deep learning. In International Conference on Machine
Learning, 2013. URL https://proceedings.
mlr.press/v28/sutskever13.html.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models. arXiv preprint, 2023a. URL https:
//arxiv.org/abs/2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J.,
Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kar-
das, M., Kerkez, V., Khabsa, M., Kloumann, I., Ko-
renev, A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee,
J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mi-
haylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton,
A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A.,
Silva, R., Smith, E. M., Subramanian, R., Tan, X. E.,
Tang, B., Taylor, R., Williams, A., Kuan, J. X., Xu,
P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov,
S., and Scialom, T. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint, 2023b. URL
https://arxiv.org/abs/2307.09288.

Wang, H., Agarwal, S., Tanaka, Y., Xing, E., Papailiopou-
los, D., et al. Cuttlefish: Low-rank model training
without all the tuning. Machine Learning and Systems,
2023a. URL https://arxiv.org/abs/2305.
02538.

Wang, Q., Hu, X., Xu, W., Liu, W., Luan, J.,
and Wang, B. PMSS: Pretrained matrices skele-
ton selection for LLM fine-tuning. In Inter-
national Conference on Computational Linguistics,
2025. URL https://aclanthology.org/
2025.coling-main.592.

Wang, Y., Lin, Y., Zeng, X., and Zhang, G. Multi-
LoRA: Democratizing LoRA for better multi-task learn-
ing. arXiv preprint, 2023b. URL https://arxiv.
org/abs/2311.11501.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W.,
Colmenarejo, S. G., Denil, M., Freitas, N., and Sohl-
Dickstein, J. Learned optimizers that scale and gener-
alize. In International Conference on Machine Learn-
ing, 2017. URL https://dl.acm.org/doi/10.
5555/3305890.3306069.

12

https://arxiv.org/abs/2302.11474
https://arxiv.org/abs/2302.11474
https://openreview.net/forum?id=xpx9zj7CUlY
https://openreview.net/forum?id=xpx9zj7CUlY
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://aclanthology.org/2024.naacl-long.481
https://aclanthology.org/2024.naacl-long.481
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://arxiv.org/abs/2311.03285
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2406.10785
https://arxiv.org/abs/2406.10785
https://dl.acm.org/doi/10.5555/3540261.3542113
https://dl.acm.org/doi/10.5555/3540261.3542113
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.02538
https://arxiv.org/abs/2305.02538
https://aclanthology.org/2025.coling-main.592
https://aclanthology.org/2025.coling-main.592
https://arxiv.org/abs/2311.11501
https://arxiv.org/abs/2311.11501
https://dl.acm.org/doi/10.5555/3305890.3306069
https://dl.acm.org/doi/10.5555/3305890.3306069


On the Duality between Gradient Transformations and Adapters

Xia, W., Qin, C., and Hazan, E. Chain of LoRA: Effi-
cient fine-tuning of language models via residual learn-
ing. arXiv preprint, 2024. URL https://arxiv.
org/abs/2401.04151.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. LoRA-
FA: Memory-efficient low-rank adaptation for large lan-
guage models fine-tuning. arXiv preprint, 2023. URL
https://arxiv.org/abs/2308.03303.

Zhang, Z., Jaiswal, A., Yin, L., Liu, S., Zhao, J., Tian, Y.,
and Wang, Z. Q-GaLore: Quantized GaLore with INT4
projection and layer-adaptive low-rank gradients. arXiv
preprint, 2024. URL https://arxiv.org/abs/
2407.08296.

Zhao, J., Zhang, Y., Chen, B., Schäfer, F., and Anandku-
mar, A. InRank: Incremental low-rank learning. arXiv
preprint, 2023. URL https://arxiv.org/abs/
2306.11250.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. GaLore: Memory-efficient LLM train-
ing by gradient low-rank projection. In International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=hYHsrKDiX7.

Zhu, J., Greenewald, K., Nadjahi, K., De Ocáriz Borde,
H. S., Gabrielsson, R. B., Choshen, L., Ghassemi, M.,
Yurochkin, M., and Solomon, J. Asymmetry in low-rank
adapters of foundation models. In International Confer-
ence on Machine Learning, 2024. URL https://dl.
acm.org/doi/10.5555/3692070.3694651.

13

https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2407.08296
https://arxiv.org/abs/2407.08296
https://arxiv.org/abs/2306.11250
https://arxiv.org/abs/2306.11250
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7
https://dl.acm.org/doi/10.5555/3692070.3694651
https://dl.acm.org/doi/10.5555/3692070.3694651


On the Duality between Gradient Transformations and Adapters

A. Proofs
A.1. Proof of Thm. 1

Theorem 1 (Equivalence of gradient transformations and linear adapters). Suppose we are given initial parameters Θ(0)

and state ξ
(0)
SΘ. Let Θ(t) be the parameters after t update steps with the linearly transformed gradient dynamics with S.

