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Abstract

The explosive growth of generative video models has amplified the demand for
reliable copyright preservation of AI-generated content. Despite its popularity in
image synthesis, invisible generative watermarking remains largely underexplored
in video generation. To address this gap, we propose Safe-Sora, the first framework
to embed graphical watermarks directly into the video generation process. Moti-
vated by the observation that watermarking performance is closely tied to the visual
similarity between the watermark and cover content, we introduce a hierarchical
coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is
divided into patches, each assigned to the most visually similar video frame, and
further localized to the optimal spatial region for seamless embedding. To enable
spatiotemporal fusion of watermark patches across video frames, we develop a 3D
wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local
scanning strategy, effectively modeling long-range dependencies during watermark
embedding and retrieval. To the best of our knowledge, this is the first attempt to
apply state space models to watermarking, opening new avenues for efficient and
robust watermark protection. Extensive experiments demonstrate that Safe-Sora
achieves state-of-the-art performance in terms of video quality, watermark fidelity,
and robustness, which is largely attributed to our proposals. Code is publicly
available at https://github.com/Sugewud/Safe-Sora

1 Introduction

Recent advances in video generation models have significantly transformed digital content creation [1–
6]. VideoCrafter2 [2] delivers high-fidelity video generation results, while Open-Sora [7] enables
efficient and scalable video generation. However, this rapid progress also raises growing concerns
over copyright protection and ownership verification of generated videos.

Invisible watermarking has proven effective for copyright protection in image generation [8–15].
However, its extension to video generation remains relatively underexplored. Recent efforts such
as VideoShield [16] and LVMark [17] embed watermarks by modifying latent noise or applying
importance-based modulation strategies. Despite these advancements, existing approaches rely on
embedding bitstring-based identifiers, which fall short of leveraging the high information capacity
inherent in video content. Unlike static images, videos offer significantly greater embedding band-
width, making them well-suited for graphical watermarks—e.g., logos or icons—that serve as more
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Figure 1: Impact of image-watermark similarity on watermarking performance. We used a pretrained
classic image hiding network Balujanet [18] on 1,000 image pairs, each consisting of a graphical
watermark from Logo-2k [19] and a cover image from ImageNet [20]. Image-Watermark similarity
was quantified using 1-LPIPS and the quality of the watermarked image and extracted watermark
was evaluated using PSNR. Higher PSNR and lower LPIPS indicate improved performance.
intuitive and visually recognizable evidence of ownership. Such designs enhance both the perceptual
clarity and practical reliability of copyright verification.

Recognizing the untapped potential of graphical watermarking in video generation, we propose
Safe-Sora, the first framework, to the best of our knowledge, that embeds graphical watermarks
elegantly into the video generation process. As illustrated in Fig. 1, we observe that watermarking
performance significantly correlates with the visual similarity between the watermark and cover
images. In particular, embedding becomes significantly more effective when the cover image shares
high visual similarity with the watermark content. Motivated by this, we propose a hierarchical
coarse-to-fine adaptive matching mechanism, which first divides the watermark image into patches
and assigns each patch to the most similar video frame through an inter-frame automatic selection
strategy. Subsequently, an intra-frame localization is performed to embed the patch into the most
visually similar region within the selected frame. To address the challenge of fusing and extracting
watermark information distributed across spatiotemporal locations, we further propose a 3D wavelet
transform-enhanced Mamba architecture with a tailored scanning strategy. This design enables
bidirectional modeling across frequency subbands in the 3D wavelet transform, effectively and
efficiently capturing long-range dependencies in both space and time. To the best of our knowledge,
this is the first application of state space models to generative watermarking.

In our experiments, we utilize the widely-used Panda-70M [21] dataset as the video source due to its
extensive scale and diverse video categories. For graphical watermarks, we employ the Logo-2K+ [19]
dataset, which offers a wide variety of real-world logos. The quantitative and qualitative comparisons
with existing methods demonstrate that the proposed Safe-Sora achieves state-of-the-art performance
in terms of video quality, watermark fidelity, and robustness. For instance, our method achieves a
Fréchet Video Distance of 3.77, far lower than the second-best baseline’s 154.35, highlighting its
superior temporal consistency. Our primary contributions can be summarized as follows:

• We introduce the first model specifically designed to embed graphical watermarks in video
generation pipelines, directly addressing the pressing need for copyright protection of
generated video content.

• We propose a hierarchical coarse-to-fine adaptive matching mechanism that strategically
embeds watermark patches into visually similar frames and spatial regions, enhancing
overall watermarking performance.

