
Published in Transactions on Machine Learning Research (01/2024)

Out-of-Distribution Optimality of Invariant Risk Minimiza-
tion

Shoji Toyota shoji@ism.ac.jp
The Institute of Statistical Mathematics

Kenji Fukumizu fukumizu@ism.ac.jp
The Institute of Statistical Mathematics

Reviewed on OpenReview: https: // openreview. net/ forum? id= pWsfWDnJDa

Abstract

Deep Neural Networks often inherit spurious correlations embedded in training data and
hence may fail to generalize to unseen domains, which have different distributions from the
domain to provide training data. Arjovsky et al. (2019) introduced the concept out-of-
distribution (o.o.d.) risk, which is the maximum risk among all domains, and formulated
the issue caused by spurious correlations as a minimization problem of the o.o.d. risk. In-
variant Risk Minimization (IRM) is considered to be a promising approach to minimize the
o.o.d. risk: IRM estimates a minimum of the o.o.d. risk by solving a bi-level optimization
problem. While IRM has attracted considerable attention with empirical success, it comes
with few theoretical guarantees. Especially, a solid theoretical guarantee that the bi-level
optimization problem gives the minimum of the o.o.d. risk has not yet been established.
Aiming at providing a theoretical justification for IRM, this paper rigorously proves that a
solution to the bi-level optimization problem minimizes the o.o.d. risk under certain condi-
tions. The result also provides sufficient conditions on distributions providing training data
and on a dimension of a feature space for the bi-leveled optimization problem to minimize
the o.o.d. risk.

1 Introduction

Training data used in supervised learning may contain features that are spuriously correlated to the response
variables of data. Deep Neural Networks (DNNs) often learn such spurious correlations embedded in the
data and hence may fail to predict desirable response variables of test data generated by a distribution that
is different from the one to provide training data. To list a few examples, in a classification of animal images,
models obtained by conventional procedures tend to misclassify cows on sandy beaches because most training
pictures are captured in green pastures and DNNs inherit context information in training (Beery et al., 2018;
Shane, 2018). Another example is learning from medical data. Systems trained with data collected in
one hospital do not generalize well to other hospitals; DNNs unintentionally extract environmental factors
specific to a particular hospital in training (AlBadawy et al., 2018; Perone et al., 2019; Heaven, 2020).

Arjovsky et al. (2019) introduced the concept out-of-distribution (o.o.d.) risk to formulate the issue caused by
spurious correlations. Let X and Y be measurable spaces of explanatory and response variables respectively.
Let E be a set with each element e ∈ E called the domain (or environment) e. Assume that for a given
domain e ∈ E , there corresponds a corresponding random variable (Xe, Y e) that takes values in X × Y with
its probability law PXe,Y e . Assume we are given training datasets De := {(xe

i , ye
i )}ne

i=1 ∼ PXe,Y e i.i.d. from
multiple domains Etr ⊂ E . For a given predictor f : X → Y,

Re(f) :=
∫

l(f(x), y)dPXe,Y e
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denotes the risk of f on domain e. The o.o.d. risk of the predictor f is as follows:

Ro.o.d.(f) := max
e∈E

Re(f), (1)

which is the worst-case risk over E including unseen domain E − Etr. Arjovsky et al. (2019) formulated the
problem caused by spurious correlations as a minimization problem of the o.o.d. risk (1):

min
f∈F

Ro.o.d.(f), (2)

where F is the set of all measurable functions f : X → Y.

It is difficult to directly solve the o.o.d. risk minimization (2) since we can not evaluate the maximum of
risks among all domains E , including unseen domains E − Etr, only by data from training domains Etr ⊂ E .
Invariant Risk Minimization (IRM) is a rapidly developing approach to the challenging o.o.d. risk minimiza-
tion (Arjovsky et al., 2019). Its proposed predictor f := w ◦ Φ is composed of two maps: a feature map
Φ : X → H, which is called an invariance, and a predictor w : H → Y which estimates the response variable
of feature Φ(x). Here, for a given feature space H, we call a measurable function Φ : X → H an invariance
when it holds that PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ E1. Arjovsky et al. (2019) estimated the two
maps by solving the bi-leveled optimization problem

minΦ∈Itr,w∈W
∑

e∈Etr

Re(w ◦ Φ), (3)

where W is a model of predictors w : H → Y and Itr is the set of invariances captured by training domains
Etr:

Itr :=
{

Φ : X → H | PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ Etr

}
. (4)

Influenced by the seminal study, several alternative bi-leveled optimization problems have been proposed
(Ahuja et al., 2020; Chang et al., 2020; Ahuja et al., 2021a;b; Lin et al., 2022a; Zhou et al., 2022; Liu et al.,
2021a;b; Lu et al., 2022; Koyama & Yamaguchi, 2021; Parascandolo et al., 2022; Krueger et al., 2021; Toyota
& Fukumizu, 2022; Lin et al., 2022b; Huh & Baidya, 2022; Rame et al., 2022; Pogodin et al., 2023; Chen et al.,
2023; Tan et al., 2023). For example, Ahuja et al. (2020) proposed a novel bi-leveled optimization problem
leveraging the principles of game theory. The recently proposed Maximal Invariant Predictor (Koyama &
Yamaguchi, 2021) employed a new bi-leveled problem grounded in the concept of information theory.

While IRM is widely recognized as a promising approach for the o.o.d. risk minimization (2), it comes with
few theoretical guarantees; especially, a mathematical guarantee that the bi-level optimization problem (3)
gives the minimum of the o.o.d. risk (1) has not yet been established.2 The original IRM paper did not
mention any theoretical properties for the minimum of (3). Rosenfeld et al. (2021) proved that, assuming
that data follow a simple linear Gaussian structural equation model (SEM), a predictor obtained by (3)
makes a prediction relying only on a feature of Xe ∈ X whose distribution does not depend on domains
(Rosenfeld et al., 2021, Section 5). However, their analysis did not focus on relations between the bi-level
optimization problem (3) and the o.o.d. risk (2). More recently, Kamath et al. (2021) provided an example
of distributions on which a minimum of (3) does not minimize the o.o.d risk (Kamath et al., 2021, Section
4). However, their analysis assumed that data follow particular SEMs constructed to derive the case where
(3) does not provide a minimum of the o.o.d. risk; for verifying the o.o.d. performance of the bi-leveled
optimization problem (3), it should be analyzed under more general assumptions on distributions.

Aiming at providing a theoretical justification for IRM, this paper rigorously proves that a solution to the
bi-leveled optimization problem (3) also minimizes the o.o.d. risk (1); formally speaking, we prove that the

1The definition is based on conditional independence (Peters et al., 2016; Koyama & Yamaguchi, 2021; Rojas-Carulla et al.,
2018), while Arjovsky et al. (2019); Ahuja et al. (2020) used a different type of invariances based on arg minw Re(w ◦ Φ) instead
of PY e|Φ(Xe). Throughout the paper, we argue by adopting the definition based on conditional independence.

