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Abstract

Accurate and efficient timing prediction at the
register-transfer level (RTL) remains a funda-
mental challenge in electronic design automation
(EDA), particularly in striking a balance between
accuracy and computational efficiency. While
static timing analysis (STA) provides high-fidelity
results through comprehensive physical parame-
ters, its computational overhead makes it imprac-
tical for rapid design iterations. Conversely, ex-
isting RTL-level approaches sacrifice accuracy
due to the limited physical information avail-
able. We propose RTLDistil, a novel cross-stage
knowledge distillation framework that bridges this
gap by transferring precise physical characteris-
tics from a layout-aware teacher model (Teacher
GNN) to an efficient RTL-level student model
(Student GNN), both implemented as graph neu-
ral networks (GNNs). RTLDistil efficiently pre-
dicts key timing metrics, such as arrival time (AT),
and employs a multi-granularity distillation strat-
egy that captures timing-critical features at node,
subgraph, and global levels. Experimental results
demonstrate that RTLDistil achieves significant
improvement in RTL-level timing prediction er-
ror reduction, compared to state-of-the-art predic-
tion models. This framework enables accurate
early-stage timing prediction, advancing EDA’s
“left-shift” paradigm while maintaining computa-
tional efficiency. Our code and dataset will be
publicly available at https://github.com/sklp-eda-
lab/RTLDistil.
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Figure 1: (a) Gap between RTL-level representation and
layout-level representation in the chip design process. (b)
RTL-level timing models provide faster and earlier predic-
tions compared to the slower and later layout-level models.

1. Introduction
Digital circuits constitute the cornerstone of contemporary
computing infrastructure (Agarwal & Lang, 2005; Clements,
2006). As illustrated in Figure 1(a), integrated circuit (IC)
design involves a complex evolution spanning multiple
stages of abstraction and representation paradigms (Chang,
1997; Chen et al., 2024). This progression moves from high-
level behavioral descriptions to the topological interconnect
of logic cells and ultimately culminates in a transistor- and
interconnect-level layout ready for physical manufactur-
ing (Bryant et al., 2001). However, traditional EDA flows
often follow a top-down, waterfall-like methodology, where
performance bottlenecks typically emerge late in the de-
sign cycle, resulting in lengthy verification and iteration
periods (Wang et al., 2009). Layout-level timing predic-
tion is too late and too slow. Consequently, recent research
efforts have advocated an EDA “left-shift”, wherein perfor-
mance prediction and issue detection are introduced at ear-
lier stages—such as the RTL level—to facilitate more timely
design adjustments and optimization of key metrics (Xing,
2024; Zeng, 2024).
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As shown in Figure 1(b), integrating such left-shift strate-
gies not only lowers the cost of late-stage rework but also
opens new avenues for pinpointing critical physical charac-
teristics and performance bottlenecks sooner in the design
flow (Jiang, 2024; Yang et al., 2022).

However, as in Figure 1(b), despite its efficiency for early-
stage optimization, performing accurate performance anal-
ysis and prediction at the RTL stage remains challeng-
ing (Yang et al., 2015). Existing models, such as RTL-
Timer (Fang et al., 2024), estimate timing by synthesizing
RTL code without accounting for actual parasitic parame-
ters, producing moderately accurate results. Yet a substan-
tial gap persists between these RTL-based estimates and true
post-layout timing. In contrast, layout-level timing analy-
sis inherently incorporates more precise physical details—
ranging from each cell’s realistic Resistor and Capacitance
(RC) parameters to complex interconnect RC models—thus
delivering more reliable predictions (Huang et al., 2023).
Our experiments indicate that even applying the state-of-the-
art RTL model trained end-to-end with layout-level labels
yields only around 60% accuracy in layout-level timing
predictions.

When compared with predicting the performance of a post-
synthesis circuit, the core bottleneck in accurately forecast-
ing layout-level timing lies in the intricate physical param-
eter distribution—particularly RC parameters—present in
the actual circuit netlist (Sait & Youssef, 1999). This dis-
tribution critically affects the final timing but is difficult
to derive purely from RTL descriptions (Kundert & Zinke,
2005). Consequently, a critical question in early-stage per-
formance prediction arises: how can one effectively extract
such underlying physical layout phenomena from the more
abstract RTL representation? It is precisely at this juncture
that knowledge distillation becomes especially relevant, of-
fering a structured means to transfer these crucial physical
insights.

To address these challenges, we propose a knowledge distil-
lation framework, RTLDistil, which bridges the gap between
the early-stage RTL and the final layout design. Specifically,
at the layout stage, a high-precision teacher model captures
realistic physical effects through iterative forward and re-
verse propagation. Simultaneously, a lightweight student
model at the RTL stage assimilates critical timing charac-
teristics, such as arrival time, by drawing on this distilled
knowledge. Adopting a cross-stage perspective, RTLDis-
til employs a multi-granularity alignment strategy (node,
subgraph, and global levels) to enhance both precision and
efficiency. The primary contributions of RTLDistil can be
summarized as follows:

• Cross-Stage Knowledge Distillation. We propose an
efficient cross-stage learning approach that transfers

layout-aware timing characteristics to RTL-level pre-
dictions. This is a valuable early attempt to apply the
concept of knowledge distillation to the EDA domain.

• Multi-Granularity Distillation Learning. We design
alignment mechanisms at node, subgraph, and global
levels to strengthen the model to capture layout fea-
tures across different granularities. Each of the three
granularities naturally corresponds to specific circuit
structures relevant to timing.

• Efficient Forward and Reverse Propagation. We de-
velop a domain-specific asynchronous forward-reverse
propagation strategy that balances accuracy with com-
putational efficiency by combining the iterative for-
ward and reverse propagation of the teacher model
with a lightweight inference of the student model.

Experimental results on a broad variety of circuits demon-
strate that the proposed RTLDistil achieves impressive re-
sults compared with state-of-the-art RTL-level timing pre-
diction models. These results validate RTLDistil’s effec-
tiveness in enabling accurate early-stage timing prediction,
supporting the “left-shift” paradigm in industrial workflows
while maintaining computational efficiency.

2. Background and Related Work
The research spans several domains, including traditional
static timing analysis (STA), RTL-based timing prediction,
the application of GNNs in EDA, and knowledge distillation
(KD). Below, we summarize the relevant prior works and
highlight the core challenges in this field.

Static Timing Analysis and Timing Prediction. Static tim-
ing analysis (STA) is a critical assessment in chip electronic
design automation (EDA) for evaluating whether a circuit
satisfies timing constraints (Sapatnekar, 2018; Blaauw et al.,
2008). By performing parasitic parameters extraction on
the chip physical layout and the timing metrics in the pro-
cess library, post-layout stage STA calculates precise timing
metrics such as the arrival time (AT) at each flip-flop, the
circuit worst negative slack (WNS), and the circuit total neg-
ative slack (TNS) (Licastro, 2022; Chowdhary et al., 2005).
However, analytical STA methods incur heavy runtime due
to the complexity of delay propagation calculations (Guo
et al., 2024b). Consequently, timing prediction methods
have been widely explored in recent research.