• We pioneer the application of state space models for watermarking through a novel 3D
wavelet transform-enhanced Mamba architecture with a tailored scanning strategy, enabling
enhanced fusion and extraction of watermark information across space and time.

2 Related Work

2.1 Video Diffusion Models

Recently, AI-generated content has been vibrant in the community [22–33]. Diffusion models [34–39]
are a class of generative models that synthesize data through a gradual denoising process, beginning
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from randomly sampled Gaussian noise. Latent Video Diffusion Models (LVDMs) [40] perform the
diffusion process in the latent space to improve computational efficiency. VideoCrafter2 [2] builds
high-quality video generation models by leveraging low-quality video data combined with synthesized
high-quality images. Open-Sora [7] introduces the Spatial-Temporal Diffusion Transformer, an
efficient video diffusion framework that separates spatial and temporal attention mechanisms. While
LVDMs have shown strong performance in video generation, the integration of graphical watermarks
into this framework has not been explored.

2.2 Generative Video Watermarking

Digital watermarking has emerged as an essential technique for copyright protection, content authen-
tication, and ownership verification across various media types. However, watermarking for video
diffusion models represents a relatively unexplored area. VideoShield [16] pioneered this space by
modifying latent noise during the diffusion process to embed binary watermark information. More
recently, LVMark [17] introduced an importance-based weight modulation strategy to minimize
visual quality degradation. Nevertheless, these existing approaches primarily focus on embedding
low-capacity binary strings, without taking advantage of the high-capacity nature of video media,
which is well-suited for embedding richer information such as graphical watermarks.

2.3 State Space Models

State Space Models (SSMs) [41, 42] have emerged as efficient alternatives to transformers [43] for
sequence modeling. The Mamba architecture [44] represents a significant advancement in SSMs
by introducing selective state space modeling with data-dependent parameters, enabling dynamic
resource allocation to important sequence elements while maintaining computational efficiency.
Despite Mamba’s remarkable success in language processing tasks [45, 46] and its growing adoption
in computer vision applications [47, 48], its potential for watermarking techniques has remained
entirely unexplored until now.

3 Graphical Watermarking for Video Generation

In this section, we present the pipeline of our Safe-Sora framework, which introduces a novel
approach to embedding graphical watermarks directly within the video generation process (Fig. 2).
We first partition the watermark image into patches and optimally assign them to appropriate video
frames and regions (Section 3.1). These patches are then embedded and upsampled to generate the
watermark feature map. To embed the watermark, this feature map is fused with multi-scale video
features using a UNet built with 2D SFMamba blocks (Section 3.2), followed by a series of 3D
SFMamba blocks that leverage our spatiotemporal local scanning strategy (Section 3.3), producing
a watermarked video. To extract the watermark, the watermarked video is processed through an
extraction network built with a degradation layer, a series of 3D SFMamba blocks, and position
recovery. The training objectives are outlined in Section 3.4, while the preliminaries on latent video
diffusion models, state space models, and wavelet transforms are detailed in Appendix A.

3.1 Coarse-to-Fine Adaptive Patch Matching

Motivated by the observation that greater similarity between the watermark and cover content
enhances watermarking performance (as shown in Fig. 1), we propose a coarse-to-fine adaptive
patch matching mechanism to systematically identify the most semantically similar spatial-temporal
regions in a video for watermark embedding, as illustrated in the bottom-left corner of Fig. 2.

First, to enable accurate localization of each patch during the final watermark recovery, we propose
a simple yet effective method: the position channel. Specifically, we represent patch positions
using binary encoding (e.g., using 8 bits to represent 256 patch positions). This binary code is
then replicated to form an additional channel, introducing redundancy that enhances robustness
against spatial distortions and degradation. Finally, this position channel is concatenated with the
patch content, embedding positional information directly into the input and eliminating the need for
additional positional processing during subsequent training.