2Since it is difficult to solve the bi-leveled optimization problem (3), several papers have proposed optimization methods for
(3) such as IRMv1 (Arjovsky et al., 2019) or Invariant Rationalization (Chang et al., 2020). While their optimization ability
for solving (3) should also be discussed theoretically, this paper does not address it and only focuses on the problem of whether,
assuming that (3) can be solved completely, the resulting predictor minimizes the o.o.d. risk.
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inclusion
arg minΦ∈Itr,w∈W

∑
e∈Etr

Re(w ◦ Φ) ⊂ arg min
f∈F

Ro.o.d.(f) (5)

is attained under certain conditions. The result also provides sufficient conditions on the training domains
Etr and the feature space H to minimize the o.o.d risk. In our analysis, we set distributions on domains
E by the ones proposed in Rojas-Carulla et al. (2018). The distributions do not rely on any specific SEM
structures, unlike existing theoretical analysis of IRM (Rosenfeld et al., 2021; Kamath et al., 2021), and they
are used for the analysis of methods related to invariances (Rojas-Carulla et al., 2018; Toyota & Fukumizu,
2022).

The rest of the paper is organized as follows. Section 2 illustrates two main theorems. Section 2.1 provides
the first main theorem, which states that the inclusion (5) is achieved in the regression case. In Section 2.2,
we extend the first theorem to the classification case. The novelty and significance of these two theorems
are discussed in Section 2.3. We provide a review of the prior works concerning the relationship between the
bi-leveled optimization problem (3) and the o.o.d. risk (1) in Section 3. The two main theorems stated in
Section 2 are proved in Section 4. Section 5 is devoted to brief concluding remarks.

2 Main Results

We explain the settings and assumptions persisting throughout our analysis.

We set domains {(Xe, Y e)}e∈E by the ones proposed in Rojas-Carulla et al. (2018). Let X := X1 × X2 where
X1 := Rd1 and X2 := Rd2 with d1, d2 ∈ N>0, and (XI

1 , Y I) be a fixed random variable on X1 × Y. Rojas-
Carulla et al. (2018) defined the domain set E by all the probability distributions with the fixed conditional
distribution PY I |XI

1
; namely, denoting ΦX1 : X → X1 a projection onto X1, {(Xe, Y e)}e∈E is defined by

{(Xe, Y e)}e∈E :=
{

(X, Y ) : a random variable on X × Y
∣∣∣PY |ΦX1 (X) = PY I |XI

1

}
. (6)

Note that, under the setting (6), the projection ΦX1 : X → X1 is an invariance among E , because PY |ΦX1 (X) =
PY I |XI

1
for any (X, Y ) ∈ {(Xe, Y e)}e∈E . For simplicity of theoretical analysis, we assume that the conditional

distribution PY I |XI
1

has a probability density function pI(y|x1).

We explain assumptions about the feature space and models. The feature space H for an invariance Φ ∈ Itr

is assumed to be the multi-dimensional Euclidean space RdH . Moreover, we assume that Φ ∈ Itr and w ∈ W
in the minimization problem (3) run only continuous functions; namely, we investigate the property of a
solution for

minΦ∈IC0
tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ), (7)

where WC0 is the set of all continuous functions w : H → Y , and IC0
tr is the set of continuous invariances

captured by a training domain Etr:

IC0
tr :=

{
Φ : X → H | PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ Etr, Φ : continuous

}
.

2.1 Case I: Least Square Loss

First, we consider the case where Y = RdY (dY ∈ N>0) and l is the least square loss; that is, for a given
predictor f : X → Y, its risk Re(f) on (Xe, Y e) ∈ {(Xe, Y e)}e∈E is given by

Re(f) :=
∫

∥y − f(x)∥2dPXe,Y e .

The following theorem ensures that the optimization problem (7) provides a solution for the o.o.d. risk
minimization problem (2) under four conditions:
Theorem 1 (o.o.d. optimality of the bi-leveled optimization problem (7) under least square loss setting).
Domains {(Xe, Y e)}e∈E are assumed to be (6). We also assume that the following four conditions hold:
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(i) IC0
tr = IC0 , where IC0 is the set of continuous invariances captured by all domains E, not training

domains Etr:

IC0 :=
{

Φ : X → H | PY e1 |Φ(Xe1 ) = PY e2 |Φ(Xe2 ) for any e1, e2 ∈ E , Φ : continuous
}

.

(ii)
⋃

e∈Etr
supp(PΦX1 (Xe)) = X1. Here, for probability measure µ on X1, supp(µ) is defined by

supp(µ) := {x1 ∈ X1 |Nx1 : open neighborhood around x1 ⇒ µ(Nx1) > 0}.

(iii) The dimensions d1 and dH on the subspace X1 ⊂ X of the input space X and the feature space
H = RdH satisfy d1 ≤ dH.

(iv) PY I |XI
1

has a continuous probability density function pI(y|x1). Here, we call pI(y|x1) continuous
when correspondence X1 × Y ∈ (x1, y) 7−→ pI(y|x1) is continuous.

Then, we have
arg minΦ∈IC0

tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ) ⊂ arg min
f∈F

Ro.o.d.(f). (8)

Here, F is the set of all measurable functions f : X → Y.

We explain the feasibilities and interpretations of the above four conditions.

Condition (i): Condition (i) implies that invariances captured by training domains Etr correspond to the
ones by all domains E . Arjovsky et al. (2019) also discussed the relationship between the equation Itr = I
and o.o.d. generalization, briefly illustrating that the equation Itr = I facilitates the estimation of a predictor
with high o.o.d. performance solely based on data from training domains Etr (Arjovsky et al., 2019, Section
4.1). If it holds that Itr = I, we can capture an invariance Φ ∈ I among all domains E only using the training
domains Etr. Arjovsky et al. (2019) pointed that, once an invariance Φ ∈ I among all domains is obtained,
a predictor w∗ that minimizes risks only on training domains Etr, namely w∗ ∈ arg minW

∑
e∈Etr

Re(w ◦ Φ),
satisfies Re(w∗ ◦Φ) = minw Re(w ◦Φ) for all domains e ∈ E , including unseen domains E −Etr, under certain
settings. Developing the discussion by Arjovsky et al. (2019), Theorem 1 clarifies a more rigorous relation
among the equation Itr = I, the o.o.d. risk (1), and the bi-leveled optimization problem (7): the equation
I = Itr is one of the sufficient conditions for the bi-leveled optimization problem (7) to minimize the o.o.d.
risk (1).

The condition Itr = I is not generally satisfied and Peters et al. (2016); Arjovsky et al. (2019) presented
sufficient conditions on the training domains Etr for the equation Itr = I when data follow simple SEMs.
Peters et al. (2016) proved the equation Itr = I holds when distributions on domains follow a linear
Gaussian SEM and training data are obtained by certain types of interventions (Peters et al., 2016, Section
4.3). Arjovsky et al. (2019) generalized the result by Peters et al. (2016). Assuming that data follow a linear
SEM, which is not restricted to a Gaussian distribution and a certain type of interventions, Arjovsky et al.
(2019) deduced a sufficient condition for the equality Itr = I on training domains Etr, which is called lying
in the general position (Arjovsky et al., 2019, Assumption 8). On the other hand, sufficient conditions for the
equality Itr = I under the setting (6) have not yet been revealed. Providing them would be an important
area for future research.