Layout-stage timing prediction methods emphasize extract-
ing features from the physical layout and mapping them
to the gate-level netlist corresponding to the process li-
brary (Guo et al., 2022; Ye et al., 2023). These approaches
enable direct prediction of timing metrics with high ac-
curacy. However, they are not suitable for meeting the

2



Bridging Layout and RTL: Knowledge Distillation based Timing Prediction

requirements of RTL-level prediction. STA at the layout
stage depends on a complete mapping to the specific process
library and physical layout, making it computationally ex-
pensive and impractical for early design stages (Lienig et al.,
2020). To support the EDA left-shift paradigm, which ad-
vances critical tasks earlier in the design process (Guo et al.,
2024a), several studies have explored early-stage timing
estimation at the RTL level.

On the other hand, some recent works utilize statistical or
simplified models to predict the delay of critical paths to
each register based on logical structures (Sengupta et al.,
2023; Xu et al., 2022; Lopera et al., 2021a). While these
methods enable RTL-level predictions, they exhibit signifi-
cant inaccuracies due to the absence of physical characteris-
tics, such as capacitance and interconnect delays.

Recent works such as MasterRTL (Fang et al., 2023) and
RTL-Timer (Fang et al., 2024) have made progress in RTL-
based timing prediction. MasterRTL leverages a bit-level
Simple Operator Graph (SOG) and multi-stage machine
learning models to estimate TNS and WNS, while RTL-
Timer employs a bit-level graph structure with customized
loss functions for fine-grained timing predictions at the reg-
ister and design levels. However, these methods are lim-
ited to RTL or gate-level abstractions and fail to effectively
incorporate physical characteristics, such as parasitics, in-
terconnect delays, and cell drive strengths (Jariwala, 2011;
Kahng et al., 2011). As a result, they struggle to achieve
sign-off-level accuracy and provide timing predictions that
closely approximate the ground truth of layout-level timing
information required in industrial workflows. Moreover,
previous works focus on independent paths, which overlook
the broader circuit environment, further limiting predictive
accuracy.

In conclusion, the existing body of work reveals a fundamen-
tal challenge: relying solely on RTL-level logical properties
for timing prediction cannot bridge the information gap, and
directly depending on STA tools is impractical for rapid
early-stage iterations. Consequently, transferring physical
characteristics into RTL-level models to enhance prediction
accuracy remains an open problem.

Graph Neural Networks in EDA. Graph neural networks
(GNNs) have emerged as a powerful tool for modeling un-
structured data and have been extensively applied in the
EDA domain (Ma et al., 2020; Li et al., 2023). In circuit
design, circuits are naturally represented as graphs, where
nodes correspond to logic elements (e.g., registers, standard
cells), and edges represent signal paths (Bairamkulov &
Friedman, 2022). GNNs, through graph convolutions and
attention mechanisms, can capture rich contextual informa-
tion between nodes, demonstrating superior performance in
tasks such as gate-level network modeling, congestion pre-
diction, and power estimation (Ghose et al., 2021; Sánchez

et al., 2023; Lopera et al., 2021b; Wang et al., 2025).

Some recent works (Fang et al., 2023; Zheng et al., 2024;
Lopera & Ecker, 2022) applied GNNs to RTL-level cir-
cuit modeling. However, these methods primarily rely on
RTL-level features and fail to effectively integrate physi-
cal characteristics at the layout stage, overlooking parasitic
effects that significantly influence the prediction accuracy.
These factors are challenging to model using RTL-level
logical abstractions alone. Therefore, leveraging GNNs to
combine RTL and layout information across stages remains
a critical and underexplored avenue for research.

Knowledge Distillation. Knowledge Distillation (KD) is
a modeling technique that facilitates the transfer of repre-
sentational and predictive capabilities from a high-capacity
model (teacher) to a simpler counterpart (student) (Hinton,
2015; Zhao et al., 2022; Tang et al., 2020). By guiding
the student model to mimic the output distributions of the
teacher model, KD enables the student to achieve compara-
ble performance with reduced complexity (Park et al., 2021;
Cho & Hariharan, 2019). Traditional KD methods primarily
rely on soft targets, where the student learns to approximate
the teacher’s output logits (Gou et al., 2021; Wang & Yoon,
2021). Recent advancements extend KD to intermediate
feature representation, allowing the student model to learn
hidden representations from the teacher, further enhancing
its capability (Wang et al., 2021).

In circuit design tasks, KD presents unique challenges due
to the significant differences in features and dimensionality
between RTL and Layout stages. The RTL stage focuses
on high-level abstractions, such as logic functionality and
registers distribution (Chu, 2006), while the Layout stage in-
cludes detailed physical characteristics, such as capacitance,
interconnect delay, and parasitic effects (Sherwani, 2012).
Transferring high-fidelity physical characteristics from the
teacher model to the student model is the key to achieving
accurate and efficient timing prediction at the RTL stage.
However, designing a KD framework capable of bridging
such heterogeneous representations remains a significant
challenge.

3. Problem Formulation
Given a digital circuit in RTL format, represented as a graph,
G = (V,E), where V is the set of register/DFF nodes and
the logic nodes, and E represents data flow edges, the goal
is to predict the timing-related metrics, such as the arrival
time (AT) ATpred(v) for each node v ∈ V at the RTL stage.
The ground truth of the arrival time from the layout stage is
denoted as ATlabel(v).

The objective is to minimize the error between the predicted
and ground truth AT values across all register/DFF nodes,
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for example:

MAPEAT =
1

|V |
∑
v∈V

∣∣∣∣ATpred(v)−AT label(v)

ATlabel(v)

∣∣∣∣ , (1)

where |V | is the total number of register/DFF nodes. The
output is the predicted arrival time ATpred(v) for all regis-
ter/DFF nodes v ∈ V , aligning with the layout-level timing
characteristics.

4. RTLDistil Overview
We propose RTLDistil, a dual-model framework compris-
ing a Teacher Model and a Student Model, to address the
cross-stage timing prediction problem. The teacher model,
operating on the layout-level Netlist Graph, utilizes a high-
capacity Graph Neural Network (GNN) to capture complex
physical characteristics and generate accurate AT values.
The student model, operating on the RTL SOG, employs a
lightweight GNN for efficient inference, making it suitable
for large-scale RTL-stage prediction.

Figure 2 illustrates the proposed RTLDistil overall workflow.
The approach includes four main steps: A Graph Con-
struction: Extract the SOG from RTL and the Netlist Graph
from Layout, with respective graph features for each stage.
B Teacher Model Training: Train the teacher model using

Layout data as features and labels to produce high-accuracy
AT values. C Knowledge Distillation: Transfer the physi-
cal knowledge encoded in the teacher model to the student
model through three levels of granularity, enabling the stu-
dent to efficiently predict AT at the RTL stage. D Student
Model Fine Tuning: The student model undergoes further
fine-tuning on downstream tasks, such as predicting timing
information like AT.

By transferring physical characteristics on layout to the
RTL stage, this framework bridges the abstraction gap be-
tween RTL and Layout stages, improving prediction accu-
racy while maintaining computational efficiency.

5. Methodology and Model Design
5.1. Dual Graphs and Model Architecture

In cross-stage modeling, the RTL and Layout stages differ
significantly in information dimensions and features. Ta-
ble 1 contrasts the features of the Simple Operator Graph
(SOG) used at the RTL stage, and the Netlist Graph em-
ployed at the Layout stage, highlighting their dimensional
and informational differences.