Then, we adopt a two-stage process to adaptively determine the most suitable embedding location for
each patch. The first stage operates at the frame level. We extract features from both patches and
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Figure 2: Overview of our Safe-Sora framework. Our method consists of three main components:
(1) Coarse-to-Fine Adaptive Patch Matching: partitioning the watermark image into patches and
optimally assigning them to appropriate video frames and regions, followed by patch embedding
and upsampling to generate the watermark feature map; (2) Watermark Embedding: the watermark
feature map is fused with multi-scale video features via a UNet with 2D SFMamba blocks, followed
by a series of 3D SFMamba blocks that implement our spatiotemporal local scanning strategy, to
produce the watermarked video; (3) Watermark Extraction: recovering the embedded watermark
using an extraction network built with a distortion layer, a series of 3D SFMamba blocks, and position
recovery. The difference between different types of Mamba blocks lies in their scanning strategies.
the latent representations of video frames using a convolution layer followed by ReLU and global
average pooling (GAP). Similarity between each patch i and frame j is computed via dot product of
these feature vectors, and normalized using Softmax:

wi,j = Softmax (GAP(ReLU(Conv(pi))) ·GAP(ReLU(Conv(zj)))) . (1)
Here, wi,j denotes the similarity score between patch pi and the latent representation zj of frame
j. Each patch is then assigned to the frame with the highest similarity score. To ensure balanced
distribution, we impose a maximum capacity for each frame. If the top-ranked frame is full, the patch
is redirected to the next highest available candidate. Having selected a frame, we proceed to the fine
stage, which determines the optimal spatial position within that frame. Each frame is subdivided into
spatial regions according to its patch capacity. Feature representations of these regions are computed
similarly, and the similarity between patch i and region k in the assigned frame j is given by:

si,k = Softmax (GAP(ReLU(Conv(pi))) ·GAP(ReLU(Conv(rj,k)))) , (2)

where si,k is the similarity score between the i-th patch and the k-th region rj,k in the latent
representation of frame j. Note that we take full advantage of the inherent feature properties of
latent variables in video generation models. Since latent variables can already be viewed as feature
extractions of the original frames, we use only a single convolutional layer for feature extraction,
which significantly reduces the computational overhead.

3.2 Spatial-Frequency Mamba for Spatial Fusion

Mamba [44] has demonstrated strong capabilities in modeling long-range dependencies with high
efficiency, making it well-suited for spatiotemporal modeling in video tasks. Meanwhile, frequency
domain information has been applied in various domains [49–51]. In watermark embedding, it has
proven effective in capturing structural patterns and resisting distortions [50, 51]. To incorporate both
advantages, we propose the Spatial-Frequency Mamba (SFMamba) block, as shown in Fig. 2.

SFMamba adopts a dual-stream design with separate spatial and frequency branches. It comes in two
variants: a 2D version and a 3D version, differing primarily in the wavelet transform and scanning
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Figure 3: For 3D frequency scanning, we propose a spatiotemporal local scanning strategy for 3D
wavelet transform, which processes the frequency components hierarchically from low frequency to
high frequency and high frequency to low frequency.

strategy. The 3D SFMamba will be introduced in Section 3.3. We next introduce the 2D SFMamba
block for efficient spatial fusion of watermark and video content. It consists of separate 2D spatial
and 2D frequency branches.

2D Spatial Branch. The spatial processing begins with a LayerNorm operation on the input feature
map Fin, yielding normalized features FN. In the first path, FN undergoes a simple SiLU activation
function. In the second path, FN passes through a 1×1 convolution layer, followed by our 2D spatial
Mamba module. The 2D spatial branch output Fs is computed as:

Fs = SiLU(FN)⊙ 2DSpatialMamba(Conv1×1(FN)). (3)

where ⊙ denotes element-wise multiplication of the two pathway outputs.

2D Frequency Branch. For frequency domain processing, we transform FN using a 2D Discrete
Wavelet Transform (DWT), which decomposes the signal into four frequency subbands: LL (low-low),
LH (low-high), HL (high-low), and HH (high-high). Each subband has spatial dimensions reduced by
half compared to the original. Inspired by FreqMamba [52], we rearrange these components from
top-left to bottom-right to restore the original resolution. The wavelet features are then divided into
four blocks and scanned block by block. The output is projected back to the spatial domain via a 2D
Inverse DWT (IDWT), followed by element-wise multiplication with SiLU(FN). The 2D frequency
branch output Ff is computed as:

Ff = SiLU(FN)⊙ IDWT(2DFreqMamba(DWT(FN))). (4)

The spatial branch output is enhanced with a residual connection from Fin. Finally, we concatenate
the outputs from both branches and apply a 1×1 convolution to produce the integrated output.

3.3 3D Frequency Scanning for Spatiotemporal Interaction

To address the challenges of fusing and extracting watermark information distributed across spa-
tiotemporal locations, we propose an efficient architecture—3D SFMamba, a 3D Wavelet Mamba
transform-enhanced design with a customized scanning strategy. This architecture enables bidirec-
tional modeling across frequency subbands within the 3D wavelet transform, effectively capturing
long-range dependencies in both spatial and temporal domains to accurately recover watermark
information embedded in the temporal dimension. 3D SFMamba consists of separate 3D spatial and
3D frequency branches.