Conditions (ii) and (iii): As shown in Lemma 3, the conditional expectation
∫

y · pI(y|x1)dy = E[Y I =
y|XI

1 = x1] achieves the minimization of the o.o.d. risk, signifying that the information embedded in X1 is
important for predicting response variables on unseen domains. Condition (ii) implies that the support of
training domains Etr covers X1 that contains such important information for o.o.d. prediction. Condition
(iii) implies that H is such a large feature space that a feature Φ : X → H can preserve information on the
X1-component of x ∈ X by selecting Φ appropriately. Condition (iii) also provides a practical perspective
on how to construct the feature space H = RdH : the dimension dH on the feature space H should be fixed
high. The dimension dH of the feature space is fixed by hand, and hence, Condition (iii) is expected to hold
unless we fix the dimension of the feature space too small.
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Condition (iv): Condition (iv) presents continuity of the p.d.f. of PY I |XI
1
. By Condition (iv), we also

have continuity of the conditional expectation
∫

y · pI(y|x1)dy = E[Y I = y|XI
1 = x1]. In our analysis, we

assume that the model WC0 consists of all continuous functions, and hence, Condition (iv) ensures that the
model includes the conditional expectation E[Y I |XI

1 ], which minimizes the o.o.d. risk (Lemma 3).

2.2 Case II: Cross Entropy Loss

Theorem 1 can be easily extended to the classification case where w ∈ W has a probabilistic output and
evaluate risks by the cross entropy loss. Let Y be a finite set {1, ..., m} (m ∈ N>0), and we model w : H → Y
by pθ : H → PY , where PY denotes the set of probabilities on Y; namely

PY :=
{

p ∈ Rm
+

∣∣∣∣∣
m∑

i=1
pi = 1

}
.

Here, R+ := {x ∈ R |x ≥ 0} and pi denotes the i-th component of p. We call pθ : H → PY continuous, that
is pθ ∈ WC0 , when correspondence H ∋ h 7−→ pθ(h) ∈ R|Y| is continuous, seeing pθ(h) ∈ PY as a vector on
R|Y|. For a given pθ : H → PY and i ∈ Y,

(
pθ(h)

)
i

is often abbreviated by pθ(i|h). The risk evaluated by
the cross-entropy loss is then written as

Re(pθ ◦ Φ) =
∫

− log pθ(Y e|Φ(Xe))dPXe,Y e .

We expand Theorem 1 to the above classification case:
Theorem 2 (o.o.d. optimality of the bi-leveled optimization problem (7) under cross-entropy loss setting).
Domains {(Xe, Y e)}e∈E are assumed to be (6). Assume that, in addition to (i) ∼ (iii) in Theorem 1, the
following condition (v) holds:

(v) For any x∗
1 ∈ X1, #

{
y ∈ Y

∣∣pI(y|x∗
1) > 0

}
> 1.

Then, we have the inclusion

arg minΦ∈IC0
tr ,pθ∈WC0

∑
e∈Etr

Re(pθ ◦ Φ) ⊂ arg min
pθ∈F

Ro.o.d.(f), (9)

where F is the set of all measurable functions f : X → PY .3

Condition (v) indicates that domains {(Xe, Y e)}e∈E have high uncertainty in labels y ∈ Y given x1 ∈ X1.
The condition is expected to be feasible when classes Y are subdivided and difficult to be uniquely determined
from x1 ∈ X1.

2.3 Novelty and Significance of Theorems 1 and 2

Theorems 1 and 2 and their proofs have the following four novel and significant points:

Setting of Domains The first point is the setting of domains. The setting by Rojas-Carulla et al.
(2018), which is used throughout our analysis, does not impose any specific SEM structures, linearity,
and Gaussianity on domains while existing works on theoretical analysis of IRM assumed that data follow
simple SEMs. Theorems 1 and 2 indicate that, under such a general setting, IRM presents the minimum
of the o.o.d. risk. This implies that our results provide a solid foundation to use IRM for a broad range of
o.o.d. generalization problem.

3The same as the definition of continuous, we call f ∈ F measurable when correspondence X ∋ x 7−→ f(x) ∈ R|Y| is
measurable, seeing f(x) ∈ PY as a vector on R|Y|.
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Assumption on the Underlying Distribution PY I |XI
1

As well as the assumption on domains, prior
theoretical results of IRM assume that the underlying true distribution PY I |XI

1
is represented by a simple

SEM (Arjovsky et al., 2019; Rosenfeld et al., 2021; Kamath et al., 2021). On the other hand, Condition (iv)
only imposes PY I |XI

1
on the continuity; hence, Condition (iv) is a significantly mild condition in comparison

with the assumptions on PY I |XI
1

by prior works.

Characterization of Invariance Second, a theoretical characterization of invariances Φ∗ ∈ IC0 is given
in Lemmas 4 and 6: it is proved that Φ∗ ∈ IC0 can be represented as Φ∗ = Ψ∗ ◦ ΦX1 for some continuous
map Ψ∗. Any theoretical characterizations have not yet been presented, and hence, the results in Lemmas 4
and 6 are novel. To present the non-trivial characterization, we develop a novel theoretical technique based
on the proof by contradiction. Lemmas 4 and 6 play an important role in our desirable assertion (5), and
hence, the derivation of these lemmas is a significant technical contribution of our analysis.

Range of Invariance The fourth point is a range of invariances Φ: we assume that Φ run all continuous
functions, while most of the existing works on theoretical analysis of IRM assume that Φ run more simplified
functions, such as linear functions (Rosenfeld et al., 2021) or variable selections (Toyota & Fukumizu, 2022).
It is common to construct a learning model of invariances with deep neural networks in the context of IRM,
and hence, the variable selection and linear function settings by Toyota & Fukumizu (2022); Rosenfeld et al.
(2021) are significantly simplified to analyze IRM. On the other hand, our large class of continuous functions
is relatively realistic compared to existing ones, since it is widely recognized that neural networks of sufficient
size can represent a wide range of functions (Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Mhaskar,
1996; Sonoda & Murata, 2017).

3 Previous Works

As explained in Section 1, Rosenfeld et al. (2021); Kamath et al. (2021) derived the theoretical results
concerning the minimum of the bi-leveled optimization problem (3) and its connection to the o.o.d. risk (1).
Rosenfeld et al. (2021) proved that a predictor obtained by minimizing (3) predicts Y e ∈ Y relying only on
a feature of Xe ∈ X whose distribution does not depend on domains (Rosenfeld et al., 2021, Section 5).
However, they did not provide any connections between the minimum of (3) and the o.o.d risk. Moreover,
they assume that data follow a linear Gaussian SEM, and that invariances Φ in the bi-leveled optimization
problem run linear functions for simplicity. Unlike their analysis, this paper derives the direct relations
between (3) and the o.o.d. risk (1). Additionally, we assume that data follow the distributions proposed
by Rojas-Carulla et al. (2018) that do not rely on any specific SEM structures and that invariances run all
continuous functions including neural networks. Kamath et al. (2021) provided an example of distributions
on which a minimum of (3) does not minimize the o.o.d risk. However, the distributions are particular
SEMs constructed to derive the case where (5) is violated, and analysis in more general settings is required
(Kamath et al., 2021, Section 4). In construct, the distributions by Rojas-Carulla et al. (2018) used in this
paper do not rely on any specific SEM structures, and they are used to analyze estimation methods related
to invariances (Rojas-Carulla et al., 2018; Toyota & Fukumizu, 2022).