RTL SOG and the Student Model. The RTL stage uti-
lizes Verilog/SystemVerilog code to construct a simple op-
erator graph (SOG). SOG nodes represent logical opera-
tors (e.g., adders, logic gates, registers) or registers, while

Table 1: RTL SOG vs. layout netlist features.

Features Type Width
RTL SOG (Student)

SOG cell type One-hot 12
Fanout number Int 1
Fanin number Int 1

Depth Per Input (DPI) Int 1
Depth Per Output (DPO) Int 1

Total 16
Layout Netlist Graph (Teacher)

Gate cell type One-hot 78
Gate Depth Per Input (DPI) Int 1

Gate input pins Int 1
Cell drive strength Int 1

Fanout capacitance (Rise, Fall) Float 2
Fanout resistance Float 1
Input slew (4 arcs) Float 4

Output slew (4 arcs) Float 4
Delay (4 arcs) Float 4

Total 96

edges describe data flow relationships. Each node has a
16-dimensional feature vector, including operator types,
fan-in/out characteristics, and operators’ depth per input
(DPI)/depth per output (DPO) values.

The student model is a lightweight graph neural network
(GNN), as a multi-head attention-based graph attention net-
work (GAT), which generates 128-dimensional embeddings
for each node. To ensure scalability, the student model only
requires two rounds of forward-reverse asynchronous prop-
agation to predict node-level timing metrics, such as arrival
time (AT) and worst negative slack (WNS), while produc-
ing low-dimensional embeddings embeddingS(DFFi) for
distillation.

Layout Netlist Graph and the Teacher Model. The Lay-
out stage employs a Netlist Graph, and nodes carry 96-
dimensional physical features, including drive strength, ca-
pacitance, parasitic resistance, capacitance, and LUT delays.

The teacher model is a bigger GAT that produces 512-
dimensional embeddings and performs three rounds of
forward-reverse asynchronous propagation to simulate re-
alistic STA-like long-path accumulation while seeing a
broader view of the surrounding circuitry. It outputs high-
precision timing values while generating high-dimensional
embeddings embeddingT (DFFi) for knowledge distillation.

5.2. Forward-Reverse Propagation Strategy

To imitate the delay propagation of signals in a circuit,
both the teacher and student models utilize asynchronous
forward-reverse propagation to update node representations,
which capture the neighboring structure in the fanin and
fanout cones, which is illustrated by Figure 3. The forward
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module half_adder  (
        input A,
        input B,
        output Sum,
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);
assign Sum = A ^ B;
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endmodule
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Figure 2: Overview of the RTLDistil framework. The teacher model operates on the layout netlist graph to generate accurate
physical timing metrics, while the student model operates on the RTL SOG for efficient inference. Knowledge distillation
transfers timing information from the teacher to the student.

propagation update for node v at (i + 1)-depth per input
node is formulated as Eq. (2a):

h(i+1)
v = σ

 ∑
u∈N (v)

αFor
uv WForh(i)

u

 , (2a)

h(j+1)
v = σ

 ∑
u∈R(v)

αRe
uvW

Reh(j)
u

 , (2b)

where N (v) represents the forward neighboring nodes of
node v; h denotes the feature vector of nodes; W denotes
the linear transform weight and α denotes the coefficients
calculated by the attention mechanism in (Velickovic et al.,
2017), where For means forward and Re means reverse.
Similarly, the reverse propagation update for node v at (j +
1)-depth per output node is formulated as Eq. (2b), where
R(v) denotes the reverse neighboring nodes of v.

Teacher Model. By leveraging complete physical features,
the Teacher executes ≥ 2 rounds of forward-reverse prop-
agation. The forward pass accumulates path delays, while
the reverse propagation spreads information about the sur-
rounding circuitry situation, thus achieving timing analysis
accuracy that is closer to the real physical layout.

Student Model. To ensure computational efficiency, the
Student performs only 2 propagation rounds for rapid node-
level timing estimation. Despite fewer iterations, the Stu-
dent compensates for its limited propagation through knowl-
edge distillation by learning contextual information from
the Teacher.

We actually emphasize domain-specific asynchronous
forward-reverse propagation for iterative feedback from the
sink node back to the source node, capturing RC parasitic
and register slack constraints that typical GNNs cannot di-
rectly encode. This strategy achieves high accuracy with
the Teacher while maintaining the Student’s efficiency, en-

Forward Update

Reverse Update

(a)
(b)

(c)

(a) (b)

(d)(d) (e)
(f)

(e)

Asynchronous
Forward-Reverse
Propagation

(a) (b) (c) (d) (e) (f)
One Round

Figure 3: Asynchronous forward-reverse propagation strat-
egy. The RTL SOG is used as an example to show a one-
round flow.

suring effective representation alignment during distillation.
This mechanism proved crucial to bridging the gap between
abstract RTL data and high-accuracy physical layout-level
timing insights.

5.3. Multi-Granularity Knowledge Distillation

Multi-granularity knowledge distillation (KD) is a corner-
stone of the proposed RTLDistil framework for cross-stage
timing prediction. It facilitates the transfer of physical
knowledge from the teacher model to the student model
across multiple granularity levels relevant to timing—node-
level, subgraph-level, and global-level—enabling the stu-
dent to approximate the teacher’s high-dimensional physical
characteristics effectively and capture timing-critical fea-
tures at multiple scopes. This hierarchical strategy ensures
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Figure 4: Multi-granularity knowledge distillation frame-
work. Knowledge is hierarchically transferred from the
Teacher to the Student across three levels: (a) Node-Level,
(b) Subgraph-Level, and (c) Global-Level Distillation. The
RTL-level SOG and Layout-level Netlist Graph are aligned
to enable accurate cross-stage timing prediction.

that the student model comprehensively learns physical tim-
ing dependencies, capturing both local and global circuit
behaviors to predict AT, WNS, and TNS robustly during the
RTL stage.

Traditional KD methods align the output distributions of
a large teacher model and a lightweight Student model by
minimizing their divergence. However, in cross-stage tim-
ing prediction, the significant differences between RTL and
Layout feature spaces render output-only alignment insuf-
ficient. To address this, we design a multi-granularity KD
strategy that hierarchically transfers knowledge from the
Teacher to the Student, ensuring comprehensive learning of
physical characteristics across granularities, as illustrated in
Figure 4.

Node-Level Distillation. Node-level distillation focuses
on aligning the feature representations of individual regis-
ter nodes (DFF-level) to ensure that the Student accurately
learns the timing properties of each register/DFF. For a
register/DFF node v, the Teacher and Student generate em-
beddings embeddingT (v) and embeddingS(v). These em-
beddings are directly compared using the smooth L1 loss,
defined as:

LReg =
1

|V |
∑
v∈V

smoothL1
(embeddingT (v),

MLPalign (embeddingS(v))) ,

(3)

where |V | is the total number of registers/DFF nodes, and
the smooth L1 loss is given by:

smoothL1
(x, y) =

{
0.5(x− y)2, if |x− y| < 1,

|x− y| − 0.5, otherwise.
(4)

This loss ensures that the Student Model’s feature repre-
sentations align closely with those of the Teacher for each

register/DFF node. At the same time, to align the dimension-
ality between teacher and student embeddings, we employ
a two-layer MLP transformation MLPalign that projects the
student’s 128-dimensional embeddings to the same 512-
dimensional space as the teacher’s. This alignment network
uses ReLU activation and maintains the semantic informa-
tion while expanding the feature space.