3D Spatial Branch. The 3D spatial branch employs a vanilla 3D scanning strategy, which processes
features across all three dimensions (temporal, height, width) to capture both spatial and temporal
dependencies effectively.

3D Frequency Branch. In the frequency domain branch, input features Fin undergo a 3D Discrete
Wavelet Transform (3D DWT), decomposing them into eight subbands: LLL, LLH, LHL, LHH,
HLL, HLH, HHL, and HHH. Each subband has half the original dimensions in frame, height,
and width. To address the complexity of 3D wavelet-transformed features, we propose a novel
spatiotemporal local scanning strategy as shown in Fig. 3. This approach first rearranges the eight
subbands to restore the original video resolution, then divides them into eight distinct parts for
separate scanning. For forward scanning, the order follows LLL, LLH, LHL, HLL, LHH, HLH, HHL,
and HHH—progressing systematically from low to high frequencies. Additionally, we implement
a reverse scanning mechanism that processes the subbands in the opposite direction—from HHH
to LLL—enabling the model to capture information from high to low frequencies. Within each part,
we employ a spatial-first, temporal-second scanning pattern. This spatiotemporal local scanning
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strategy is specifically designed for 3D wavelet transforms, allowing the model to process frequency
information hierarchically across multiple scales.

3.4 Training Objectives

Our training framework combines video reconstruction loss and watermark reconstruction loss. The
video reconstruction loss uses mean squared error (MSE) to ensure the watermarked video V̂ closely
resembles the original video V:

Lvideo = MSE(V, V̂). (5)

Similarly, the watermark reconstruction loss measures the extraction accuracy by comparing the
extracted watermark Ŵ with the original watermark W:

Lwatermark = MSE(W,Ŵ). (6)

During training, we provide the correct positions to reconstruct the watermark image properly, while
during testing, the model utilizes the embedded position channels to predict the correct arrangement
of patches. The final loss function is:

Ltotal = Lvideo + λLwatermark, (7)

where the watermark weighting hyperparameter λ balances video quality against watermark fidelity.

4 Experiments

4.1 Experimental Setting

Datasets. For the video dataset, we use the Panda-70M [21] dataset for training, which is a large-
scale dataset containing 70 million high-quality videos across diverse content types. Specifically, we
randomly download 10,000 videos from Panda-70M, sample 8 frames from each video, and resize
each frame to a resolution of 320 × 512 for training purposes. For the watermark dataset, we use
the Logo-2K dataset [19], which contains 167,140 watermark images at a resolution of 256 × 256,
spanning a wide range of real-world logo classes. For the evaluation of text-to-video generation, we
employ the VidProm [53] dataset as the source of prompts. The prompts in VidProm are generated
by GPT-4 [54], and we randomly select 100 prompts from the dataset for evaluation.

Implementation Details. We use VideoCrafter2 [2] as our backbone model to generate videos at
a resolution of 320 × 512. Our method is compatible with various video generation backbones,
with additional results provided in Appendix C. The patch size is set to 16× 16. Patch Embedding
maps each patch to a 1024-dimensional feature space. The model is trained for 30 epochs on 4
NVIDIA RTX 4090 GPUs. We adopt the AdamW optimizer [55], with the initial learning rate set
to 5e-4, which is gradually decayed to 1e-6 following a cosine decay schedule. The watermark
embedding network uses M = 2 3D SFMamba Blocks, while the watermark extraction network uses
N = 4 3D SFMamba Blocks. The hyperparameter λ in Eq. 7 is set to 0.75. The distortion layer
simulates various real-world distortions, including H.264 video compression, rotation, and other
common transformations. Since H.264 is non-differentiable, we follow DVMark [56] and use a 3D
CNN to mimic its effects. For position recovery, we propose a confidence-guided greedy assignment
algorithm, with detailed descriptions provided in Appendix B.