Arjovsky et al. (2019); Koyama & Yamaguchi (2021); Rojas-Carulla et al. (2018) discussed theoretical re-
lations between invariances and the o.o.d. risk (1). As explained in the last section, Arjovsky et al. (2019)
intuitively explained that the condition Itr = I facilitates an estimation of a predictor which can predict Y e

on unseen domains only by data from training domains Etr (Arjovsky et al., 2019, Section 4.1). They also
derived sufficient conditions on training domains for the equation Itr = I, assuming that data follow a simple
linear SEM (Arjovsky et al., 2019, Theorem 9). Koyama & Yamaguchi (2021); Rojas-Carulla et al. (2018)
presented sufficient conditions for an invariance Φ to achieve the minimum of (1). Koyama & Yamaguchi
(2021) proved that the invariance that maximizes the mutual information with labels also maximizes the
o.o.d. risk. Rojas-Carulla et al. (2018) proved that, under the domain setting (6), the conditional expectation
E[Y e|ΦX1(Xe) = x1] also minimizes the o.o.d. risk, even when E[Y e|ΦX1(Xe)] is nonlinear. However, all the
results by Koyama & Yamaguchi (2021); Rojas-Carulla et al. (2018); Arjovsky et al. (2019) did not deal with
any theoretical connections between invariances obtained by minimizing the bi-leveled optimization problem
(3) and the o.o.d. risk (1). It does not follow obviously that the minimum of (3) satisfies these sufficient
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conditions by Koyama & Yamaguchi (2021); Rojas-Carulla et al. (2018), and hence our main theorems can
not be deduced as a trivial corollary of the results by Koyama & Yamaguchi (2021); Rojas-Carulla et al.
(2018). To discuss the non-trivial relation between the bi-leveled optimization problem (3) and the o.o.d. risk
(1), we establish a novel characterization of invariances (Lemmas 4 and 6), and derive the main theorems
based on it.

To reduce the annotation cost required for the original IRM approach, Toyota & Fukumizu (2022) introduced
a new bi-level optimization problem similar to (3). They considered a situation in which the training data for
target classification are provided in only one domain, while the task of a higher label hierarchy, which requires
lower annotation cost, has data from multiple domains. Under the availability of data, they deduced a bi-level
optimization problem, in which invariances were given by additional data in a higher label hierarchy. For
further details, we refer the reader to the original paper Toyota & Fukumizu (2022). Their study provided
a detailed theoretical analysis concerning their method and its connection to the o.o.d. risk; however, they
did not analyze relationships between their bi-leveled optimization problem and the o.o.d. risk, which is
the focus of this paper. Instead, they investigated relationships between an optimization method for their
bi-level optimization problem and the o.o.d. risk. Moreover, they assume that invariances Φ run all variable
selections for simplicity of theoretical analysis. On the other hand, this paper derives the direct relations
between the minimum of the bi-leveled optimization problem and the o.o.d. risk (1). Moreover, we consider
the more realistic setting for the analysis of IRM where invariances Φ run all continuous functions.

4 Proofs

In this section, we prove Theorem 1 and 2. Through the section, for Xe ∈ X and x ∈ X , its Xi-components
(i = 1, 2) are denoted by Xe

i and xi respectively.

4.1 Proof Sketch of Main Theorems

Before giving rigorous proof, we briefly describe the rough proof sketch of the main theorems. The following
two lemmas (A) and (B) play an important role in our proof:

(A) The conditional expectation E[Y e|Xe
1 ] = E[Y I |XI

1 ] and conditional probability PY e|Xe
1

= PY I |XI
1

minimize the o.o.d. risk under the least-square and cross-entropy losses respectively (Lemmas 3 and
5).

(B) Any invariance among all domains can be represented by the composition of the projection onto X1;
that is, Φ ∈ IC0 can be represented as

Φ = Ψ ◦ ΦX1

for some continuous map Ψ (Lemmas 4 and 6).

The two lemmas intuitively conclude the proof of the main theorem as follows. Firstly, since IC0
tr = IC0 holds

(Condition (i)), observe that a predictor in (3) runs composition maps w ◦ Φ with w ∈ WC0 and Φ ∈ IC0 .
Moreover, since the above second lemma (B) ensures that Φ ∈ IC0 can be represented by the composition
of the projection onto X1, we can see that a predictor in (3) runs w ◦ ΦX1 for some function class w ∈ W∗,
and hence, the bi-leveled optimization problem is expressed as

minw∈W∗

∑
e∈Etr

Re(w ◦ ΦX1). (10)

It is well-known that, assuming that w runs all measurable functions,

ŵ ∈ arg min
w

Re(w ◦ ΦX1) ⇐⇒ ŵ(x1) = E[Y e|Xe
1 = x1] = E[Y I |XI

1 = x1] PXe
1

− almost everywhere.

or
ŵ ∈ arg min

w
Re(w ◦ ΦX1) ⇐⇒ ŵ(x1) = PY e|Xe

1 =x1 = PY I |XI
1 =x1 PXe

1
− almost everywhere.
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hold for any e ∈ E under the least-square and cross-entropy losses respectively (Christmann & Steinwart,
2008, Example 2.6). Hence, ignoring the capability of W∗ and the discussion of almost everywhere, we can
see that

E[Y I |XI
1 = x1] ≈ arg minw∈W∗

∑
e∈Etr

Re(w ◦ ΦX1) (11)

or
PY I |XI

1 =x1 ≈ arg minw∈W∗

∑
e∈Etr

Re(w ◦ ΦX1) (12)

hold. Combining eq.s (11), (12) and the first lemma (A), it concludes the main theorems intuitively. In the
following section, we give the rigorous justification of the above rough proof sketch.

4.2 Proof of Theorem 1

To prove the main theorem, we prepare two lemmas.
Lemma 3. Let wI : X1 → Y be the conditional expectation obtained by pI(y|x1); namely,

wI(x1) = E[Y I |XI
1 = x1] :=

∫
y · pI(y|x1)dy.

Then,
wI ◦ ΦX1 ∈ arg min

f :X →Y
Ro.o.d.(f).

Lemma 4. Any Φ ∈ IC0

tr is represented as

Φ = Ψ ◦ ΦX1

for some continuous map Ψ : X1 → H.

Proof of Lemma 3 4 It suffices to prove the following statement:

For any f ∈ F and (Xa, Y a) ∈ {(Xe, Y e)}e∈E , there exists (Xb, Y b) ∈ {(Xe, Y e)}e∈E such that∫
∥wI ◦ ΦX1(x) − y∥2dPXa,Y a(x, y) ≤

∫
∥f(x) − y∥2dPXb,Y b(x, y). (13)

Take arbitrary f ∈ F and (Xa, Y a) ∈ {(Xe, Y e)}e∈E . Define (Xb, Y b) ∈ {(Xe, Y e)}e∈E such that its
distribution is the direct product PXa

1 ,Y a ⊗ PX2 , where PXa
1 ,Y a is the marginal distribution of PXa,Y a on

X1 × Y and PX2 is an arbitrary distribution on X2.