Subgraph-Level Distillation. While node-level distillation
aligns single-register features, it may overlook the influence
of surrounding logical structures. Subgraph-level distillation
addresses this by modeling the fan-in cone of each register,
capturing its contextual logic depth, operation types, and
timing dependencies.

For a register/DFF node v, the fan-in cone subgraph is de-
noted as Gsub(v), representing the sub-circuit encompassing
all combinational logic between v and its contributing regis-
ters within a single clock cycle. The fan-in cone of a target
register v is determined by traversing the RTL SOG or netlist
graph forward from node v, collecting all logic gates and
connections that influence node v, until the traversal termi-
nates at other registers/DFFs. It serves as an intermediate
granularity that bridges the gap between fine-grained node-
level features and the global circuit graph, enhancing model
adaptability for various timing prediction tasks.

For subgraph-level distillation, the Teacher and Student
generate subgraph embeddings embeddingT (Gsub(v)) and
embeddingS(Gsub(v)). These embeddings are aggregated
using mean pooling over the nodes in Gsub(v) and aligned
using the smooth L1 loss:

Lsubgraph =
1

|V |
∑
v∈V

smoothL1 (embeddingT (Gsub(v)),

MLPalign (embeddingS(Gsub(v)))) .

(5)

This loss encourages the Student to capture the logic and
timing interactions within each register’s fan-in cone and to
focus more on the local timing-relevant information related
to each register.

Global-Level Distillation. Global-level distillation aligns
the representations of the entire circuit to ensure that the
Student learns global timing distributions and long-term
dependencies. This strategy is particularly effective in cor-
recting biases induced by variations in circuit scale and
structure.

The Teacher and Student generate global embeddings
embeddingT (G) and embeddingS(G) for the entire circuit
graph G using mean pooling. The global embeddings are
aligned with the smooth L1 loss:

Lglobal = smoothL1
(embeddingT (G),

MLPalign (embeddingS(G))) .
(6)
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By minimizing Lglobal , the Student aligns with the Teacher’s
global characteristics, improving its ability to capture criti-
cal paths across the circuit.

Integrated Distillation Loss. The total distillation loss com-
bines the contributions of node-level, subgraph-level, and
global-level losses, along with supervised timing prediction
losses:

Ltotal = Lsupervised(AT)+αLReg+βLsubgraph+γLglobal, (7)

where Lsupervised(AT) ensures that the Student’s predictions
for arrival time (AT) align with ground truth, and the weights
α, β, γ are hyperparameters controlling the relative impor-
tance of each distillation granularity. They are tuned based
on grid search for optimal performance.

Through iterative gradient descent, the Student progressively
aligns its feature representations and timing predictions with
the Teacher.

6. Experiments and Implementation Details
6.1. Experimental Settings

Datasets. To enable a comprehensive evaluation of scal-
ability and adaptability, we collected 2004 RTL designs
with diverse functionalities and complexities sourced from
platforms including GitHub, Hugging Face, OpenCore, and
RISC-V projects to reflect real-world industrial needs, in-
cluding small arithmetic blocks, DSP modules, RISC-V
subsystems, etc. This makes the prediction task harder, but
we think it’s more practical, pervasive, industrially valu-
able, and closer to the needs of actual industrial processes.
In constructing our dataset, we designed a unified, fully-
automated back-end flow using state-of-the-art commer-
cial tools—Synopsys Design Compiler (DC) and Cadence
Innovus—with a consistent set of optimization switches
(e.g., gate sizing, buffer insertion, cell movement, etc.).
However, the circuits in our dataset were not finalized under
a single fixed configuration. For each design and each back-
end optimization-related parameter (e.g., density thresholds,
routing constraints, clock constraints), we automatically
tried multiple sets of values and iteratively explored multi-
ple different configurations, often conducting tens of design
runs, until the circuit reached a state where:

• Placement density no longer increased, and

• Timing metrics converged stably through repeated op-
timization.

This convergence point serves as a practical proxy for phys-
ical design quality, reflecting an optimization level com-
parable to that of manually refined industrial flows. By
doing so, we avoid biasing our dataset toward a singular

”super-convergent” setting and instead generate diverse yet
high-quality layouts that are more representative of indus-
trial standards. Our approach reflects a robust and converged
implementation quality, providing a meaningful basis for
our timing prediction framework.

Importantly, this means our model is not tuned to predict
timing under a specific tool configuration, but rather aims to
approximate the best achievable timing performance after re-
alistic optimizationan objective more aligned with industrial
design goals.

For dataset splits, circuits are split into 80% for training,
10% for validation, and 10% for testing, ensuring a fair eval-
uation of the model’s ability to generalize across different
circuits.

Evaluation Metrics. We evaluated timing predictions for
arrival time (AT), worst negative slack (WNS), and total
negative slack (TNS) using three standard metrics: (1) Pear-
son correlation coefficient (PCC), which assesses the linear
correlation between predictions and ground truth; (2) Coeffi-
cient of determination (R2), which measures the proportion
of variance explained by the model; (3) Mean absolute per-
centage error (MAPE), which Quantifies prediction error as
a percentage of ground truth, with lower values indicating
better performance.

Platform Configuration. Experiments were conducted on
8 × NVIDIA A100 GPUs, and models were implemented
using PyTorch and PyTorch Geometric (PyG). The optimiza-
tion employed the Adam optimizer with an initial learning
rate of 2 × 10−4 and batch sizes of 8. Multi-granularity
knowledge distillation used grid-searched weights for node-
level (α), subgraph-level (β), and global-level (γ) distil-
lation. With the change of loss weights, we observed
small fluctuations across different metrics and believed that
the optimal balance varies depending on the data proper-
ties, circuit complexity, and the focus of the task objective.
Through a coarse-grained grid search, we find equal weights
(α = β = γ) that exhibit superior multi-task average perfor-
mance, thereby clarifying the ablation experiments.

6.2. Comparison with Existing Models

We compared RTLDistil against two state-of-the-art
(SOTA) models, MasterRTL (Fang et al., 2023) and RTL-
Timer (Fang et al., 2024), which represent current advance-
ments in RTL-based timing prediction. We used their open-
source code for comparison. Table 2 lists the comparison
results. RTLDistil demonstrates consistent superiority over
the previous SOTA methods across all metrics.

Specifically, as shown in Table 2, for AT, RTLDistil achieves
a PCC of 0.9227, significantly surpassing MasterRTL
(0.3498) and RTL-Timer (0.8782). Additionally, RTLDistil
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Table 2: Comparison of MasterRTL, RTL-Timer, and RTLDistil on timing prediction tasks.

Model Arrival Time (AT) Worst Negative Slack (WNS) Total Negative Slack (TNS)
PCC R2 MAPE PCC R2 MAPE PCC R2 MAPE

MasterRTL (Fang et al., 2023) 0.3498 -0.8718 81.20% 0.7381 0.5161 61.88% 0.6255 -0.2967 65.26%
RTL-Timer (Fang et al., 2024) 0.8782 0.7568 23.39% 0.8812 0.7596 40.55% 0.8451 0.6114 40.31%

RTLDistil (Full Model) 0.9227 0.8486 16.87% 0.9066 0.8141 31.37% 0.9586 0.9181 37.95%
MasterRTL and RTL-Timer are previous state-of-the-art (SOTA) models. RTLDistil outperforms both in all timing metrics.