Baselines. To the best of our knowledge, no existing method embeds graphical watermarks directly
into video generation models. To provide a comprehensive comparison, we select five representative
state-of-the-art methods spanning three distinct paradigms of graphical watermarking: (1) Post-
processed image watermarking methods: Balujanet[18] – A classic image steganography network;
UDH[57] – A classic graphical watermarking network; PUSNet [58] – A state-of-the-art image
steganography network. (2) Generative image watermarking: Safe-SD [59] – A generative graphical
watermarking approach. (3) Video steganography: Wengnet [60] – A method that hides one video
within another. For a fair comparison, we retrain all baseline methods using the same training dataset
as ours. For image-based methods, we embed a complete watermark image into each frame. For
video-based methods, each frame of the secret video acts as a watermark and is embedded into the
corresponding frame of the cover video.
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Figure 4: Qualitative comparison results on the first frame of each video. Difference maps show
absolute differences between the watermarked and original videos, and between the recovered and
original watermarks. More examples are shown in Fig. 10 of Appendix. Best viewed with zoom in.

4.2 Comparison with State-of-the-art Methods

Qualitative Comparison. Fig. 4 shows the qualitative comparisons on the first frame of each video,
while Fig. 5 presents visual results of Safe-Sora across multiple frames. As illustrated, Balujanet
introduces clearly visible artifacts in the watermarked video, UDH suffers from stripe-like distortions,
and Safe-SD presents noticeable color shifts. From the difference maps, it is evident that both
WengNet and PUSNet introduce considerable degradation to both video quality and watermark
fidelity. In contrast, our method produces watermarked videos with high visual fidelity, exhibiting
minimal differences from the original videos. Moreover, the recovered watermark images closely
resemble the originals, demonstrating high reconstruction accuracy.

Quantitative Comparison. To evaluate the accuracy of watermark recovery and the invisibility
of the watermark (i.e., video quality), we adopt standard metrics including PSNR, MAE, RMSE,
SSIM [61], and LPIPS [62]. To assess temporal consistency in videos, we employ tLP [63] and
Fréchet Video Distance (FVD) [64]. Quantitative results are summarized in Tab 1. As shown in the
table, our method achieves state-of-the-art performance across all evaluation metrics. We observe
that image watermarking methods inject watermarks by embedding them independently into each
frame, which leads to poor temporal consistency and higher FVD scores. In contrast, our method
leverages Mamba’s long-range modeling capability across space and time, along with the proposed
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Figure 5: Visual results of Safe-Sora on multiple frames. For each frame, we show the original image,
the corresponding watermarked image, and their residual difference. Best viewed with zoom in.
Table 1: Quantitative results on watermark quality and video quality metrics. Watermark quality is
measured by comparing the recovered watermark image with the original watermark, while video
quality is evaluated by comparing the watermarked video with the original video.

Method
Watermark quality Video quality

PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ tLP ↓ FVD ↓
Balujanet 25.28 9.61 15.10 0.91 0.11 25.26 10.09 14.58 0.87 0.25 1.32 512.22
Wengnet 33.18 3.71 5.82 0.96 0.06 28.09 6.27 10.69 0.85 0.21 1.27 265.82

UDH 22.90 11.29 19.29 0.77 0.24 27.75 8.16 10.72 0.73 0.32 2.09 1075.62
PUSNet 28.86 7.45 9.57 0.93 0.12 29.98 4.50 8.72 0.92 0.11 0.98 154.35
Safe-SD 24.24 9.78 17.39 0.84 0.11 22.32 11.65 20.64 0.75 0.24 1.87 849.83

Ours 37.71 2.22 3.61 0.97 0.04 42.50 1.36 1.96 0.98 0.01 0.38 3.77

spatiotemporal local scanning strategy, resulting in superior temporal consistency. Specifically, our
method achieves an FVD of 3.77, significantly outperforming all baselines.

4.3 Robustness

To rigorously evaluate the robustness of our method, we apply a variety of distortion types. For
random erasing, we randomly select an erasure ratio from the range [5%, 10%, 15%, 20%]. For
Gaussian blur, we randomly choose a kernel size from 3, 5, 7. For Gaussian noise, we add noise
with a standard deviation randomly sampled from a uniform distribution U(0, 0.2). For rotation, the
degree is randomly sampled from the range (−30◦, 30◦). Specifically for video, we adopt H.264
compression with a fixed CRF value of 24. We use PSNR, SSIM, and LPIPS to evaluate the robustness
of watermark reconstruction under these distortions. As shown in Fig. 6, our method consistently
achieves the best performance across all types of attacks, demonstrating strong robustness. In
particular, under H.264 compression, all baseline methods suffer a significant drop in performance,
whereas our method maintains high watermark quality.

4.4 Ablation Study

We conduct an ablation study on two key components— Coarse-to-Fine Adaptive Patch Matching
and Spatiotemporal Local Scanning. Additional ablation studies can be found in Appendix D.