Then, the right-hand side of the inequality (13) is given by∫
∥f(x) − y∥2dPXb,Y b(x, y) =

∫
∥f(x) − y∥2d(PXa

1 ,Y a ⊗ PX2)(x, y)

=
∫

PX2(x2)
∫

∥f(x1, x2) − y∥2dPXa
1 ,Y a(x1, y).

Clearly, for any x∗
2 ∈ X2, the inequality∫
∥f(x1, x∗

2) − y∥2dPXa
1 ,Y a(x1, y) ≥

∫
∥E[Y e1 |Xa

1 = x1] − y∥2dPXa
1 ,Y a(x1, y)

4The proof is essentially the same as the one for Theorem 1 in Rojas-Carulla et al. (2018) and Theorem 6 in Toyota &
Fukumizu (2022).
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holds, because the minimum of a risk on the least square loss is attained at the conditional expectation
E[Y a|Xa

1 ]. Hence, we obtain∫
∥f(x) − y∥2dPXb,Y b(x, y) =

∫
PX2(x2)

∫
∥f(x1, x2) − y∥2dPXa

1 ,Y a(x1, y)

≥
∫

PX2(x2)
∫

∥E[Y e1 |Xa
1 = x1] − y∥2dPXa

1 ,Y a(x1, y)

=
∫

∥E[Y a|Xa
1 = x1] − y∥2dPXa

1 ,Y a(x1, y)

=
∫

PXa
2 |Xa

1 ,Y a(x2)
∫

∥E[Y a|Xa
1 = x1] − y∥2dPXa

1 ,Y a(x1, y)

=
∫

∥E[Y a|Xa
1 = ΦX1(x)] − y∥2dPXa,Y a(x, y)

=
∫

∥wI ◦ ΦX1(x) − y∥2dPXa,Y a(x, y),

which concludes the proof. Here, the last equality is derived from the fact that the conditional expectation
E[Y e|Xe

1 = ΦX1(x)] does not depend on e ∈ E and corresponds to wI ◦ ΦX1 .

Proof sketch of Lemma 4 Before providing a complete proof, we show a proof sketch of Lemma 4 to
make the flow of our proof easier to understand. First, we prove that Φ ∈ IC0

tr can be represented as

Φ = Ψ ◦ ΦX1 (14)

by some map Ψ : X1 → H, which is not restricted to a continuous map. Take arbitrary Φ ∈ IC0

tr . Then,
since Φ ∈ IC0 = IC0

tr (Condition (i)), for any (Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E ,

PY a|Φ(Xa) = PY b|Φ(Xb),

and therefore, we have
PY a|Φ(Xa)(N |Φ(x)) = PY b|Φ(Xb)(N |Φ(x)) (15)

for any set N ⊂ Y and ∀x ∈ X . We prove the statement (14) by contradiction. Assume that there exist no
maps Ψ that satisfy (14). Then, there exist x∗

1 ∈ X1, x∗
2, x∗∗

2 ∈ X2 such that

Φ(x∗
1, x∗

2) ̸= Φ(x∗
1, x∗∗

2 ).5

By utilizing x∗
1 ∈ X1, x∗

2, x∗∗
2 ∈ X2, we can construct (Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E and N ⊂ Y which

satisfy
PY a|Φ(Xa)(N |Φ(x∗

1, x∗
2)) ̸= PY b|Φ(Xb)(N |Φ(x∗

1, x∗
2)).

This contradicts the assumption (15), and we can conclude Φ ∈ IC0

tr can be represented as (14). The
continuity of Ψ is easily derived from the continuity of Φ, and we can conclude the proof.

Proof of Lemma 4 First, we prove that Φ ∈ IC0

tr can be represented as

Φ = Ψ ◦ ΦX1 (16)

by some map Ψ : X1 → H, which is not restricted to a continuous map. We prove this statement by
contradiction. Take Φ ∈ IC0

tr and assume that there exist no maps Ψ which satisfy (16). Then, there exist
x∗

1 ∈ X1, x∗
2, x∗∗

2 ∈ X2 such that
Φ(x∗

1, x∗
2) ̸= Φ(x∗

1, x∗∗
2 ). (17)

5If Φ(x∗
1, x∗

2) = Φ(x∗
1, x∗∗

2 ) for any x∗
1 ∈ X1, x∗

2, x∗∗
2 ∈ X2, Φ depend only on the first component X1; hence, we can see that

Φ ∈ IC0
tr can be represented as Φ = Ψ ◦ ΦX1 by some map Ψ, which contradicts to the assumption.

9
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𝑥2
∗ 𝑥2

∗∗

𝑥1
∗

𝑥1

𝑥2

𝑦

𝑁𝑦∗

supp(𝑃𝑋𝑎,𝑌𝑎)

supp(𝑃𝑋𝑏,𝑌𝑏 )

Figure 1: Supports of probability distributions PXa,Y a and PXb,Y b . The figure implies that PXa,Y a(Ny∗ ×
Φ−1(Φ∗)) ̸= 0 and PXb,Y b(Ny∗ ×Φ−1(Φ∗)) = 0 (∵ (x∗

1, x∗∗
2 ) /∈ Φ−1(Φ∗) (17)), and that PXa,Y a(Φ−1(Φ∗)) ̸= 0

and PXb,Y b(Φ−1(Φ∗)) ̸= 0. These Eqs. lead us PY a|Φ(Xa)(Ny∗ |Φ∗) ̸= 0 = PY b|Φ(Xb)(Ny∗ |Φ∗).

Fix y∗ ∈ Y with pI(y∗|x∗
1) > 0 and take an open neighborhood Ny∗ ⊂ Y centered at y∗ which satisfies

0 <

∫
Ny∗

pI(y|x∗
1)dy < 1.

Here, the existence of Ny∗ is derived from the continuity of pI(·|x∗
1) (Condition (iv)).

Define two maps gi : Y → X2 (i = 1, 2) by

g1(y) =
{

x∗
2 (y ∈ Ny∗)

x∗∗
2 ( else ) aaaaaa g2(y) =

{
x∗∗

2 (y ∈ Ny∗)
x∗

2 ( else ).

Take two distributions (Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E such that their distributions PXa,Y a and PXb,Y b

coincide with

PXa,Y a = PXa
2 |Y a ⊗ PY I |XI

1
⊗ PX1 , PXb,Y b = PXb

2 |Y b ⊗ PY I |XI
1

⊗ PX1 .

Here,

• PX1 is a distribution on X1 where its p.d.f. coincides with a delta function δx∗
1
(x1) on x∗

1,

• the conditional p.d.f.s of PXa
2 |Y a(·|y) and PXb

2 |Y b(·|y) coincide with δg1(y)(x2) and δg2(y)(x2) respec-
tively.