Table 3: Performance of Layout Teacher Model, RTL Student Model–RTLDistil (without Distillation, without Fine Tuning,
and Full Model with Distillation & Fine Tuning).

Model Arrival Time (AT) Worst Negative Slack (WNS) Total Negative Slack (TNS)
PCC R2 MAPE PCC R2 MAPE PCC R2 MAPE

Layout Teacher Model 0.9797 0.9583 11.20% 0.9580 0.9112 19.87% 0.9901 0.9802 21.86%
RTLDistil (w/o Distillation) 0.8787 0.7554 22.04% 0.8658 0.6919 37.37% 0.9100 0.8216 40.31%
RTLDistil (w/o Fine Tuning) 0.9107 0.8231 17.77% 0.8874 0.7849 32.84% 0.9468 0.8955 33.30%

RTLDistil (Full Model) 0.9227 0.8486 16.87% 0.9066 0.8141 31.37% 0.9586 0.9181 37.95%
RTLDistil (w/o Distillation) refers to RTLDistil trained without knowledge distillation.
RTLDistil (w/o Fine Tuning) refers to RTLDistil trained after knowledge distillation but without Fine Tuning.

reduces the MAPE to 16.87%. For WNS and TNS, RTLDis-
til achieves PCC values of 0.9066 and 0.9586, outperform-
ing RTL-Timer by 2.88% and 11.35%, respectively. The
reductions in MAPE across WNS and TNS further empha-
size RTLDistil’s ability to closely approximate layout-level
timing.

This consistent improvement across all metrics demonstrates
the efficacy of the multi-granularity knowledge distillation
strategy in bridging the abstraction gap between RTL and
layout stages, enabling accurate and reliable timing predic-
tions at the RTL level. The RTLDistil’s high performance
is sufficient for early-stage RTL optimization, allowing the
design flow to shift left.

Teacher-Student Model Evaluation. We also conducted
a high-capacity Layout Teacher Model trained on physical
features and an RTL Student Model trained without knowl-
edge distillation to analyze the role of multi-granularity
knowledge transfer.

Table 3 compares the performance of the Layout Teacher
Model, the RTL Student Model—RTLDistil (without Distil-
lation, without Fine Tuning, and Full Model with Distilla-
tion & Fine Tuning), offering insights into the effectiveness
of the proposed knowledge distillation framework. The
Layout Teacher Model achieves the highest performance
across all metrics, achieving a PCC of 0.9797 and a MAPE
of 11.20% for AT, thereby establishing an upper bound on
RTLDistil’s achievable accuracy. In contrast, RTLDistil
without Distillation, which lacks knowledge distillation, ex-
hibits significantly lower accuracy, with an AT MAPE of
22.04%. This result highlights the inherent limitations of
relying solely on RTL-level features to predict layout-level

timing. RTLDistil without Fine Tuning demonstrates a sub-
stantial improvement over RTLDistil without Distillation,
reducing the AT MAPE to 17.77%, which underscores the
effectiveness of the knowledge transfer from the teacher
model. Further downstream fine-tuning enhances RTLD-
istil’s accuracy, achieving a PCC of 0.9227 and an MAPE
of 16.87% for AT. These results confirm that RTLDistil
can closely approximate the teacher model’s performance
while maintaining computational efficiency, demonstrating
its practicality for early-stage timing prediction and opti-
mization.

6.3. Ablation Study

Ablation Study on Multi-Granularity Distillation. Ta-
ble 4 compares each ablation setting with a baseline that
excludes all distillation. The RTLDistil (Full Model) config-
uration, which jointly employs node-, subgraph-, and global-
level distillation, achieves the highest correlation gains in
Arrival Time (AT), Worst Negative Slack (WNS), and Total
Negative Slack (TNS). Specifically, it boosts ∆PCC by up
to 0.0486, ∆R2 by up to 0.1222, and consistently lowers
∆MAPE across the three metrics. A closer inspection of
the partial variants clarifies the role of each distillation level.
Node-level distillation alone captures fine-grained register
features, ignoring the global information, occasionally pro-
ducing large ∆MAPE improvements (e.g., −5.64% on AT,
−8.53% on WNS), but it yields weaker performance in cor-
relation metrics (PCC, R) for AT, WNS, and TNS overall
than the full model, not giving the best results. Incorporat-
ing subgraph-level information further exploits local fan-in
cones, improving contextual sensitivity. Meanwhile, global-
level distillation refines circuit-wide alignment, preventing
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Table 4: Ablation study on RTLDistil components, measured as the difference in performance relative to the RTLDistil
model without distillation.

Ablation
Configuration

Arrival Time (AT) Worst Negative Slack (WNS) Total Negative Slack (TNS)
∆PCC ∆R2 ∆MAPE ∆PCC ∆R2 ∆MAPE ∆PCC ∆R2 ∆MAPE

RTLDistil (Full Model) 0.0440 0.0932 -5.17% 0.0480 0.1222 -6.00% 0.0486 0.0965 -2.36%
RTLDistil (w/ Node) -0.0038 0.0750 -5.64% 0.0195 0.0413 -8.53% 0.0022 0.0046 -6.90%

RTLDistil (w/ Node & Global) 0.0254 0.0710 -5.42% 0.0336 0.0946 -7.30% 0.0300 0.0410 -10.19%
RTLDistil (w/ Subgraph & Global) 0.0071 0.0339 -4.35% 0.0204 0.0655 -5.51% 0.0105 0.0134 -8.70%

Ablation settings measure the performance difference (∆) between each configuration and the RTLDistil model without distillation.
Node, Subgraph, and Global are respectively shorthand for node-level, subgraph-level, and global-level distillation.
Positive ∆PCC and ∆R2 indicate improved performance, while negative ∆MAPE indicates reduced error.

biases that purely local methods may overlook. Conse-
quently, partial combinations like (w/ Node & Global) or
(w/ Subgraph & Global) often enhance ∆MAPE in TNS
more aggressively but do not achieve the strong correla-
tion improvements delivered by the full multi-granularity
approach.

These observations highlight that simultaneously capturing
localized node-level timing details, subgraph-level contexts,
and holistic circuit characteristics offers the best balance
between reduced timing error and improved predictive cor-
relation at the RTL stage.

Analysis of Multi-Granularity Distillation Losses. Fig-
ure 5 illustrates the training dynamics of the multi-
granularity knowledge distillation process, showcasing the
hierarchical alignment between the teacher and student mod-
els. The total distillation loss (Ltotal) steadily declines and
converges, indicating successful overall alignment. The
node-level distillation loss (LReg) decreases rapidly and
stabilizes early, reflecting the efficient alignment of local
register-level features, while the subgraph-level distillation
loss (Lsubgraph) declines more gradually, capturing contex-
tual relationships within fan-in cones. The global-level
distillation loss (Lglobal) starts higher due to the complexity
of global timing distributions but steadily reduces, demon-
strating the model’s ability to capture overall circuit informa-
tion. These results validate RTLDistil’s hierarchical strategy,
where multi-granularity alignment ensures comprehensive
learning of timing dependencies and progressively improves
prediction accuracy.