Impact of Coarse-to-Fine Adaptive Patch Matching. This strategy matches the most similar
frame and spatial location for each watermark patch, based on similarity computed with the video
latent representations. To evaluate the effectiveness of each component, we investigate three ablated
variants of our method: w/o CFAPM, which completely removes the Coarse-to-Fine Adaptive
Patch Matching mechanism; w/o RtL, which replaces the Routing by Latent strategy with a direct
pixel-frame similarity computation; and w/o FS, which removes the Fine Stage responsible for spatial
location refinement.
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Rotation (-30°, 30°), and H.264 Compression (CRF = 24).

Table 2: Comprehensive ablation study on key components of our method. CFAPM: Coarse-to-Fine
Adaptive Patch Matching; RtL: Routing by Latent; FS: Fine Stage; SLS: Spatiotemporal Local
Scanning; SFS: Spatial First Scanning within each subband.

Method
Watermark quality Video quality

PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ tLP ↓ FVD ↓
w/o CFAPM 36.71 2.53 3.99 0.96 0.05 39.68 1.94 2.76 0.97 0.03 1.14 16.87

w/o RtL 36.36 2.67 4.13 0.96 0.05 40.23 1.79 2.54 0.97 0.04 1.30 6.37
w/o FS 36.88 2.45 3.94 0.97 0.04 41.25 1.58 2.26 0.97 0.03 1.17 4.82

w/o SLS 35.96 2.98 4.02 0.94 0.08 38.42 1.98 2.12 0.92 0.03 1.01 13.16
w/o SFS 36.41 2.59 4.17 0.96 0.05 42.21 1.38 2.05 0.98 0.01 0.24 5.24

Ours 37.71 2.22 3.61 0.97 0.04 42.50 1.36 1.96 0.98 0.01 0.38 3.77

The results in Tab. 2 clearly demonstrate that each component of the CFAPM strategy plays a critical
role in enhancing overall performance. Computing the similarity between watermark patches and
video latents leverages the compressed semantic information encoded in the latent space, enabling
more accurate matching; the fine stage further refines this process by identifying the most visu-
ally similar spatial location for each patch. Overall, the Coarse-to-Fine Adaptive Patch Matching
mechanism consistently improves both watermark fidelity and video quality.

Impact of Spatiotemporal Local Scanning. This strategy traverses the eight subbands of the 3D
wavelet transform in a frequency-aware hierarchical order. Within each subband, patches are selected
following a spatial-first, temporal-second scanning pattern. To evaluate the effectiveness of this
design, we ablate two key components: w/o SLS, which replaces the structured traversal with a
vanilla 3D scanning strategy; and w/o SFS, which applies a temporal-first scanning order within each
subband instead of the proposed spatial-first policy.

Results in Tab. 2 demonstrate that the full SLS strategy significantly improves both watermark
and video quality. While the temporal-first scanning achieves slightly better tLP, it consistently
underperforms in watermark fidelity metrics. In summary, SLS enables more effective fusion and
extraction of watermark signals distributed across spatiotemporal regions, thereby enhancing the
overall performance of watermark embedding.

5 Conclusion

Our work introduces Safe-Sora, the first framework embedding graphical watermarks directly into
generated video. We propose a hierarchical coarse-to-fine adaptive matching strategy that optimally
maps watermark patches to visually similar frames and spatial regions. Our 3D wavelet transform-
enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively models
spatiotemporal dependencies for watermark embedding and retrieval, pioneering the application
of state space models to watermarking. Experiments demonstrate that Safe-Sora achieves superior
performance in video quality, watermark fidelity, and robustness. This work establishes a foundation
for copyright protection in generative video and opens new avenues for applying state space models
to digital watermarking.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We mention in the abstract that we propose the first framework that integrates
graphical watermarks directly into the video generation process.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention in the Section E that although our method can successfully
embed image watermarks, embedding more information-rich video watermarks remains a
limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experimental details in Section 4.1 and include the code in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are provided in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 describes the experimental setups and parameters in detail.

Guidelines:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed the experimental setup of prior works in generative watermarking,
which do not report statistical significance or error bars. As our results show consistent and
large margins over all baselines, we believe statistical testing would not affect the validity of
our main claims.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.1 describes the computational resources required to reproduce the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research complies with the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section F discusses the societal impacts of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers of the datasets and base models, and strictly comply
with their licenses and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code includes documentation with detailed information on training,
licensing, and usage limitations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices
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Figure 7: Application Scenario of Safe-Sora: A user provides a text prompt to a video generation
model. The model owner’s graphical watermark is embedded into the video through a feature
extractor and decoder. Later, even if the video is distorted, a watermark extractor can recover the
graphical watermark to verify authenticity and ensure copyright protection.