Now consider a linear adapter which reparameterizes the model as Θ(0) + S⊤Λ, where Λ(0) is initialized to 0 and the
optimizer state ξ

(0)
Λ is initialized to ξ

(0)
SΘ, and only Λ is optimized. Then we have Θ(t) = Θ(0) + S⊤Λ(t) for all t, i.e., the

optimization trajectories are equivalent.

Proof. To show that the two optimization trajectories are equivalent, we will use induction to show that after every opti-
mizer step t ≥ 0 we have that the optimizer states are equivalent, i.e., ξ(t)Λ = ξ

(t)
SΘ, which in turn allows us to show that the

networks are identical, i.e., Θ(t) = Θ(0) + S⊤Λ(t).

Note that at initialization, since Λ(0) = 0, we have that

Θ(0) + S⊤Λ(0) = Θ(0) + S⊤0 = Θ(0),

which implies that our reparameterized network is identical to our original network. By assumption we also have that the
optimizer states are equal ξ(0)Λ = ξ

(0)
SΘ. Now assume that this is true for t ≤ k, i.e., for all t ≤ k

Θ(0) + S⊤Λ(t) = Θ(t) (Neural networks equivalent) (4)

ξ
(t)
Λ = ξ

(t)
SΘ. (Optimizer states equivalent) (5)

Now note that for k + 1,

Θ(0) + S⊤Λ(k+1) = Θ(0) + S⊤(Λ(k) +∆
(k)
Λ ) = Θ(k) + S⊤∆

(k)
Λ (6)

where we used eq. (3) in the first equality, and eq. (4) for the second equality. Also by eq. (4) and by the chain rule, we
have that the gradients of the loss function at timestep t to the (effective) parameters of the networks are the same, i.e.,
Θ(0) + S⊤Λ(k) = Θ(k). In particular, this means that

Λ(k) = SS⊤Λ(k) = SΘ(0) + S⊤Λ(k) = SΘ(k) (7)

where the first two equalities follow from the chain rule. Specifically, the first equality follows from writing the derivative
of the loss w.r.t. the adapter parameter Λ(k) as a function of the derivative of the loss w.r.t. the additive component of the
adapter, S⊤Λ(k); the second equality follows from recognizing that the latter is equal to the derivative of the loss w.r.t. the
effective value Θ(0) + S⊤Λ(k) of the (adapted) parameter. In turn, expanding ∆

(k)
Λ ,

(∆
(k)
Λ , ξ

(k+1)
Λ ) = Optimizer(Λ

(k)
, ξ

(k)
Λ ) = Optimizer(SΘ(k), ξ

(k)
SΘ) = (∆

(k)
SΘ, ξ

(k+1)
SΘ ), (8)

where the first equality is the optimizer we use to train the reparameterized model in eq. (3), in the second equality we use
eq. (7) and eq. (5). But by eq. (6),

Θ(0) + S⊤Λ(k+1) = Θ(k) + S⊤∆
(k)
Λ = Θ(k) + S⊤∆

(k)
SΘ = Θ(k+1). (9)

Eq. (8) proves optimizer states are equivalent for optimizer step k + 1, whereas eq. (9) establishes the networks are
equivalent for optimizer step k + 1, thus completing the proof.

A.2. Proof of Prop. 2

Proposition 2 (Kronecker-factored parameterization of the linear map). Let W ∈ Rm×n be the parameter matrix of a
linear layer with corresponding gradient matrix W ∈ Rm×n. Further let Θ = vec (W) and Θ = vec

(
W

)
. Consider

14



On the Duality between Gradient Transformations and Adapters

training Θ as above with S = R⊤ ⊗L, i.e., by transforming the gradient matrix via LWR. Then the optimizer trajectory
of W is equivalent to reparameterizing the model as W = W(0) + L⊤AR⊤, and then just training A (after initializing
A(0) = 0).

Proof. From Thm. 1, we know that training a linear layers using the gradient transformation S = R⊤ ⊗ L corresponds to
using the reparameterization:

Θ = Θ(0) + (R⊤ ⊗ L)⊤Λ

and training Λ instead, using the same optimizer. Letting vec (A) = Λ, we then have

vec (W) = vec
(
W(0)

)
+ (R⊗ L⊤) vec (A)

= vec
(
W(0)

)
+ vec

(
L⊤AR⊤)

where in the first equation we used the fact that (M⊗N)⊤ = M⊤⊗N⊤ and in the second equation we used vec (MNO) =
(O⊤ ⊗M) vec (N). Taking vec−1 (·) in both sides completes the proof.