The supports of PXa,Y a and PXb,Y b are visualized in Fig. 1. As Φ ∈ IC0 = IC0
tr (Condition (i)) and

(Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E ,

PY a|Φ(Xa)(Ny∗ |Φ∗) = PY b|Φ(Xb)(Ny∗ |Φ∗), (18)

where Φ∗ := Φ(x∗
1, x∗

2). Let us compute PY a|Φ(Xa)(Ny∗ |Φ∗) and PY b|Φ(Xb)(Ny∗ |Φ∗) to derive
PY a|Φ(Xa)(Ny∗ |Φ∗) ̸= PY b|Φ(Xb)(Ny∗ |Φ∗), which contradicts to the equality (18)6. We evaluate

PY a|Φ(Xa)(Ny∗ |Φ∗) =
PΦ(Xa),Y a({Φ∗} × Ny∗)

PΦ(Xa)({Φ∗}) = PXa,Y a(Φ−1(Φ∗) × Ny∗)
PXa(Φ−1(Φ∗))

6Fig. 1 illustrates the intuitive reason why PY a|Φ(Xa)(Ny∗ |Φ∗) ̸= PY b|Φ(Xb)(Ny∗ |Φ∗) is derived, and hence, will help us
understand the following rigorous proof.
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by computing its numerator and denominator separately. First, the numerator is evaluated as

PXa,Y a(Φ−1(Φ∗) × Ny∗) =
∫

Φ−1(Φ∗)×Ny∗

δg1(y)(x2) · pI(y|x1) · δx∗
1
(x1)dxdy

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg1(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx.

Noting that g1(y) = x∗
2 for ∀y ∈ Ny∗ and δx∗

1
(x1) × δx∗

2
(x2) = δ(x∗

1 ,x∗
2)(x1, x2), we obtain∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg1(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx =

∫
Ny∗

dy

∫
Φ−1(Φ∗)

δx∗
2
(x2) · pI(y|x1) · δx∗

1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx.

Since (x∗
1, x∗

2) ∈ Φ−1(Φ∗), we have∫
Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx =
∫

Ny∗

pI(y|x∗
1)dy,

which leads us to the equality

PXa,Y a(Φ−1(Φ∗) × Ny∗) =
∫

Ny∗

pI(y|x∗
1)dy.

Next, let us evaluate the denominator PXa(Φ−1(Φ∗)).

PXa(Φ−1(Φ∗)) = PXa,Y a(Φ−1(Φ∗) × Y) =
∫

Φ−1(Φ∗)×Y
δg1(y)(x2) · pI(y|x1) · δx∗

1
(x1)dxdy

=
∫

Y
dy

∫
Φ−1(Φ∗)

δg1(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg1(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δg1(y) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δx∗
2
(x2) · pI(y|x1) · δx∗

1
(x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δx∗∗
2

(x2) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗∗

2 )(x1, x2) · pI(y|x1)dx.

Here, the fourth equality is derived from the facts that g1(y) = x∗
2 for ∀y ∈ Ny∗ and g1(y) = x∗∗

2 for
∀y ∈ Y − Ny∗ . Noting that (x∗

1, x∗
2) ∈ Φ−1(Φ∗) and (x∗

1, x∗∗
2 ) /∈ Φ−1(Φ∗), we obtain

PXa(Φ−1(Φ∗)) =
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗∗

2 )(x1, x2) · pI(y|x1)dx

=
∫

Ny∗

dy · pI(y|x∗
1) +

∫
Y−Ny∗

dy · 0

=
∫

Ny∗

pI(y|x∗
1)dy.

11
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Hence, we obtain

PY a|Φ(Xa)(Ny∗ |Φ∗) = PXa,Y a(Φ−1(Φ∗) × Ny∗)
PXa(Φ−1(Φ∗))

=

∫
Ny∗

pI(y|x∗
1)dy∫

Ny∗
pI(y|x∗

1)dy
= 1.

Next, let us evaluate

PY b|Φ(Xb)(Ny∗ |Φ∗) =
PΦ(Xb),Y b({Φ∗} × Ny∗)

PΦ(Xb)({Φ∗}) =
PXb,Y b(Φ−1(Φ∗) × Ny∗)

PXb(Φ−1(Φ∗)) .

The numerator is evaluated as

PXb,Y b(Φ−1(Φ∗) × Ny∗) =
∫

Φ−1(Φ∗)×Ny∗

δg2(y)(x2) · pI(y|x1) · δx∗
1
(x1)dxdy

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg2(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx.

Noting that g2(y) = x∗∗
2 for ∀y ∈ Ny∗ , we obtain∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg2(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx =

∫
Ny∗

dy

∫
Φ−1(Φ∗)

δx∗∗
2

(x2) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗∗

2 )(x1, x2) · pI(y|x1)dx

=
∫

Ny∗

dy · 0 = 0.

Here, the third equality is derived from (x∗
1, x∗∗

2 ) /∈ Φ−1(Φ∗). Next, the denominator PXb(Φ−1(Φ∗)) is
evaluated as

PXb(Φ−1(Φ∗)) = PXb,Y b(Φ−1(Φ∗) × Y) =
∫

Φ−1(Φ∗)×Y
δg2(y)(x2) · pI(y|x1) · δx∗

1
(x1)dxdy

=
∫

Y
dy

∫
Φ−1(Φ∗)

δg2(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δg2(y)(x2) · pI(y|x1) · δx∗
1
(x1)dx+∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δg2(y) · pI(y|x1) · δx∗
1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δx∗∗
2

(x2) · pI(y|x1) · δx∗
1
(x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δx∗
2
(x2) · pI(y|x1) · δx∗

1
(x1)dx

=
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗∗

2 )(x1, x2) · pI(y|x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx.

12
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Noting that (x∗
1, x∗

2) ∈ Φ−1(Φ∗) and (x∗
1, x∗∗

2 ) /∈ Φ−1(Φ∗), we obtain

PXb(Φ−1(Φ∗)) =
∫

Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗∗

2 )(x1, x2) · pI(y|x1)dx

+
∫

Y−Ny∗

dy

∫
Φ−1(Φ∗)

δ(x∗
1 ,x∗

2)(x1, x2) · pI(y|x1)dx

=
∫

Ny∗

dy · 0 +
∫

Y−Ny∗

dy · pI(y|x∗
1)

=
∫

Y−Ny∗

pI(y|x∗
1)dy ̸= 0.

Hence, we obtain

PY b|Φ(Xb)(Ny∗ |Φ∗) =
PXb,Y b(Φ−1(Φ∗) × Ny∗)

PXb(Φ−1(Φ∗))

= 0∫
Y−Ny∗

pI(y|x∗
1) = 0.

Combing these results, we obtain

PY a|Φ(Xa)(Ny∗ |Φ∗) = 1 ̸= 0 = PY b|Φ(Xb)(Ny∗ |Φ∗),

which contradicts the assumption

PY a|Φ(Xa) = PY b|Φ(Xb).

Because the continuity of Ψ is trivial, we can conclude the proof.

Finally, we prove Theorem 1.

Proof of Theorem 1 Take

f∗ ∈ arg minΦ∈IC0
tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ). (19)

Then, by Lemma 4, we can represent f∗ as

f∗ = w∗ ◦ ΦX1

for some continuous map w∗ : X1 → Y7. Let us prove that w∗ ◦ ΦX1 ∈ arg minf :X →Y Ro.o.d.(f)
by contradiction; assuming that w∗ ◦ ΦX1 /∈ arg minf Ro.o.d.(f), we will derive w∗ ◦ ΦX1 /∈
arg minΦ∈IC0

tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ), which contradicts to (19). We prove it by the following three steps.