A Preliminaries

A.1 Latent Video Diffusion Models

Latent Video Diffusion Models (LVDMs) extend the concept of latent diffusion models to the video
domain. These models operate in a compressed latent space rather than pixel space to improve
computational efficiency while maintaining generation quality. The process can be described in three
key steps:

First, a video encoder E maps the input video x ∈ RF×H×W×3 to a latent representation z = E(x) ∈
RF×h×w×c, where F is the number of frames, and the spatial dimensions are reduced: h < H and
w < W .

Second, a diffusion process gradually adds noise to the latent representation through a fixed Markov
chain:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (8)

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (9)

where βt is the noise schedule, αt = 1− βt, and ᾱt =
∏t

s=1 αs.

Finally, a denoising network ϵθ is trained to predict the added noise at each time step. During
generation, the reverse process starts from pure Gaussian noise zT ∼ N (0, I) and iteratively denoises
to produce z0, which is then decoded to the final video x̂ = D(z0) using a decoder D.

For text-to-video generation, LVDMs incorporate a text encoder that processes a conditioning prompt,
which guides the denoising process toward the desired content.

A.2 State Space Models

State Space Models (SSMs) are continuous dynamical systems defined by the following equations:

dh(t)

dt
= Ah(t) +Bx(t), (10)

y(t) = Ch(t) +Dx(t), (11)

where x(t) is the input, h(t) is the hidden state, y(t) is the output, and {A,B,C,D} are the
parameters of the system.

For discrete sequence modeling, these continuous equations are discretized:

ht = Āht−1 + B̄xt, (12)
yt = Cht +Dxt, (13)

where Ā and B̄ are the discretized versions of A and B.
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Algorithm 1 Confidence-Guided Greedy Assignment for Watermark Position Recovery

1: Input: Watermark patches with position channel
2: Output: Reconstructed watermark imageW

Stage 1: Position Decoding
3: for each patch i do
4: Normalize position channel to [0, 1]
5: Compute probability vector pi by averaging binary vectors in the position channel
6: Compute confidence ci =

1
K

∑K
j=1 |p

j
i − 0.5|

7: Convert pi to binary b̂i via thresholding
8: Decode b̂i → position index posi ∈ [0, N − 1]
9: end for

Stage 2: Confidence-Prioritized Assignment
10: Initialize watermark imageW ← ∅
11: Initialize unassigned patch pool U ← ∅
12: for each patch i do
13: if posi is unoccupied inW then
14: Assign patch i to position posi inW
15: else if ci > confidence of current patch at posi then
16: Replace patch at posi with i inW
17: Add the replaced patch to U
18: else
19: Add patch i to U
20: end if
21: end for

Stage 3: Greedy Reassignment of Unassigned Patches
22: Sort U by descending ci
23: for each patch j in U do
24: Find nearest vacant position pj to posj
25: Assign patch j to position pj inW
26: end for
27: returnW

The Mamba architecture extends traditional SSMs by introducing input-dependent parameters:
Ā, B̄ = Projection(x), (14)

ht = Ā⊙ ht−1 + B̄⊙ xt, (15)
yt = Cht, (16)

This input-dependent parameterization allows Mamba to dynamically adapt its processing based on
input content, making it effective for modeling complex sequential dependencies.

A.3 Wavelet Transforms

Wavelet transforms decompose signals into multiple frequency components with localized time
information, making them useful for frequency domain watermarking.

For images, the 2D Discrete Wavelet Transform (DWT) decomposes an image into four sub-bands:
approximation (LL), horizontal detail (LH), vertical detail (HL), and diagonal detail (HH).

The 3D Discrete Wavelet Transform extends the 2D DWT to the temporal domain for video processing.
A video sequence is decomposed into eight sub-bands: LLL, LLH, LHL, LHH, HLL, HLH, HHL,
and HHH, with L and H representing low and high frequencies across the frame, height, and
width dimensions. Each sub-band has half the resolution of the original video in all dimensions.
The 3D DWT provides a multi-level representation of videos, capturing both spatial and temporal
characteristics, which is beneficial for video watermarking by allowing embedding in specific
frequency bands while preserving perceptual quality.
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Table 3: Quantitative comparison on VideoCrafter2 and Open-Sora backbones.