The experimental results comprehensively demonstrate that
RTLDistil achieves state-of-the-art performance in timing
prediction at the RTL stage. By leveraging multi-granularity
knowledge distillation, RTLDistil successfully bridges the
abstraction gap between RTL and layout stages, achieving
high prediction accuracy. These findings confirm RTLDis-
til’s potential as a practical solution for early-stage timing
optimization in industrial EDA workflows.
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Figure 5: Losses of multi-granularity knowledge distillation.

7. Conclusion
This paper presents RTLDistil, a cross-stage knowledge dis-
tillation framework that bridges the abstraction gap between
RTL and Layout stages by transferring high-precision phys-
ical characteristics from a layout stage Teacher Model to
an RTL Student Model. Through multi-granularity distilla-
tion at the node, subgraph, and global levels, the framework
achieves layout-level accuracy in timing prediction while
ensuring high inference efficiency. The proposed method
significantly improved with less MAPE and larger R2 than
the SOTA models in timing evaluation, making it suitable
for early-stage design optimization. Future extensions in-
clude scaling to large SoC designs, incorporating multi-
clock domain constraints, and integrating multi-objective
optimization for power and area, thereby further enhancing
its applicability to industrial chip design workflows. We
believe RTLDistil is a valuable early attempt to apply the
concept of knowledge distillation to the EDA domain and
contributes potentially to AI4EDA and EDA’s “left-shift”.
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A. Appendix: Performance Correlation and Comparative Analysis
This appendix section provides a detailed analysis of the performance of different models for timing prediction, specifically
focusing on Arrival Time (AT), Worst Negative Slack (WNS), and Total Negative Slack (TNS). The correlation plots in
Figures 6, 7, and 8 illustrate the relationship between the predicted values and the ground truth for each metric. These plots
compare the results of MasterRTL, RTL-Timer, RTLDistil without distillation, and RTLDistil with distillation. The red solid
line represents the ideal 1 : 1 correlation, where the predicted values perfectly match the ground truth, while the dashed
black lines mark the 3σ confidence boundaries, which provide a statistical measure to evaluate the consistency and reliability
of predictions by identifying significant deviations. The evaluation highlights the improvements brought by the RTLDistil
framework, particularly after incorporating the multi-granularity knowledge distillation process.

A.1. Arrival Time (AT) Correlation Analysis

(a) MasterRTL (b) RTL-Timer (c) RTLDistil Without Distillation (d) RTLDistil With Distillation

Figure 6: Arrival Time (AT) correlation plots for different models. The proposed RTLDistil with distillation exhibits the
best alignment with ground truth AT values.

Figure 6 presents the correlation plots for Arrival Time (AT) predictions across four models: MasterRTL, RTL-Timer,
RTLDistil without distillation, and RTLDistil with distillation. The red solid line represents the ideal 1 : 1 correlation, while
the dashed black lines mark the 3σ confidence boundaries. These plots highlight the progressive improvements achieved by
RTLDistil in aligning predictions with ground truth AT values.

In Figure 6(a), MasterRTL exhibits significant scatter, with many predictions deviating beyond the 3σ boundary, indicating
poor alignment due to its inability to model physical characteristics effectively. Figure 6(b) shows that RTL-Timer improves
correlation but still suffers from noticeable outliers, reflecting limited accuracy in capturing timing dependencies.

Figure 6(c) demonstrates that RTLDistil without distillation further reduces scatter, achieving better alignment with the
1 : 1 line. However, some deviations persist, highlighting the need for more robust physical information transfer. Finally,
Figure 6(d) shows that RTLDistil with distillation achieves the best alignment, with predictions tightly clustered along the
1 : 1 line and well within the 3σ boundary. This improvement is attributed to the multi-granularity knowledge distillation
strategy, which transfers physical timing characteristics from the teacher model to the student model, effectively bridging
the abstraction gap between RTL and layout stages.

In summary, RTLDistil with distillation significantly outperforms prior methods, demonstrating its ability to achieve highly
accurate AT predictions by capturing surrounding circuit information and leveraging layout-level knowledge.

A.2. Worst Negative Slack (WNS) Correlation Analysis

Figure 7 illustrates the correlation plots for Worst Negative Slack (WNS) predictions across four models: MasterRTL,
RTL-Timer, RTLDistil without distillation, and RTLDistil with distillation. The red solid line represents the ideal 1 : 1
correlation, while the dashed black lines indicate the 3σ confidence boundaries. These plots evaluate how well each model
predicts critical timing violations in a circuit.

In Figure 7(a), MasterRTL shows poor alignment with ground truth WNS values, characterized by significant scatter and
numerous points falling outside the 3σ boundary. This reflects the model’s inability to capture critical physical timing
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(a) MasterRTL (b) RTL-Timer (c) RTLDistil Without Distillation (d) RTLDistil With Distillation

Figure 7: Worst Negative Slack (WNS) correlation plots for different models. The proposed RTLDistil with distillation
achieves the closest alignment with ground truth WNS values.

dependencies due to its reliance on logical abstractions. Figure 7(b) demonstrates that RTL-Timer improves over MasterRTL
by reducing scatter and outliers, achieving moderate alignment with the 1 : 1 line. However, it still struggles to accurately
predict severe timing violations.

Figure 7(c) presents the performance of RTLDistil without distillation, which further reduces the number of outliers and
achieves better alignment with the 1 : 1 line. While this indicates improved predictive capability, some deviations persist
due to the lack of physical knowledge transfer. Finally, Figure 7(d) shows that RTLDistil with distillation achieves the
closest alignment, with predictions tightly clustered along the 1 : 1 line and most points well within the 3σ boundary.
This highlights the effectiveness of the multi-granularity knowledge distillation framework in transferring critical physical
characteristics from the teacher model to the student model, enabling precise WNS predictions.

In summary, RTLDistil with distillation outperforms all prior methods, demonstrating its ability to accurately predict WNS
by bridging the abstraction gap and effectively incorporating layout-level timing information into RTL-stage models.

A.3. Total Negative Slack (TNS) Correlation Analysis

(a) MasterRTL (b) RTL-Timer (c) RTLDistil Without Distillation (d) RTLDistil With Distillation

Figure 8: Total Negative Slack (TNS) correlation plots for different models. The proposed RTLDistil with distillation
achieves the best alignment with ground truth TNS values.

Figure 8 illustrates the correlation plots for Total Negative Slack (TNS) predictions, which quantify the aggregate severity of
timing violations in a circuit. The red solid line represents the ideal 1 : 1 correlation, while the dashed black lines indicate
the 3σ confidence boundaries. These plots reveal the progressive improvements achieved by RTLDistil in predicting TNS
values accurately.

In Figure 8(a), MasterRTL performs poorly, with significant scatter and numerous predictions deviating beyond the 3σ
boundary. This highlights its inability to capture critical timing dependencies due to the absence of physical characteristics
in its modeling. Figure 8(b) shows that RTL-Timer improves upon MasterRTL, reducing scatter and aligning better with the
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1 : 1 line. However, it still suffers from noticeable outliers, limiting its reliability in predicting TNS.