Step 1 First, we prove that there exist a training domain e∗∗ ∈ Etr and an open set N1 ⊂ X1 which satisfy

w∗(x1) ̸= wI(x1) for ∀x1 ∈ N1 (20)

with PXe∗∗
1

(N1) > 0. As wI ◦ ΦX1 minimizes the o.o.d. risk (Lemma 3), we have

Ro.o.d.(w∗ ◦ ΦX1) > min
f :X →Y

Ro.o.d.(f) = Ro.o.d.(wI ◦ ΦX1).

7By Lemma 4, f∗ can be represented by f∗ = w∗ ◦ Ψ∗ ◦ ΦX1 for Ψ∗ : X1 → H and w∗ : H → Y. Replacing w∗ ◦ Ψ∗ by w∗,
we can obtain the desirable statement.
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Here, the first inequality is derived from the assumption of a proof by contradiction. Noting that Ro.o.d. is
maximum of risk among {(Xe, Y e)}, there exists (Xe∗

, Y e∗) ∈ {(Xe, Y e)}e∈E such that

Re∗
(w∗ ◦ ΦX1)

(
=

∫
∥y − w∗(x1)∥2dPXe∗

1 ,Y e∗

)
> Re∗

(wI ◦ ΦX1)
(

=
∫

∥y − wI(x1)∥2dPXe∗
1 ,Y e∗

)
(21)

holds8. Since (21) is rewritten as∫ {
∥y − w∗(x1)∥2 − ∥y − wI(x1)∥2}

dPXe∗
1 ,Y e∗ > 0,

we can see that
∥y∗ − w∗(x∗

1)∥2 − ∥y∗ − wI(x∗
1)∥2 > 0

for some (x∗
1, y∗) ∈ X1 × Y. Since w∗ and wI are continuous, taking sufficiently small ε > 0, we have

∥y∗ − w∗(x1)∥2 − ∥y∗ − wI(x1)∥2 > 0 for ∀x1 ∈ Nε
x∗

1
, (22)

where Nε
x∗

1
is the ε-ball centered at x∗

1. Here, the continuity of wI is derived from Condition (iv) in Theorem
1. Moreover, (22) leads us to the statement

w∗(x1) ̸= wI(x1) for ∀x1 ∈ Nε
x∗

1
.

By the condition (ii), Nε
x∗

1

⋂
supp(PXe∗∗

1
) ̸= ∅ for some e∗∗ ∈ Etr. Take

x∗∗
1 ∈ Nε

x∗
1

⋂
supp(PXe∗∗

1
) def of supp===

Nε
x∗

1

⋂ {
x1 ∈ X1

∣∣∣Nx1 : open neighborhood around x1 ⇒ (PXe∗∗
1

)(Nx1) > 0
}

̸= ∅.

Replacing x∗∗
1 , if necessary, we may assume that

x∗∗
1 ∈ Nε

x∗
1

⋂ {
x1 ∈ X1

∣∣∣Nx1 : open neighborhood around x1 ⇒ (PXe∗∗
1

)(Nx1) > 0
}

. (23)

Take an open set N1 ⊂ Nε
x∗

1
which includes x∗∗

1 . Then, we have

w∗(x1) ̸= wI(x1) for ∀x1 ∈ N1. (24)

Observing that

x∗∗
1 ∈ {x1 ∈ X1 |Nx1 : open neighborhood with x1 ∈ Nx1 ⇒ (PXe∗∗ )(Nx1) > 0} ,

we have PXe∗∗
1

(N1) > 0. It concludes the proof of Step 1.

Step 2 Next, we prove the inequality∑
e∈Etr

Re(w∗ ◦ ΦX1) >
∑

e∈Etr

Re(wI ◦ ΦX1). (25)

To derive the inequality, note that

ŵ ∈ arg min
w

Re(w ◦ ΦX1) ⇐⇒ ŵ(x1) = wI(x1) PXe
1

− a.e.,

8Note that e∗ is not necessarily included in training domains Etr. The inequality (21) for some training domain e∗∗ ∈ Etr

are proved in Step 2 (eq. (29)).
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or equivalently,
ŵ ∈ arg min

w
Re(w ◦ ΦX1) ⇐⇒ PXe

1
(
{

x1 ∈ X1
∣∣ŵ(x1) ̸= wI(x1)

}
) = 0 (26)

holds for any e ∈ E (Christmann & Steinwart, 2008, Example 2.6). Taking the contraposition of the
implication from the left to right propositions in (26), we have

ŵ satisfies PXe
1
(
{

x1 ∈ X1
∣∣ŵ(x1) ̸= wI(x1)

}
) > 0 ⇒ ŵ /∈ arg min

w
Re(w ◦ ΦX1). (27)

From (20), we have the inequality
PXe∗∗

1
(
{

x1 ∈ X1
∣∣w∗(x1) ̸= wI(x1)

}
) > PXe∗∗

1
(N1) > 0 (28)

for some e∗∗ ∈ Etr and an open set N1 ⊂ X1. (27) and (28) lead us to statement w∗ /∈ arg minw Re∗∗(w◦ΦX1),
and hence, we have the inequality

Re∗∗
(w∗ ◦ ΦX1) > min

w
Re∗∗

(w ◦ ΦX1) = Re∗∗
(wI ◦ ΦX1). (29)

Moreover, since the conditional expectation wI minimizes the risk, we have
Re(w∗ ◦ ΦX1) ≥ Re(wI ◦ ΦX1) (30)

for any e ∈ E . (29) and (30) lead us to the inequality∑
e∈Etr

Re(w∗ ◦ ΦX1) = Re∗∗
(w∗ ◦ ΦX1) +

∑
e∈Etr−{e∗∗}

Re(w∗ ◦ ΦX1)

(29)
> Re∗∗

(wI ◦ ΦX1) +
∑

e∈Etr−{e∗∗}

Re(w∗ ◦ ΦX1)

(30)
≥ Re∗∗

(wI ◦ ΦX1) +
∑

e∈Etr−{e∗∗}

Re(wI ◦ ΦX1) =
∑

e∈Etr

Re(wI ◦ ΦX1).

Step 3 Finally, we prove w∗ ◦ ΦX1 /∈ arg minΦ∈IC0
tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ), which contradicts to (19). By
the inequality (25) proved in Step 2, it suffices to prove that there exist Φ† ∈ IC0

tr and w† ∈ WC0 such that
wI ◦ ΦX1 = w† ◦ Φ†. Define Φ† = Ψ† ◦ ΦX1 where the embedding Ψ† : X1 (= Rd1) → H (= RdH) is defined by

Rd1 ∋


x1

x2

...
xd

 Ψ†

7−→



x1

x2

...
xd

0
...
0


∈ RdH .

Here, we can define the embedding Ψ† since d1 ≤ dH (Condition (iii)). Noting that PY e|Φ†(Xe) =
PY e|ΦX1 (Xe) = PY I |XI

1
for any e ∈ E , we can see that Φ† ∈ IC0

tr . Defining

RdH ∋



x1

x2

...
xd

xd+1

...
xh


w†

7−→ E[Y I |XI
1 =


x1

x2

...
xd

] ∈ Y,

we can see that wI ◦ ΦX1 = w† ◦ Φ†. Observing w† ∈ WC0 by Condition (iv), we can concludes w∗ ◦ ΦX1 /∈
arg minΦ∈IC0

tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ), which contradicts to (19).
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4.3 Proof of Theorem 2

We prepare two lemmas.
Lemma 5. Let pI : X1 → PY be the conditional p.d.f. of PY I |XI

1
; namely,(

pI(x)
)

i
:= pI(i|x).