Backbone
Watermark quality Video quality

PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ tLP ↓ FVD ↓
VideoCrafter2 37.71 2.22 3.61 0.97 0.04 42.50 1.36 1.96 0.98 0.01 0.38 3.77

Open-Sora 35.42 2.93 4.70 0.96 0.06 44.15 1.31 1.75 0.97 0.01 0.31 3.04

“A flock of seagulls flies over the azure sea and above the red cliffs.”

“Numerous hot air balloons float above a snow-covered, peculiar landscape.”

“A magnificent waterfall cascades amidst the lush forest.”

Watermaked frameFrame Difference (×5) Recovered watermarkWatermark Difference (×5)

Figure 8: Qualitative examples on Open-Sora backbone. Best viewed with zoom in.

B Robust Watermark Position Recovery Algorithm

To address rare cases where multiple watermark patches are decoded to the same spatial location due
to distortion or attack, we propose a confidence-guided greedy assignment algorithm. This algorithm
ensures reliable and unambiguous recovery of watermark positions by incorporating confidence
estimation, conflict resolution, and greedy reassignment of unplaced patches.

The algorithm is as follows: first, compute the confidence score for each patch’s predicted position.
Then, assign each patch to its corresponding position; in case of conflicts, give priority to the patch
with higher confidence. Finally, assign the remaining unplaced patches in descending order of
confidence to the nearest available positions. The detailed procedure is illustrated in Algorithm 1.

The confidence-guided greedy assignment algorithm effectively handles noisy or partial position
corruption and significantly improves the robustness of watermark extraction.

C More Backbones

While our main experiments are conducted using VideoCrafter2 [2], a UNet-based video generation
model, we further evaluate our method using Open-Sora [7], a DiT-based video generation model.
Quantitative results are shown in Tab. 3, and qualitative examples are provided in Fig. 8. As can be
seen, Open-Sora achieves comparable performance to VideoCrafter2 and produces videos with higher
visual quality, but slightly lower watermark fidelity. These results demonstrate that our method is
effective across different video generation models.
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Table 4: Additional Ablation Studies. MSFI: Multi-Scale Feature Injection.

Method
Watermark quality Video quality

PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ PSNR ↑ MAE ↓ RMSE ↓ SSIM ↑ LPIPS ↓ tLP ↓ FVD ↓
w/o MSFI 36.56 2.56 4.06 0.96 0.05 39.39 2.02 2.84 0.97 0.03 1.19 14.11

Ours 37.71 2.22 3.61 0.97 0.04 42.50 1.36 1.96 0.98 0.01 0.38 3.77

Original w/o MSFI w/MSFI Original w/o MSFI w/MSFI

Figure 9: Visual impact of Multi-Scale Feature Injection. We present difference maps (×5) between
watermarked and original videos. After applying Multi-Scale Feature Injection, the differences are
significantly reduced, leading to improved video quality.

D Additional Ablation Studies

To further assess the contribution of individual components in our framework, we perform extended
ablation studies beyond the main experiments. In particular, we examine the impact of Multi-Scale
Feature Injection, with quantitative results reported in Tab. 4 and qualitative comparisons shown
in Fig. 9. The results demonstrate that incorporating the inherent multi-scale features of the VAE
notably improves the visual quality of generated videos.

E Limitations

While our method demonstrates strong performance in embedding and recovering static graphical
watermarks, it is currently limited to image-based watermarks such as logos or icons. Embedding
more complex and information-rich video watermarks—e.g., animated sequences or temporally
dynamic patterns—remains a challenge.

F Societal Impact

The ability to embed graphical watermarks directly into the video generation process carries important
social and ethical implications. On the positive side, it provides a practical solution to the growing
concerns over ownership verification and copyright protection in generative media. As synthetic
content becomes increasingly widespread, methods like ours can help content creators assert their
rights and trace misuse, thereby fostering accountability and transparency in digital media ecosystems.

However, like many watermarking techniques, our method may also be misused. For example, it could
potentially be employed to falsely claim ownership over public material, or to embed unauthorized
logos into generated videos. We strongly advocate for the responsible use of generative watermarking
technologies and recommend that future research explores methods to verify the authenticity of
embedded watermarks and prevent abuse.
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Figure 10: More qualitative examples on VideoCrafter2 backbone. Difference maps show absolute
differences between the watermarked and original videos, and between the recovered and original
watermarks. Best viewed with zoom in.
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