In Figure 8(c), RTLDistil without distillation achieves further improvements, with reduced scatter and better alignment with
ground truth TNS values. However, some deviations persist, reflecting the challenges of accurate timing prediction without
knowledge transfer. Finally, Figure 8(d) demonstrates that RTLDistil with distillation achieves the best alignment, with
predictions tightly clustered along the 1 : 1 line and most points well within the 3σ boundary. This superior performance is
attributed to the multi-granularity knowledge distillation framework, which transfers critical physical characteristics from
the teacher model to the student model, enabling precise modeling of aggregate timing violations.

In conclusion, RTLDistil with distillation significantly outperforms prior approaches in TNS prediction, effectively bridging
the abstraction gap between RTL and layout stages. By leveraging the forward-reverse propagation strategy and incorporating
physical knowledge, RTLDistil enables highly accurate and reliable TNS predictions, critical for early-stage design
optimization.

The correlation plots for AT, WNS, and TNS demonstrate the progressive improvements achieved by RTLDistil, particularly
after incorporating the multi-granularity knowledge distillation process. RTLDistil with distillation consistently outperforms
MasterRTL, RTL-Timer, and RTLDistil without distillation across all timing metrics. By effectively transferring physical
characteristics from the teacher model to the student model, RTLDistil bridges the abstraction gap between RTL and layout
stages, achieving superior timing prediction accuracy. These results highlight the practical applicability of RTLDistil in
early-stage design optimization workflows.

B. Appendix: Analysis of Forward and Reverse Propagation Strategies
In this appendix section, we analyze the impact of different propagation strategies on the performance of the RTL-level
student model. Specifically, we investigate how varying the number of forward (F) and reverse (R) propagation passes
affects the model’s ability to predict timing-critical metrics, including Arrival Time (AT), Worst Negative Slack (WNS), and
Total Negative Slack (TNS). This analysis is conducted on a set of challenging timing benchmarks, which were selected for
their high complexity and difficulty. These benchmarks were used to train downstream tasks with the RTL model under
various propagation configurations.

B.1. Experimental Setup

We experimented with several combinations of forward and reverse propagation passes, including:

• 1 (Forward + Reverse): A single round of forward and reverse propagation.

• 2 (Forward + Reverse): Two rounds of forward and reverse propagation.

• 2 Forward: Two forward-only propagation passes.

• 5 (Forward + Reverse): Five rounds of forward and reverse propagation.

The experiments aim to demonstrate that: 1. A combination of forward and reverse propagation outperforms forward-only
propagation by capturing bidirectional dependencies in the circuit graph. 2. Neither too few nor too many forward and
reverse passes are optimal; instead, a balanced configuration achieves the best performance.

B.2. Results and Discussion

The results of the experiments are summarized in Table 5. Key observations are as follows:

Forward + Reverse vs. Forward-Only: The results show that configurations with both forward and reverse propagation
consistently outperform forward-only configurations. For instance, the “2 (Forward + Reverse)” model achieves higher
Pearson Correlation Coefficients (PCC) and R2 values across all metrics compared to the “2 Forward” model. Specifically,
for WNS, the PCC improves from 0.8815 to 0.8870, and the Mean Absolute Percentage Error (MAPE) increases slightly
from 33.21% to 36.87%. This demonstrates that reverse propagation effectively captures timing dependencies and a wider
range of information about the surrounding circularity that forward propagation alone cannot.

Optimal Number of Passes: Among the configurations tested, “2 (Forward + Reverse)” achieves the best balance
between performance and computational complexity. It achieves the highest PCC for AT (0.8446), the best R2 for TNS
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Table 5: Performance comparison of different propagation strategies for the RTL-level student model.

Propagation Strategy Arrival Time (AT) Worst Negative Slack (WNS) Total Negative Slack (TNS)
PCC R2 MAPE PCC R2 MAPE PCC R2 MAPE

1 (Forward + Reverse) 0.8328 0.6742 23.10% 0.8794 0.7599 34.30% 0.8788 0.7685 36.38%
2 (Forward + Reverse) 0.8446 0.6808 24.63% 0.8870 0.7507 36.87% 0.8875 0.7860 40.18%

2 Forward 0.8373 0.6805 24.80% 0.8815 0.7601 33.21% 0.8801 0.7590 38.03%
5 (Forward + Reverse) 0.8325 0.6456 24.33% 0.8820 0.7280 35.51% 0.8786 0.7675 41.58%
Propagation Strategy: Different combinations of forward (Forward) and reverse (Reverse) passes used during training and testing.

(0.7860), and competitive MAPE across all metrics. In contrast, “1 (Forward + Reverse)” underperforms due to insufficient
propagation depth, while “5 (Forward + Reverse)” shows a slight degradation in performance, likely due to overfitting or
noise amplification from excessive propagation. This finding highlights the importance of selecting an appropriate number
of propagation passes.

Impact of Over-Propagation: The “5 (Forward + Reverse)” configuration demonstrates diminishing returns and even slight
performance degradation compared to “2 (Forward + Reverse).” For example, the MAPE for TNS increases from 40.18% to
41.58%. This suggests that excessive propagation may introduce noise or overfit the model to spurious relationships in the
graph, reducing its generalizability.

B.3. Implications of Results

These findings provide strong evidence for the effectiveness of our propagation strategy. The combination of forward and
reverse propagation enables richer contextual learning by incorporating bidirectional information flow, which is critical for
accurately modeling timing dependencies in circuit graphs. Moreover, the experimental results validate our hypothesis that
an optimal balance of propagation rounds is necessary for achieving the best performance. Too few passes fail to capture
sufficient information, while too many passes may amplify noise or cause overfitting.

The results presented in this section reinforce the effectiveness of the proposed forward-reverse propagation strategy in the
RTL-level student model. By carefully selecting the number of propagation passes, our approach achieves state-of-the-art
performance on timing-critical tasks, demonstrating its suitability for challenging benchmarks with high timing complexity.
These findings further substantiate the robustness and generalizability of our method for early-stage timing prediction in
industrial workflows.

C. Appendix: Expanded Mathematical Formulation of Knowledge Distillation
This appendix further extends the mathematical details of our cross-stage Knowledge Distillation (KD) process, emphasizing
the core principles behind node-level, subgraph-level, and global-level alignment. We focus on equations and derivations
with minimal textual explanation while ensuring clarity and correctness.

C.1. Preliminaries and Notation

• GT = (V,E): Graph representing the circuit (layout) for the Teacher model, with |V | nodes.

• GS = (V,E): Graph representing the circuit (RTL) for the Student model, with |V | nodes.

• zTv , z
S
v ∈ RdT ,RdS : Final-layer embeddings for node v from Teacher and Student, respectively (typically dT > dS).

• M : RdS → RdT : Learnable alignment transform (e.g., an MLP) that maps Student embeddings to the Teacher’s
embedding space.

• ∥ · ∥p: p-norm (often p = 1 or p = 2), used for measuring distance between vectors.

• smoothL1(x,y): The smooth L1 (a.k.a. Huber) loss between vectors x and y, defined as

smoothL1(x,y) =

d∑
i=1

{
1
2 (xi − yi)

2, if |xi − yi| < 1,

|xi − yi| − 1
2 , otherwise.

(8)
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This function behaves quadratically (like L2) near zero and transitions to a linear (L1) penalty for larger errors, thus
often providing a more robust gradient profile than purely L1 or L2.