Then,
pI ◦ ΦX1 ∈ arg min

f :X →PY

Ro.o.d.(f).

Lemma 6. Any Φ ∈ IC0

tr is represented as

Φ = Ψ ◦ ΦX1

for some continuous map Ψ : X1 → H.

Proof of Lemma 5 The proof is essentially the same as the ones for Lemma 3; hence, we omit the
proof.

Proof of Lemma 6 First, we prove that Φ ∈ IC0

tr can be represented as

Φ = Ψ ◦ ΦX1 (31)

by some map Ψ : X1 → X1, which is not restricted to a continuous map. We prove this statement by
contradiction in the same manner as the proof in Lemma 4. Take Φ ∈ IC0

tr . Then, there exist x∗
1 ∈ X1,

x∗
2, x∗∗

2 ∈ X2 such that
Φ(x∗

1, x∗
2) ̸= Φ(x∗

1, x∗∗
2 ).

Fix y∗ ∈ Y with pI(y∗|x∗
1) > 0. Define two maps gi : Y → X2 (i = 1, 2) by

g1(y) =
{

x∗
2 (y = y∗)

x∗∗
2 ( else ) aaaaaa g2(y) =

{
x∗∗

2 (y = y∗)
x∗

2 ( else )

Take two distributions (Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E such that their distributions PXa,Y a and PXb,Y b

coincide with

PXa,Y a = PXa
2 |Y a ⊗ PY I |XI

1
⊗ PX1 , PXb,Y b = PXb

2 |Y b ⊗ PY I |XI
1

⊗ PX1 .

Here

• PX1 is a distribution on X1 where its p.d.f. coincides with a delta function δx∗
1
(x1) on x∗

1,

• the conditional p.d.f.s of PXa
2 |Y a(·|y) and PXb

2 |Y b(·|y) coincide with δg1(y)(x2) and δg2(y)(x2) respec-
tively.

Since Φ ∈ IC0 = IC0
tr (Condition (i)) and (Xa, Y a), (Xb, Y b) ∈ {(Xe, Y e)}e∈E ,

PY a|Φ(Xa)({y∗}|Φ∗) = PY b|Φ(Xb)({y∗}|Φ∗), (32)

where Φ∗ := Φ(x∗
1, x∗

2). Let us compute PY a|Φ(Xa)({y∗}|Φ∗) and PY b|Φ(Xb)({y∗}|Φ∗), respectively. Same as
the proof in Lemma 4, we have the two equalities

PΦ(Xa),Y a({Φ∗} × {y∗}) = pI(y∗|x∗
1) and PΦ(Xa)({Φ∗}) = pI(y∗|x∗

1),

which lead us to the equality

PY a|Φ(Xa)({y∗}|Φ∗) =
PΦ(Xa),Y a({Φ∗} × {y∗})

PΦ(Xa)({Φ∗})

= pI(y∗|x∗
1)

pI(y∗|x∗
1) = 1.
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Similarly, we have

PY b|Φ(Xb)({y∗}|Φ∗) = 0 and PΦ(Xb)({Φ∗}) =
∑

y∈Y−{y∗}

pI(y|x∗
1) ̸= 0,

which lead us to the equality

PY b|Φ(Xb)({y∗}|Φ∗) =
PΦ(Xb),Y b({Φ∗} × {y∗})

PΦ(Xb)({Φ∗})

= 0∑
y∈Y−{y∗} pI(y|x∗

1) = 0.

Here,
∑

y∈Y−{y∗} pI(y|x∗
1) ̸= 0 is derived by Condition (v). Combing these results, we obtain

PY a|Φ(Xa)({y∗}|Φ∗) = 1 ̸= 0 = PY b|Φ(Xb)({y∗}|Φ∗),

which contradicts the assumption

PY a|Φ(Xa) = PY b|Φ(Xb).

Because the continuity of Ψ is trivial, we can conclude the proof.

Proof of Theorem 2 This is essentially the same as the one for Theorem 1, and hence, we omit the
proof.

5 Conclusions

In this paper, we have proved that a solution for the bi-leveled optimization problem (3) also minimizes
o.o.d. risk (2) under four conditions in regression and classification cases, assuming that distributions on
domains are the ones proposed in Rojas-Carulla et al. (2018) and that models run all continuous functions.
Particularly, we have provided a sufficient condition on the training domains Etr and the dimension of the
feature space H for the optimization problem (3) to minimize the o.o.d. risk.

Several challenges still exist. The first problem is the theoretical analysis of the optimization method for
(3). To solve the challenging optimization problem (3), various optimization techniques have been proposed
(Arjovsky et al., 2019; Lin et al., 2022a; Zhou et al., 2022), and there has been little discussion about their
effectiveness. For example, while Arjovsky et al. (2019) optimized (3) by minimizing∑

e∈Etr

Re(Φ) + λ · ∥∇w|w=1.0Re(w · Φ)∥2,

their effectiveness was evaluated only under specific SEMs (Rosenfeld et al., 2021). Thus, it is important to
investigate this analysis under a more general case.

Second, we should evaluate the o.o.d. performance of the bi-leveled optimization problem (3) under the case
where the conditions in Theorems 1 and 2 are violated. Particularly, as noted in Section 2, condition Itr = I
does not generally hold. In such cases, for (Φ∗, w∗) ∈ arg minΦ∈IC0

tr ,w∈WC0

∑
e∈Etr

Re(w ◦ Φ),

Ro.o.d(w∗ ◦ Φ∗) − min Ro.o.d(f)

is not necessarily 0. The quantitative evaluation of the difference is crucial for future work.

Thirdly, we should investigate the feasibility of the condition Itr = I, which is known to be an important
and unsolved problem shared by all invariance-based methods (Arjovsky et al., 2019; Peters et al., 2016;
Toyota & Fukumizu, 2022). As Condition (i) in our main results, all methods based on invariances implicitly
or explicitly assume that invariances among training domains correspond to ones among all domains. As
discussed in Section 2, some sufficient conditions under a simple linear SEM setting have been found (Peters
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et al., 2016; Arjovsky et al., 2019), but general theoretical results have not yet been established. This is also
among our unsolved problems, and should be provided in further work.

Finally, extending our results to general domain sets beyond the case by Rojas-Carulla et al. (2018) is an
important topic for future work. Invariant Risk Minimization (IRM) estimates the feature map Φ that
has the same conditional distribution PY e|Φ(Xe) among all domains e ∈ E ; in other words, IRM framework
assumes that a domain set E has a feature map Φ such that PY e|Φ(Xe) are equal among all domains. Among
domain sets that satisfy the property, the domain set by Rojas-Carulla et al. (2018) is the simplest one; the
projection ΦX1 induces the same conditional independence PY e|ΦX1 (Xe). In some cases, a map that induces
the same conditional distribution is a more complex function than the projection ΦX1 , so the relation between
(3) and the o.o.d. risk on such general domains beyond the case by Rojas-Carulla et al. (2018) is should be
investigated.
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