A.3. Proof of Cor. 3

We now state a more general version of Cor. 3, and then prove it.

Corollary 4 (Galore is one-sided LoRA (General)). Let W ∈ Rm×n be the parameter matrix of a linear layer with
corresponding gradient matrix W ∈ Rm×n. Consider training W with Optimizer using GaLore, i.e., where we linearly
transform the gradient matrix with a matrix P,

W̃ =

{
PW m ≤ n (i.e., apply from the left)
WP m > n (i.e., apply from the right)

and then apply our optimizer on it, before transforming our update back to parameter space via P⊤, viz.,

(∆
(t)
W, ξ

(t+1)
W ) = Optimizer(vec

(
W̃

(t)
)
, ξ

(t)
W)

W(t+1) =

W(t) +P⊤ vec−1
(
∆

(t)
W

)
m ≤ n

W(t) + vec−1
(
∆

(t)
W

)
P⊤ m > n

where P is an arbitrary matrix of size Rd×m (if m ≤ n) or Rn×d (otherwise) and d ≤ min(m,n) controls the dimen-
sionality of the transformation. Then the optimizer trajectory of this network is equivalent to a network trained with the
reparameterization:

W =

{
W(0) +P⊤A m ≤ n

W(0) +AP⊤ m > n,

i.e., adding LoRA adapters where one side is frozen to P⊤ and only the other side, A, is learned.

Proof. Define

S =

{
In ⊗P m ≤ n

P⊤ ⊗ Im m > n

15



On the Duality between Gradient Transformations and Adapters

where Im is the m×m identity matrix, and similarly for In. Then note that

vec
(
W̃

)
=

{
vec

(
PW

)
m ≤ n

vec
(
WP

)
m > n

= S vec
(
W

)
using vec (MNO) = (O⊤ ⊗ M) vec (N) as before. Similarly, we have that vec

(
W(t+1)

)
= vec

(
W(t)

)
+ S⊤∆

(t)
W.

Hence, by Thm. 1, we have that training a network with GaLore is equivalent to introducing a parameter A and optimizing
using the reparameterization vec (W) = vec

(
W(0)

)
+S vec (A). Observe that this choice of S is a special case of Prop. 2

where L = P and R = I (if m ≤ n) or L = I and R = P (if m > n). Thus, the reparameterization corresponds to LoRA
with one of the two adapter matrices frozen to P.

B. Weight Decay
Cor. 3 establishes an equivalence between GaLore and LoRA when stateful optimizers are in play (i.e., those satisfying
eq. (2)). While Adam (Kingma & Ba, 2015) can be straightforwardly recast as a stateful optimizer, it turns out that weight
decay, as is traditionally implemented in, e.g., AdamW (Loshchilov & Hutter, 2019), breaks this symmetry as it does not
fit our definition of a stateful optimizer. From the perspective of our definition, the problem is that optimizer steps with
AdamW are not solely a function of the observed gradients up until this point, but also the actual values of the parameters.
This is important, since automatic differentiation libraries traditionally distinguish trainable and non-trainable parameters,
with weight decay being applied to the former. Since the duality in Cor. 3 changes what the trainable parameters are, this
means that the weight decay is applied differently in the gradient transformation view and in the linear adapter view.

For example, consider taking a linear layer with weight Θ, and training it with an optimizer that applies weight decay.
When training this layer with a linear gradient transformation S, after a single optimizer step, our new weight is given by

(∆
(0)
Θ , ξ

(1)
Θ ) = OptimizerWithoutWeightDecay(SΘ

(0)
, ξ

(0)
Θ ) (10)

Θ(1) = Θ(0) + S⊤∆
(0)
Θ − λΘ(0) (11)

where λ ∈ R+ is our weight decay penalty. Similarly, following Thm. 1, our linear layer’s effective weight after a single
optimizer step, in the adapter view, is given by

Θ
(1)
effective = Θ(0) + S⊤(Λ(0) +∆

(0)
Λ − λΛ(0)) (12)

= Θ(0) + S⊤(Λ(0) +∆
(0)
Λ )− λS⊤Λ(0) (13)

= Θ(0) + S⊤∆
(0)
Θ − λS⊤Λ(0) (14)

where the final equality follows from Thm. 1. Note that in general, we do not have that Θ(0) = S⊤Λ(0), which means the
optimizer trajectories may diverge.