C.2. Teacher vs. Student Outputs

We consider the Teacher model as having more rounds of forward-reverse propagation and seeing rich physical layout
features. The Student sees only RTL features with fewer propagation steps:

Teacher forward-reverse. The forward propagation update for node v at (i+ 1)-depth from input DFF node (DPI) in
r-round propagation is formulated as:

h(i+1),r
v = σ

( ∑
u∈N (v)

αForward
vu WForwardh(i),r

u

)
, i = 0, . . . ,LevelDPI , (9)

where N (v) represents the forward neighboring nodes of v; h denotes the feature vector of nodes; W denotes the linear
transform weight and α denotes the coefficients calculated by the attention mechanism in (Velickovic et al., 2017). Similarly,
the reverse propagation update for node v at (j + 1)-depth from output DFF node (DPO) in r-round is formulated as:

h(j+1),r
v = σ

( ∑
u∈R(v)

αReverse
vu WReverseh(j),r

u

)
, j = 0, . . . ,LevelDPO, (10)

where R(v) denotes the reverse neighboring nodes of v. The teacher typically uses more rounds (RT ) to capture stronger
physical effects.

h∀,RT
v → zTv , (11)

Student forward-reverse. Student model share the same forward-reverse propagation with teacher model. The student
model typically uses less rounds (RS) to ensuring the reference efficiency.

h∀,RS
v → zSv (12)

where RS ≤ RT , reflecting fewer propagation rounds.

C.3. Basic KD Approaches (Distribution-Based)

In classification-style KD, one often aligns teacher and student soft targets pT and pS :

pT = Softmax
(zT

τ

)
, pS = Softmax

(zS
τ

)
, (13)

where τ > 0 is the temperature. The classical KD objective is:

LKD,dist =
τ2

|V |
∑
v∈V

KL
(
pT
v

∥∥ pS
v

)
, (14)

KL(a∥b) =
∑
i

ai log
(ai
bi

)
, (15)

which encourages the Student distribution pS to approximate pT .

However, in regression-focused timing prediction, we instead align continuous embeddings or real-valued outputs (e.g.,
arrival time). Below, we detail node-level, subgraph-level, and global-level alignment for feature-based KD.

C.4. Feature-Based KD for Timing (Multi-Granularity)

C.4.1. NODE-LEVEL FEATURE ALIGNMENT

Each node v yields final embeddings zTv , z
S
v . To align dimensions, define:

zS,alignv = M
(
zSv

)
. (16)
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Then a common choice is the L1 or L2 distance:

Lnode =
1

|V |
∑
v∈V

∥∥∥ zTv − zS,alignv

∥∥∥
p
. (17)

This captures fine-grained alignment at each node (e.g., each register).

C.4.2. SUBGRAPH-LEVEL FEATURE ALIGNMENT

For local contextual alignment, let G(v) be v’s subgraph (e.g., fan-in cone). We pool Teacher embeddings:

QT (v) = Pool
{
zTu : u ∈ GT (v)

}
, (18)

and similarly for the Student:
QS(v) = Pool

{
zSu : u ∈ GS(v)

}
. (19)

Applying M,

Lsub =
1

|V |
∑
v∈V

∥∥∥ QT (v)−M
(
QS(v)

)∥∥∥
p
. (20)

This enforces local structural insight in the Student.

C.4.3. GLOBAL-LEVEL FEATURE ALIGNMENT

We also encourage global similarity:

gT = Pool
{
zTv : v ∈ V

}
, gS = Pool

{
zSv : v ∈ V

}
, (21)

leading to

Lglobal =
∥∥∥ gT −M

(
gS

)∥∥∥
p
. (22)

This term addresses overall circuit-level properties (e.g., average load or total distribution shifts).

C.5. Overall Distillation Objective

In addition to the above feature-based losses, we incorporate a supervised term, Lsup, that aligns the Student’s predicted
timing metrics (e.g., arrival time ÂTv) with reference labels ATT

v (Teacher or sign-off data). Hence,

Ltotal = Lsup + αLnode + β Lsub + γ Lglobal, (23)

where α, β, γ weight the importance of each distillation granularity.

C.6. Training-Testing Dynamics

Teacher Training. Using layout-based features and full forward-reverse passes, we minimize the Teacher’s own supervised
objective (e.g., MSE w.r.t. sign-off AT). Let zTv be the final teacher embeddings.

Student Distillation. We fix pretrained teacher embeddings {zTv } and then train our Student on the lighter RTL graph by
jointly optimizing:

• Lsup: e.g., L1/L2 between ÂT
S

v and ATT
v ,

• Lnode, Lsub, Lglobal (Equations (17), (20), (22), and we used smoothL1 for good measure.).

Inference. For a new RTL design, the learned Student GNN (with embedded distillation knowledge) performs limited
forward-reverse propagation to estimate timing. Despite minimal overhead, this yields near-layout accuracy in arrival time,
WNS, TNS, etc.
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C.7. Conclusion of KD Formulation

By combining distribution-based KD concepts with multi-granularity feature alignment, we robustly transfer high-precision
physical knowledge from the Teacher to the Student. Equations (14)–(23) form the mathematical backbone of our cross-stage
distillation and enable early-stage RTL timing prediction comparable to sign-off results.

C.8. Fan-in Cone Construction and Mathematical Formulation

Fan-in cone construction plays a critical role in our multi-granularity knowledge distillation framework, particularly for
subgraph-level alignment between RTL and layout stages. Here, we present a rigorous mathematical formulation of fan-in
cone construction and its hierarchical representation.

C.8.1. FORMAL DEFINITION OF FAN-IN CONE

Definition C.1 (Fan-in Cone). Given a circuit graph G = (V,E), where V represents the set of nodes (including registers
and combinational cells) and E represents the set of directed edges. For any register node v ∈ V , its fan-in cone is defined
as Gfan-in(v) = (Vfan-in(v), Efan-in(v)), where:

Vfan-in(v) = {u ∈ V | exists a directed path from u to v}, (24)
Efan-in(v) = {(u,w) ∈ E | u,w ∈ Vfan-in(v)}. (25)

C.8.2. FAN-IN CONE STRUCTURE

To facilitate effective knowledge transfer across different abstraction levels, we develop a level-based hierarchical fan-in
cone representation:

Definition C.2 (Fan-in cone Representation). The level of a node u relative to target register v is defined recursively as:

Levelfan-in(u, v) =


0, if u = v,

max
w:(u,w)∈E

{Levelfan-in(w, v)}+ 1, if u reaches v,

∞, otherwise.

(26)

The nodes at each level l (from the target register/DFF) are defined as:

Vl(v) = {u ∈ Vfan-in(v) | Levelfan-in(u, v) = l}. (27)

The representation of the whole fan-in cone is defined as:

Qfan-in(v) = Pool
{
zTu : u ∈ Vfan-in(v)

}
, (28)

where hu represents final-layer embeddings for node u in the fan-in cone, and we use mean pooling here.

The fan-in cone construction and its hierarchical representation serve as the foundation for our subgraph-level knowledge
distillation, enabling the effective transfer of timing characteristics from the layout-level teacher to the RTL-level student
model. Our experimental results demonstrate that this structured approach significantly improves the accuracy of timing
prediction while maintaining computational efficiency.
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