An alternative interpretation for the above is that weight decay can be seen (roughly) as placing a Gaussian prior on
the trainable parameters, but since the set of trainable parameters is different under each view, the equivalence does not
immediately hold. We note that it is not outright clear if one implementation of weight decay is superior, so further research
is required in this regard. In our experiments, for simplicity, we leave the application of weight decay untouched, i.e., we
(implicitly) use the implementation of weight decay that naturally arises from the adapter or gradient transformation views.

Maintaining the equivalence. If one truly cares about preserving the optimizer trajectory even when training with weight
decay, practically all one has to do is adjust the application of the weight decay so that it reflects the behavior of weight de-
cay in the gradient transformation view or in the linear adapter view. Adjusting the linear adapter weight decay application
to match the gradient transformation weight decay application is fairly simple: one just has to compute the effective weight
at every timestep, as done above, and decay the frozen base weights directly. The converse is possible but slightly trickier,
since the application of weight decay in the linear adapter view requires one to know what Λ(t) is, which may require the

16



On the Duality between Gradient Transformations and Adapters

introduction of additional optimizer state. For example, one could store Θ(0) and solve15 S⊤Λ
(t)
effective = Θ(t) − Θ(0) on

every optimizer state,16 or one could store and continually update Λeffective as part of the optimizer state.

C. Additional Results

0 2000 4000 6000 8000 10000
Training steps

10 2

10 1

100

101

Pr
oj

ec
tio

n 
er

ro
r

0 2000 4000 6000 8000 10000
Training steps

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

si
m

ila
rit

y

SVD Gaussian Rademacher Random Semi-orthogonal Two-sided SVD Two-sided Gaussian

Figure 2: Full results for gradient reconstruction error (i.e., ∥Θ − S⊤SΘ∥2) (left) and cosine similarity (i.e., cos(Θ,S⊤SΘ)) of the
various transformations across training steps with the 200M model. The projections with lowest reconstruction error (measured either
by L2 error or cosine similarity with the unprojected stochastic gradient) do not give the best downstream performance (see Tab. 2).

D. Experimental Setup
The details of the two architectures we consider are shown in Tab. 5. We also include a discussion on gradient accumulation.

Gradient accumulation. The experimental setup in the original GaLore paper did not perform gradient accumulation,
which meant that the maximum sequence length had to be short enough (e.g., 256) such that a single batch could con-
tain a large-enough number of sequences for accurate gradient estimation. Our experiments are instead conducted in the
standard setting where we assume gradients are accumulated across multiple microbatches. In this case, the reparameteri-
zation of GaLore as LoRA has the additional benefit of straightforwardly allowing for gradient accumulation in the lower-
dimensional space. Concretely, the most straightforward implementation of GaLore17 will lead to gradient accumulation
in the original parameter space, which would consume substantially more memory. In contrast, in the LoRA formulation
the gradients are accumulated after applying the gradient transformation, providing substantial memory savings without
any additional code.18

200M 1.3B

Layers 12 24
Heads 16 16
Embed. dim. 1024 2048
Intermediate dim. 2816 5472
Head dim. 64 128
Query groups 16 16
Batch size 0.5M 1M

Warmup tokens 0.5B 1B
Total tokens 5B 10B

Table 5: Description of the two architectural settings we consider for our experiments: a 200M setting which we conduct most of our
analyses and ablations on, and a 1.3B setting which we use to evaluate our techniques in more realistic, large-scale setting.

15Note that since the right hand side lies in range(S⊤), this linear system will have a solution.
16In the distributed case, this might not incur any additional cost, since Θ(0) would already need to be stored. But this would require

solving a linear system on every iteration.
17E.g., the official implementation in https://github.com/jiaweizzhao/GaLore.
18One can implement this optimization in the GaLore form, but this requires additional code. The issue is that most deep learning

frameworks will compute the gradients of a parameterized function, and the user then separately passes these as input to an optimizer.
If gradients are only transformed in the optimizer, then the automatic differentiation module cannot figure out that only the smaller
transformed gradient is needed, and not the full gradient. We suspect that a sufficiently good compiler should in principle recover this
optimization if one ensures that entire training steps (viz., all the gradient accumulation steps and optimizer step) are compiled jointly.

17

https://github.com/jiaweizzhao/GaLore

	Introduction
	Background
	Memory Characteristics of LLM Training
	LoRA and GaLore

	Duality between Linear Gradient Transformations and Adapters
	General Case
	Kronecker-factored Gradient Transformations

	Empirical Study
	Study 1: Memory-Efficient Pretraining
	Study 2: Distributed Pretraining

	Discussion and Limitations
	Related Work
	Conclusion
	Proofs
	Proof of thm:grad-proj-is-adapter
	Proof of thm:kron-factored-proj-is-mora
	Proof of thm:galore-is-lora

	Weight Decay
	Additional Results
	Experimental Setup

